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Chapter 1

Data-driven Parameters Tuning
for Predictive Performance
Improvement of Wire Bonder
Multi-body Model
Xiaodong Cheng1, Alessandro Di Bucchianico2, Najmeh Ja-
vanmardi3, Matthijs de Jong3, Emil Lykke Diget4, Colin Please5,
Domenico Lahaye6, Qiyao Peng7, Cordula Reisch8 and Davide
Sclosa9

Abstract This report describes work performed during SWI 2023 at the University
of Groningen in relation with Problem 1 posed by the company ASMPT.

ASMPT makes a very large number of different machines for manufacturing of
electronic devices. They have detailed simulation software of one of these machines
and they compare the results of this with physical experimental results. There is a
significant difference between the simulated and measured data, and it is the goal of
this work to study how to estimate the parameters in the simulation model using the
experimentally measured frequency response.

1Wageningen University and Research, The Netherlands
2Eindhoven University of Technology, The Netherlands
3Groningen University, The Netherlands
4University of Southern Denmark
5Oxford University, United Kingdom
6Delft University of Technology, The Netherlands
7Leiden University, The Netherlands
8Technische Universität Braunschweig, Germany
9Vrije University Amsterdam, The Netherlands
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First, two toy models are studied to understand the challenges of parameter esti-
mation in the frequency domain. Later, optimization methods are applied. Several
different approaches of reducing the dimensionality of the parameter space are ex-
plored, including determining the parameter sensitivity. A suggestion for increasing
the detail of the model, specifically related to the machine base, is also outlined.

In the summary, we supply a discussion of the key insights we gained during the
week.

Keywords: Frequency domain, optimisation, sensitivity analysis.

1.1 Introduction
With the increase in demand of electrical components the manufacturing has to be
increasingly efficient and reliable. ASMPT is a world spanning company that pro-
duces as very large number of different machines for rapid manufacturing of electronic
devices. Among these are wire bonding machines, shown in Figure 1.1, used in chip
manufacturing. Wire bonding is the process of installing thin wires that connect
internal chip areas to external breakout pads, see Figure 1.2.

Crucial to the efficient operation of these machines is that they can operate at high
speed and hence they require control systems that will ensure vibrations generated
in the system do not degrade the quality of the operations. To enable this measure-
ments are taken where the machine is actively vibrated and its frequency response
determined. In addition a detailed simulations of the vibrations are generated based
on the CAD design of the machine. These simulations can then be used to enable
high quality control of the vibrations to be made.

1.2 Problem Description
The problem of interest is how to make the computational simulations replicate,
as best as possible, the measurements of the frequency response. To do this it is
necessary to identify the values for the numerous parameters in the model used for
the simulations. Some of these parameters can be measured by careful procedures
(such as the mass of any particular part) but other parameters cannot be measured
independently and must be identified by fitting the results of the model to the data.
This report discusses procedures for performing such fitting.

An image of the CAD model can be seen in Figure 1.3. Here the large grey lower
region is the chassis, the green is the base, the red is the x-stage, which can move
horizontally in the x-direction, the purple is the y-stage, which can move horizontally
in the y-direction, and the blue is the z-stage (also called the θ-stage), which is a
rotating arm that performs the wire bonding. In addition to these main features
the system has some small flexibility in the joints and guides that enable motion of
each of the stages, out of their specific x, y, or z plane. This flexibility is described
by “parasitic elements” in the model. Some of these parasitic phenomena can be
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Figure 1.1: An ASMPT
wire bonder machine.

Figure 1.2: “Gold wire ball-bonded on a silicon die” by Mister rf,
licensed under CC BY-SA 4.0.

Figure 1.3: Details of the CAD design.

quantified by measurements, however there is great uncertainty in these measurements
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Figure 1.4: Outline of the data and simulations used in this report.

and, in addition some parasitic behaviour cannot be quantified independently in any
easy manner.

The overall system that we are interested in can be summarised in Figure 1.4.
Here the measured data from experiments is given by D0, while S(p) denotes the full
nonlinear numerical model built in Simulink with the Simscape Multibody toolbox.
The MATLAB program linmod is applied to the S(p) to produce a linearised model
Slin(p) which can then generate D̂, the computed frequency response of the linearised
system. Finally some norm of the error between the simulated and measured data,
D̂−D0 will be exploited to determine how well a specific set of parameters p0 fits the
measurements so that optimal parameters values can be identified.

1.3 Approach

This report sets out the approaches that were considered for finding the optimal set
of parameters to make the data from the simulations fit the measured data. The full
model is very complicated and so we will start by considering two highly simplified
models in order to gain some insight into the difficulties that might arise in fitting
parameters to such models of oscillations. We will then look at possible cost functions
that might be used to assess the quality of the fit between the simulated and mea-
sured data. Subsequently we focus our attention on how to seek optimal parameters
conditions when the number of parameters is very large, as this is a serious barrier to
using conventional methods of optimisation.

1.4 Modelling

In this section two toy models of the full dynamic model are investigated, and an
alternative model for the machine base is considered.

1.4.1 Toy Models

We consider two very simple models of mass-spring-damper systems to see what type
of behaviour occurs and how parameters might be fit. Additional details and code for
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x

Figure 1.5: Diagram of simple one-mass oscillator.

these models can be found online10.

One-Mass Oscillator

A single point mass attached to a stationary structure by a single spring and damper
is studied. The mass can be subjected to some external force, and the position, x(t),
of the mass can be observed. This simple model is demonstrated in Figure 1.5.

The mass m1 is assumed to be attached to a reference frame with a spring with
spring constant k1 and damper with damping constant d1. The mass will thus oscillate
horizontally around its equilibrium point. We assume that the mass can be determined
a-priori using a scale. This allows us to reduce the design problem from three to two
design variables and to consider the scaled stiffness constant k1/m1 and the scaled
damping constant d1/m1.

The equation of motion is

m1ẍ(t) + d1ẋ+ k1x(t) = F (t), (1.1)

where F (t) is an external force. Initial conditions complete the problem.
In the following, we study the frequency response of the system. The response is

the ratio of the position to the forcing, and depends on the parameter values m1, k1
and d1.

The state-space representation of the mechanical system allows to determine the
transfer function. We therefore consider this representation here. The state-space
representation is written in terms of the state vector X(t) defined as

X(t) =

(
x(t)
ẋ(t)

)
. (1.2)

The output and control are written as y(t) and u(t), respectively, where y(t) = x(t),
u(t) = F (t). Unlike in more realistic applications, the equation governing the motion
of the single point-mass is a linear ordinary differential equation. This allows us
to recover the classical results obtained using Laplace transforms. We furthermore
consider to have a single control variable only. This control parameter u has no part

10https://github.com/ziolai/software/blob/master/swi-groningen2023.ipynb
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in the output. The state-space representation then reads

Ẋ = AX +Bu, (1.3)
y = CX +Du, (1.4)

where

A =

(
0 1

−k1/m1 −d1/m1

)
, B =

(
0
1

)
,

C =
(
1 0

)
, and D =

(
0
0

)
,

(1.5)

where u = F (t) is the external force exciting the system equally at all frequencies
with an amplitude F0.

The observability of the system depends on the rank of the matrix
[
C
CA

]
=

(
1 0
0 1,

)
(1.6)

which in this case is equal to 2, and therefore the system is fully observable and
controllable.

The transfer function of the system is defined in the Laplace domain with the
variable s, given by

H(s) =
1

m1 s2 + d1 s+ k1
. (1.7)

After setting s = j ω, where ω is the frequency, we obtain the transfer function in
the frequency domain

H(ω) =
1

−m1 ω2 + j d1 ω + k1
. (1.8)

A numerical example using the parameter values of the z-stage of the wire bonder
machine highlights the insight we may gain from the transfer function. The mass of
the z-stage was assumed as m1 = 0.1363 kg, the spring constant and damping with
respect to the connection to the y-stage was assumed as k1 = 1.4429 Nm/rad and
d1 = 0.0031 Nms/rad. Regarding the z-stage as a single mass-spring-damper system,
we get the frequency response displayed in Figure 1.6.

The graph in the frequency domain shows three characteristics. First, for small
frequencies we observe the limit case for ω → 0. This limit allows due to log(|H(ω)|) =
log(1/k1) to determine the spring constant k1.

Second, in the limit ω → ∞ we have H(ω) = −1/(m1ω
2). Thus in this limit

log(|H(ω)|) = log(1/(m1))− 2 log(ω). This limit allows to determine the value of m1,
and we note the slope is 40 dB per decade.

Finally, the value of the damping coefficient d1 can be determined from the value
of H(ω) at the resonant frequency ω0 =

√
k1

m1
, where

H(ω0) =
1

jd1
√
k1/m1

. (1.9)



7

Figure 1.6: Bode diagram of simple one-mass oscillator using the parameter values of the z-stage.

The Bode plot for the amplitude therefore allows to determine all three parameters
of the single mass-oscillator.

Even though the transfer function is linear in forcing F0, it is non-linear in the
parameters k1, d1 and m1. The optimization problem we wish to solve is thus non-
linear in these parameters.

Two-Mass Oscillator

The second toy model has a single point mass attached to a stationary structure by
a single spring and damper, which is subjected to some external force. However, we
also consider that there is a second point mass which is connected by springs and
dampers, both to the first mass and also to the stationary structure. The second
mass and its connections are an attempt to model the parasitic behaviour that occurs
in the real system. Hence our only observations are on the position, x(t) of the first
mass, and the response is the ratio of the motion of this first mass to its forcing.

We want to investigate the influence of adding more spring-dampers to a two
masses system. Therefore, we compare the behavior of the system in Figure 1.7 with
the system behavior without the spring and damper connecting mass m2 with the
stationary structure.

The dynamical system reads

M

(
ẍ(t)
ÿ(t)

)
+D

(
ẋ(t)
ẏ(t)

)
+K

(
x(t)
y(t)

)
=

(
F (t)
G(t)

)
, (1.10)
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m1

x(t)
m2

y(t)

k1 k12

k2

d1 d12

d2

Figure 1.7: Diagram of simple two-mass oscillator.

with the diagonal mass matrix

M =

(
m1 0
0 m2

)
,

the stiffness matrix
K =

(
k1 + k12 −k12
−k12 k2 + k12

)
,

and the damping matrix

D =

(
d1 + d12 −d12
−d12 d2 + d21

)
.

We regard the spring k2 and damper d2 to be parasitic. In the following comparison
we investigate the cases k2 = d2 = 0 and k2, d2 > 0.

Transferring the ordinary differential equation in the frequency domain gives the
representation

F (ω) = Z(ω)X(ω) , (1.11)

where Z(ω) is the impedance matrix given by Z(ω) = −ω2M − j ωD +K. Solving
for the unknown displacement can thus be done as X(ω) = H(ω)F (ω), where

H(ω) = Z−1(ω) (1.12)

is the transfer function.
For our system, we can see that the influence of k2 and d2 affects the whole system

behavior. The transfer function then reads

H(ω) =
1

det(Z(ω))

(
H11 −(jωd12 − k12)

−(jωd12 − k12) H22

)
, (1.13)

where det(Z) depends on d2 and k2 in almost all coefficients of the monomials of ω
and the diagonal elements are

H11 = −ω2m2 − jω(d12 + d2) + k12 + k2, (1.14)

and
H22 = −ω2m1 − jω(d1 + d12) + k1 + k12. (1.15)
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Figure 1.8: Bode plot of the two-mass oscillator. Systems response of mass m1 on a force on mass
m1. Left: Additional connection with k2, d2 ̸= 0 to the stationary structure. Right: No connection
with k2, d2 = 0.

The change in the system behavior is displayed in Figure 1.8, where the external
force acts on mass m1, and Figure 1.9, where the external force acts on mass m2. The
parameter values are chosen accordingly to the y-stage and the z-stage of the wire
bonder machine.

While the change in the system response by a force on mass m1 is negligible, the
dynamics of mass m1 on a force acting on mass m2 are larger. Figure 1.9 shows,
for the model with parasitic connections of mass m2 to the stationary structure, an
oscillating behavior for large frequencies. The decay of the magnitude is smaller for
the model including the additional parasitic spring and damper.

The two changes in the slope of the magnitude in Figure 1.9 roughly correspond to
the resonance frequencies of the single one-mass-system for the z-stage, see Figure 1.6,
and the y-stage.

1.4.2 Alternative Model of the Chassis

The chassis of the machine is currently described in the model by a single rigid body at
a fixed position with appropriate mass and inertial parameters. This is reasonable for
any part of the machine where the speed of wave propagation in the part is sufficient
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Figure 1.9: Bode plot of the two-mass oscillator. Systems response of mass m1 on a force on mass
m2. Left: Additional connection with k2, d2 ̸= 0 to the stationary structure. Right: No connection
with k2, d2 = 0.

that it moves quasi-statically. However, for the chassis, this might not be an adequate
approximation since it has dimensions of around 1 m and shear waves travel at around
3 km/s, so that frequencies of over 1 kHz may create waves that are as short as the
part. A more complex model of this could be created, using the finite element method
(FEM) for example, however here we describe an alternative approach that retains
the simplicity and number of parameters currently exploited in the rigid body model
but accounts for wave propagation.

We consider an idealised base consisting of a uniform block of elastic material
of height L. On top of the block the other parts of the machine are placed and
these dictate a known displacement in the horizontal plane x(t), y(t), and vertical
displacement z(t). We are interested in determining the response by quantifying
how the resulting horizontal and vertical forces acting on this surface depend on the
displacements.

Our simplification will be that the motion of the block is uniform at each height
z and that the horizontal motion (u, v) induces shear waves and the vertical motion,
w, induces compressive waves. The bottom of the base is typically on legs and these
are quite weak so for the purposes of modelling it is adequate to assume the bottom
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surface is stress-free. We now give details of the behaviour in the x direction but the
other two directions are similar.

The governing equation is

ρ
∂2u

∂t2
= µ

(
∂2u

∂z2
− ds

∂u

∂t

)
, (1.16)

where ρ is the material density, µ its shear modulus and ds the shear damping coeffi-
cient. Note the equation for v is identical, and for w is the same except µ is replaced
by λ+2mu, where λ is the first Lame coefficient, and ds replaced by the compressive
dissipation dc. Boundary conditions for the problem are that

u(t, 0) = x(t) and µ
∂u

∂z
(t, L) = 0. (1.17)

If we move to frequency space, by either taking Fourier transforms or simply consid-
ering x(t) = xω exp(−jω) with u(t) = uω(z) exp(−jω) we can find that the solution
is given by

uω(t) = xω
exp

(
(2L/c)

√
ω2 − jdsω

)

1 + exp
(
(2L/c)

√
ω2 − jdsω

) , (1.18)

where c =
√
µ/ρ is the shear wave speed.

Finally we are interested in the relation between the displacement and the stress
on the top surface, so that we can incorporate it into the more general modelling
framework. Here we find

stress = µ
∂u

∂z

= xω

(
(2L/c)

√
ω2 − jdsω

)

·
1− exp

(
(2L/c)

√
ω2 − jdsω

)

1 + exp
(
(2L/c)

√
ω2 − jdsω

) .

(1.19)

We can therefore interpret this expression as giving a transfer function in the form

−
√

k

m(ω2 − jdsω)
coth

(√
mk
√
ω2 − jdsω

)
, (1.20)

where we have introduced a mass, m, and a stiffness, k. This puts the transfer function
in the same form as that for a single mass connected with stiffness and damping where
we would expect

1

−mω2 + jdω + k
, (1.21)

and observe that the two agree, with the frequency behaviour proportion to 1/(mω2),
when the frequency is low in the shear wave and high in the single mass.
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Implementation of this model of the chassis may not be straightforward in Sim-
Scape. An alternative approach would be to consider the chassis as a small number of
individual masses linked by springs and dampers that represent the elastic behaviour
of the region. Such a simplified model would go some way to describing the wave-like
behaviour in the region.

1.5 Measured Data
The system has been measured using three sources of excitation and three senors of
the motion with one of each on the x-stage, the y-stage and the z- (or θ-) stage. After
analysis this measured data consists of nine complex numbers (the xx, yy, zz, xy, xz
and yz representing the response, where mn corresponds to response in direction m
due to excitation in n) at each frequency. We denote the measured data by Ymes.xx
and the simulated data from models by Ysim.xx(θ) where θ is the vector of model
parameters. Experiment data was supplied by the project owner.

The data can be presented in the form of Bode plots where the magnitude (mea-
sured typically in dB) of each response and the phase (measured typically in degrees,
and restricted to the range [−180; 180]) of each response is plotted against the loga-
rithm of the frequency.

1.6 Optimization Methods
We considered the full model of the wire bonder as developed by ASMPT and ex-
plored approaches to finding the parameter values that would fit the given data to
the computations of the full model. A first issue to address was what cost function
should be used to quantify the fit between the data and the computations. We discuss
this is in Section 1.6.1. Next we explore approaches that will allow optimal parameter
values to be estimated when the number of parameters is very large. Here we take
two directions. The first is to look at the sensitivity of the cost function to the entire
parameter set. Results for this are discussed in Section 1.6.2. The second approach
was to do a limited optimisation where part of the parameter set was considered to
be fixed at its nominal value while a smaller set was considered using an optimisa-
tion process. Three examples of this are presented. Each example optimises different
parts of the parameter space. The first example studies the inertial parameters of
the system, the second example we vary the parasitic parameters for the complete
system, and in the third example we study the parasitic parameters in relation with
the z-stage. These three examples are presented in Section 1.6.3, 1.6.4, and 1.6.5,
respectively.

In our examples we have concentrated on local optimisation methods but this
problem does require methods that will seek the global optimum amongst many local
optima. A discussion and overview of current state of derivative free global optimi-
sation methods can be found in Cartis, Fiala, et al. 2019 and Cartis, Roberts, and
Sheridan-Methven 2022.
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1.6.1 Cost Function

The cost function is a crucial part of an optimization problem. Multiple error measures
can be considered.

One strategy is to concentrate on just the magnitude of the complex function
and only consider a small subset (e.g. just one) of the various responses. Hence one
possible cost function is:

Cmag(θ) =
1

2
20 log10

(
1

N

N∑
(|Ymes| − |Ysim(θ)|)2

)
dB, (1.22)

where N is the number of frequency bins. This function has the property that it is
dominated by those frequencies with large responses. For example the measured data
shows approx 100 dB variation across the expected frequency range so any fitting will
ignore large parts of the curve.

An alternative, that addresses the large variations, is to make the cost function di-
rectly applicable to the typical response curve where we seek to minimize the distance
between the measured and simulated curves. This corresponds to taking

Cmag(θ) =

(
1

N

N∑
(20 log10 |Ymes|−

20 log10 |Ysim(θ)|)2
)1/2

dB.

(1.23)

A similar account of large variations can be made by normalising each simulated
response by the magnitude of the corresponding measured response. It is then possible
to simply consider the magnitude of the simulated response

Cmag(θ) =
1

N

N∑∣∣∣∣
Ymes

|Ymes|
− Ysim(θ)

|Ymes|

∣∣∣∣ . (1.24)

Note that this last cost function has the property that it does not significantly penalise
simulations that greatly under-predict (in the sense of dB) the magnitude of response
of the system but does penalise over-prediction of the magnitude.

The issue of the nine different responses can be addressed in a number of ways but
the vast difference in the size of the various responses (e.g. Ymes,xx is more than 50 dB
smaller than Ymes,zz) makes it preferable to extend the ideas in (1.23) and (1.24) but
to consider a sum across the nine different responses, perhaps with some weighting if
certain directions are perceived as being of greater physical importance.

It is worth noting here that the norms used in the expressions for the cost functions
have been assumed to be the L2-norm. However, there are benefits to considering the
L1-norm.
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A general optimisation problem minimizing a cost function with respect to the
parameters subject to bounds and constraints looks like:

min
θ

Cmag(θ),

s.t. θ ≤ θ ≤ θ̄,
mi > 0,

Ii ≻ 0,

(1.25)

where θ and θ̄ are the lower and upper parameter bound, respectively, mi is the ith
stage mass, and Ii its corresponding inertia matrix around the center of mass. The
constraints on the inertial parameters of each rigid body in a robotics arm are studied
in Sousa and Cortesão 2014; the so-called physical feasibility. We advise the company
partner to incorporate this into a solution.

1.6.2 Sensitivity Analysis

To reduce the dimensionality of the problem, we study which parameters affect the
cost function the most. Therefore, we conduct a sensitivity analysis on the parameters,
which provide an insight on how the change of parameter values affect the value of
the cost function. This is performed by changing one parameter at a time, comparing
with the experiment data, and computing variation to cost function. Each parameter
has been varied in the range of 50% − 150% around its nominal value. For this
sensitivity analysis we have used the cost function given in (1.22), but these results
could equally be generated for the other cost functions described earlier.

In summary the important parameters appear to be the inertial parameters, espe-
cially masses of x-stage and y-stage, while damper and spring parameters and masses
of chassis do not influence the cost much. Note that besides physical constraints on
mass and inertia, the rigid body center of mass (CoM) could also be considered so
that it remains in the convex hull of the rigid body to be realistic.

The specific sensitivity procedure is described in Algorithm 1.
In this algorithm, we set ri = 0.5, ru = 1.5, and r∆ = 0.1. In each loop, only one

parameter is changing, while the others are fixed at their initial values. The values of
the cost function are computed with different parameter values, which is illustrated
in Figure 1.10. We can also evaluate the cost function in each direction x, y, and z,
when changing the parameter values. Then, Figure 1.11 shows the results for the cost
function for each direction.

Combining the data obtained from Algorithm 1 and the Figures 1.10, 1.11, 1.12,
we have the following observations.

• There are two significant parameters:

– The mass of the x- and the y-stage.

• There are other parameters that affect the cost function:
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Algorithm 1 Sensitivity Analysis
Require: nominal values of parameters θ0 ∈ Rnθ ;

range [rl, ru], step size r∆
Ensure: cost function matrix C
θ ← θ0
for do i = 1, 2, ..., nθ ▷ traverse all parameters

j ← 1, r ← rl + jr∆
while r ̸= 1 and r ≤ ru do

θ ← θ0
θ(i)← θ(i)r
Compute Cmag(θ) of the cost function (1.22).
Cij ← Cmag(θ)
j ← j + 1, r = rl + jr∆

end while
end for

mass_chassis

mass_X-stages

mass_Y-stages

mass_Base

mass_Z-stages

Stiffness and damping

Figure 1.10: Value of the cost function (1.22) as the 70 parameters vary in the range 50% to 150%.

– The center of mass and inertia for the x-, the y-, and the z-stage, and the
mass of the z-stage.

• The rest of parameters do not affect the cost function; the parasitic spring and
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mass_chassis

mass_X-stage

mass_Y-stage

mass_Z-stage

mass_Base

Stiffness and 
damping 

Figure 1.11: Values of the cost functions computed for x-, y-, and z-directions as the 70 parameters
vary in the range 50% to 150%.

Figure 1.12: The maximum change in the magnitude of the cost function vs. parameter when the
parameters are changed individually.

dampers have little effect on the overall cost.
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1.6.3 Experiment 1: Varying the Inertial Parameters

Sensitivity analysis suggests a prominent role of the masses in the model, which is
reflected in a significant role in optimization. We will allow masses to deviate, perhaps
unrealistically, up to ±20% from the initial parameter values. Quite surprisingly, we
see that a better overall fit is obtained for masses close to the maximum deviation
allowed.

The experiment details are as follows:

• Frequency-range: 200–2000 Hz

• Parameters varied (17 total):

– Inertial parameters of the x-stage; mass, center of mass, inertia.

– Parasitic torsional spring between the base and x-stage.

– Kinematic position of the joint between the base and the x-stage.

• Maximum deviation allowed: ±20% for masses, ±50% for all other parameters

• Optimization method: fmincon with numerically computed derivatives

• We restrict to fitting the Yxx-response of the x-stage

Overall, the optimization algorithm leads to a better fit. In particular, we obtain
a better fit of the 0.245 dip, see Figure 1.13.
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Figure 1.13: Optimizing the mass gives a better fit of the 0.245 dip. The frequency range was
normalized by dividing with the Nyquist frequency.
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However, we notice that the one optimized parameter, namely the mass of the
x-stage, coincides with the maximum value allowed. That is, a better fit has been
obtained by increasing the x-stage mass by 20%.

This shows that allowing masses to change leads to a better fit, but probably to
an unrealistic model. We suggest some possible causes: First, the “real” masses might
not correspond to the global minimum of the cost function; second, large deviations
might have brought us on a slope that minimizes the cost function but leads to a
region of non-physical parameters (see Section 1.6.1 for a possible solution); third,
the algorithm in use might not be suitable for the problem at hand.

