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Abstract

Late diagnosis of cancer and cardiovascular diseases often leads to poor
chances of cure at high costs. An approach which has the potential
to improve the status quo by helping to detect diseases early on, and
thereby increase the chances of cure and reduce the costs for treatment,
are longitudinal biomarker measurements of microRNA. In this report,
we investigate the concept of a personalized baseline based on analysis
of variance as well as hierarchical clustering for healthy/sick groups and
individual patients in real data. Furthermore, we discuss mathematical
models for the detection of illnesses from longitudinal miRNA data.
For validation and verification of the proposed methods we develop a
data augmentation strategy to generate a large volume of longitudinal
miRNA data that can be used and continuously updated.

Keywords: miRNA, sequential detection, biomarkers, clustering

1.1 Introduction

Even with advancing medical treatment, cancer and cardiovascular
diseases remain a leading cause of death throughout the world. In
Europe alone, cardiovascular diseases claim more than 60 million po-
tential years of life each year Townsend, Kazakiewicz, Lucy Wright,
et al. (2022). Early detection of such diseases is very important to
improve chances of survival and to decrease medical costs. The com-
pany You2Yourself 15 (Y2Y) is working on a method to enable early
detection of such life-threatening diseases. For this method, urine and
blood samples are periodically taken from a large group of initially
healthy people over two years in a big study. Based on historical in-
cidence, approximately 7% of the participants of this study are ex-
pected to develop a form of cancer, a cardiovascular disease, or a dis-
ease of the central nervous system during the two-year duration of
the study. The samples are screened for a specific type of biomarker
called micro-RNA (miRNA). MiRNAs are small RNAs that play a key
role in post-transcriptional gene regulation Lu and Rothenberg (2018).

15https://you2yourself.com/

https://you2yourself.com/
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Even though different cell types produce the same type of miRNAs,
expression profiles vary by tissue type Ludwig et al. (2016). Changes
in organs (tumor/inflammation/damage) lead to changes in miRNA
profiles, which