1.6.4 Experiment 2: Varying the Parasitic parameters

As the masses are quite accurately measured and the inertial parameters can be well
estimated from CAD drawings the full model was explored with these parameters
set at their nominal values. The parasitic behaviour of the system is much less well
understood and hence in this section we explore how the simulations fit to the data
when only parasitic effects are altered. At the same frequency range we vary the
parasitic parameters. These are the details:

• Frequency-range: 200–2000 Hz

• Parameters varied: Parasitic parameters

• Parameter bounds: θ > 0

• Optimization method: fmincon with numerically computed derivatives

• Objective: Minimize diagonal costs (related to Yxx, Yyy, Yzz)

In contrast to the case of masses, the optimization process here goes through many
plateaus, see Figure 1.14, taking a lot of time. The result is an overall better fit in
the relevant range 200–2000 Hz, see Figure 1.15.

Notice that one parameter, the parasitic torsional damping between the base and
the x-stage, is 40 times its original value, see Figure 1.16. This does not come as a huge
surprise. Indeed, sensitivity analysis already shows that modifying these parameters
in the 50%–150% range has little to no effect on the system.

1.6.5 Experiment 3: Exploring the z-Stage

Instead of optimizing the complete cost of all three axes, in this simulation we only
optimize the behaviour in the z-axis. According to the project owner, the measure-
ment of the z-axis is more precise in the whole range from 1–4000 Hz than the other
two axes. We optimize 12 parameters characterising the parasitic joints between the
three stages, see Figure 1.17. The details are as follows:

• Frequency-range: 1–1000 Hz
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Figure 1.14: Decrease of the cost-functional during the optimization process. The convergence
process exhibits various plateaus.
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Figure 1.15: Fx-response of x-stage with optimized parasitic parameters and original parameters.
The frequency range was normalized by dividing with the Nyquist frequency.

• Parameters varied: Parasitic parameters

• Parameter bounds: θ > 0

• Optimization method: fmincon with numerically computed derivatives
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Figure 1.16: Absolute relative difference in percentage for the parasitic spring and damper coefficients
before and after optimisation.

• Objective: Minimize z-stage cost (related to Yzz)

Unsurprisingly, it can be seen that the two last parameters, the spring and damper
between the y- and the z-stage, change the most as a result of the optimization; around
30%, see Figure 1.17. The fit itself can be seen on Figure 1.18, where the fit of the
bump at ∼ 12 Hz is better with the new parameters compared with the nominal
model.

1.7 Some Ideas on Data Analysis
In this section, we discuss some issues related to inaccurate data, which can gener-
ate incorrect models. Considering these factors may help to produce rich datasets,
especially in low frequencies. Noticeably, discovering good datasets is important in
system identification.

• The effect of the noise on the training of models should be considered. In
studies like Xue, Whitecross, and Mirzasoleiman 2022, Dhifallah and Lu 2021,
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Figure 1.17: Absolute relative change in percentage for the parasitic spring and damper coefficients
after optimization.

the effect of noisy data on the performance of the models trained on them is
shown. However, real-world datasets often contain a significant fraction of noisy
labels and uncertainties. In Dhifallah and Lu 2021, the authors suggest robust
training methods to learn from noisy-labeled data.

• To identify a model for a system it is important to check ‘̀sufficient excitatioń’
conditions. Persistent Excitation (PE) typically results from sufficiently rich
reference inputs, and parameter convergence is achieved only in the presence
of PE. In Bittanti, Campi, and Guo 2000, Lee, Tan, and Nešić 2014 and Song,
Zhao, and Krstic 2016, more information about PE conditions can be found.

• As studied in Jolliffe and Cadima 2016, Principal component analysis (PCA) is
a technique for reducing the dimensionality of such datasets, increasing inter-
pretability but at the same time minimizing information loss.
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Figure 1.18: Frequency response of the z-stage. The frequency range was normalized by dividing
with the Nyquist frequency.

1.8 Discussion and Recommendations

The key insights in to the behaviour of the simulation model and how predictions
might be fitted to experimental measurements are as follows. The sensitivity of each
parameter depends on the frequency range being considered, i.e. dominant parameters
change with respect to different frequency ranges. In particular we observe that the
low frequencies are dominated by stiffness parameters, at near resonance frequencies
the damping parameters dominate, and at the high frequencies the inertial param-
eters dominate. Exploring a very limited range of frequencies may allow improved
estimation of parameters for starting values for subsequent fitting to the large range
of relevant frequencies.

The choice of the cost function has a great impact on the performance of the
optimisation. Finding a global minimum is plagued by local minima, even in (very
simple) toy models. The scale of the discrepancy (measured in the L2 norm) in z-
direction is e50 orders of magnitude higher than those of the x− and y-directions and
needs to be accounted for carefully.

From our preliminary explorations we make the following recommendations. It
may be beneficial to extend the model to more carefully account for shear waves in
the chassis. This is because in the relevant frequency range the chassis may be larger
than the shear wave length and hence not well described by a single point mass.
As a preliminary scoping of parameters values it may be beneficial to focus on the
local optimization of parameters rather than global. It may also help to divide the
frequency domain into a number of smaller ranges and consider initially optimising
in each range. Some parameters can be kept constant, for example some damping
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parameters at low frequencies. The results of the sensitivity test results might guide
which parameters to consider and which to hold constant in the different frequencies
ranges.

The sensitivity analysis in this report shows that the inertial parameters of the
three stages dominate the cost function. The problem with this is that these are
typically values are quite accurately known from independent measurements; these
essentially create the nominal model. Instead, the optimisation could initially only
be performed on the parasitic parts of the model. More work is needed to look at the
sensitivities that occur for different cost functions. It is necessary to adopt strategies
that can overcome the curse of dimensionality.

We suggest the following might be appropriate methods:

• Perform a sensitivity analysis for different frequency ranges separately,

• Optimize considering only the parasitic parameters as variables,

• Apply physical constraints to the inertial parameters of the rigid bodies includ-
ing considering them as constant,

• Apply model order reduction, methodology.

Because of the vast range of responses in the x, y, and θ directions these should
either be normalised or their logarithm taken when considering what cost function to
use. Because of the need to find global optimal, state-of-the-art global optimization
software, e.g. Py-BOBYQA, should be explored.
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Chapter 2

Frequency Domain
Characteristics in Nonlinear
Trimmer Dynamics
James P. Harris1, José Mujica2, Vivi Rottschäfer3,
Eric Sandin4

Abstract We analyse a dynamical system describing the movement of the blade of a
hair trimmer. Using nondimensionalisation and perturbation methods, we systemat-
ically analyse this model, with the goal of explaining a dip in the current amplitude
observed in numerical simulations. We find that the motion of the blade is controlled
by seven dimensionless parameters, and the dip in amplitude of the current corre-
sponds to one of the dimensionless parameter groups taking the value of one. There
is excellent agreement between our asymptotic solutions and long-time behaviour of
the model revealed by numerical simulation.

2.1 Introduction

At the Study Group Mathematics with Industry in Groningen in 2023, we worked
on a problem posed by Philips. Philips manufacture, amongst many other products,
hair and beard trimmers and their question was related to these. A picture of such a
trimmer is given in Figure 2.1(a).
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(a) (b)

Figure 2.1: A typical trimmer head (a) and a schematic representation of of its functioning (b).
Figures provided by Philips.

Philips use dynamical models to simulate and analyse the dynamic motion of the
trimmer, in order to optimise performance. A simple but relevant model is one in
which a dc-motor is coupled to a mass spring damper system (the cutting element).
Individually, each system has linear dynamics. However, the interconnection between
them is nonlinear which makes the whole system nonlinear.

The mechanical part of the shaver head consists of a toothed blade, attached via a
small piece of plastic (the driving bridge) to an eccentric pin on a motor. The motion
of the blade is restricted by two springs attached to the casing of the shaver head.
The blade cuts hair which passes between itself and a comb mounted to the shaver
head casing. A diagram of a shaver head is shown in Figure 2.1(b).

The model we analyse is described by equations (2.1)–(2.4) with typical parameter
values given in Table 2.1. The motor current through the electric part consists of a
dc-component and a sinusoidal component. When performing numerical simulations,
Philips observed that when varying the voltage V̂ , the amplitude of the sinusoidal part
of the motor current attains a minimum for a certain value of V̂ . See Figure 2.2 for the
results of a numerical simulation where parameter values are taken as in Table 2.1 for
two different choices of one of the parameters, k̂s. Philips would like to know whether
this point can be determined using analytical methods. We provide insight in this
behaviour using the techniques of nondimensionalisation and asymptotic analysis.
These methods are widely applicable and can also be used for other (larger) systems.

First, in Section 2.2, we formulate the model, introduce the concept of nondi-
mensionalisation and make the system dimensionless. Then, in Section 2.3, we use
asymptotic analysis to study the solutions to the dimensionless system. Finally, in
Section 2.4, we conclude with a discussion and recommendations.

2.2 Model
We study a physical model of the shaver head. The model is illustrated in Figure 2.3.
We model the shaver head casing as a rigid wall, to which the blade is connected via
a linearly-damped Hookean spring with spring constant k̂s, and damping coefficient
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Figure 2.2: The amplitude of the oscillatory part of the motor current as a function of voltage from
numerical solution of (2.1)–(2.3) for k̂s = 1000N/m (blue) and k̂s = 100N/m (red). All other
parameters are taken from Table 2.1.

Figure 2.3: Physical set up for the coupled system (2.1)–(2.4).

d̂s. The blade, of mass m̂, is attached to the eccentric pin of the motor via the driving
bridge which we model as a Hookean spring with stiffness k̂b. We assume that the
driving bridge is connected to the motor pin at all times, and slides without friction
in such a way that the blade moves only in one line, radially from the centre of the
motor. We denote the displacement of the blade, at time t̂, by x̂(t̂). We assume the
motor centre is fixed relative to the shaver head casing, and we denote the distance
between the centre of the motor and the eccentric pin by Â. We denote the angle
of the pin from its starting position by θ(t̂). We assume the motor has inertia Ĵ ,
self-inductance L̂, resistance R̂, motor constant K̂, and a linear damping coefficient
of d̂m. We denote the current through the motor by Î(t̂). We assume the system is at
rest before a constant voltage, V̂ , is applied across the motor for times t̂ > 0. Typical
values for each of the parameters are given in Table 2.1.

Using the principles of conservation of momentum, angular momentum and (elec-
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m̂ k̂s d̂s k̂b Â Ĵ

kg kg s−2 kg m s−1 kg s−2 m kg m2

3.5 · 10−3 103 0.025 4 · 103 1.5 · 10−3 3 · 10−7

K̂ d̂m L̂ R̂ V̂

kg m2 A−1 s−2 kg m s−1 kg m2 s−2 A−2 V A−1 V

4 · 10−3 0 0.5 · 10−3 0.7 1

Table 2.1: Model parameters and their units, together with typical values provided by Philips.

time (×102)

Î

time (×102)

x̂

Figure 2.4: Solution to (2.1)–(2.4), with parameters values taken from Table 2.1. Shown are time
series for Î (left) and x̂ (right). Note that after a short transient, the current of the motor stabilizes
following periodic motion.

trical) energy, we write down a system of three coupled ODEs for x̂, θ, Î,

m̂
d2x̂

dt̂2
= −k̂sx̂− d̂s

dx̂

dt̂
− k̂b

(
x̂+ Â sin(θ)

)
, (2.1)

Ĵ
d2θ

dt̂2
= K̂Î − d̂m

dθ

dt̂
− k̂bÂ cos(θ)

(
x̂+ Â sin(θ)

)
, (2.2)

L̂
dÎ

dt̂
= −K̂ dθ

dt̂
− R̂Î + V̂ . (2.3)

To specify a particular solution of this model, we impose five initial conditions,

x̂ =
dx̂

dt̂
= θ =

dθ

dt̂
= Î = 0, at t̂ = 0, (2.4)

corresponding to the system initially being at rest.
The model described by equations (2.1)–(2.4) is well-posed, and is readily solved

numerically using off-the-shelf ODE solvers, such as Matlab ode45. A numerical
solution to (2.1)–(2.4) for the parameter values in Table 2.1 is shown in Figure 2.4.

To investigate the behaviour of this model, we could use a numerical approach
such as repeated integration of the full coupled second-order system while sweeping
through different values of the dimensional parameters or try to use a numerical
continuation approach of the equivalent first-order vector field representation of the
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model. However, we are able to reduce the size of the parameter space by first
nondimensionalising.

2.2.1 Nondimensionalisation

When faced with a model such as (2.1)–(2.4), there are a number of benefits to
rescaling the variables to remove their dimensions:

• We are able to identify dimensionless groups of parameters which control the
behaviour of the model, reducing the size of the parameter space.

• It does not make sense to compare quantities with different dimensions; who is
to say a kilogram is small compared to a metre when they are fundamentally
different quantities? By removing dimensions we are able to compare the size
of different terms in a model, which may allow us to identify which processes
are dominating the behaviour of the model.

• The size of the dimensionless variables can be chosen so they are not too large
or too small, meaning that the dimensionless version of the model is often less
susceptible than the dimensional model to stability issues when solving numer-
ically.

The dimensionless model captures exactly the same physics as the dimensional model,
and we can always rescale the solutions to the dimensionless model to put them back
in dimensional terms.

We will present how to nondimensionalise the model described by equations (2.1)–
(2.4) in enough detail to understand how to nondimensionalise other similar models.
Note that some of the choices we make along the way are not unique. However,
if we had made alternative choices we would still find that that set of dimensionless
parameters is similar to those we derive here. The technique of nondimensionalisation
is a useful first step in evaluating any physical mathematical model. More examples
and discussion of nondimensionalisation are given in Tayler 1986, §1, where it is
referred to as normalization, and in Haefner 2005.

To start with, we rescale each of the dimensional variables, denoted with hats,
with a typical dimensional scale, which we denote by square brackets, as so:

x̂ = [x]x, Î = [I]I, t̂ = [t]t. (2.5)

The variables x, I and θ are dimensionless dependent variables, and t is the dimen-
sionless independent variable. Note that θ denotes an angle measured in radians,
so it is already dimensionless. At this stage, we are free to choose the dimensional
scalings, [x], [I] and [t]. We may have an idea of what sensible scalings could be
from experiments or numerical simulations, but for now, we leave them as unknown
constants. We will choose them later to simplify the model as much as we can.
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Substituting (2.5) into the governing equations5 (2.1)–(2.3) we find

m̂[x]

[t]2
d2x

dt2
= −k̂s[x]x−

d̂s[x]

[t]

dx

dt
− k̂b

(
[x]x+ Â sin(θ)

)
, (2.6)

Ĵ

[t]2
d2θ

dt2
= K̂[I]I − d̂m

[t]

dθ

dt
− k̂bÂ cos(θ)

(
[x]x+ Â sin(θ)

)
, (2.7)

L̂[I]

[t]

dI

dt
= −K̂

[t]

dθ

dt
− R̂[I]I + V̂ . (2.8)

To make these equations dimensionless we divide through each of the equations so
one of the terms is dimensionless (has no hats or square brackets). It does not really
matter how we choose to do this, but one possibility is

m̂

k̂s[t]2
d2x

dt2
= −x− d̂s

k̂s[t]

dx

dt
− k̂b

k̂s

(
x+

Â

[x]
sin(θ)

)
, (2.9)

d2θ

dt2
=
K̂[I][t]2

Ĵ
I − d̂m[t]

Ĵ

dθ

dt
− k̂bÂ[x][t]

2

Ĵ
cos(θ)

(
x+

Â

[x]
sin(θ)

)
, (2.10)

L̂[I]

V̂ [t]

dI

dt
= − K̂

V̂ [t]

dθ

dt
− R̂[I]

V̂
I + 1. (2.11)

Finally, because we are still free to choose [x], [I] and [t], we are able to set three
further coefficients in (2.9)–(2.11) to be equal to one, reducing the number of pa-
rameters. Again, it does not really matter which terms we choose, but if we have
some physical insight into the system this can be helpful. For instance, one could
imagine that the amplitude of displacement of the mass might be similar to the radial
distance, Â, between the centre of the motor and the eccentric pin. In which case, it
would be sensible to set Â/[x] = 1. We further choose the time-scale to balance the
acceleration of the blade with the force due to the spring, and choose the current-scale
to balance the voltage and resistance, so that our dimensional scalings are

[x] = Â, [I] =
V̂

R̂
, [t] =

√
m̂

k̂s
. (2.12)

The resulting dimensionless model is

d2x

dt2
= −x− ds

dx

dt
− λ(x+ sin θ), (2.13)

d2θ

dt2
= αKI − dm

dθ

dt
− λµ cos θ(x+ sin θ), (2.14)

L
dI

dt
= −K dθ

dt
− I + 1, (2.15)

5In general, the initial conditions should be considered as part of the nondimensionalisation
process. In this case, since the initial conditions (2.4) are homogeneous, rescaling the variables does
not result in any additional dimensionless parameter groups.
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ds λ α K µ L dm

d̂s√
k̂sm̂

k̂b

k̂s

√
m̂3V̂ 2√
k̂3
sR̂Ĵ

K̂
√

k̂s

V̂
√
m̂

m̂Â2

Ĵ

L̂
√

k̂s

R̂
√
m̂

d̂m

√
m̂

Ĵk̂s

1.3 · 10−2 40 3.1 · 10−2 2.1 2.9 · 10−2 0.38 0

Table 2.2: Definitions of the dimensionless parameters, and typical values based on the values in
Table 2.1.

where the dimensionless parameters are defined in terms of the dimensional parame-
ters in Table 2.2. The dimensionless initial conditions are

x =
dx

dt
= θ =

dθ

dt
= I = 0, at t = 0. (2.16)

Based on the typical values provided in Table 2.1, the dimensional scalings (2.12) are
approximately [x] = 1.5× 10−3 m, [I] = 1.4A and [t] = 1.9× 10−3 s.

2.3 Asymptotic analysis

A number of the dimensionless parameters in Table 2.2 are small. There is a suite of
mathematical techniques, called perturbation methods, used for finding approximate
solutions to mathematical models with small parameters. The resulting solutions are
asymptotic approximations to the solution. We will not precisely define what this
means here, rather referring the reader to Hinch 1991, §1–2 and Holmes 2013.

The typical values for λ−1, ds, α, µ in Table 2.2 are of a similar size, and all much
less than one. We therefore seek a solution valid in the limit λ→∞ and ds, α, µ→ 0,
such that

λψ = O(1) as λ→∞, (2.17)

where ψ = ds, α, µ, hence, λ−1, ds, α and µ are all of the same order. Furthermore,
we will assume that dm ≡ 0 from here on in.

Formally, we seek a solution in the form

x ∼ x0 + αx1 + · · · , (2.18a)
θ ∼ θ0 + αθ1 + · · · , (2.18b)
I ∼ I0 + αI1 + · · · . (2.18c)

The expressions (2.18) are asymptotic series. The key here is that each term is
asymptotically smaller than the previous. For example, in (2.18a) we insist that
αx1/x0 → 0 as we take the limit (2.17).

Substituting (2.18) into (2.13)–(2.15) and collecting the leading order terms, the
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equations are

x0 + sin(θ0) = 0, (2.19)

d2θ0
dt2

= 0, (2.20)

L
dI0
dt

= −K dθ0
dt
− I0 + 1. (2.21)

The general solution to these differential equations is

x0 = sin(c1 + ωt), (2.22)
θ0 = c1 + ωt, (2.23)

I0 = c2 exp

(
− t
L

)
+ 1−Kω, (2.24)

where ω, c1, c2 are constants to be determined. Unfortunately, if we try to apply the
initial conditions (2.16), we find that ω, c1, c2 are all identically zero. This tells us
that the balances we have chosen by assuming (2.12) are not the dominant balances
during the initial motion of the blade.

We did not address this early time behaviour during the study group. Instead,
we determined ω assuming that the scalings we have chosen represent the longer
time behaviour of the system, assuming c1, c2 would come from analysing the, as yet
unknown, early time behaviour.

To find the frequency, ω, we must consider the second order approximation,

d2x0
dt2

= −x0 − ds
dx0
dt
− αλ(x1 + θ1 cos(θ0)), (2.25)

d2θ1
dt2

= KI0 − λµ cos(θ0)(x1 + θ1 cos(θ0)), (2.26)

L
dI1
dt

= −K dθ1
dt
− I1. (2.27)

These equations describe the balance between the largest terms in the limit (2.17)
which we neglected in deriving (2.19)–(2.21)6. We can eliminate x1 from (2.26) us-
ing (2.25) to find

d2θ1
dt2

= KI0 +
µ

α
cos(θ0)

(
d2x0
dt2

+ x0 + ds
dx0
dt

)
. (2.28)

6It would be consistent with our asymptotic assumptions (2.17) to leave the dsdx0/dt term out
of equation (2.25). However, leaving it in does not make the system of equations more difficult to
solve, and means our analysis is valid for ds = O(1).
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Substituting the leading order solutions (2.22)–(2.24) into (2.28) we find

d2θ1
dt2

= K

(
c2 exp

(
− t
L

)
+ 1−Kω

)

− µ

α
(1− ω2) sin (c1 + ωt) cos (c1 + ωt)

− µ

α
dsω cos2 (c1 + ωt). (2.29)

Integrating twice, we deduce

θ1 = Kc2L
2 exp

(
− t
L

)
+ t2

(
K(1−Kω)

2
− ds

µω

4α

)

+ t
(
c3 −

µ

4αω

(
1− ω2

))
+

µ

8αω2

(
1− ω2

)
sin(2θ0)

+ ds
µ

8αω2
cos(2θ0) + c4. (2.30)

where c3, c4 are constants of integration.
For our asymptotic solution (2.18b) to be valid for large t, the perturbation, θ1,

can not grow faster than θ0. In particular, this means that the coefficient of the
quadratic term must be zero7, so ω must satisfy

K(1−Kω)
2

− ds
µω

4α
= 0. (2.31)

Hence,

ω =
2K

2K2 + dsµ/α
. (2.32)

As dsµ/α→ 0, which is consistent with (2.17), we find that approximately

ω ∼ 1

K
. (2.33)

Recall that for certain voltages Philips observed that the amplitude of the oscil-
latory part of the current drops to close to zero. To understand this phenomenon,
we solve for the second order correction, I1, to the current. We solve (2.27) using
variation of parameters, seeking a solution of the form I1 = C(t) exp(−t/L). The
equation for C(t) is

dC

dt
= −K

L
exp

(
t

L

)
dθ1
dt

. (2.34)

7This implies that there exist multiple timescales in the problem. There are methods to analyse
problems with multiple timescales, see Holmes 2013, §3.



34 SWI 2023 Proceedings

Differentiating (2.30), and integrating (2.34), we find

C = c5 +K2c2t−K
(
c3 −

µ

4αω

(
1− ω2

))
exp

(
t

L

)

+
Kµ exp(t/L)

4αω (1 + 4L2ω2)

[
(ds − 2ωL(1− ω2)) sin(2θ0)

−
(
1− ω2 + 2ωLds

)
cos(2θ0)

]
, (2.35)

where c5 is a constant of integration. Therefore the correction to the current is

I1 = exp

(
− t
L

)(
c5 +K2c2t

)
−K

(
c3 −

µ

4αω

(
1− ω2

))

+
Kµ

4αω (1 + 4L2ω2)

[
(ds − 2ωL(1− ω2)) sin(2θ0)

−
(
1− ω2 + 2ωLds

)
cos(2θ0)

]
. (2.36)

The oscillatory part of I1 is written in square brackets.
From our analysis, parameter ds is O(α) in the limit (2.17). If also 1−ω2 = O(α),

then the amplitude of the oscillatory part of I1 in (2.36) is O(α) as well. Considering
the asymptotic expansion of the current, I ∼ I0 + αI1 + · · · , this implies that the
oscillatory part of the current is O(α2). Therefore, we find the dip in current observed
by Philips occurs when ω is approximately one, which, from (2.33), we conclude occurs
when K is also approximately one. Looking at the definition of K in Table 2.2, we
see that the current drops when

K̂
√
k̂s

V̂
√
m̂
≈ 1. (2.37)

Physically this means that the natural rotational speed of the motor matches the
natural frequency of the spring-blade system. If there was no damping, ds = 0, then
the motor would approach a steady speed where it would not need to do work to keep
the blade in motion.

2.4 Discussion and recommendations
We investigated a model for the dynamic motion of a trimmer proposed by Philips in
order to understand and optimize its performance. The model is based on a classical
mass-spring system and can be interpreted as two oscillators that are nonlinearly
coupled.
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(a)

time

θ, θ̂

(b)

time

x, x̂

(c)

time

I, Î

Figure 2.5: Comparison between numeric (blue) and leading-order dimensionless (red) solutions.
Panels (a), (b) and (c) show time series of the angle, the displacement of the blade and the current
through the motor, respectively.

Our approach is based on nondimensionalisation of the model, which reduces the
number of parameters for further analysis. Some of the dimensionless parameters
in the nondimensionalised system are small, and therefore, we use the methods of
asymptotic analysis and look for asymptotic approximations to solutions of the sys-
tem. This way we find explicit leading-order representations for the (dimensionless)
displacement of the blade, x, the angle of the pin, θ, and the current through the mo-
tor, I, which show excellent agreement with the numerical simulation of the system
described by equations (2.1)–(2.4). A comparison between the numerical solutions
(blue) and the (dimensional) asymptotic solutions (red) is displayed in Figure 2.5.
Panel (a) shows the long-term concordance of the angle of the pin, while panels (b)
and (c) show agreement of the displacement and the current. Despite being slightly
out of phase due to the choice of initial conditions, both solutions behave in the same
way and within the same order of magnitude.

The trimmer dynamics model studied here provides interesting synchronization
properties between two nonlinearly coupled oscillators. Nondimensionalisation to-
gether with asymptotic analysis has proven to be a useful tool to simplify the system
and obtain a mathematical explanation for the dip in the motor current observed in
simulations. Our recommendation is to use this approach in more extended versions
of the given model, as it provides an organized way to obtain insights on the behaviour
of relevant quantities. Alternatively, one could combine this analytic approach with
a systematic numerical investigation of the reduced dimensionless parameter space,
using, for instance, state of the art methods based on the numerical continuation
of periodic solutions to the system under consideration; see, for instance, Krauskopf,
Osinga, and Galán-Vioque (eds) 2007. Though it would be worth exploring that path,
we do not pursue that method in this report.
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Abstract The Dutch government is committed to reducing its dependence on fuel im-
ports and promoting sustainable practices, which has led to plans to move away from
gas-powered heating systems towards alternative heat sources such as district heating
or electric heat pumps. In this heat transition, DHM provides advice and leadership
for investment decisions, particularly at the municipal level. Key considerations in-
clude the transition costs, choice of heat commodity, and necessary infrastructure.
This project explores three decision-making models that aim to minimize social costs
in an objective manner: Monte Carlo simulations, energy hubs, and mathematical
programs. The results of this study can be used as a starting point for further re-
search to support a sustainable and cost-effective heat transition.

Keywords: heat transition, cost minimization, Monte Carlo methods, energy hubs,
mixed integer program

3.1 Problem statement - The heat transition
DHM advises and leads processes and projects in mobility, infrastructure, water and
energy. Sustainability, climate, smart cities and digital innovation are their core

37



38 SWI 2023 Proceedings

business.
Municipalities in the Netherlands are responsible of transitioning to an energy

system that does not rely on fossil resources. One of the goals is to transition from a
heating system that is highly reliant on natural gas to one that is using sustainable
resources for the heating of homes and buildings. This process is called the heat
transition. Due to resource scarcity and limited technical solutions, solutions have
been limited to 3 alternatives (see SWI 2023):

• District heating: in highly concentrated areas with excess heating from for
example industrial processes;

• Electrical heating systems: for individual homes and buildings with higher iso-
lation levels and more recent building years (1990 and younger);

• Hybrid solutions: in rural areas with older buildings and buildings in areas with
no access to district heating and can not be technically isolated to levels needed
for electrical systems.

Policymakers have difficulties choosing where to use which alternative and individuals
struggle with this insecurity. In this project, we explore models that can help deci-
sion makers (municipalities, government officials, energy companies) and potentially
individuals to strategically allocate scarce resources and technical solutions based on
price and technical availability.

The challenge posed was

• to derive a mathematical model for the current and potential future heating
configurations of (a part of) a municipality which is able to describe the relevant
decision variables (heat production, energy consumption, investment costs, . . .
);

• to verify the model with data from the municipality of Rotterdam; and

• to formulate suitable optimization problems based on the derived models.

The models could serve as a tool to strategically allocate financial resources in heat
transition processes and to make financial investment plans for the Rotterdam mu-
nicipality, specifically in relation to the sustainable development goals for 2030 and
further.

In the following, we present three models, each taking another perspective on the
challenge. In Section 3.2, a general framework for resource allocation is introduced
that can help a governmental unit decide on how to distribute resources. The model
introduced in Section 3.3 considers energy hubs modelling electricity and heat flows
and their interrelation, offering a framework for multi-energy systems to provide de-
cision support for e.g., infrastructure capacity scaling. Lastly, Section 3.4 discusses a
local cost minimization model that, given various heat sources, decides what fraction
of the heat demand in a district should transition to which heat source, and assigns
fractions of the demand to specific facilities for district heating.



39

3.2 Graph Theory and the Monte Carlo Method

In this section, we propose a theoretical framework that utilizes graph theory and
the Monte Carlo (MC) method to address the heat transition problem. Although no
code has been implemented yet, the framework offers several advantages, which are
discussed in Section 3.2.3.

For new strategies, policymakers need to decide how to distribute resources, or
which strategy should be used in which cases, in other words, the heat configuration
which is the foundation for decision variables like heat production, energy consump-
tion, investment costs, and so on. The purpose of the model mentioned is to offer
methods that can assist policy makers in constructing these heat configurations.

We first build a graph model based on the geometrical information and then use the
MC method to calculate the relevant decision variables (heat production, energy con-
sumption, investment costs, etc.). It is noted that the graph model perhaps involves
the optimization problem. This is because graph theory provides helpful tools and
algorithms for optimization. These techniques allow us to find the best solutions for
decision-making, optimizing heat production, energy consumption, investment costs,
and other important factors. This improves decision-making and helps us identify
the optimal heat configurations that policymakers need. An illustrative example is
provided in Section 3.2.2.

3.2.1 Graph

Let us start by representing our objects of interest with points. These points can
represent various entities such as provinces, districts, towns, and more. We make
this representation because policy makers operate at different levels, ranging from
national or regional bodies to city councils. This abstraction enables us to use this
framework to be applied in more general settings, as we will discuss in Section 3.2.3.
To illustrate, let us take the city of Groningen as an example.

Figure 3.1: A district of Groningen (Source: Planbureau voor de Leefomgeving)
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Figure 3.1 displays the administrative map of Groningen. Each region, such as
the one highlighted in red, can be considered as a point on a graph. We connect two
regions with an edge in the graph if they are adjacent on the map. This approach
allows us to create a graph representation for Groningen. Figure 3.2 provides a sketch
illustrating the concept of this graph. Please note that it is not the actual graph
representation of Groningen.

Figure 3.2: A Geometrical Topology Graph

With this graph, we can for example define a new heat transition strategy. At
the same time, we need infrastructure, like pipelines, to transport this energy. The
topological graph can help us choose the scheme of pipeline laying. Assume that the
new energy comes from one source and that it must reach every point we have since
we should guarantee each region gets energy. We can formulate the problem as finding
a minimum spanning tree within this graph (similar to the example shown in Figure
3.3).

Figure 3.3: The minimum spanning tree
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Naturally, the construction of pipelines depends on different factors, e.g., the
length, feasibility, and expected construction time. This should be considered by
policymakers. Mathematically, these constrained conditions can be represented by
the weights of the edges. Thus, we end up with a weighted graph, or a directed
weighted graph. Note that the network can be not only built by the geometrical
relation of cities but also by other topological relations.

The heat transition problem mainly considers three alternatives (see Section 3.1):
district heating, electrical heating, and hybrid solutions. In the graph model, we could
label the classification of each point with these three alternatives according to reality,
such as in Figure 3.4.

ℎ"

ℎ#

ℎ$

ℎ% 𝑛"

𝑛#

𝑟"

𝑟#

Highly	concentrated	district	

New	buildings	district	

Remote	district	

Figure 3.4: Labeled classification of the network.

So far, we have introduced a framework to derive a graph modeling the topological
structure of a region. In the next section, we discuss how to use the graph to calculate
quantities of interest, e.g., heat demand, energy consumption, and investment costs.
In the following, we assume the graph to be given.

3.2.2 Monte Carlo Simulation

The Monte Carlo (MC) method refers to a method involving random sampling pro-
cesses. More frequently, it refers to a stochastic method used to calculate the expec-
tation:

E[f(x)] =

∫

Ω

f(x)q(x)dx, (3.1)

in which Ω is the domain, x ∈ Ω is a random variable following the distribution that
is specified by the density function q(x), and f(x) is the physical quantity of interest.
According to the law of large numbers, the simulated expectation will converge to the
real mean as the sample size goes to infinity. Its convergence rate is O(N−1/2), which
is slower than many other methods. The MC method is powerful in various scenarios,
including:



42 SWI 2023 Proceedings

(1) High-dimensional problems, where other methods may become computationally
expensive or impractical.

(2) Problems involving stochastic variables, where the MC method can handle the
uncertainty and randomness effectively.

(3) Situations where no other practical options or alternatives are available.

Application to Heat Transition Problem

Previously, we assumed that there is a reasonable network in place. However, poli-
cymakers are interested in more than just building the network. In particular, they
need to know about the current heating setups and possible future configurations
to make important decisions. We observe that these quantities are a summation of
each individual’s behavior (in our case, represented as points) and specific district
conditions with stochastic factors. We cannot control individual behavior, both from
a computational point of view and from the policymakers’ point of view. Under these
circumstances, the MC method is a suitable approach.

Let us consider electricity consumption as an example. From historical data, we
can get statistical information on each point. For instance, the electricity consumption
of a house should follow a normal distribution. That means, based on analysis of
historical data, the distribution of electricity consumption in residential houses tends
to exhibit a normal distribution. This implies that the majority of houses will have
average consumption levels, with fewer houses falling into higher or lower consumption
extremes. Similarly, in the context of 24-hour factories, electric energy consumption
often follows a uniform distribution.

Furthermore, the consumption of electricity by individual households depends on
price, security, and climate conditions, and it is random. Their mean and variance can
be obtained via statistical methods. If the time variable is considered, we end up with
a stochastic process, e.g., the Gaussian process for household electricity consumption.
Afterward, the random samples can be generated by these stochastic processes. With
random samplings, any relevant quantities can be calculated. Now, let us express the
statement above as mathematical formulas.

Suppose h = {h1, h2, . . . , hH} are the points of the highly concentrated district,
n = {n1, n2, . . . , nN} be those of new buildings district, and r = {r1, r2, . . . , rR},
be isolated districts. Then, the expectation of the quantity of interest for the whole
region can be expressed as

E[f(x)] =

∫

Ω

f(x)q(x)dx, (3.2)

=

∫

Ωh∪Ωn∪Ωr

f(x)q(x)dx, (3.3)

where x is the random variable of electricity consumption. The whole region Ω is the
non-overlapping union of the highly concentrated region Ωh, new buildings region Ωn,
and the isolated region Ωr.
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According to the principle of the MC method, we have

E[f(x)] =
1

M
lim

M→∞




H∑

i

M∑

hij

f(xhij
) +

N∑

i

M∑

nij

f(xnij
) +

R∑

i

M∑

rij

f(xrij )


 ,

where xhij
represents the j-th random sample of the i-th point in the highly con-

centrated region. Similarly, xnij
is the j-th random sample of the i-th point in the

region of the new building, and xrij is the j-th random sample of the i-th point in
the isolated region.

For simplicity, here we assume that M random samples are generated for each
point in our graph. However, the number of random samples could be different per
point.

If f(x) = x, we are calculating the average of electricity consumption for the
electrical heating system in, for example, the new building district.

If f(x) = α(s, t)x, where α is the electricity price depending on space s and time
t, we calculate the average cost for the electrical heating system. Even though the
cost, in reality, is not only the electricity price, for clarity, we only consider the price
of electricity.

It is worth mentioning that if new energy is used, its consumption should follow
the same statistical behavior as the old one since electricity habits will not change.
With this understanding, the model can be enhanced by incorporating prediction
methods to estimate future quantities.

3.2.3 Advantages of The Framework

In this section, we outline the benefits of the considered framework. It provides a
versatile problem-solving approach.

1. Reuse of model and algorithm:
The same model and algorithm can be used for other problems. For instance,
if Figure 3.2 is the graph for the Netherlands, each point is a city. Suppose
that one of the points represents Groningen. If we zoom in at this point, we see
that the case for Groningen is again a graph with a topology. Hence, the same
algorithm can be applied to Groningen.

2. Flexibility in variable consideration:
The heat transition problem requires investigation of potential future heat con-
figurations, and the considered variable should be changeable. With this frame-
work, we can change the way of constructing graphs (maybe a new optimization
problem) and the integral of Monte Carlo. In many cases, we just need to change
samples x and the concerned quantity f(x). By doing this, the framework can
adapt to different scenarios. It seems like we still alter many things, but in
terms of programming, it is much easier than a completely new model.
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3. Suitability for complicated problems:
In conclusion, the Monte Carlo method is a good choice for complicated prob-
lems. For instance, when we consider each individual building in a region (each
point is a building), resulting in millions of data points. Additionally, x may be
a vector with several components, which can be handled by the Monte Carlo
method more effectively than deterministic methods.

3.3 Framework of Energy Hubs
In this section, we present a framework for the optimal design of multi-energy systems,
which can assist in the elaboration of a plan for a sustainable heat transition in local
and regional energy systems. The framework is known in the literature as energy
hubs; see Cao et al. 2020; Geidl, Koeppel, et al. 2007; Geidl and Andersson 2007.
Most of the contents of this section are based on Cao et al. 2020, but they are slightly
tailored to meet the specifications by DHM.

3.3.1 Introduction to Energy Hubs
An energy hub is an item which exchanges heat and/or power with the three main
energy networks, namely, the power, heat and gas grids. Each energy hub may contain
up to four elementary devices: a heat pump (HP), a heat exchanger (HX), a combined
heat and power unit (CHP) and a furnace (F). These devices will be described by the
efficiency at which they transform energy. In particular, heat pumps transform power
in heat, furnaces transform gas in heat and combined heat and power plants consume
gas to generate power and heat. See the schematic diagram in Figure 3.5.

Due to time constraints, we bring the following standing assumption:

Assumption 1.

(i) Heat exchangers will not be considered. They can be assumed to be of high
efficiency or to be of a much lower cost than a CHP or a HP.

(ii) We will not take into consideration the gas grid. Therefore, energy hubs will
only be able to exchange energy through the electric distribution grid and/or
district heating network.

(iii) The overall multi-energy systems is viewed as the networked interconnection of
several single energy hubs.

3.3.2 Mathematical Modeling
A Single Energy Hub

In this part we introduce the basic model to describe the interaction between the
devices that are part of a same energy hub. Based on Figure 3.5 and using Kirchhoff’s
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Local Generation/Consumption (external variables) Connection to the Networks

Figure 3.5: Schematic diagram of an energy hub based on Cao et al. 2020. It is composed of four
basic devices, namely, a heat pump (HP), a heat exchanger (HX), a combined heat and power unit
(CHP) and a gas furnace (F). Each of these devices are described by input-output relationships.

laws for power and heat balance, we get the following relationships:

pini + poutchp,i − pinhp,i = pouti (power) (3.4a)

hini + houtchp,i + houthp,i + houtf,i = houti (heat) (3.4b)

where we use the variables p and h to denote electric power and heat, respectively.
For both p and h, the subscripts identify the devices and the superscripts if whether
it represents an inlet our outlet with respect to a specific device.

Next, we identify the input-output relationships for each of the devices in a given
energy hub. Such relationships are essentially the efficiencies at which the devices
transform energy, potentially from one domain to another. See:

min
chp,i =

poutchp,i

ηpchp,i
+
houtchp,i

ηhchp,i
(CHP) (3.5a)

min
f,i =

houtf,i

ηhf,i
(F) (3.5b)

houthp,i = COPip
in
hp,i (HP). (3.5c)

Note that for a CHP unit, there are two efficiencies. ηpchp,i represents the efficiency at
which electric power is produced, and ηhchp,i represents the efficiency at which heat is
produced. For heat pumps, we use the standard coefficient of performance (COP) to
describe the rate at which heat is produced from a given input of electric power.
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The devices at a given energy hub are subject to capacity constraints. These can
be written as follows:

pout
chp,i

ηp
chp,i

+
hout
chp,i

ηh
chp,i

≤ Cchp,i

Rp
chp,iCchp,i ≤ pout

chp,i

ηp
chp,i

hout
chp,i

ηh
chp,i

≤ Rh
chp,iCchp,i





(CHP) (3.6a)

houtf,i ≤ Cf,i (F) (3.6b)

houthp,i ≤ Chp,i (HP), (3.6c)

where Cchp,i represents the capacity, and Rp
chp,i and Rh

chp,i are constants Cao et al.
2020. For the CHP, the above inequalities represent the operation region of the CHP
and include the maximum fuel import rate, the minimum electric output and the
maximum thermal output.

The final part of the model to describe a single energy hub corresponds to a number
of non-negativity constraints as well as to some upper bounds on the capacities of the
devices. These are the following:

Cchp,i, Cf,i, Chp,i ≥ 0, ∀i (3.7a)
(Cchp,i, Cf,i, Chp,i) ⪯ (Cmax

chp,i, C
max
f,i , Cmax

hp,i ), ∀i (3.7b)

min
chp,i, m

in
f,i ≥ 0, ∀i (3.7c)

houthp,i, h
out
chp,i ≥ 0, ∀i. (3.7d)

Remark 1. The energy hub model described in this section can be extended to
include electric or heat storage devices. See, for example, Cao et al. 2020. Storage
tanks are omitted in this report for simplicity.

Power Grid

In this subsection we provide a model of the power grid. Since we are interested in
describing mostly local energy systems—at municipality levels—the power grid we
consider is restricted to the distribution level of the electric power transport system.

The power grid is modeled as a graph Gp = (Np, Ep), where its nodes Np are the
set of power buses, its edges Ep are the set of power lines. Moreover, throughout the
remaining of the document we will make reference to the following subset:

Si = subset of nodes adjacent to the ith node
= {j ∈ Np : (i, j) ∈ Ep or (j, i) ∈ Ep}. (3.8)

With the above considerations, we write the power grid model as follows Geng,
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Vrakopoulou, and Hiskens 2020:

pouti =
∑

j∈Si

Bi,k(θi − θk), i ∈ Np (3.9a)

Bi,k ≥ 0, (i, k) ∈ Np × Si (3.9b)
|θi − θj | ≤ δmax

i , i, j ∈ Np. (3.9c)
−Cp,i ≤ Bi(θj − θk) ≤ Cp,i, ∀(j, k) = i ∈ Ep. (3.9d)

Equation (3.9a) represents the power balance at node i ∈ Np: in the left-hand side, we
have the electric power the i-th energy hub injects into the electric power distribution
network; on the right-hand side, the sum of the power that flows through the power
lines that are incident to the i-th energy hub appears. The power that flows through a
given power line is (approximately) proportional to the difference in the voltage phase
angles, denoted as θ, between the source and target power buses of the line (with a
tolerance δmax

i > 0). The constant of proportionality is the power line admittance B.
Inequality (3.9b) is simply a nonnegativity constraint for the admittance of all power
lines. Inequalities (3.9c) restricts the the domain of feasible values of the voltage
phase angles at the power buses of the electric grid. Such a constraint stems from
stability considerations. Lastly, inequality (3.9d) limits through the lines according
to their respective capacity.

Remark 2.

(i) If we assume that a DC power distribution network is in place, instead of a
conventional AC network, the power flow equations will be the following:

pouti =
∑

j∈Si

1
rij

(vi − vj)2,

where vi denotes the DC voltage of a given power bus, and ri,j the resistance
of the power line (i, j) ∈ Ep.

(ii) One way to simplify the model (3.9) consists in introducing the variable ϕp,j for
each j ∈ Ep representing the actual power that flows through the line j. Then,
(3.9a) would become

pouti =
∑

j∈Ii

ϕp,j , i ∈ Np (3.10)

where Ii denotes the set of power lines that are incident to the i-th energy hub.
Moreover, the constraints on the capacities of the power lines would now be
given by

−Cp,i ≤ ϕp,i ≤ Cp,i, i ∈ Ep. (3.11)

The above simplified model can be used to do a preliminary analysis on how
electric power should be flowing in the network, without considering the power
losses. This could also simplify the process of topology optimization. For the
sake of simplicity, we use this model in our simulations.
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Assumption 2. Our model can further be simplified if we assume that the topology,
but not the capacity, of the heat and power grids has already been defined. By
topology we mean the location of the energy hubs, the existence of district heating
pipelines and the length of such lines.

Heat Grid

This section describes a model for the heat grid (or district heating). As analogously
done for the power grid, we describe the heat grid as a graph Gdh = (Ndh, Edh), where
the set of nodes Ndh represents hydraulic junctions (connection points between two
or more pipes) and Edh is the set of pipes and heat exchangers. The interface between
any energy hub and the heat grid is done through a heat exchanger; however, we
assume their cost is low and their efficiency high compared to the other devices at
any given energy hub.

Before presenting the model, we introduce the following sets:

Edh = Eπ ∪ Ehx : set of pipes and heat exchangers, (3.12a)
Ssi : set of edges starting at i ∈ Ndh, (3.12b)
Sei : set of edges ending at i ∈ Ndh. (3.12c)

Then, following Cao et al. 2020, we model the heat grid as follows:

houti = cpṁi

(
τouti − τ ini

)
, i ∈ Ehx (3.13a)

τouti =
(
τ ini − Ta

)
e
− λiLi

cpṁi + Ta, i ∈ Eπ (3.13b)

τk =

∑
i∈Se

k
ṁiτ

out
i∑

j∈Ss
k
ṁj

, k ∈ Ndh (3.13c)

τ ini = τk, ∀i ∈ Ss
k,∀k ∈ Ndh, (3.13d)

0 = Bṁ. (3.13e)

Equation (3.13a) represents the heat balance at the heat exchanger of the i-th energy
hub: in this equation, ṁi represents the mass flow rate through the heat exchanger;
cp is the heat capacity, which is assumed to be constant, and τ ini and τouti represent
the temperature at the inlet and outlet of the heat exchanger respectively. Equa-
tion (3.13b) describes the temperature τouti at the outlet of a given pipe of the heat
grid. Note that this temperature depends on the pipe’s inlet temperature τ ini , the
ambient temperature Ta, the pipe’s length Li and the heat transfer coefficient λi.
Equation (3.13c) models the temperature of any stream of water coming out of a
given node k ∈ Ndh, which represents the weighted average of the temperatures of
the streams entering the node. Equation (3.13d) models the temperature at the inlet
of any pipe or heat exchanger. Equation (3.13e) represents the mass balance equation
at each node of the heat grid. Here, B represents the incidence matrix of the heat
grid’s graph.
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The above model is complemented with the following inequalities, which respec-
tively restrict the values of the mass flow rates, temperatures and heat transfer coef-
ficients to physically sensible subsets:

ṁi ≤ |mmax
i |, i ∈ Edh (3.14a)

0 < τmin
k ≤ τk ≤ τmax

k , k ∈ Ndh (3.14b)
0 ≤ λi, i ∈ Eπ. (3.14c)

cpṁiτ
in
i ≤ Cdh,i, i ∈ Edh. (3.14d)

Note that inequality (3.14d) limits the heat that can flow through the pipes in accor-
dance to the respective pipe capacity.

Remark 3 (Linearization pipe model). We can substitute the pipe model described
above by Equation (3.13b) with the following Li et al. 2018:

cpṁi

(
τouti − τ ini

)
= λiLi(Ta − τ ini ), ∀i ∈ Eπ,

where we linearized the exponential using its first order expansion.

Remark 4. Analogous to the simplified model (3.10) to describe the electric power
system, we introduce for each i ∈ Edh the variable ϕdh,i to represent the heat flow
the goes from a given energy hub to another. Further simplifications come from only
considering the supply (warm) layer of the district heating network and taking the
energy hubs directly as the set nodes Ndh and not as edges (HXs). Therefore, a
simplified heat flow model can be written as follows:

houti =
∑

j∈Ii

ϕdh,j , i ∈ Ndh. (3.15)

Nonetheless, a significant drawback of this simplified model is that it cannot readily
incorporate heat losses. This will lead to imprecise computations of the operational
costs. Then, we can impose the following constraint to determine the appropriate
capacity of a given pipeline:

−Cdh,i ≤ ϕdh,i ≤ Cdh,i, i ∈ Edh. (3.16)

Due to time constraints, we use the above model in our numerical simulations.

Infrastructure and operational costs

Having defined the model of each energy hub and of the electric power and heat grids,
we are in position to introduce the total infrastructure costs and the total operational
costs as follows:

total cost = total installation costs + total operation costs
= fC + fO,
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where

fC = Ichp
∑

∀i
Cchp,i + If

∑

∀i
Cf,i + Ihp

∑

∀i
Chp,i

+ Ip
∑

j∈Ep

LjCp,j + Idh
∑

k∈Edh

LkCπ,k

fO =

year 30∑

y=1

365

(
ωchp (y)

hour 24∑

h=1

∑

∀i
min

chp,i (h, y)

+ ωf (y)

hour 24∑

h=1

∑

∀i
min

f,i(h, y)

− ωout
p (y)

hour 24∑

h=1

∑

∀i
pouti − ωout

h (y)

hour 24∑

h=1

∑

∀i
houti

)
,

For defining fC, we have assumed that the installation costs of CHP, HP and
Furnace units are directly proportional to their capacities. Also, in fC we have the
installation costs per kilometer associated to installing power lines or pipelines for the
heat distribution network. The proportionality constants Ichp, If and Ihp should be
expressed in Eur/MW, whereas Ip and Idh in Eur/MW·km. Note also, that for the
power lines and the district heating pipes, we assume that the infrastructure costs
are proportional to the sum of the capacities Cp,j and Cdh,j of the power lines in the
electric grid and the pipes in the district heating network, respectively.

For the operational costs, we assume out of simplicity that the energy costs are
constant through each year, yet they can vary from year to year. Also, the daily pro-
file for mass consumption (gas or biomass) or the heat or power injection/extraction
to/from the grids is repeated 365 days. For a more detailed model, we can incorporate
typical days of different seasons throughout the year (spring, summer, autumn, win-
ter) and repeat the profile of those typical days to whole seasons. Linear combinations
of all the typical days are also possible (see Cao et al. 2020).

Remark 5. For simplicity’s sake, we will not aim at minimizing the operational costs
of the hydraulic layer of the district heating system. This can be incorporated at a
later stage straightforwardly, but at the expense of introducing strong nonlinearities
into the optimization problem.

Remark 6. The considered modeling framework is suitable to also include termi-
nal constraints that would restrict, for example, the amount of CO2 emissions per
year, decade, etc. Also, we can impose a monotonicity constraint ensuring that CO2

emissions should be reduced by a certain percentage each year.



51

3.3.3 An optimal capacity design problem (OCDP)
Let us first define the following variables:

x = stack (Cchp,i, Cf,i, Chp,i, λj , κk, )∀i,j,k

y = stack
(
mf,i,mchp,i, p

out
i , houti

)
∀i

z = stack
(
pinhp,i, p

out
chp,i, h

out
hp,i, h

out
hp,i, h

out
chp,i, h

out
f,i , vi, ṁi, τ

out
i , τ ini , τi

)

ξ = stack
(
pini , h

in
i

)
∀i

d =
(
ωchp, ωf , ω

out
p , ωout

h

)

q =
(
COPi, η

p
chp, η

h
chp, η

h
f , cp,i, Ta,h, Li, R

p
chp, R

h
chp, ρ0

)

c = (Ichp, If , Ihp, Iπ, Ip) .

Then, the optimization problem of interest is the following:

min
(x,y)∈K

fC + fO = c⊤x+ d⊤y, (3.17)

where
K = {(x, y) : all defined (in)equality constraints are met}.

3.3.4 Case study: municipality of Rotterdam
In this section we describe, perhaps in a simplified manner, how to numerically solve
problem (3.17) using MATLAB and Yalmip Lofberg 2004 considering a specific case
study, namely, the heat transition in Rotterdam, the Netherlands.

Remark 7. The data used in this section is mostly artificially generated and solely
to illustrate the use of a framework of energy hubs and our MATLAB code to identify
suitable designs for the energy systems of the municipality of Rotterdam. More ac-
curate and realistic data can be incorporated straightforwardly to get more realistic
designs from our code.

Taking a macroscopic approach, in Figure 3.6.(a) we identify the neighborhoods
of the municipality of Rotterdam as nodes of a simple graph G. Each node represents
an independent energy hub and the set of all nodes is denoted by N . The edges
E of this graph correspond to the distances between any pair of nodes (distances
between the centroids of any two neighborhoods). The graph G sets the basis for
optimally identifying the topologies (and capacities) of the electric power and heat
grids. Indeed, as a starting point we will assume that the graph Gp describing the
power grid and the graph Gdh describing the heat grid are topologically equivalent to
G. Then, the solution to problem (3.17) will specify which edges should be removed
from Gp and Gdh so that the overall installation and operation costs are minimized.
Potential topologies for the power and heat grids are shown in Figure 3.6.(b) and (c).

To solve problem (3.17), it is necessary to specify the numerical values of a number
of external parameters. These parameters include the power and heat demand profile
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Figure 3.6: (a) The municipality of Rotterdam is represented by a graph. Districts with abbrevia-
tions: Overschie (Ov), Hillegersberg-Schiebroek (Hi), Prins-Alexander (Pr), Noord (No), Kralingen-
Crooswuk (Kr), Delfshaven (De), Centrum (Ce), Feijenoord (Fe), Waalhaven (Wa), Charlois (Ch),
Ijsselmonde (Ij). The nodes are the neighborhoods and the edges are the distances between any two
of them. (b) Possible configuration of the power grid. (c) Possible configuration of the heat grid.
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MATLAB + Yalmip code

   Input data:

Electricity and heat
demand profiles.
Capacity constraints.
Device efficiency.

   Optimal solution:

Capacities of all electricity and
heat generation devices.
Capacities and topologies of the
power and heat grids.

Figure 3.7: Block diagram illustrating how our MATLAB code processes input data to return a
solution to problem (3.17).

of each neighborhood. Other parameters that should be specified beforehand are
the efficiencies of CHP units, furnaces and heat pumps. In addition, in the model
some decision variables must comply with constraints in the form of lower or upper
bounds. Such bounds should be specified beforehand too. All these data are then fed
into out Matlab code, which will return as an output the solution to problem (3.17);
see Figure 3.7.

To gain more insights about what type of data is needed to execute our MATLAB
code, consider Tables 3.1–3.4.

In Table 3.1 we include geographic data about the (x, y)-coordinates of the cen-
troids of every neighborhood of Rotterdam, taking as the origin the neighborhood
Centrum. This information is needed to compute the distances between any pair of
neighborhoods. In the same table, the column “Temp. Level” identifies the capa-
bilities of an individual neighborhood to receive or supply high temperature or low
temperature heat into a heating grid; however, due to time constraints we did not in-
corporate this information into our design yet. The column about population should
specify the number of inhabitants in each neighborhood. For simplicity we took the
total number of inhabitants in Rotterdam and we equally distributed them in the
neighborhoods. In our simulations, we use population data to give a rough estimate
of the electricity and heat demand. Indeed, using information about the yearly aver-
age energy consumption per person for The Netherlands shown in Figure 3.8.(a), we
were able to produce the synthetic electricity and heat demand profiles of each neigh-
borhood in Rotterdam as respectively shown in Figs. 3.8.(b) and 3.8.(c). Note that
we have used historic data in the period 1990–2020, nonetheless, for the purposes of
our simulations, we will just simply assume the same profiles correspond to the period
2020–2050.

In Table 3.2 we display synthetic data about the efficiencies of CHP units, furnaces,
and the COP of heat pumps. For simplicity, we assume that these are constant values,
however, the efficiencies can be state dependent and even weather dependent. More
intricate efficiency curves can be approximated by piecewise-linear functions of the
devices states (see Cao et al. 2020) but this is not pursued here. Finally, Tables 3.3
and 3.4 show the costs associated to infrastructure installation and operation.

The solution returned by out MATLAB code is shown in Table 3.5 and Figure 3.9.
Table 3.5 represents a sample of the data produced by our code and stored into an
excel file titled solution_energy_hub.xlsx. The first sub-table displays the total
costs as well as the infrastructure costs and operational costs, obtained by numerically
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Table 3.1: Geographic and device feasibility data

Neighborhood x-coord. (km) y-coord. (km) Temp. Level Population CHP F HP
Or -4 8 HT 52,500 1 1 0
Hi 0 8 - 52500 0 0 1
Pr 4 8 LT 52500 1 1 0
No 0 4 - 52500 0 0 1
Kr 4 4 - 52500 0 0 1
De -4 0 - 52500 0 0 1
Ce 0 0 - 52500 0 0 1
Wa -8 -4 LT 52500 1 1 0
Ch -4 -4 - 52500 0 0 1
Fe 0 -4 - 52500 0 0 1
Ij 4 -4 LT 52500 1 1 0

Table 3.2: Device efficiencies

ηpchp ηhchp Rp
chp Rh

chp ηhf COP
1 2 3 4 5 6

Table 3.3: Infrastructure (unitary) costs

Ichp (Eur/MW) If (Eur/MW) Ihp (Eur/MW) Ip (Eur/MW·km) Idh (Eur/MW·km)
1 2 3 4 5

Table 3.4: Operational (unitary) costs

ωchp (Eur/MWh) ωf (Eur/MWh) ωp (Eur/MWh) ωh (Eur/MWh)
1 2 3 4

solving the optimization problem (3.17). The second sub-table summarizes some of
the known information that should be provided as input to the MATLAB code, but the
three last columns display the optimal values of the capacities that should be installed
at each energy hub concerning CHP units, furnaces, and heat pumps. Similarly, the
last two columns of the third and last sub-table display a sample of the optimal
capacities that electric power lines and district heating pipelines should have in order
to optimally distribute the generated power and heat throughout the municipality of
Rotterdam. The plots displayed in Figure 3.9 are the graphical representations of the
optimal topologies of the electric power grid and of the district heating system. The
values displayed next to the edges of each of these graphs represent their capacities.
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Figure 3.8: (a) Yearly energy demand per person in the Netherlands. (b) Electricity consumption of
each neighborhood of Rotterdam. (Synthetic data.). (c) Heat consumption of each neighborhood of
Rotterdam. (Synthetic data.)
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Table 3.5: Sample of the Excel file produced by our MATLAB code.

total_costs infrastructure_costs operation_costs
998118296.2 233826486 764291810.2

neighborhood x y temp population CHP F HP C_chp (MW) C_f (MW) C_hp (MW)
Ov -4 8 HT 52500 1 1 0 4.804461153 0 0
Hi 0 8 52500 0 0 1 0 0 7.368592376
Pr 4 8 LT 52500 1 1 0 9.988785807 0 0
No 0 4 52500 0 0 1 0 0 5.110797351
Kr 4 4 52500 0 0 0 0 0 0
De -4 0 52500 0 0 1 0 0 2.67498546
Ce 0 0 52500 0 0 0 0 0 0
Wa -8 -4 LT 52500 0 0 0 0 0 0
Ch -4 -4 52500 0 0 1 0 0 5.187061519
Fe 0 -4 52500 0 0 1 0 0 7.403705111
Ij 4 -4 LT 52500 1 1 0 12.11208066 0 0

Edge Source Target Distance (km) C_p (MW) C_dh (MW)
1 Ov Hi 4 0.332306523 2.513271456
2 Ov Pr 8 0 0
3 Ov No 5.656854249 0.328661978 0.017608603
4 Ov Kr 8.94427191 0 0
5 Ov De 8 2.211971215 0
6 Ov Ce 8.94427191 0 0
7 Ov Wa 12.64911064 0 0
8 Ov Ch 12 0 0
9 Ov Fe 12.64911064 0 0
10 Ov Ij 14.4222051 0 0

3.4 Cost model - a MIP formulation

In this Section, we present a model that supports decision-making on a municipality
or district level. Using a mixed integer programme (MIP) formulation of a cost mini-
mization problem, we determine which percentage of the population’s energy demand
should be covered by which heat source. Hereby, costs are assumed to be social costs,
i.e., to include investments on municipal and household levels, maintenance costs, and
operational energy costs. An overview of all parameters and decision variables used
in the model can be found in Table 3.6.

Based on data available on the websites of Leefomgeving 2023; PBL 2020; Exper-
tise Centrum Warmte 2023; Omgeving 2023 to obtain both test data and derive basic
model assumptions.

The model examines a district where four different sources of heat are available.

• Low temperature heat distribution (LT)

• Mid temperature heat distribution (MT)

• Electric heating using heat pumps (HPs) or boilers

• Gas heating (G)
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Figure 3.9: (a) Representation of the optimal topology of the electric power grid returned by our
MATLAB code. (b) Representation of the optimal topology of the district heating network returned
by our MATLAB code.

Table 3.6: Nomenclature

Variable Definition
#H Total number of houses
αi Fraction of houses connected to LT supplier i
αit Fraction of houses connected to LT supplier i at time t
βj Fraction of houses connected to MT supplier j
βjt Fraction of houses connected to MT supplier j at time t
γ Fraction of houses with heat pump
γt Fraction of houses with heat pump at time t
δ Fraction of houses using gas for heating
δt Fraction of houses using gas for heating at time t
ρij Density factor around facility ij in km per household
D Total heat demand during one time period in GJ

FLT/MT/HP CaPex connecting supplier to grid in euro
HLT/MT/HP CaPex connection of household to grid in euro

kLT/MT/HP (α/β) CaPex network as a function of α/β,
the population density and price per km for LT/MT/HT

mLT/MT/HP Maintenance cost as percentage of Capex
PLT/MT/HP Price of heat in euro per GJ
P km

LT/MT/HP Price of LT/MT/HP network infrastructure in euro per km
P el Price of electricity in euro per unit of energy
Rmax

t Maximum transition realized by time t
Rmin

t Minimum transition realized by time t
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3.4.1 Model description
In the following, we discuss the base cost model for heat transition within a district or
area. We start by discussing decision variables and components of the cost function,
after which we present the full model in Section 3.4.1.

If the suppliers of LT are indexed by i and the suppliers of MT by j, the decision
variables within the model are the fractions αi, βj , γ, δ. Here αi for the fraction
of households using LT from source i and βj the fraction of households using LT
from source j. Next to that, γ and δ are the fractions of households using electric
heating and gas boilers respectively. To supply all households with heat we impose∑

i αi+
∑

j βj+γ+δ = 1. The output is a total social cost c(αi, βj , γ, δ) for the district
over a given time period. The objective function of the model is to minimize the cost.
The social cost includes both investments to be made by the utility companies and
installation and energy costs for the consumer. The total social cost is the sum over
the cost for each different energy source

c = cLT + cHT + cHP + cG (3.18)

where cLT/MT/HP/G is the total social cost associated with LT, MT, HP, and G re-
spectively. In the following sections, each energy source will be examined to define
their respective social costs.

Low/Medium temperature heat distribution

Given LT sources indexed by i the cost for fractions αi is given by:

cLT(α) =
∑

i

(1 +m(t))(αiH + FLT + kLT(αi)) + αiDpLT (3.19)

where m(t) is the cost of maintenance as a fraction of the total CaPex; FLT is the
cost of connecting an LT facility to the grid; kLT(αi) is the cost of expanding the
network such that facility LTi supplies some αi of the total heat demand. Assuming
a uniform population distribution, one can approximate that function to be linear in
αi, say kLT (αi) = αi · P km

LT ·#H · ρi where P km
LT is the price per km of LT network

infrastructure, #H is the total number of households, and ρi is a density factor
describing the kilometers of infrastructure needed to connect a new house. Due to
the uniformity of the distribution, the area covered with some km of the network
is linearly related to αi. One approximation is kd as depending on the radius and
population density around facility LTi. This kilometer function is crucial to the model
and will be discussed in more detail in Section 3.4.4.

For the medium temperature the same variables are considered, but the values
differ.

Heatpumps and electric boilers

For the electricity network, we do not consider the costs of the network, since it will
be also expanded for other purposes and we were not able to separate these costs. For
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a municipality, it would not be complicated to add to the model. The cost function
corresponding to electric heating is

cHP(γ) = γHHP + γDpHP. (3.20)

Gas Network

For gas, i.e. the status quo, we assume no further costs have to be made to expand
the network since (almost) all households currently have a gas-based boiler and are
already connected to the gas network. The cost function therefore purely depends on
the operational costs of the network. For coherence, we model the maintenance term
in the same fashion as for other heat sources, as a yearly fraction m(t) of some initial
investment HG

cG(δ) = δm(t)HG + δDpG

Mixed integer programme formulation

Based on the cost functions presented above, we derive a simple cost minimization
model:

min
α,β,γ,δ

cLT(α) + cHT(β) + cHP(γ) + cG(δ) (3.21)

subject to α =
∑

i

αi (3.22)

β =
∑

j

βj (3.23)

αi ·D ≤ LT cap
i ∀i (3.24)

βj ·D ≤ HT cap
j ∀j (3.25)

α+ β + γ + δ = 1 (3.26)
0 ≤ αi, βj , γ, δ ≤ 1 ∀i, j (3.27)

Next to the cost functions, we add various constraints. Equations (3.24) and (3.25)
ensure that the heat demand covered by LT and HT facilities does not exceed their
respective capacities. Equation (3.26) sums the fractions of the demand per heat
source, specifying that all demand is met (sum to one). The group of constraints in
Equation (3.27) force decision variables to be between zero and one. Given that they
model fractions, this is a reasonable assumption. Note that by pre-defining δ, one can
model phase-out targets. For example, setting δ = 0 would minimize costs for a full
transition away from gas.

3.4.2 Proof of concept implementation
As a proof of concept, we implemented a version of the base model presented in
Section 3.4 and ran numerical experiments. For simplicity, we model only a single
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time step, removing time-dependency. Furthermore, we fix δ = 0, modelling a full
transition away from gas. The MATLAB code used for the experiment can be found
in Appendix 3.7

Data

The numerical experiment has been done for five selected districts in the municipality
of Groningen. The corresponding used parameters in the model are presented in Table
3.7.

Table 3.7: Neighborhood Statistics (PBL 2020 and DHM)

neighborhood BU00140300 BU00140402 BU00140403 BU00140404 BU00140500
name De Hoogte Bloemenbuurt Florabuurt Damsterbuurt De Linie
#H 2,416 1,789 807 702 411
HLT 1,015,213 834,439 306,541 319,201 121,054
FLT 50,000 50,000 50,000 50,000 50,000
PLT 31 31 31 31 31
HMT 377,505 292,075 124,939 69,858 49,294
FMT 500,000 500,000 500,000 500,000 500,000
PMT 36 36 36 36 36
MtextG 1,072,704 794,316 358,308 311,688 182,484
PG 22 22 22 22 22
P el 31 31 31 31 31

The figures that differ per neighborhood are from the “Startanalyse aardgasvrije
buurten" PBL 2020 which provides an overview of the costs per neighborhood to
transition to different energy sources. The other costs and prices were provided by
DHM.

Results

The result of the numerical model for De Hoogte is shown in Figures 3.10, 3.11, 3.12,
3.13, 3.14, 3.15 and 3.16. They indicate the costs per heating method over multiple
time spans and electricity prices. The optimal method is based on minimized cost
and is a combination of individual heating methods. Note that in the figures the
optimal method is always equal to a pure method due to the linear kilometer function
and therefore taking linear combinations of multiple methods will always result in a
higher cost than picking the method with the lowest cost. For these Figures, energy
prices in the Netherlands are used from before the war in Ukraine.
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Figure 3.10: Calculated cost for each Strategy of LT, MT, HP, and the optimal solution, in District
1. The price of electricity is assumed to be 30 cents per kWh on average, which is a high estimate.
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Cost per strategy for 10 year(s)
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Figure 3.11: Calculated cost for each Strategy of LT, MT, HP, and the optimal solution, in District
1. The price of electricity is assumed to be 30 cents per kWh on average, which is a high estimate.
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Cost per strategy for 20 year(s)
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Figure 3.12: Calculated cost for each Strategy of LT, MT, HP, and the optimal solution, in District
1. The price of electricity is assumed to be 30 cents per kWh on average, which is a high estimate.
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Cost per strategy for 30 year(s)
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Figure 3.13: Calculated cost for each Strategy of LT, MT, HP, and the optimal solution, in District
1. The price of electricity is assumed to be 30 cents per kWh on average, which is a high estimate.
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Cost per strategy for 40 year(s)
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Figure 3.14: Calculated cost for each Strategy of LT, MT, HP, and the optimal solution, in District
1. The price of electricity is assumed to be 30 cents per kWh on average, which is a high estimate.
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Cost per strategy for 50 year(s)
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Figure 3.15: Calculated cost for each Strategy of LT, MT, HP, and the optimal solution, in District
1. The price of electricity is assumed to be 30 cents per kWh on average, which is a high estimate.



67

Cost per strategy for 60 year(s)
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Figure 3.16: Calculated cost for each Strategy of LT, MT, HP, and the optimal solution, in District
1. The price of electricity is assumed to be 30 cents per kWh on average, which is a high estimate.

From these figures, it can be seen that a 100% heat pump is always the best
strategy. However, it should be noted that the relative difference gets smaller as
the time horizon increases. Furthermore, a heat pump will usually only last around
15 − 20 years but this is only a small difference in costs and does not affect the
outcome. Another thing to note is that a heat pump is only economically profitable
after about 10− 15 years and because the homeowners have to pay for it themselves,
they are forced to keep their home until they gained their money back if they do not
want to lose some invested money, though this loss is possibly compensated by an
increase in home value. It is also possible that not all homes are suited for a heat
pump such as certain apartments or buildings that are poorly isolated, in which case
even more investments would be necessary. Finally, the results could differ highly if
another (more realistic) kilometer function k was used, more on this can be found in
section 3.4.4. The results from these figures were similar for the other districts that
were tested.
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3.4.3 Adding time dependency to the model

For policy makers, various decisions have to be made with regard to time. Firstly,
decision-makers are interested in a short-term answer on what first steps to take in
the transition. What and where should they invest right now? Secondly, minimizing
the cost of the entire heat transition over a number of years, while also knowing when
to make which investments, is crucial in the long run. Those two perspectives differ
in practice. For example, looking at a one-year horizon where we need to restructure
the heat supply for any one district in a municipality, it might be the cheapest to
choose a small and sparsely populated district and install heat pumps in all buildings.
In the long run, some of those buildings might be close to facilities that in the coming
years will be added to a district heating network. Then, the costs of connecting those
buildings to the district heating network might be less than installing heat pumps.
We adapt the base model presented in Section 3.4.1 accordingly to facilitate that
decision-making.

To this end, we add time dependency to the decision variables. For example,
instead of αi, we now consider αit, the fraction of the demand supplied by LT facility
i at time t. Similarly for other decision variables. A time step could for example
be a (financial) year. The decision variables now need to be initialized at time 0. A
reasonable scenario would be to initialize all decision variables for LT, HT, and HP
to be zero, and assume a heat network with all households having gas-boilers, δ0 = 1.

If run like that, the solution for times t = 1, · · · will be all the same, converging
to the most cost effective model within the first time step. Depending on the prices,
the result may be an all-gas infrastructure, or the entire heat demand should be
covered by district heating after the first year. In practice, a transition away from
gas over the course of multiple years is desirable. We model the first requirement
by introducing intermediate transition goals. Be Rmin

t the minimum fraction of the
demand that should be non-gas by time t. The following constraint ensures that the
heat transition in the region happens at a minimum rate:

Rmin
t ≤ αt + βt + γt ∀t

In particular, for t = 0 this approach can support decision-making that requires a
certain amount of direct action (e.g. connect at least a certain amount of households
to electric or waste-heat sources within the next year) while also minimizing costs
over the entire transition.

Similarly, we can impose a maximum transition rate by introducing a constraint

Rmax
t ≥ αt + βt + γt ∀t

where Rmax
t describes the maximum fraction that can be supplied by non-gas powered

heat by time t. This allows us to model for example yearly budget constraints,
construction times, and other resource-related constraints. Alternatively, Rmax

t could
be modelled as the maximum growth rate bounding αt+βt+γt−(αt−1+βt−1+γt−1).
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We include time dependency in the cost function as follows:

cLT(α, t) = (1 +m(t))
∑

i

((αit − αit−1)HLT (3.28)

+ 1{
αit>0,
αit−1=0

}Fi + k(αit)− k(αit−1))

+
∑

i

αit ·D · pLT

cHT(β, t) = (1 +m(t))
∑

j

((βjt − βjt−1)HHT (3.29)

+ 1{
βjt>0,
βjt−1=0

}Fj + k(βjt)− k(βjt−1))

+
∑

j

βjt ·D · pHT

cHP(γ, t) = (1 +m(t)) · ((γt − γt−1)HHP) + γt ·D · pHP (3.30)
cG(δ, t) = δt ·D · pG (3.31)

As opposed to the base model, the time-dependent cost functions discount investment
costs per time step. That is to say, investments made in the previous time step won’t
have to be made in the following time steps.

A full formulation of the time-adapted model is presented below:

min
α,β,γ,δ

∑

t

cLT(α, t) + cHT(β, t) + cHP(γ, t) + cG(δ, t) (3.32)

subject to αt =
∑

i

αit ∀t (3.33)

βt =
∑

j

βjt ∀t (3.34)

αit ·D ≤ LT cap
i ∀i, t (3.35)

βjt ·D ≤ HT cap
j ∀j, t (3.36)

0 ≥ δt − δt−1 (3.37)
αt + βt + γt + δt = 1 (3.38)

Rmin
t ≤ αt + βt + γt ∀t (3.39)

Rmax
t ≥ αt + βt + γt ∀t (3.40)

0 ≤ αit ≤ 1 ∀i, t (3.41)
0 ≤ βjt ≤ 1 ∀j, t (3.42)
0 ≤ γt ≤ 1 ∀t (3.43)
0 ≤ δt ≤ 1 ∀t (3.44)

(3.45)
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Figure 3.17: Illustrative example of the shortcomings of a purely radius-based kilometer function.

3.4.4 Notes on the kilometer function

The cost functions for LT and MT networks (Section 3.4.1) depend on a kilometer
function kLT(αi) (or similarly for MT and βj). It specifies the cost of expanding the
heat network such that facility LTi supplies a fraction αi of the total energy demand.
This is excluding the cost of connecting the facility to the heat network. Therefore, the
cost depends strongly on how many kilometers of pipelines are needed for transport,
and we refer to the function as the kilometer function.

Above, we pointed out that, given a uniform population distribution, one can ap-
proximate that function to be linear in αi, say kLT(αi) = αi ·P km

LT ·#H ·ρi where P km
LT

is the price per km of LT network infrastructure, #H is the total number of house-
holds, and ρi is a density factor describing the kilometers of infrastructure needed to
connect a new house. There are various limitations that come with this assumption.
We will address them in this section.

Firstly, ρi represents the density of the population around the facility which in
practice is likely not uniformly distributed. If the heat source is in an industrial
area, for example, connecting it to the closest household requires more kilometers per
household than connecting it to the closest household and its neighbor. Depending on
the scale of the problem, a facility might be between a densely and sparsely populated
area for which the radial approximation with constant density is a poor modelling
choice.

Secondly, the setup assumes a single-facility dependency. In practice, facilities
might be close to each other, and their supply radius might overlap. See Figure
3.17 for an illustrative example of overlapping radii, assuming that the plots are the
distance to the nearest facility. Due to this overlap, the investment in heat networks
around a certain facility to cover a given fraction of the heat demand might be higher
than approximated by the function proposed above. A similar effect can be observed
if a facility is near the border of the considered district.

Finally, we note that in developing the kilometer function, one should consider
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the insulation of households. Especially in densely populated areas, it may be cost-
efficient to choose heat pumps for houses that are within the radius of a facility and
instead expand the heat network to houses slightly farther away.

To conclude this discussion, the kilometer function kLT(αi) needs to be considered
carefully. We recommend further research into what approximation fits the real con-
text best. One approach could be a function depending on the population density, or
based on the size of the existing gas infrastructure of an area.

3.4.5 Recommendations and Future work
The improvements to the model can be divided into two categories. Firstly, we will
discuss recommendations to improve the accuracy of the model. Secondly, we share
ideas on how the model can be adapted to answer further questions arising on a
municipal level.

Accuracy

Energy price In reality the electricity price is elastic, depending on market prices
which in turn depend on the total electricity demand. Based on the prognoses of
the growth of (green) energy sources, this could be implemented quickly into the
model.

KM-function On top of the suggestions given in section 3.4.4 connections can also
be made with the two models described earlier. Both the energy hub formulation
and the graph theoretical method could calculate the cost for a given partitioning
of the energy consumption.

Further questions

Bankruptcy If the municipality decides on a particular strategy, it is important
to know how robust this solution is. If the district is dependent on HT heating
from a single facility, the bankruptcy of this facility could have a big impact on the
total cost. To study this the capacity per heat source could change over time.

Cost of infrastructure Something raised by the problem owner, is that munic-
ipalities hope for the future decrease in infrastructure costs. If such a decrease in
F , H over time is added, the effect could be studied to determine whether waiting
could decrease the total costs.

3.5 Conclusion
In this project, we have presented three modeling approaches for the heat transition,
addressing the challenge posed by DHM. Firstly, we discussed graphical representa-
tions and Monte Carlo simulations as a means of modelling heat and energy demands,
as well as network capacities.
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Secondly, we introduced an energy hub model that allows for modelling the inter-
relationship between various energy commodities, such as electricity and heat. Using
this model, we formulated an optimal capacity design problem, which we applied to
the case of the municipality of Rotterdam.

Both the Monte Carlo approach and the energy hub model are adaptable to various
use cases and scales, making them useful tools for addressing different challenges in
the heat transition.

Lastly, we presented a high-level mixed integer programme that determines the
optimal fraction of heat demand to supply per heat source and commodity, while
minimizing social costs. This model focuses more directly on modelling costs, rather
than energy flows, distinguishing it from the other models presented in this project.

In conclusion, these three models offer valuable insights for supporting decision-
making processes in the heat transition, providing a solid starting point for further
research towards a sustainable and cost-effective solution.

3.5.1 Recommendations and future work

Our study has highlighted multiple open questions regarding the heat transition, and
the models presented in this chapter offer some solutions while being adaptable to
other challenges. We suggest combining the models into an integrated approach to
create a more holistic cost model.

Furthermore, we recommend defining use cases and objectives to tailor the models
to specific applications. This approach will increase transparency and likely accep-
tance from a stakeholder perspective, benefiting both dissemination at municipalities
and explainability to private households.

A careful definition of the objective function is also crucial. In our study, we
assumed the minimization of social costs as the objective function, but in practice,
questions of energy security and access, as well as issues of energy justice, need to be
considered.

Lastly, we provide proof of concept code for two of the models, but validation
using real data and realistic assumptions is still required. Future research could focus
on validating the models and developing new models to address the challenges of heat
transition.

3.6 Appendix: Matlab code for optimizing energy
hub

The code presented here corresponds to the model presented in Section 3.3.

1

2 close all
3 clc
4
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5 %%% Load the geographic and energy data about the region of
↪→ interest. In

6 %%% our example about Rotterdam , each neighborhood represents an
↪→ Energy

7 %%% Hub. Each has energy generation and demand capabilities.
8

9 EH_nodes=readtable(’EH_simplified_data_rotterdam.xlsx’,’Range ’,’
↪→ C4:J15’); %Each EH is viewed as a node of a graph.

10

11 n_hubs=size(EH_nodes ,1); %number of energy hubs.
12

13 %%% Synthetic generation of the electric power and heat demand
↪→ profiles of

14 %%% each energy hub (neighborhood).
15

16 %%% First , we import the data (from the IEA) about the
↪→ approximate yearly energy

17 %%% consumption per capita in the Netherlands.
18

19 capita_energy=table2array(readtable(’EH_per_capita_energy_nl.csv’
↪→ ,’Range ’,’C6275:D6306 ’)); %data

20 years=capita_energy (:,1); %number of years
21 avg_energy_capita=capita_energy (:,2); % average yearly energy

↪→ demand per person.
22

23 %%% The energy is now expressed in MWh , not KWh as in the Excel
↪→ file.

24 avg_energy_capita =1e-3* avg_energy_capita;
25

26

27 %%% Plot of the energy demand per person in the Netherlands.
28 figure ()
29 plot(years ,avg_energy_capita ,’-b’,’LineWidth ’ ,2)
30 xlabel(’year’)
31 ylabel(’Energy␣per␣person␣(MWh)’)
32 grid on
33 exportgraphics(gcf , ’EH_fig_energy_capita.pdf’);
34

35

36 %%% Number of inhabitants in Rotterdam
37 no_inhab_rotterdam =623652;
38

39 %%% Number of inhabitants in each neighborhood (equalized)
40 no_inhab_neighborhoods =623652/ n_hubs*ones(n_hubs ,1);
41

42 %%% Yearly (total) energy consumption per neighborhood. We take
↪→ the yearly

43 %%% data per person and multiply it by the number of inhabitans
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↪→ in each
44 %%% energy hub.
45

46 yearly_cons_neigh=zeros(length(years),n_hubs);
47 for i=1: n_hubs
48 yearly_cons_neigh (:,i)=diag (0.9+0.2* rand(length(years) ,1))*

↪→ avg_energy_capita*no_inhab_neighborhoods(i,1);
49 end
50

51 %%% Assumption: The total energy consumption per neighborhood is
52 %%% distributed 33% for electric power and 66% for heat.
53

54

55 %%% Yearly (total) electric power consumption/production per
↪→ neighborhood.

56 yearly_power_neigh =0.33* yearly_cons_neigh;
57

58 %%% Plot:
59 figure ()
60 for i=1: n_hubs
61 plot(years ,yearly_power_neigh (:,i),’LineWidth ’ ,1)
62 legend
63 hold on
64 grid on
65 xlabel(’year’)
66 ylabel(’Electric␣energy␣consumption␣(MWh)’)
67 xlim([years (1) years(end)+10])
68 end
69 legend(EH_nodes.neighborhood)
70 exportgraphics(gcf , ’EH_fig_heat_consumption.pdf’);
71

72

73 %%% Yearly (total) heat consumption/production per neighborhood.
74 yearly_heat_neigh =0.66* yearly_cons_neigh;
75

76 %%% Plot:
77 figure ()
78 for i=1: n_hubs
79 plot(years ,yearly_heat_neigh (:,i),’LineWidth ’ ,1)
80 hold on
81 grid on
82 xlabel(’year’)
83 ylabel(’Heat␣consumption␣(MWh)’)
84 xlim([years (1) years(end)+10])
85 end
86 legend(EH_nodes.neighborhood)
87 exportgraphics(gcf , ’EH_fig_electricity_consumption.pdf’);
88
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89

90

91

92 N=32; %size of data (we run for 30 years)
93

94

95

96 %%% We assume that each node is connected to all the others. This
↪→ is useful

97 %%% to define the distance between nodes. The capacity costs of
↪→ power lines

98 %%% and district heating piping is dependent on the distance
↪→ between nodes.

99 %%% Also , it will help us define incidence matrices whose
↪→ topologies we

100 %%% will design optimally.
101

102 %%% Note also that we identify the source and target nodes of
↪→ each edge. To

103 %%% each edge we assign a weight representing the distance
↪→ between energy

104 %%% hubs.
105

106 EH_edges=table();
107 EH_edges.Edge =(1: n_hubs *(n_hubs -1) /2) ’;
108 Source =[];
109 Target =[];
110 Distance=zeros(n_hubs *(n_hubs -1)/2,1);
111 count =0;
112 for i=1: n_hubs
113 for j=i+1: n_hubs
114 count=count +1;
115 Source =[ Source ;{ EH_nodes.neighborhood{i}}];
116 Target =[ Target ;{ EH_nodes.neighborhood{j}}];
117 Distance(count)=norm([ EH_nodes.x(i);EH_nodes.y(i)]-[

↪→ EH_nodes.x(j);EH_nodes.y(j)],2);
118 end
119 end
120

121 EH_edges.Source=Source;
122 EH_edges.Target=Target;
123 EH_edges.Distance=Distance;
124

125 %%% Having defined the edges , we can define an incidence matrix.
↪→ Note that

126 %%% this incidence matrix still codifies the preliminary
↪→ interconnection

127 %%% among all the Energy Hubs. This is mostly used to identify a
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↪→ subgraph
128 %%% formed by removing interconnection points. Such a removal is

↪→ done by
129 %%% enforcing the constraint that if the capacity of a given

↪→ power line or
130 %%% district heating pipe is zero , then the associated flow

↪→ should also be
131 %%% zero.
132

133 calB_p=zeros(n_hubs ,size(EH_edges ,1));
134 for i=1: n_hubs
135 for j=1: size(EH_edges ,1)
136 if strcmp(EH_nodes.neighborhood{i},EH_edges.Source{j})
137 calB_p(i,j)=-1;
138 elseif strcmp(EH_nodes.neighborhood{i},EH_edges.Target{j

↪→ })
139 calB_p(i,j)=1;
140 end
141 end
142 end
143

144 %%% Adjacency matrix of G_p.
145 calA_p=-calB_p*calB_p ’+( n_hubs -1)*diag(ones(n_hubs ,1));
146

147 %%% We temporarily enforce the condition that the power system
↪→ and

148 %%% the district heating system graphs are equal. Recall that
↪→ this is

149 %%% changed when the actual capacities of each line/pipe are
↪→ computed.

150 calB_dh=calB_p;
151 calA_dh=calA_p;
152

153

154

155

156

157

158 %%% FIXED PARAMETERS OF THE SYSTEM
159

160 %%% Devices efficiencies.
161 dum=table2array(readtable(’EH_simplified_data_rotterdam.xlsx’,’

↪→ Range’,’H23:H28’)) ’;
162 eta_chp_p=dum (1);
163 eta_chp_h=dum (2);
164 R_chp_p=dum(3);
165 R_chp_h=dum(4);
166 eta_f_h=dum(5);
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167 COP=dum (6);
168

169

170

171 %%% Parameters forthe infrastructure costs
172

173 dum=table2array(readtable(’EH_simplified_data_rotterdam.xlsx’,’
↪→ Range’,’L23:L27’)) ’;

174 I_chp=dum (1); % Installation costs CHPs (X EUR/MW)
175 I_f=dum (2); % Installation costs Furnaces (X EUR/MW)
176 I_hp=dum(3); % Installation costs Heat Pumps (X EUR/MW)
177 I_p=dum (4); % Installation costs power lining (X EUR/(MWh))
178 I_dh=dum(5); % Installation costs District Heating Piping (X EUR

↪→ /(MWh))
179

180

181

182 %%% Parameters for the operational costs
183 dum=table2array(readtable(’EH_simplified_data_rotterdam.xlsx’,’

↪→ Range’,’P23:P26’)) ’;
184 omega_chp=dum (1)*ones(N,1); % Price of natural gas (EUR/MWh)
185 omega_f=dum(2)*ones(N,1); % Price of natural gas OR of biomass (

↪→ EUR/MWh)
186 omega_p_out=dum (3)*ones(N,1); % Price of selling/buying

↪→ electricity (EUR/MWh)
187 omega_h_out=dum (4)*ones(N,1); % Price of selling/buying heat (EUR

↪→ /MWh)
188

189

190

191 %%% DECISION VARIABLES
192

193 %%% capacities
194 C_chp=sdpvar(n_hubs ,1); % of CHPs
195 C_f=sdpvar(n_hubs ,1); % of Furnaces
196 C_hp=sdpvar(n_hubs ,1); % of Heat Pumps
197 C_p=sdpvar(n_hubs *(n_hubs -1)/2,1); % of power lines
198 C_dh=sdpvar(n_hubs *(n_hubs -1)/2,1); % of district heating piping
199 B_vec=sdpvar(n_hubs *(n_hubs -1)/2,1); % Admittance vector of power

↪→ lines
200

201

202

203 %%% mass -related variables (gas or biomass)
204 m_chp_in=sdpvar(repmat(n_hubs ,1,N),ones(1,N));
205 m_f_in=sdpvar(repmat(n_hubs ,1,N),ones(N));
206

207 %%% Interaction variables (between EHs and power or heat grid)
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208 p_out=sdpvar(repmat(n_hubs ,1,N),ones(1,N));
209 h_out=sdpvar(repmat(n_hubs ,1,N),ones(1,N));
210

211 %%% power inlet to HPs
212 p_hp_in=sdpvar(repmat(n_hubs ,1,N),ones(1,N));
213

214 %%% Power output of CHPs
215 p_chp_out=sdpvar(repmat(n_hubs ,1,N),ones(1,N));
216

217 %%% Heat output of CHPs
218 h_chp_out=sdpvar(repmat(n_hubs ,1,N),ones(1,N));
219

220 %%% Heat output of Furnaces
221 h_f_out=sdpvar(repmat(n_hubs ,1,N),ones(1,N));
222

223 %%% Heat output of HPs
224 h_hp_out=sdpvar(repmat(n_hubs ,1,N),ones(1,N));
225

226

227

228 %%% Power edges
229

230 phi_p=sdpvar(repmat(n_hubs *(n_hubs -1)/2,1,N),ones(1,N));
231

232

233

234 %%% Number of edges in the district heating system ’s graph
235 n_e_dh =2* size(EH_edges ,1)+n_hubs;
236

237 %%% Mass flow edges district heating system
238 phi_dh=sdpvar(repmat(n_hubs *(n_hubs -1)/2,1,N),ones(1,N));
239

240

241

242

243

244 %%% Definition of the constraints and cost function
245

246

247 %%% non -negativity constraints on capacities:
248 cap_cons =[0<=C_chp ,0<=C_f ,0<=C_hp ,0<=C_p ,0<=C_dh];
249

250

251

252 %%% Constraints associated with the non -feasibility of devices:
↪→ recall that

253 %%% there are EHs for which we could know a priori if it will
↪→ have an
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254 %%% specific energy transforming device.
255 exis_cons =[diag(EH_nodes.CHP ==0)*C_chp ==0,diag(EH_nodes.F==0)*C_f

↪→ ==0,diag(EH_nodes.HP==0)*C_hp ==0];
256

257

258 %%% Next we run a for loop to compute the yearly , monthly or
↪→ hourly

259 %%% operation costs of the system. Some operational constraints
↪→ should also

260 %%% be satisfied in the same time stamps.
261 f_o =0;
262 op_cons =[]; %%% Operational constraints
263

264

265

266 for k=1:N
267

268 p_in=-yearly_power_neigh(k,:) ’;
269 h_in=-yearly_heat_neigh(k,:) ’;
270

271

272

273 %%% Balance equations at each Energy Hub
274 power_balance_EH=p_in+p_chp_out{k}-p_hp_in{k}== p_out{k};
275 heat_balance_EH=h_in+h_chp_out{k}+ h_hp_out{k}+ h_f_out{k}==

↪→ h_out{k};
276

277 %%% Constituve relationships of the devices present in each
↪→ Energy Hub.

278 consti_CHP=m_chp_in{k}== p_chp_out{k}./ eta_chp_p+h_chp_out{k
↪→ }./ eta_chp_h;

279 consti_F=m_f_in{k}== h_f_out{k}./ eta_f_h;
280 consti_hp=h_hp_out{k}==COP.* p_hp_in{k};
281

282

283 %%% Power flow equations:
284 power_flow=p_out{k}+ calB_p*phi_p{k}==0; %Kirchhoff ’s law at

↪→ nodes.
285

286 %%% Heat flow equations.
287

288 heat_flow =[h_out{k}+ calB_dh*phi_dh{k}==0];
289

290

291

292 %%% Operational constraints for the CHPs
293 constraint_capacity_CHP =[ p_chp_out{k}./ eta_chp_p+h_chp_out{k

↪→ }./ eta_chp_h <=C_chp ,...
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294 R_chp_p*C_chp <= p_chp_out{k}./ eta_chp_p ,h_chp_out{k}./
↪→ eta_chp_h <= R_chp_h*C_chp];

295

296 %%% Operational constraints for the Furnaces
297 constraint_capacity_F=h_f_out{k}<=C_f;
298

299 %%% Operational constraints for the Heat Pumps
300 constraint_capacity_HP=h_hp_out{k}<=C_hp;
301

302 %%% The power flow through a given line is constrained by the
↪→ capacity

303 %%% of the line. If the capacity is zero , then the flow
↪→ should be zero

304 %%% through that line.
305 constraint_capacity_p =[phi_p{k}<=C_p ,phi_p{k}>=-C_p];
306

307 %%% The constraint for the heat flow through the district
↪→ heating

308 %%% piping follows the same reasoning as for the power lines
↪→ described

309 %%% above.
310 constraint_capacity_dh =[ phi_dh{k}<=C_dh ,phi_dh{k}>=-C_dh];
311

312

313 %%% Non -negativity constraints: most of the inpus to the
↪→ devices should

314 %%% be non -negative
315 non_negativity_cons =[ m_chp_in{k}>=0,m_f_in{k}>=0, h_hp_out{k

↪→ }>=0, h_chp_out{k} >=0];
316

317

318

319 %%% We combine all operational constraints into a single one.
320

321 op_cons =[op_cons ,non_negativity_cons ,constraint_capacity_HP ,
↪→ constraint_capacity_F ,...

322 constraint_capacity_CHP ,power_flow ,heat_flow ,consti_hp ,
↪→ consti_F ,consti_CHP ,...

323 heat_balance_EH ,power_balance_EH ,constraint_capacity_dh ,
↪→ constraint_capacity_p ];

324

325

326 %%% Operational costs:
327 f_o=f_o+omega_chp(k,1)*sum(m_chp_in{k})+omega_f(k,1)*sum(

↪→ m_f_in{k})...
328 -omega_p_out(k,1)*sum(p_out{k})-omega_h_out(k,1)*sum(

↪→ h_out{k});
329
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330 end
331

332 %%% Infrastructure costs
333 f_C=I_chp*sum(C_chp)+I_f*sum(C_f)+I_hp*sum(C_hp)+I_p*sum(EH_edges

↪→ .Distance .*C_p)+I_dh*sum(EH_edges.Distance .*C_dh);
334

335 %%% Objective function to be minimized.
336 objective=f_o+f_C;
337

338 %%% All constraints.
339 cons=[cap_cons ,exis_cons ,op_cons ];
340

341 %%% We solve the posed optimization problem using YALMIP
342 optimize(cons ,objective)
343

344

345 disp(’total␣costs’)
346 value(objective)
347

348 disp(’Infrastructure␣costs ’)
349 value(f_C)
350

351 disp(’Operational␣costs ’)
352 value(f_o)
353

354 %%% We export the data about costs into an excel file
355

356 %%% We add the obtained solution to tables , for easy reading and
↪→ for exporting.

357

358 costs_table=table ();
359 costs_table.total_costs=value(objective);
360 costs_table.infrastructure_costs=value(f_C);
361 costs_table.operational_costs=value(f_o);
362 EH_nodes.C_chp_MW =1e-6* value(C_chp); %capacities of CHP units
363 EH_nodes.C_f_MW =1e-6* value(C_f); % capacities of gas furnaces
364 EH_nodes.C_hp_MW =1e-6* value(C_hp); %capacities of heat pumps
365 EH_edges.C_p_MW =1e-6* value(C_p); % (indicative) capacities of

↪→ power lines
366 EH_edges.C_dh_MW =1e-6* value(C_dh); % (indicative) capacities of

↪→ heating pipelines
367

368 %%% We export the solution of the capacities into an excel file:
369

370 system(’taskkill␣/F␣/IM␣EXCEL.EXE’);
371

372 delete ’EH_solution_energy_hub.xlsx’
373
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374 writetable(costs_table ,’EH_solution_energy_hub.xlsx’,’Sheet ’,1,’
↪→ Range’,’C2:F4’)

375

376 writetable(EH_nodes ,’EH_solution_energy_hub.xlsx’,’Sheet ’,1,’
↪→ Range’,’C5:M20’)

377

378 writetable(EH_edges ,’EH_solution_energy_hub.xlsx’,’Sheet ’,1,’
↪→ Range’,’C20:M100’)

379

380

381

382 %%% Plot of the electric power network: topology and line
↪→ capacities.

383

384 figure ()
385 adj_p=calB_p*diag(value(C_p))*calB_p ’;
386 C_p_val=value(C_p);
387 C_p_val_red=C_p_val(C_p_val ~= 0);
388 L_widths_p=C_p_val_red /(sum(C_p_val_red)/length(C_p_val_red));
389 test_p=graph(adj_p ,’omitselfloops ’);
390 plot_p=plot(test_p ,’g’,’LineWidth ’ ,1.5,’XData ’,EH_nodes.x,’YData ’

↪→ ,EH_nodes.y,’NodeLabel ’ ,...
391 EH_nodes.neighborhood ,’EdgeLabel ’,1e-6* C_p_val_red ,’LineWidth

↪→ ’,L_widths_p);
392 plot_p.Marker=’s’;
393 plot_p.NodeColor = ’k’;
394 plot_p.MarkerSize = 7;
395 grid on;
396 xlabel(’horizontal␣distance␣(km)’)
397 ylabel(’vertical␣distance␣(km)’)
398 exportgraphics(gcf , ’EH_solution_power_lines.pdf’);
399

400

401

402 %%% Plot of the district heating network - topology & pipe
↪→ capacities.

403

404 figure ()
405 adj_dh=calB_dh*diag(value(C_dh))*calB_dh ’;
406 test_dh=graph(adj_dh ,’omitselfloops ’);
407 C_dh_val=value(C_dh);
408 C_dh_val_red=C_dh_val(C_dh_val ~= 0);
409

410 L_widths_dh=C_dh_val_red /(sum(C_dh_val_red)/length(C_dh_val_red))
↪→ +eps;

411 plot_dh=plot(test_dh ,’r’,’LineWidth ’ ,1.5,’XData ’,EH_nodes.x,’
↪→ YData’,EH_nodes.y,’NodeLabel ’,EH_nodes.neighborhood ,’
↪→ EdgeLabel ’,1e-6* C_dh_val_red ,’LineWidth ’ ,1.5* L_widths_dh);
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412 plot_dh.Marker=’s’;
413 plot_dh.NodeColor = ’k’;
414 plot_dh.MarkerSize = 7;
415 grid on;
416 xlabel(’horizontal␣distance␣(km)’)
417 ylabel(’vertical␣distance␣(km)’)
418

419 exportgraphics(gcf , ’EH_solution_district_heating.pdf’);

3.7 Matlab code for cost model

The code presented here corresponds to the model presented in Section 3.4.

1 function cost = cost_function (x)
2

3 % What variables are given
4 nf_lt = 2; % Number of lt factories
5 nf_mt = 2; % Number of mt factories
6

7 alpha = x(1: nf_lt);
8 beta = x(nf_lt +1: nf_lt+nf_mt);
9 gamma = x(end);

10

11 Demand_per_house = 16; % Demand in GJ
12 Number_of_Houses = 3000;
13 Area = 30; % Area in km^2, not used atm
14 D = Number_of_Houses * Demand_per_house; % Total heat demand in

↪→ GJ
15

16 p = 40; % The price of pipeline building per kilometer
17 t = 1; % The time horizon in years
18

19 Hlt = 12723 * Number_of_Houses; % Price of all households
↪→ connected for lt

20 Hmt = 12723 * Number_of_Houses; % Price of all households
↪→ connected for mt

21 Hhp = 22687.50 * Number_of_Houses; % Price of all households
↪→ connected for hp

22

23 Flt = 50000; % Price per LT facility
24 Fmt = 500000; % Price per MT facility
25

26 Plt = 31.51; % Price per energy (GJ) for lt
27 Pmt = 36.17; % Price per energy for mt
28 Php = 31.51; % Price per energy for hp
29
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30 maintenance = 0.01; % The maintenance cost in terms of percentage
↪→ of CAPEX

31 maintenance_hp = 0; % The maintenance factor for heat pumps
32

33 % km = p*a^2;
34

35 % Define model and set constraints
36 % delta = 1;
37

38 %% constraint
39

40 capacity_lt = 2* ones(1, nf_lt);
41 capacity_mt = 3 * ones(1, nf_mt);
42

43 %% LT
44 infracost = 0; % capex
45 for j = 1:nf_lt
46 infracost = infracost + (1+ maintenance*t)*(j*Hlt + Flt + p*j

↪→ ^2);
47 end
48

49 operationcost = sum(alpha)*D*Plt;
50 cost_LT = infracost + operationcost;
51

52 %% MT
53 infracost = 0; % capex
54 for j = 1:nf_mt
55 infracost = infracost + (1+ maintenance*t)*(j*Hmt + Fmt + p*j

↪→ ^2);
56 end
57

58 operationcost = sum(beta)*D*Pmt;
59 cost_MT = infracost + operationcost;
60

61 %% HP
62 gamma = 1 - sum(alpha) - sum(beta)
63

64 infracost = 0; % capex
65 for j = 1: length(gamma)
66 infracost = infracost + (1+ maintenance_hp*t)*(j*Hhp);
67 end
68

69 operationcost = sum(gamma)*D*Php;
70 cost_HP = infracost + operationcost;
71

72 cost = cost_LT + cost_MT + cost_HP;

1
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2 clc;
3 clear;
4 close all;
5

6 global nf_lt nf_mt Demand_per_house Number_of_Houses D
↪→ capacity_lt capacity_mt plt pmt t Hlt Hmt Hhp Flt Fmt Plt
↪→ Pmt Php maintenance maintenance_hp HDensity

7 % ******************** Input Variables *****************
8 TableData = zeros (28 ,23);
9 time_id = 0;

10 price_id = 0;
11 for time = 0:10:60
12 time_id = time_id +1;
13 for price = 30:10:60
14 price_id = price_id +1;
15 nf_lt = 1; % Number of lt factories
16 nf_mt = 1; % Number of mt factories
17 alpha_init = ones(1,nf_lt);
18 beta_init = ones(1,nf_mt);
19 gamma_init = ones (1,1);
20

21 Demand_per_house = 16; % Demand in GJ
22 Number_of_Houses = 2416;
23 Area = 30; % Area in km^2, not used atm
24 HDensity = 1/500; % people per Km^2
25 D = Number_of_Houses * Demand_per_house; % Total heat demand in

↪→ GJ
26

27 capacity_lt = 150000* ones(1, nf_lt);
28 capacity_mt = 3000000 * ones(1, nf_mt);
29

30

31 plt = 0.936 E6; % The price of pipeline building per kilometer
32 pmt = 1.736 E6; % The price of pipeline building per kilometer
33 t = time; % The time horizon in years
34

35 Hlt = 1015213;% * Number_of_Houses; % Price of all households
↪→ connected for lt

36 Hmt = 377505;% * Number_of_Houses; % Price of all households
↪→ connected for mt

37 Hhp = 1305667;% * Number_of_Houses; % Price of all households
↪→ connected for hp

38

39 Flt = 50000; % Price per LT facility
40 Fmt = 500000; % Price per MT facility
41

42 Plt = 31; % Price per energy (GJ) for lt
43 Pmt = 36; % Price per energy for mt
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44 Php = price; % Price per energy for hp
45

46 maintenance = 0.02; % The maintenance cost in terms of percentage
↪→ of CAPEX

47 maintenance_hp = 0.005; % The maintenance factor for heat pumps
48

49 % Cost
50 % PS constraints: xa , xb, xg
51 % initial guess , lower & upper bond
52 % init_guess =[alpha_init , beta_init , gamma_init ];
53 init_guess =[ alpha_init .*0, beta_init .*0, gamma_init .*0];
54

55 lb=[ alpha_init .*0, beta_init .*0, gamma_init .*0];
56 ub=[alpha_init , beta_init , gamma_init ];
57

58 % init_guess =0;
59 A = [diag(alpha_init), zeros(nf_lt , nf_mt), zeros(nf_lt , 1);

↪→ zeros(nf_mt , nf_lt), diag(beta_init), zeros(nf_mt , 1)]; %
↪→ Linear inequality constraint: A*X <= b

60 bin= [capacity_lt/D, capacity_mt/D]; % Linear inequality
↪→ constraint: A*X <= b

61 Aeq = [ones(1, nf_lt), ones(1, nf_mt), 1]; % Linear equality
↪→ constraint: Aeq*X = beq

62 beq = [1]; % Linear equality constraint: Aeq*X = beq
63 % A = [];
64 % bin = [];
65 % Aeq = [];
66 % beq = [];
67 nonlcon = []; % A function returning the nonlinear inequality (C

↪→ (x) <=0) and equality (Ceq(x)=0) vectors
68

69 % Setting Options as Specified by the User: Defining pattern
↪→ search (hybrid function) options

70 Hybrid_Options = psoptimset(@patternsearch);
71 Hybrid_Options = psoptimset(Hybrid_Options ,’CompletePoll ’,’on’

↪→ ,...
72 ’TolMesh ’,1e-10,’TolFun ’,1e-10,’TolX’,1e-10 ,...
73 ’Display ’,’iter’,’PlotFcn ’,{@psplotbestf @psplotmeshsize

↪→ @psplotfuncount @psplotbestx });
74

75

76 % Running the pattern search
77

78 % Running the pattern search algorithm with start point (1,1)
79 % [Coefficients] = patternsearch(@cost_function ,init_guess ,A,bin ,

↪→ Aeq ,beq ,lb,ub ,nonlcon ,Hybrid_Options);
80 % [Coefficients] = patternsearch(@cost_function ,init_guess);
81 [Coefficients] = fmincon(@cost_function ,init_guess ,A,bin ,Aeq ,beq ,
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↪→ lb ,ub ,nonlcon);
82

83 Coefficient = sum(Coefficients)
84 cost = cost_function (Coefficients)
85

86 % Saving
87 cost_solution =zeros (1,9);
88 [cost_solution (1), cost_solution (2), cost_solution (3) ,...
89 cost_solution (4), cost_solution (5), cost_solution (6), ...
90 cost_solution (7), cost_solution (8), cost_solution (9)] =

↪→ cost_function_saving (Coefficients);
91

92 cost_LT_MT_HP =zeros (1,9);
93 [cost_LT_MT_HP (1), cost_LT_MT_HP (2), cost_LT_MT_HP (3) ,...
94 cost_LT_MT_HP (4), cost_LT_MT_HP (5), cost_LT_MT_HP (6), ...
95 cost_LT_MT_HP (7), cost_LT_MT_HP (8), cost_LT_MT_HP (9)] =

↪→ cost_function_saving ([1 1 1]);
96

97 %%
98

99 %% Plotting
100 % operationcost_co_LT , operationcost_customer_LT , infcost_LT , ...
101 % operationcost_co_MT , operationcost_customer_MT , infcost_MT ,

↪→ ...
102 % operationcost_co_HP , operationcost_customer_HP , infcost_HP
103

104 fig = figure;
105 legendName ={’CAPEX’,’OPEX␣customer ’, ’OPEX␣company ’};
106

107

108 %% cost solution
109

110 % Categorizing data for Pressure -Temperature
111 TestNo = 0;
112 Test = []; operationcost_co =[]; operationcost_customer =[]; infcost

↪→ =[];
113

114 operationcost_co (1,1) = cost_LT_MT_HP (1);
115 operationcost_co (2,1) = cost_LT_MT_HP (4);
116 operationcost_co (3,1) = cost_LT_MT_HP (7);
117 operationcost_co (4,1) = cost_solution (1)+ cost_solution

↪→ (4)+ cost_solution (7);
118 operationcost_customer (1,1) = cost_LT_MT_HP (2)+

↪→ operationcost_co (1,1) ;
119 operationcost_customer (2,1) = cost_LT_MT_HP (5)+

↪→ operationcost_co (2,1) ;
120 operationcost_customer (3,1) = cost_LT_MT_HP (8)+

↪→ operationcost_co (3,1) ;
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121 operationcost_customer (4,1) = cost_solution (2)+
↪→ cost_solution (5)+ cost_solution (8)+
↪→ operationcost_co (4,1) ;

122 infcost (1,1) = cost_LT_MT_HP (3)+operationcost_customer
↪→ (1,1);

123 infcost (2,1) = cost_LT_MT_HP (6)+operationcost_customer
↪→ (2,1);

124 infcost (3,1) = cost_LT_MT_HP (9)+operationcost_customer
↪→ (3,1);

125 infcost (4,1) = cost_solution (3)+ cost_solution (6)+
↪→ cost_solution (9)+operationcost_customer (4,1);

126

127

128 %Bar chart
129 x = [1,2,3,4];
130 b1 = bar(x,infcost (:,:)/1E6);
131 b1(1).FaceColor = ’#B3E5FC ’;
132 hold on
133

134 b2 = bar(x, operationcost_customer (:,:)/1E6);
135 b2(1).FaceColor = ’#0099 FF’;
136 hold on
137

138 b3 = bar(x, operationcost_co (:,:)/1E6);
139 b3(1).FaceColor = ’#673 AB7’;
140 % b2(2).FaceColor = ’#673AB7 ’;
141 % b2(3).FaceColor = ’#FF3300 ’;
142 % b2(4).FaceColor = ’#FFCC00 ’;
143 % b2(5).FaceColor = ’#00CC00 ’;
144 hold on
145

146 legend(legendName ,’NumColumns ’,1 ,’Location ’,’northeast ’,’
↪→ Fontsize ’ ,12);

147 xticks (1:4);
148 xticklabels ({’LT’,’MT’,’HP’,’OPT’})
149 % xlim ([0 ,110])
150 ylim ([0 ,200])
151 ylabel(’\bfCost␣(Million␣Euros)’);
152 grid on
153 newT =[’Cost␣per␣strategy␣for␣’, num2str(t), ’␣year(s)’];
154 title(newT);
155 set(gca ,’FontSize ’ ,12)
156 saveName = [’District_1_ ’,’Year’,num2str(time),’_Price ’, num2str(

↪→ price)];
157 saveas(fig , saveName ,’jpg’)
158 set(fig ,’Units ’,’Inches ’);
159 pos = get(fig ,’Position ’);
160 set(fig ,’PaperPositionMode ’,’Auto’,’PaperUnits ’,’Inches ’,’
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↪→ PaperSize ’,[pos (3), pos(4)])
161 close(fig)
162

163 TableData(price_id , 1) = time;
164 TableData(price_id , 2) = price;
165 TableData(price_id , 3:11) = cost_solution;
166 TableData(price_id , 12:20) = cost_LT_MT_HP;
167 TableData(price_id , 21:23)= Coefficients;
168

169 end
170 end
171

172

173

174

175 %%
176 function cost = cost_function (x)
177

178 global nf_lt nf_mt D plt pmt t Hlt Hmt Hhp Flt Fmt Plt Pmt Php
↪→ maintenance maintenance_hp HDensity Number_of_Houses

179

180 % What variables are given
181

182 alpha = x(1: nf_lt);
183 beta = x(nf_lt +1: nf_lt+nf_mt);
184 gamma = x(end);
185

186

187 % km = p*a^2;
188

189 % for the identifier function
190 c1 = 100;
191 c2 = 0.5;
192

193 %% LT
194 infracost = 0; % capex
195 for j = 1:nf_lt
196 infracost = infracost + (1+ maintenance*t)*( alpha(j)*Hlt +

↪→ 2*(1/(1+ exp(-c1*alpha(j))) - c2) * Flt + plt*alpha(j))
↪→ *HDensity*Number_of_Houses;

197 end
198

199 operationcost = sum(alpha)*D*t*Plt;
200 cost_LT = infracost + operationcost;
201

202

203 %% MT
204 infracost = 0; % capex
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205 for j = 1:nf_mt
206 infracost = infracost + (1+ maintenance*t)*(beta(j)*Hmt

↪→ +2*(1/(1+ exp(-c1*beta(j))) - c2) * Fmt + pmt*beta(j))
↪→ *HDensity*Number_of_Houses;

207 end
208

209 operationcost = sum(beta)*D*t*Pmt;
210 cost_MT = infracost + operationcost;
211

212

213 %% HP
214 % gamma+ sum(alpha) + sum(beta)=1
215

216 infracost = 0; % capex
217 for j = 1: length(gamma)
218 infracost = infracost + (1+ maintenance_hp*t)*(gamma(j)*Hhp);
219 end
220 operationcost = sum(gamma)*D*t*Php;
221 cost_HP = infracost + operationcost;
222

223

224 cost = cost_LT + cost_MT + cost_HP;
225 end
226

227

228 function [operationcost_co_LT , operationcost_customer_LT ,
↪→ infcost_LT , operationcost_co_MT , operationcost_customer_MT
↪→ , infcost_MT , operationcost_co_HP ,
↪→ operationcost_customer_HP , infcost_HP] =
↪→ cost_function_saving (x)

229

230 global nf_lt nf_mt D plt pmt t Hlt Hmt Hhp Flt Fmt Plt Pmt Php
↪→ maintenance maintenance_hp HDensity Number_of_Houses

231

232 % What variables are given
233

234 alpha = x(1: nf_lt);
235 beta = x(nf_lt +1: nf_lt+nf_mt);
236 gamma = x(end);
237

238

239 % km = p*a^2;
240

241 % for the identifier function
242 c1 = 100;
243 c2 = 0.5;
244

245 %% LT: operationcost_co_LT , operationcost_customer_LT , infcost_LT
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246 infracost = 0; % capex
247 operationcost_co_LT = 0;
248 for j = 1:nf_lt
249 operationcost_co_LT = operationcost_co_LT + (maintenance*t)*(

↪→ alpha(j)*Hlt + 2*(1/(1+ exp(-c1*alpha(j))) - c2) * Flt
↪→ + plt*alpha(j))*HDensity*Number_of_Houses;

250 infracost = infracost + (1+ maintenance*t)*( alpha(j)*Hlt +
↪→ 2*(1/(1+ exp(-c1*alpha(j))) - c2) * Flt + plt*alpha(j))
↪→ *HDensity*Number_of_Houses;

251 end
252 infcost_LT = infracost - operationcost_co_LT;
253

254 operationcost_customer_LT = sum(alpha)*D*t*Plt;
255

256

257 %% MT
258 infracost = 0; % capex
259 operationcost_co_MT = 0;
260 for j = 1:nf_mt
261 operationcost_co_MT = operationcost_co_MT + (maintenance*t)*(

↪→ beta(j)*Hmt +2*(1/(1+ exp(-c1*beta(j))) - c2) * Fmt +
↪→ pmt*beta(j))*HDensity*Number_of_Houses;

262 infracost = infracost + (1+ maintenance*t)*(beta(j)*Hmt
↪→ +2*(1/(1+ exp(-c1*beta(j))) - c2) * Fmt + pmt*beta(j))
↪→ *HDensity*Number_of_Houses;

263 end
264

265 infcost_MT = infracost - operationcost_co_MT;
266

267 operationcost_customer_MT = sum(beta)*D*t*Pmt;
268

269

270 %% HP
271 % gamma+ sum(alpha) + sum(beta)=1
272

273 infracost = 0; % capex
274 operationcost_co_HP = 0;
275 for j = 1: length(gamma)
276 operationcost_co_HP = operationcost_co_HP + (maintenance_hp*t

↪→ )*( gamma(j)*Hhp);
277 infracost = infracost + (1+ maintenance_hp*t)*(gamma(j)*Hhp);
278 end
279

280 infcost_HP = infracost - operationcost_co_HP;
281

282 operationcost_customer_HP = sum(gamma)*D*t*Php;
283

284 end
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Abstract In this study, we present an innovative software framework developed dur-
ing the SWI 2023 Study Group for the accurate geolocation and 3D reconstruction
of cloud observations. This project, a joint proposal by the European Space Agency
(ESA) and the Royal Netherlands Meteorological Institute (KNMI), tackles the chal-
lenge of extracting relevant information from cloud observation data and transforming
it into actionable insights.

The framework is primarily implemented in Python3, leveraging basic libraries
such as numpy, matplotlib, scipy, and others. It offers a robust pipeline for extracting
relevant arrays from netCDF formatted data, such as cloud observation and location
details, and subsequently updating these back into the original data.

Our software processes, extracts, and leverages data in three main branches: re-
construction, motion extraction, and shape analysis. Within these branches, various
procedures like 3D reconstruction, bulk motion extraction, shape analysis, cloud se-
lection and smoothing, and optical flow are executed. The focus is on the accurate
extraction of real cloud latitude and longitude from observed positions, considering
the true height of the cloud surface.

Keywords: 3D reconstruction, optical flow, shape analysis, Fourier bulk motion
detection, cloud observation
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4.1 Introduction

The Harmony mission was selected by the European Space Agency to be implemented
as the 10th Earth Explorer mission. This mission was mainly implemented to resolve
physical processes in the marine atmospheric boundary layer at high resolution, thus
aiming for a better understanding of the Earth System. One of the main scientific
objectives of this mission is to advance the knowledge of cloud processes, as this is
required in weather and climate modelling. The two Harmony satellites, both carry-
ing a multiview thermal-infrared instrument, supply images of the same scene taken
approximately at a time difference of 100 seconds. By exploiting the stereo views
of these multiview cameras, it is possible to extract 3D information, thus providing
cloud motion in particular. For a detailed problem description and the used data, we
refer to Payez 2023.
First, assuming that the cloud height is known, we extracted the real cloud latitude
and longitude from the apparent latitude and longitude given by the data in section
4.3.1. The reconstruction of 3D images is discussed in section 4.3.2. The information
about the true locations of the pixels was used to develop an algorithm for the cal-
culation of cloud motion. This is described in section 4.3.3. The report ends with a
brief conclusion.

4.2 Framework Implementation

During this SWI 2023 Study Group, our team has developed software for tackling the
problem described above. Codes and data can be found here on Payez 2023. Our
code includes data handling methods in jupyter notebook files and .py files.

The framework was implemented mainly in Python3 using basic Python libraries
numpy, matplotlib, scipy, xarray, datetime, glob, dill and ctypes. Parts of the program
use implemented codes written in C and needed to be adapted for use in Python.

Our code provides the pipeline to extract relevant arrays (cloud observation and
locations etc.) from netCDF formats. Those arrays are input data for our models
and go through different calculation stages depending on the purpose of calculation.
Codes are provided to have the real longitude and latitude locations updated back in
the original netCDF data.

This automatic data-extraction and update pipeline was developed and tested on
Windows and Linux systems, whereas it might have problems on macOS. Additionally,
details regarding the computation branches will be discussed in the next section 4.3.

4.3 Methodology

This section describes the pipeline of the software (excluding data processing and
cleaning which are described in subsection 4.2.) developed during the Study Group.
This includes 3 main branches (see flowchart 4.1): reconstruction, motion extraction,
and shape analysis:
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Figure 4.1: Flowchart of our software pipeline. Structures marked with black font are finished
whereas structures with light gray font are in progress by the time of finishing this paper.

1 data processing

2 location extraction

3a branch a: 3D reconstruction

3b branch b: motion extraction: bulk motion

4c shape analysis

4b cloud selection and smoothing

4c Optical flow

4.3.1 Extract positions from cloud observations

This subsection describes the method used to extract real cloud latitude and longi-
tude from apparent cloud latitude, longitude with given true height.

As demonstrated in Figure 4.2, each camera on a satellite observes the target block
and collects their observed locations of cloud surfaces. The angle formed from the
camera to object along the vertical direction is θ and the angle formed from camera
to the North is ϕ. The angles ϕ and θ are given: θ = 0o means ’straight up’; θ = 180o

means ’straight down’; ϕ = 0o means ’straight ahead to the North, ϕ = 90o means ’to
the East’.

A correction had to be applied to the data, since the definition of ϕ is different to
the documents found inside the .nc data. In the data, the original ϕ is defined to be
the angle formed from the observed object to the camera and to the path orbit where
the satellite is travelling. The orbit forms a 13◦ with the North. However when we
tested our model, we noticed the data has been processed to have ϕ measured against
the North of the orbit. This is illustrated in Figure 4.3.
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êy

êz
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Figure 4.2: 3D view of camera to cloud: θ, north to cloud: ϕ.

Figure 4.3: Two observed locations are shown (orange and blue dots), which are the same cloud
surface with different viewing angles. When we apply our model to extract the real location of the
clouds, we noticed that when ϕ=13◦ as described in the documentation, the projected locations are
not close to each other. However ϕ=0◦, gives correct results.
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The extraction can be processed by considering the 3D vector diagram in Figure
4.4. Each camera forms a triangle of one point on the cloud surface. If we take the
same point on the cloud at time t1, the observed positions from A3 and B1 will be
different due to the projection. The observed locations are marked as A3 cloud and
B1 cloud. The true height of the observed point on the cloud is given. Therefore, to
find the true position we need to find the shifted vectors from B1 cloud and A3 cloud,
then (lon, lat) − (δx, δy) will give us the true position (lon∗, lat∗), where (lon, lat) is
the observed position and (δx, δy) is the projection shifted vector.

Figure 4.4: Simultaneous observations from camera A3 and B1 of the same cloud surfaces from
different viewing angles.

This calculation only requires one observation point at each time to find the exact
location, due to the fact that we know the true height of each cloud-surface point.
However simultaneous observations can provides 3D reconstructions of the same cloud.
The reconstruction is described in subsection 4.3.2.

As shown in Figure 4.5, each measurement provides ϕ, θ and h, as well as the
latitude lat and longitude lon. The measurement (ϕ, θ, h, lat, lon) therefore cor-
responds to the actual location at height h, and pointing to longitude direction and
latitude direction:

(δx, δy) := (sin
(
ϕ− 13

o
)
, cos(ϕ− 13o))

h

tan(θ − 90o)

So we have to go (δx, δy) to the (west, north), starting from (lat, long). This
gives the equation of the true location (lon∗, lat∗, h):

(lon∗, lat∗) =

(
lon− 180oδx

πR cos(lat)
, lat− 180oδy

πR

)

=

(
lon− 180o sin(ϕ− 13o)h

πR tan(θ − 90o)
, lat− 180o cos(ϕ− 13o)h

πR cos(lat) tan(θ − 90o)

)

where R = 6.371 · 106[m] is the radius of the Earth. Note that the equation assumes
a spherical shape of the Earth.
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lon

lat
13 ◦

ϕ

(lon,lat)

(δx,δy)
(lon∗,lat∗)

Figure 4.5: Side view (left): this represents the view parallel to the satellite orbit. The vertical
direction is the one perpendicular to ground and pointing upwards. Theta (θ) is the angle formed
by the camera, pointing to the top of the observed object. The red dot is the real location of a cloud
surface. h is the height of the cloud with respect to the sea level. h/ tan(θ − 90) is the magnitude of
the projection shift vector along longitude and latitude directions. Top view (right): the vertical line
points to the North and the direction formed by 13◦ is the direction of the stereo-satellite’s orbit.
The red dot is the true location of the cloud surface (lon∗, lat∗). The observed location is (lon, lat).

4.3.2 Cloud reconstruction

Subsection 4.3.1 explained how to calculate the true location on one cloud surface,
and this subsection continues to use the above algorithm to reconstruct from each
observation image and from simultaneous images.

Figure 4.6: (The right) Image from camera A2. (The left) Image is the reconstruction from the right
image, where empty pixels mean that there is no data for those locations.

As demonstrated in Figure 4.6, cloud surfaces observation from A2 camera (the
right image) are processed and then produce the left side graph. These two are 3D
images of positions and heights of cloud surfaces. There are some shifted pixels on the
left image and other pixels are left out. This is because the A2 camera, while taking
this image, can only observe some sides of the clouds. Indeed the cloud, seen by a
fixed angle, hides areas behind or under it. Therefore when we have two simultaneous
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images with different viewing angles, we can combine them after extracting the real
positions and using different information contained in the two simultaneous images to
fill in missing pixels and composite cloud images. Figure 4.7 gives an example of the
reconstruction with images from A2 and B2. By combining these two measurements,
we can fill in a big percentage of missing pixels.

Figure 4.7: (Top left) Image is the reconstruction from A2; (Top right) Image is the reconstruction
from B2. (Bottom) The reconstruction by combining the reconstructed images from A2 and B2 has
filled in missing pixels. Note that empty pixels on all of these 3 images mean that there is no data
for those locations.

Data from tandem observations (A3-B1, A2-B2, A1-B3) can be combined, since
each pair of observations is taken at different angles at the same time step. In general,
when there are multiple height measurements for the same location, it is possible to
reconstruct 3D shapes which will give a better results than using only 2 measure-
ments. In our project we only have 3 pair measurements which are simultaneous at
3 different time steps. We did not implement reconstruction with more than two
images. However, the methods remains the same for more than 2 measurements.
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4.3.3 Cloud motion - bulk motion

After the true locations have been extracted from the original measurements, the
information can be used to calculate cloud motion using the 6 different time steps.
The unit for a time step used here is one minute.

The first step is to calculate the bulk motion using Fourier transform Arking, Lo,
and Rosenfeld 1978.

Let us define:

f1(x, y):= height function of measurement 1,

f2(x, y):= height function of measurement 2,

∆x = horizontal shift,

∆y = vertical shift.

This means that f2(x, y) ≈ f1(x − ∆x, y − ∆y). Let F denote the fast Fourier
transform:

F1(u, v) = F(f1)

F2(u, v) = F(f2)

Then we have:

δ(x+∆x, y +∆y) = F−1

(
F1(u, v)F

∗
2 (u, v)

| F1(u, v)F ∗
2 (u, v) |

)

This gives us the bulk displacement of a shape with a time step ∆t as demonstrated
in Figure 4.8:

An intuitive way to capture the velocity of each block of clouds is to smooth
the image and calculate the bulk motion of each captured block of clouds. This is
implemented in the code however the result still requires tuning. Additionally, the
calculation is carried out by looping across each measurement in the array which is
time consuming. This process will be repeated in calculating both vertical and hori-
zontal velocities. One way to optimise is by finding cloud clusters. We implemented
one algorithm to first capture the boundary of each block of clouds using a bounding
box as demonstrated in Figure 4.9. Then this algorithm provides the location of inter-
ested blocks of clouds in addition to the velocity calculations and other improvement
algorithms described below.

However this method has two drawbacks:

• This method only computes a "bulk velocity".

• It is therefore not precise enough for computing accurate vertical velocities.

Thus, we need a more precise matching algorithm to calculate accurate velocities.
In scenes where we have two different blocks of clouds moving at different velocities,
we need to "zoom in" on these blocks and run the matching algorithm separately in
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Figure 4.8: Bulk movement of the entire measurements.

Figure 4.9: Cloud clustering by bounding box.
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both frames to get more accurate information regarding the displacement and hence
obtain accurate velocities. We can extract information from images by subtraction:

f2(x, y)− f1(x−∆x, y −∆y).

This detects unmatched points and allows to "zoom in" on the clouds with a
"large" fraction of unmatched points and recalculate a refined match. If we want to
take into account both rotational and scaling effects we can compute the rotational
matching by the following steps. Assume there is rotational around the angle θ:

f2(x, y) ≈ f1(x cos θ0 + y sin θ0,−x sin θ0 + y cos θ0)

We do a change of coordinates as in Table 4.1.

Cartesian coordinate Polar coordinate
(x, y)

(
(x2 + y2)1/2, tan−1(y/x)

)

(r cos θ, r sin θ) (r, θ)

Table 4.1: Change of Coordinates from Cartesian to Polar.

Then f2(r, θ) ≈ f1(r, θ − θ0), which gives us the rotational matching.
To compute scaling matching, let us assume that there is a horizontal stretch of

factor a in ex and a vertical stretch of factor b in ey direction (see Graph 4.2). This
means that:

f2(x, y) ≈ f1(
x

a
,
x

b
).

We perform a change of coordinates as in Table 4.2.

Cartesian Log Cartesian
(x, y) (log x, log y)
(ec, ed) (c, d)

Table 4.2: Change of Coordinates from Cartesian to Log Cartesian.

We have f2(c, d) = f1(c− log a, c− log b). The implementation of this scaling and
rotational matching algorithm is still left for future work.

4.3.4 Statistical shape analysis
Statistical shape analysis (SSA) is a general term for a range of methods used to
determine differences in the shape of objects in two images. SSA is widely used in
medical imaging and could be used here to determine the movement or deformation
in clouds between time steps. This method could be used alone or in conjunction
with other methods – for example, bulk motion could be calculated and removed,
after which SSA could be applied to determine localised deformation or motion.
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Registration

In particular,“registration”, a branch of SSA, attempts to find a deformation field
or “velocity field” that most closely maps one image to another. We will here refer
to a deformation field but in the application of cloud movement, this can be seen
as the velocity of the clouds between two images taken at different timesteps. A
key advantage of registration, as opposed to other methods such as optical flow is
that it can be implemented without the need for feature detection. Python software
Deformetrica is one option for implementing registration. The Deformatrica website
states: ’Deformetrica is a software for the statistical analysis of 2D and 3D shape
data. It essentially computes deformations of the 2D or 3D ambient space, which,
in turn, warp any object embedded in this space, whether this object is a curve, a
surface, a structured or unstructured set of points, an image, or any combination of
them’ Durrleman, Bône, et al. n.d. Registration can also be implemented manually.

In brief, registration takes the following steps. Details of the process can be found
in Bône, Louis, et al. 2018 and Durrleman, Prastawa, et al. 2014.

1. Input data of template image, T , and target image, S. The image can be in
a variety of forms including a greyscale image or a pointcloud (i.e. a list of vector
points in 3D space) Bône 2021.

2. Shapes in the image are reconstructed as a discretized surface with cell centres,
ck and normals nk.

3. The template image is deformed by a deformation field Φ(T ). A cost function
is defined to be dependent on the difference between Φ(T ) and S. A key feature is
that the cost function is defined between every point in Φ(T ) and every point in S,
hence points on the two images do not need to correspond 1-to-1. The cost function
will be of the form

C =
d(Φ(T ), S)2

σ2
+R(µ),

where d(Φ(T ), S) is the distance between the deformed image and the target image,
R(q(µ)) is a regularisation term that acts to minimise the magnitude of the defor-
mation vector at points µ, with µ being chosen ‘test’ or ‘control’ points across the
domain. In the literature, the regularisation term refers to minimising the ’kinetic
energy’ of the system Bône, Louis, et al. 2018 and Durrleman, Prastawa, et al. 2014.
The term σ is chosen to select the relative weighting of the distance and regularisation
terms.

4. Optimisation methods are applied (e.g. gradient descent) to find Φ that min-
imises C and hence yields the optimal deformation field. Deformetrica has three
different optimisation methods Bône and Martin 2021.

Custom algorithm

To find the value Vi,j,k(t0)
which solves the minimization problem

minVi,j,k(t) |[Img(t+∆t)]i,j,k − [Img(t)]i′,j′,k′ |
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we have developed a genetic-type algorithm to find the optimal ‘velocity’ of pixels to
match the image of the next timestep. Img is the realization of the cloud at time t.
Values in Img correspond to the intensity of the pixel. See 2 for algorithm details; in
Figure 4.10 it is possible to see the algorithm’s performance in a simulation.

Algorithm 2 Cloud Velocity Estimation

Require: Two images: Img(t) and Img(t+∆t)
Ensure: Velocity Vi,j,k(t)
1: Initialize population for Vi,j,k(t)
2: while termination criteria not met do
3: for each individual in the population do
4: V new

i,j,k (t)← Mutation and crossover operations on individual pixels
5: Calculate fitness f(V new

i,j,k (t)) = |[Img(t+∆t)]i,j,k − [Img(t)]i′,j′,k′ |
6: end for
7: Vi,j,k(t)← Individual with the minimum fitness value
8: end while

Figure 4.10: As a proof-of-concept we performed a simulation study with the goal to match a
simulated picture with 8000 pixels. The simulation reached convergence after 500000 iterations. The
results of the simulation showed that most of the picture was accurately matched, suggesting that
the simulation was successful in its image processing or comparison task.

4.3.5 Optical Flow
Optical Flow (see OpenCV n.d.) is a method used to estimate the motion of an object,
based on comparing pixels of two image frames taken at times t and t+∆t. We assume
that:

1. The pixel intensities of an object do not change between consecutive frames.
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2. Neighbouring pixels have similar motion.

Let us indicate by I(x, y, t) the intensity of a pixel (x, y) at time t, that represents a
specific part of an object. After the time step ∆t, it moves a distance (∆x,∆y) and,
by the first assumption, we have

I(x, y, t) = I(x+∆x, y +∆y, t+∆t). (4.1)

By expanding the intensity I(x+∆x, y +∆y, t+∆t) on the right hand side of (4.1)
with Taylor series around (x, y, t) and neglecting second order terms, it follows that

∂I

∂x

∆x

∆t
+
∂I

∂y

∆y

∆t
+
∂I

∂t
= 0.

This leads to what is called the Optical Flow equation, in which the unknowns are
the velocity components vx and vy.
OpenCV provides an algorithm to find the dense Optical Flow, which computes the
Optical Flow for all the points in the frame, based on Gunnar Farneback’s algorithm.
For our purposes, Optical Flow was used to obtain the velocity field of a cloud by
comparing two pictures taken from the satellites at two consecutive time steps, from
the same angle.
For example, using input images A5 and B1 (see Figure 4.11), the algorithm yields
the motion detection (see Figure 4.12), which is not yet fully satisfactory and needs
to be refined in future work.

(a) A5 (b) B1

Figure 4.11: Images taken from the same angle, at two different time steps.

4.4 Conclusion
In this paper, we presented an innovative software framework for the accurate geolo-
cation and 3D reconstruction of cloud observations which was developed during the
SWI 2023 Study Group. First, we developed a method to extract real cloud latitude
and real cloud longitude from apparent cloud latitude and apparent cloud longitude
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Figure 4.12: Output of the Optical Flow algorithm with images A5 and B1 as input.

with given true height. Hereby, we discovered an inconsistency in the data, namely
that the definition of the angle formed from camera to north, denoted by ϕ in this
report, did not agree with the actual data. The method succeeded in extracting the
real cloud latitude and longitude. By using this method and combining two simulta-
neous images with different viewing angles, we were able to fill in a big percentage of
missing pixels and to reconstruct 3D images.

Next, the information about the true locations of the pixels was used to calculate
cloud motion. The bulk motion of the clouds was calculated using the fast Fourier
transform. This method only computes a bulk velocity and is therefore not precise
enough for computing accurate vertical velocities. Therefore, we described a more
precise matching algorithm by taking into account rotational shifts and scaling effects.
However, the algorithm was not implemented by the time this paper was written.
Further, we developed an algorithm based on Statistical Shape Analysis (SSA) to
determine differences in the shape of objects in two images. To be more precise, a
genetic-type algorithm was used to find the optimal velocity of pixels to be matched
in two images. A simulation study of a test image showed that most of the image
was accurately matched. Finally, we tested the optical flow algorithm to obtain the
velocity field of a cloud by comparing two pictures taken from the satellites at two
consecutive time steps, from the same angle. However, the results of this approach
were not yet satisfactory.

4.4.1 Limitation

This study has potential limitations. First of all, we used simulated data and not real
cloud data. In our method to calculate the real latitude and longitude, we assumed
that the true height is known. However, in real observations, it is not easy to calculate
the true height. Further, only certain types of clouds are presented in this report and
it is not clear whether or not the accuracy of the algorithms depends on the type of
cloud.
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Next, there is room for improvement of the 3D cloud reconstruction method.
From some angles it might be possible to see multiple height readings for the same
geographic coordinates. We only keep the data points with maximal height in this
study. Theoretically we could keep the other values as well and obtain a better
reconstruction of the 3D shape of the cloud.

Finally, the algorithm for the velocity extraction also has its limitations. First of
all, only the bulk velocities are calculated accurately. Secondly, the vertical velocity
calculations have large errors. Next, the cluster clouds only considered boundaries,
further classification algorithms are required to improve the accuracy. Lastly, the
scaling and rotational shifting algorithms have not been implemented, yet.
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Chapter 5

Top Dutch Solar Racing
A novel strategy model
approach for the Bridgestone
World Solar Challenge
Jeremy Budd1, Ricardo Enguiça2, Yitaek Kim3,
Julian Koellermeier4, Simon van Mourik5, Arijit Sarkar4,
Filipa Soares2, Nele Thomsen6

Abstract This project considers the derivation of strategies for a solar car race
through Australia, posed by TopDutch Solar Racing. The task is to optimize the
arrival time of an electric car powered by solar energy by changing the velocity along
the track taking into account the characteristics of the car, external influences such as
wind and sun, as well as constraints like the maximal and minimal battery charge. To
address this challenge, the problem is modeled and four different optimization strate-
gies are devised, focusing on different time horizons and methods. We explain a data-
based long-term strategy, an optimisation-based long-term strategy, a dynamic pro-
gramming long-term strategy, and an optimization-based short-term strategy. While
successful short-term strategies require more work, the results of the long-term strate-
gies give very realistic results and are powerful tools to increase the winning chance
for the TopDutch Solar Racing team. We outline several possibilities to improve the
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3University of Southern Denmark
5Wageningen University & Research
6Katholieke Universiteit Leuven

111



112 SWI 2023 Proceedings

models based on additional data, modeling and methods.

Keywords: optimization, long-term, short-term

5.1 Problem Formulation

In this report, we aim to optimize the velocity of a solar car so as to finish a long
race as fast as possible and without running out of power as shown in Fig. 5.1. It is
important to consider the minimum charge of a battery and the power consumption
for the whole racing period. To this end, we use the comprehensive information of
forecasts provided by the previously collected data, which can be used as inputs for a
high-level planner to generate the optimal velocity. Simultaneously, we also need to
take into account unexpected dynamic disturbances such as cloud and wind changes
during racing. To address these issues, we leverage Model Predictive Control (MPC)
method and take the approach with a long-term planner and short-term ones proposed
by Mocking 2006.

Figure 5.1: Road map for solar car racing in Australia.

5.1.1 Details of the race and available data

The Bridgestone World Solar Challenge (BWSC) is an international race for solar
power cars of 3020 km, through the Australian outback. The event takes place in
October, and it is held every two years (since 1987), though last edition took place
in 2019 (due to the pandemic restrictions), with the participation of 53 teams, from
24 different countries.

The objective is, naturally, to cover the distance in the shortest time possible, but
several restrictions are imposed to the participating teams, namely:
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• the battery, with the capacity of 5 kWh, can start with full charge, but cannot
be charged during the race by any other means than using solar energy;

• the car must be less than 5 m long and 2.2 m wide;

• the maximum amount of solar panels is 4 m2;

• as the challenge utilises public roads, the cars have to adhere to the normal
traffic regulations;

• driving time is between 8:00 and 17:00 and in order to select a suitable place for
the overnight stop (alongside the highway) it is possible to extend the driving
period for a maximum of 10 minutes, for which the extra driving time will be
compensated by a starting time delay the next day;

• there are 9 mandatory control stops (also called checkpoints) of 30 minutes
along the race, which we will call checkpoints. These stops must occur during
the driving time and their locations are at the following kilometers:

0, 332, 588, 987, 1210, 1493, 1766, 2179, 2432, 2720.

Each team has a convoy on the road that provides insight information so that
the team can improve their strategy (for example to have solar and wind information
from a location in advance, to anticipate traffic delays and slow drivers, etc).

The road is not very bumpy overall, but the influences of slopes will be taken into
account in our model. The track has a cumulative elevation gain of 18000 m, which
corresponds to an average 0.6% of inclination. The total elevation loss is of the same
magnitude. Analysing the road every kilometer, we have a maximum slope of 4% and
about 100 km above 1%.

The solar data from several years in Darwin, Alice Springs and Adelaide (corre-
sponding to the start, middle and end of the race) is available, and we used the usual
profile of solar energy for the month of October in our long-term strategy data-based
model. Wind data is harder to analyse and systematize, so we opted to consider this
factor in our model in a simpler way, considering a random daily impact percentage
of the wind on the power consumption.

Some data regarding the power consumption of the vehicle with respect to velocity
was available from the problem owner and is depicted in Fig. 5.2. From this data, the
power consumption depending on the velocity v is modeled by the trendline

0.17v2 − 6.6v + 252.95.

However, no acceleration data is provided.

5.2 Optimization strategies
To address the problem, we propose a high-level decision framework, which consists
of two optimization parts as illustrated in Fig. 5.3. Long-term strategy optimization
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Figure 5.2: Consumption vs velocity Geling 2021, Figure 12. Trendline: 0.17v2 − 6.6v + 252.95.

can provide the desired velocity profile and the expected power profile, for example
when given a desired “winning time" based on the forecast inputs. The horizon
of long-term prediction is for the whole racing period. Afterwards, the short-term
strategy optimizes the final desired velocity to not only track the desired velocity
profile from the long-term strategy, but also save power consumption during racing.
The prediction frequency depends on the preference of a user.

We give four different strategies: two examples for long-term strategies include a
data-based variant and an optimisation-based variant. In addition we provide an
example for an optimisation-based short-term strategy and a short-term strategy
based on dynamic programming.

5.2.1 Data-based long-term strategy

We first describe an approach to estimate an optimal velocity for the whole race—
more precisely, for the remainder of the race from any point during its unfolding—
based on the data that is assumed to be available, namely, the characteristics of the
vehicle, the route, and the weather forecast. Consequently, the estimates achieved
can be improved with more accurate information, and the algorithm is designed so
that every update is automatically taken into account.
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Figure 5.3: The proposed framework architecture for solar car racing including a long-term strategy
and a short-term strategy.
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The data

With respect to the vehicle, this approach resorts to the data regarding consumption
vs velocity of the solar vehicle that took part in the BWSC 2019 (cf. Fig. 5.2). Using
the trend line determined by these data, which yields P (v) = 0.17v2 − 6.6v + 252.95,
where v is the velocity (in km/h) and P the power consumption per hour (in W), we
thus have an estimate of the power consumption (converted to kW for simplicity) of
the vehicle at constant velocity for v ∈ V = {60, 61, . . . , 95}. At the start of the race,
the vehicle battery is at its full capacity of 5 kWh.

Regarding the route, we consider the checkpoints—distance of each checkpoint to
the start the race (cf. Subsection 5.1.1), length of the control stops (30 minutes) and
the possibility of tilting the solar panels with which the car is equipped in order to
achieve an optimal charging rate—and the incline of the road, given every 14.66 m.
The extra charging efficiency during stops is considered to be of 20%, based both on
the information provided by TDSR and by the Solcast Solar API (https://solcast.
com/).

Finally, the data concerning the weather conditions, namely the sun and the wind,
is given as vectors, s and w, respectively. Based on the weather forecast, each coor-
dinate of s represents the total energy produced by the solar panels in each day of
the race and each coordinate of w represents the daily average of the impact factor
on the consumption due to the wind.

As with the data concerning consumption, s and w should also be tuned in view
of the real performance of the new vehicle for the particular race.

In our simulations, we considered

s = [5.5, 6.0, 5.8, 6.0, 5.7, 5.0, 5.5, 5.5] ,

w = [0.01, 0.02,−0.01, 0.005, 0.03, 0.01, 0.02, 0.0] ,
so the only day where the wind had a decreasing effect on the consumption is the
third day, reducing the overall consumption by 1%, while the solar production for that
same day was 5.8 kWh. The considered values of the vector s are based on historic
data for solar power production during October, where the average production with
horizontal panels is about 6.5 kWh. The average of the values used are below this
value, to avoid over optimistic estimates, but we also provide conclusions for sunnier
scenarios (with averages of 6.4 kWh and 7 kWh).

The model

The algorithm partitions the race into 30 minute time units, with tu = 0 corresponding
to the interval between 08:00 am and 08:30 am of the first day of the race, tu = 17
corresponding to the interval between 16:30 and 17:00 am of the first day of the race,
and so on. The optimal velocity for the remaining of the race may thus be estimated
at every 30 minutes during the race.

The core of the algorithm relies in a procedure that, given:

https://solcast.com/
https://solcast.com/
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• the distance and hours (including the time spent at checkpoints) elapsed from
the start of the race,

• the number of checkpoints fulfilled, and

• the current battery,

computes, for every velocity in V and at each subsequent time unit:

• the position,

• the battery level,

• the power demand, and

• the power available.

Notice that the distance elapsed alone, when coinciding with the location of a check-
point, does not provide information as to that checkpoint having already been com-
pleted or not, and so, as to whether the vehicle is about to start moving or, on the
contrary, will have to stop for 30 minutes. For this reason, the number of checkpoints
fulfilled is an information that must be provided to the algorithm. Evidently, the
optimal velocity is the highest velocity for which the power demand does not surpass
the power available.

To accomplish the necessary computations, for each v ∈ V , we begin by initializing
the following variables:

• the position, p, initialized as the distance elapsed;

• the battery level, b, initialized as the current battery;

• the power demand, Pd, initialized as 0;

• the power available, Pa, also initialized as the current battery, and

• the time unit, tu, initialized as twice the hours elapsed.

Then, for each time unit starting at tu, we determine if the vehicle is moving or will
fulfill a checkpoint. (Without loss of generality, we will consider that the checkpoint
is made in a single time unit, the one where the car reaches the checkpoint.) In case
the car is moving, the updates are:

• the position is updated to p+ 0.5v;

• the power demand is updated to

Pd → Pd + 0.5P (v)× (1 + wtu)× (1 + ritu)︸ ︷︷ ︸
∆Pd

,
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where wtu is the appropriate coordinate of w and ritu the road incline com-
ponent, computed as the the sum of the elevation gain (in tu) multiplied by
12, together with the elevation loss (in tu) multiplied by 6, all divided by the
kilometers made in tu (this way, positive slopes are twice as influential as nega-
tive slopes and the range of the impact of the road incline on the consumption
yields realistic values according to the BWSC 2019 data); the power available,
by adding the amount of solar power produced during the time unit (∆Pa);

• the battery status is updated to

b→ min{b−∆Pd +∆Pa, 5} .

The solar power produced in a given time unit is the corresponding fraction of the
total solar power produced that day. Fig. 5.4 shows how, on average, the total solar
power produced in a day distributes over every 30 minute intervals of that day, in
percentage. For example, from 8:00 to 8:30, 2.78% is produced, whereas from 12:00
to 12:30, 6.76% is produced (naturally, at the middle of the day, the angle of the sun
enables a larger portion of the sunlight to be converted to electrical energy for the
battery). In our computations, the first time unit of any day except the first one (that
is, for tu = 18, 36, . . .) not only considers the power produced at that time unit, but
also the one produced after 17:00 of the previous day and before 8:00 of the given day
(these last two with tilted solar panels).

Figure 5.4: Distribution of the solar power production throughout the day.

In case the current time unit corresponds to a checkpoint, the updates are:

• the position and power demand keep the previous value because the car is not
moving or using energy;
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• because of the extra power production due to the tilting of the solar panels
during checkpoints, 120% of the amount of solar power produced during the
time unit (∆Pa) is added to the power available, so that the battery status is
updated with

b→ min{b+ 1.2 ·∆Pa, 5} .

In either case, the computations are interrupted whenever the 3020 km of the race
are completed or the car runs out of battery (we considered a minimum battery level
of 3%).

The outputs

The optimal velocity estimated by the algorithm for the whole race is 81 km/h, in
a total of 4.67 days, that is, finishing at approximately 14:00 of day 5, and with the
battery at 6.34%. Fig. 5.5 displays the power demand and the power available, for
the whole race and at every velocity, showing 81 km/h to be the highest constant
velocity for which the power available surpasses the power demand. At this constant

Figure 5.5: Estimating the optimal velocity for the whole race: 81 km/h is the highest velocity for
which the power available surpasses the power demand.

velocity, the battery level throughout the whole race will evolve as shown in Fig. 5.6.
As expected, there are several local maxima, corresponding to the charging of the
battery during checkpoints, after 17:00 and before 08:00, all of which with the vehicle
stopped and the solar panels tilted.

For comparison, Figs. 5.7 and 5.8 display various conditions regarding the solar
input and the wind conditions, respectively. The solar input has an impact on the
amount of power available, whereas different wind conditions give rise to different
power demands. We note that, although the optimal velocity and the duration of the
race are the same in the baseline scenario and in the (unlikely) scenario where the is
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Figure 5.6: The battery level throughout the whole race at the constant optimal velocity.

no wind, in the first case the vehicle’s battery would finish the race with 6.34%, as
already mentioned, and, in the second, with 12.56%.

Assuming that the vehicle that will race the BWSC 2023 to have better per-
formance with respect to power consumption, one considers also estimates for two
scenarios: 5% and 10% less power consumption (cf. Fig. 5.2). Fig. 5.9 shows how
these scenarios compare with the baseline, that is, using the data from the vehicle
that took part in the previous edition of the BWSC.

The outputs for the trials regarding the solar input, the wind impact and the
vehicle’s power consumption are summarized in Table 5.1. In this table, the “duration
in hours” includes 4.5 hours of checkpoints and “+5% economic” denotes the scenario
in which the power consumption is 5% less than with the BWSC 2019 vehicle. In the
BWSC 2019, the wining team completed the race in 39.36 hours (including the time
spent at checkpoints) with an average velocity of 86.6 km/h, whereas TDSR finished
4th in 43.01 hours, having driven at an average velocity of 78.4 km/h. This means
that the simulated values here are very realistic.

Table 5.1: Summary of the outputs for the different trials using the data-based long-term strategy.

Optimal Duration Duration Finishing % battery
velocity in hours in days time left

Baseline 81 42 4.76 14:00 of day 5 6.34

+10% solar input 84 40.5 4.5 12:30 of day 5 14.81
+20% solar input 88 39 4.33 11:00 of day 5 5.53

No wind 81 42 4.67 14:00 of day 5 12.87
+100% wind 80 42.5 4.72 14:30 of day 5 14.87
+200% wind 79 43 4.78 15:00 of day 5 16.6

+5% economic 83 41 4.56 13:00 of day 5 9.74
+10% economic 85 40 4.5 12:00 of day 5 14.89

As previously mentioned, the algorithm allows for an estimate every 30 minutes,
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Figure 5.7: Different optimal velocities (and different finishing times) for distinct solar inputs.

in order to accommodate updates of any kind—namely, regarding the vehicle’s per-
formance and the weather forecast—in the course of the race and the most natural
event that parts of the race have not elapsed as initially intended. For illustration,
Fig. 5.10 shows what the new optimal velocity would be, at the start of the third
day of the race, as the result of three different scenarios: a first scenario where the
distance completed falls short of the ideal one, but the battery level is high; a second,
where the distance completed is satisfactory, but the battery is significantly low; and a
third, where both the distance completed and the battery level are quite satisfactory.
The code runs in a matter of seconds, as was the case with the estimate for the entire
race.

5.2.2 Optimisation-based long-term strategy

The primary goal of the optimisation-based long-term strategy is to compute a (non-
constant) velocity profile which will form a benchmark for the short-term strategising.
This velocity profile we will represent as a function v : [t0, Tmax] → [0, Vmax] which,
for each moment in time, prescribes a velocity for the car at that time. Here, Tmax is
the maximum time a car is allowed to finish the race within, which is 60 hours, and
Vmax is the maximum speed attainable by the car. This velocity profile is subject to
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Figure 5.8: Different optimal velocities (and different finishing times) for distinct wind conditions.

the following constraints:

v(t) ∈ [0, SpeedLimit(D(t))], (5.1a)
|v̇(t)| ≤ MaxAcceleration, (5.1b)

D(Tmax) ≥ 3000 km, (5.1c)
v(t) = 0 if t ∈ [ti, ti + 30 min]. (5.1d)

where D(t) is the distance travelled along the track at time t, given by

D(t) := D(t0) +

∫ t

t0

v(s) ds,

and ti := min{t | D(t) = Di}, where the Di are the locations of the checkpoints
(measured in distance along the track). In words, these constraints insist that:

a. The velocity abides by the road speed limit at the current location.

b. The car never accelerates or decelerates too quickly.

c. The car finishes the race within the maximum time.
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Figure 5.9: Different optimal velocities (and different finishing times) for distinct power consumption.

d. The car stops during the control stops (checkpoints).

We now define two key quantities of interest. First, we define T (v), the time to
finish the race with strategy v, given by

T (v) := min

{
T

∣∣∣∣∣

∫ T

t0

v(t) dt = 3000 km

}
.

Second, we define P(v), the probability of finishing the race given strategy v. This is
given by P(mint S(t) ≥ Smin) where S(t) is the state of charge in the car’s battery
(between 0 and 5000 Wh) given by

S(t) = S(t0) +

∫ t

t0

SolarInput(s,D(s)) ds

−
∫ t

t0

Consumption(v(s), v̇(s), θ(D(s)),W (s,D(s))) ds,

where θ is the road incline at a given location and W describes the wind speed and
direction at a given time and location, and Smin is a threshold below which the charge
should never drop. This minimum power threshold should incorporate two factors.
First, there will be a certain power level below which the battery may not safely
operate. However, Smin should in fact be taken to be above that threshold, to give a
safety margin for the short-term strategy to work within.
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Figure 5.10: Update at the start of day 3 from three different scenarios.

Formulations of the optimisation problem

Given the constraints above there are three related optimisation problems one might
desire for the long-term strategy to solve. The choice between these is not mathemat-
ical, but instead depends on the overall strategic goals of the team.

The first formulation is “maximise the probability of finishing ‘fast’” :

max
v

P(v) s.t. v obeys (5.1), T (v) ≤ T ∗, (5.2)

where T ∗ is some target finishing time.
The second formulation is “finish as soon as possible within a fixed risk of

failure” :

min
v

T (v) s.t. v obeys (5.1), P(v) ≥ P∗, (5.3)

where P∗ is some minimum probability of finishing.
Finally, the third formulation is “minimise the expected finishing time,

where running out of power is treated like finishing very slowly” :

min
v

P(v)T (v) + (1− P(v))Tmax s.t. v obeys (5.1). (5.4)
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Solving these optimisation problems

We first consider how to compute the key quantities involved. Computing T (v) is
straightforward. To compute P(v), we run n simulations of the form:

i. Sample S(t0) from a normal distribution with mean the measured value and
variance the known variance in measurements of battery state.

ii. From the weather forecast, sample the solar input and wind at each (s,D(s))
(or in practice, at each discrete time step).

iii. Compute S(t) at each t (or at each time step).

iv. Record the simulation as a success if mint S(t) ≥ Smin.

The probability can then be estimated as the number of successes divided by n.
Then, to solve any of equations (5.2) to (5.4), we have two major concerns. The

first is that we really seek a global optimiser. The second is that we may not have
access to the derivatives of our objective functions.

That is, we need to perform derivative-free global optimisation. Previous work
by Top Dutch employed genetic algorithms for this task. These algorithms, first
introduced in Holland 1992,7 attempt to mimic natural selection, with the “fitness”
of a given “organism” determined by how well it minimises the objective function.
In this work, we will employ particle swarm methods, introduced in Kennedy and
Eberhart 1995.

However, this choice of method was guided more by our use of the Matlab Global
Optimization Toolbox than any systematic considerations. There is now considerable
literature on algorithms for these sorts of problems, and the choice of an effective
algorithm is a major direction of future work for Top Dutch. As some suggestions for
further investigation, we refer to: Conn, Scheinberg, and Vicente 2009 and Audet and
Hare 2017, textbooks on derivative-free optimisation; Rios and Sahinidis 2013, a com-
prehensive review and comparison of derivative-free global optimisation methods; and
Cartis, Roberts, and Sheridan-Methven 2022, a recent investigation of the use of the
Py-BOBYQA method (introduced in Cartis, Fiala, et al. 2019) for global optimisation.8

Numerical experiments for optimisation-based long-term strategy

In the following experiments, we will be solving (5.4), but we will be a bit looser with
our modelling than in Section 5.2.1.

First, as in the previous experiments we will be neglecting acceleration, though
here we will be allowing v to be piecewise constant (with potentially more than one
piece). We will be modelling time as consisting of 8 hour race days, ignoring any
charging that can be performed at night or during the control stops. We will also

7The date here refers to the most recent edition, the first edition was published in 1975.
8See https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/index.html for de-

tails and code for the Py-BOBYQA method.

https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/index.html
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be ignoring wind and road inclination, and treating the solar input as if it depended
only on time and not location. Thus we simplify the state of charge formula to

S(t) = S(t0) +

∫ t

t0

SolarInput(s)− Consumption(v(s)) ds,

where we take (denoting by [x] the fractional part of x)

SolarInput(t) = max

(
6500 +N (0, 5002)

8
× 6[t/8](1− [t/8]), 0

)
W,

Consumption(u) = 0.17u2 − 6.6u+ 252.95 +N (0, 1002) W.

That is, we model the sun as delivering on average 6500 Wh per 8 hour day, fluctuating
with Gaussian error with standard deviation 500 Wh, depending quadratically on
time of day. We model power consumption according to the data from Fig. 5.2, with
Gaussian error with standard deviation 100 W.

We split the 60 hours of possible racing time into 1000 time-steps, corresponding
to a time step of 3 minutes and 36 seconds. We set Smin = 500 Wh, and compute
P(v) using 100 simulations. We modelled the speed limit as being 110 km/h for the
entire race.

For our first experiment, we follow the previous section and require that v take a
constant velocity. In Fig. 5.11 we show how the objective function and probability of
finishing depend on this constant velocity. We see that there is a very sharp transition
where the probability drops from almost 1 to almost 0. A consequence of this, if it
holds more generally, would be that equations (5.2), (5.3), and (5.4) would have
almost identical minimisers.

The optimum constant velocity strategy from Fig. 5.11 comes out as 84.5 km/h,
giving a finishing time of 35.5 hours, which yields very realistic values also correspond-
ing to the values in the previous section. In Fig. 5.12 we show the corresponding
behaviour of the state of charge under this strategy.

In our second experiment, we allowed the velocity profile to be piecewise constant
on 2.4 hour blocks, i.e. v can be encoded as a 25 dimensional vector. We solved (5.4) in
this setting using the particle swarm method from the Matlab Global Optimisation
Toolbox version 4.6 (see Kennedy and Eberhart 1995; Mezura-Montes and Coello
2011; Pedersen 2010 for details on the particle swarm algorithm employed). Fig. 5.13
shows the resulting velocity strategy as well as the behaviour of the state of charge
under this strategy.

The finishing time for this strategy is 35.4 hours, so is only a mild improvement
over the constant velocity strategy. However, this may be due to the simplicity of this
set-up. We expect that as more details are added in the disparity will increase between
the constant velocity strategies and the strategies where the velocity is permitted to
vary. Overall this strategy gives very realistic values.
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Figure 5.11: Objective function value for (5.4) (left) and P(v) (right), for v a constant velocity with
the specified value. The minimum value is attained at 84.5 km/h.

Figure 5.12: Expected value for S(t) (solid line) ± standard deviations (dashed lines) for the velocity
profile v(t) ≡ 84.5 km/h.
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Figure 5.13: Particle swarm solution for (5.4) where v is constant on 2.4 hour intervals (left) and
corresponding expected value for S(t) (right, solid line) ± standard deviations (right, dashed lines).
Computation time: 77s with Matlab Global Optimization Toolbox version 4.6.

5.2.3 Optimisation-based short-term strategy

The following optimisation-based short-term strategy, which is still preliminary work,
should resist dynamic disturbances during racing. We minimize the following two
terms: 1) the power that has been consumed in a specific short period and 2) the
error term between the desired velocity profile provided by long-term strategy and
current velocity, when given constraints such as local velocity limit and accelera-
tion/deceleration limits and power limits that we can use in a day or an hour. A
short-term optimization problem to find the optimal velocity is formulated by the
following:

min
u

E(t) + α(t0)||v − vprofile||2

s.t. ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = x(t)

v ≤ vlimit

vlimit =
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3.6 , if p(t) ≥ 1700× 103 m,
110
3.6 , if 1700× 103 m < p(t) ≤ 3027× 103 m,
0, otherwise.

|v̇(t)| ≤ 6 m/s2

u(t) ≤ Powerlimit(t)
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Here, x(t) = [p(t) v(t) E(t)], p(t) → position, v(t) → velocity and E(t) → energy

consumed, f(x(t)) =
[
v(t) −Ftotal

m 0
]⊤

, g(x(t)) =
[
0 ϕ(v(t))

mv(t) 1
]⊤

, where ϕ(v(t))
is the motor efficiency, y(t) is the output/measured variables. Ftotal is the total force
acting on the car. u(t) → is the input power to the motor and α(t) is a parameter
that can be computed based on the solar input and wind at time t. When the solar
input is high and there are no clouds, the value of α can be kept higher. α has been
computed only at t0 as it is been assumed that the solar input and wind are going
to be the same during the short-term prediction horizon tf − t0. This assumption is
not conservative as the short-term strategy can be considered for a time span of 30
minutes to an hour, for which consideration of constant weather conditions is good
enough and saves the effort of calculating α(t) at multiple time instants. vprofile(t) is
the velocity based on the velocity profile generated by the long-term strategy.
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Figure 5.14: The optimal power input for the short-term strategy with minimum consumption of
energy

The following figures provide the outcome of the optimization problem while min-
imizing only the consumed energy. The nonlinear MPC toolbox in MATLAB has
been used to solve the optimization problem. However, the solver associated with
the toolbox is not reliable enough to search for the feasible set. So, when velocity
regularization has been introduced in the cost function no solution could be achieved
even with relaxed set of constraints. A better solver/ optimization algorithm should
be considered in future to cater to this problem. This strategy is thus clearly still
preliminary work but might reveal its potential after future improvements.
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5.2.4 Distance maximization under stochastic uncertainty
In this subsection an optimal control algorithm is employed for maximizing the dis-
tance travelled of a solar car, when state dynamics are uncertain due to stochastic
noise from model errors and uncertain solar input. The control objective is to maxi-
mize the expected travelled distance after a fixed time interval of a day.

System dynamics

For times k ∈ K := {0, 1, 2, 3..., T −1} we define the stochastic scalar dynamic system

xk+1 = xk + f(xk, uk, dk)∆t + σ
√
∆t ϵk (5.5)

uk = gk(xk). (5.6)

Here x [kWh] is the battery state, with time index k (time is discretized as tk =
k∆t). The function f : R2 → R describes the dynamic interactions between state and
input. The scalar uk [kW ] is the control input that represents the power flow from
the battery to the engine. The scalar dk [kW ] is the solar radiation that acts as an
external, uncontrollable input. The inputs are determined by a state feedback control
policy, which is a sequence of input functions gk : R → R for all time instances k.
The stochastic variables (ϵk)k∈K are iid with standard Gaussian distributions. These
variables represent the prediction uncertainty in the battery status dynamics due to
uncertainty in solar input, and unforeseen fluctuations in energy use due to variation
in wind resistance, and rolling resistance. We use the notation xgk for battery states
that are found if a policy g is applied for a battery with an initial state xg0 = x0.

Due to the stochastic state dynamics, it cannot be predicted a priori how the
state will evolve exactly, and therefore it is also not possible to a priori determine an
optimal sequence of inputs. Therefore, for each point in time, k, and for each possible
state, xk, an optimal input needs to be determined.

Control problem

The goal is to determine a policy that maximizes value, defined by the expected
revenues J(xgT ) for a battery at finish time T , minus the running costs Lk. The
associated control problem is to find a policy that maximizes

E

[
J(xgT )−

T−1∑

k=0

Lk(gk(x
g
k)))∆t

]
(5.7)

for any given state xk, at any time k, over all control laws (gk)k∈K such that gk is in
an admissible set Gk (defined in section Computational Settings). We use G to denote
the collection of admissible sets (Gk)k∈K

The control problem was solved using dynamic programming based on a discrete
state and dynamics form of system 5.5, as described in Mourik, Ooster, and Vellekoop
2023.
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Solar car model

We consider the case of a solar car where the battery power converted to car velocity,
is controlled. The model describes the state dynamics of the battery status in terms
of a function f : R2 → R that is given by:

f(xk, uk, dk) = cαdk1xk≤xmax
− uk1xk>xmin

. [kW] (5.8)

Here cα = 1 [m2] is the effective surface of the solar panels (there are 4m2 of panels
with an assumed efficiency of 0.25 [-]), dk = Ik is the solar irradiance [kWm−2], xmax

is the battery capacity (5 kWh), and xmin is the minimum battery status for power
use for the engine (0.375 kWh).

The relation between velocity and input, u(v) = 0.17v2 − 6.6v + 252.95, was
inverted to v(u) for control purposes. For that, the relation was approximated to
u(v) = 0.13v2+0.1v+50 to allow a straightforward inversion using the ABC formula
(the negative coefficient -6.6 prohibits this). The requirement that v ≥ 0 results in

v(x, u) =
−b+ (b2 − 4a(c− u))0.5

2a
1x>xmin

1u≥c (5.9)

with a = 0.13, b = 0.1, and c = 50.

Running costs

The running costs on time k are defined as minus the expected distance traveled
between time k and k + 1. Hence, the cost function is minus the velocity:

Lk(u, x) = −v(u, x). (5.10)

The revenues associated with battery status at the end of the day is in this case
assumed to be zero: J(x) = 0. That is, for this particular day the amount of battery
left at the end of the day has no value. For the more general case where this has
value, as linear reward function could be employed:

J(x) = cβx. (5.11)

Computational settings

• To avoid extremely large numbers in the transition probability computations,
some S.I. units have been scaled: the distance is in km, the power in kW, and
the time in hours.

• To avoid infinitely steep slopes in the optimization process, the constraint func-
tion 1x>c was approximated by a smoothing function x6

x6+c6 , and 1x≤c approx-
imated by c6

x6+c6 . The exception is 1u≥c in equation (5.9), where a hard con-
straint was enforced to avoid complex valued solutions.
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• The computational grid was N × T = 300 × 96. The battery state was thus
discretized into N = 300 parts. The time was discretized in 5 minute intervals.
Solving the dynamic feedback control problem took around 5 minutes on a
standard laptop using parallel computing on 4 cores of each 2.1 GHz.

• The state space ranges from [0, 5]× [0, 8] ([kWh]× [h]), and the initial state in
the dynamic simulations was x0 = 5 kWh, i.e., full battery.

• The set of admissible control values is G = [0, 2.5], in kW.

• The solar input was modelled as I(t) = 0 ∨ 1.0 sin(2πt/T ) in kW.

• The expected distance travelled was retrieved by evaluating V ∗
1 (x0).

• The nominal stochastic noise level was σ2 = 210−3 [kW 2].

• The fixed input controller input u = copt was retrieved by directly solving
equation (5.7), using the ’fmincon’ routine.

Results for deterministic dynamics

Fig. 5.15 shows the dynamics of the battery, travelled distance, and irradiance under
two choices of steady input: an arbitrary value of uc = 1.2 kW, and the optimized
value of uc,opt = 0.83 kW.

The arbitrary input results in a relatively large velocity, however after approxi-
mately 5.5 hours the battery gets depleted, resulting in a sub-optimal travelled dis-
tance. The peak in solar input after about 2 hours reduces the rate of battery depletion
somewhat, resulting for both choices of input in a wiggle in battery status dynamics.

Results for control policy and performance

Fig. 5.16 shows 1) the stochastic control strategy u(x, t), 2) resulting battery depletion
rates, 3) solar input, and 4) the associated value V (expected travelled distance) for
all xk and k in four heat maps, where the color scales with the intensity. The optimal
input map shows for each battery state and at each time instance the optimal input
value. There is a distinctive border under which little or no input should be given
(dark blue area), to avoid running out of battery. The line is a bit wavy due to the
solar input dynamics. There is also a distinctive line above which maximum power
should be delivered (yellow area) since there is no risk of running out of battery. The
resulting depletion rate of the battery mirrors the input map. The value plot shows
for each state and time instance the expected distance that will be travelled at the
end time. The value is maximal at the left top corner, as could be expected. The
gradient of V at t = 0 might be used to design a value function J(x), that rewards
battery status at the end of the day according to the value this status has at the start
of the next day.
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Figure 5.15: The optimal constant input uc = 1.2 kW results in a battery that is depleted precisely
at the end of the day.

Results for comparison between fixed input and dynamic feedback control

The stochastic control laws u = copt and u = u(x, t) are compared with each other,
for initial value x0 = 5 kWh. The expected travelled distance was 606 km for the
fixed input controller, and 621 km for the dynamic feedback controller. The dynamics
of the probability of battery status are shown in Fig. 5.17.

The dynamic feedback controller uses more power in the beginning compared
to the fixed input controller. The feedback controller also narrows the variance in
predicted dynamics compared to fixed input control, thereby decreasing risk of large
deviations from the anticipated battery status. Especially near the end the standard
deviation of predictions is small σ(x(T )) = 0.02 compared to a fixed input controlled
system: σ(x(T )) = 0.06.

Discussion

This case study demonstrates that a dynamic feedback control may substantially im-
prove performance in terms of expected travelled distance, and prediction uncertainty.
As follow up research it would be interesting to investigate the relation between uncer-
tainty and performance. Subsequently, this might provide insights into which way of
improving prediction accuracy (e.g. by improving the model, or weather predictions,
or by repetitively updating the state and re-solving the control problem in a model
predictive control scheme, or any combination thereof). To reduce the influence of
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Figure 5.16: Optimal control policy, external input, and associated performance. Top left: optimal
input. Top right: solar input. Bottom left: battery depletion rate. Bottom right: value function V
(expected travelled distance in km).
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Figure 5.17: Dynamics of state probabilities for fixed input and dynamic feedback control. Solid line:
u = copt, dashed line: u(x, t). The feedback controller uses more power in the beginning causing the
battery to deplete faster. The prediction variance is smaller for the feedback controller, especially
near the end of the day.
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model errors, a learning method could be employed to optimize parameter values or
infer their probability distributions (to be used for inferring parameter based predic-
tion uncertainty). A challenge regarding model refinement would be the extension
to more than one state. For with a 300 × 96 grid, 300 × 96 optimizations need to
be carried out, which took about 5 minutes. Extrapolating this to two states would
result in 3002×96 optimizations, and thus 25 hours of computing time. To completely
solve the control problem of finishing the race as fast as possible, might require at
least two extensions of the methodology described here. For the first four days, the
control problem is to find a control policy that maximizes distance. That could be
possible by extending the horizon to four days instead of one. However, the weather
predictions could become unreliable, so regular state updates and recalculation of g in
a model predictive control fashion would be favorable. The last day poses a different
type of control problem, namely to find a control policy that minimizes finishing time.
This problem is known as minimal time optimal control.

5.3 Conclusions and future work
The outcomes of the data-based strategy indicate that with a constant velocity, a
maximum possible velocity of 81 km/h would be feasible. This is considerably faster
compared to the results of last year of this team (78 km/h), however still significantly
lower than that of the winning team (87 km/h). The results of the optimisation-based
long-term strategy suggest that a constant velocity of 84.5 km/h would be feasible.
The optimisation-based short-term strategy unfortunately only led to preliminary
results and needs to be explored further before reliable results can be shown. The
outcomes of the dynamic programming strategy indicate that changing from a static
to a dynamic velocity profile could increase the average velocity from 76 km/h to
78 km/h. Altogether, the results of the different strategies suggest that small but
significant improvements can be made using velocity optimization. Whether this
alone will be sufficient to beat all competition remains to be seen.

All of the results should be interpreted with caution, due to the numerous assump-
tions on weather, terrain, car mechanics, and uncertainty sources, that were needed
to come to a solution within the study week. The influence of the above mentioned
assumptions deserves further exploration in follow-up research. An interesting ap-
proach would then be to synthesize the optimization problem with respect to control
and design parameters in order to optimize velocity control and car design simulta-
neously. Another interesting approach would be an adaptive method to fine-tune the
system dynamics of the car on the fly.
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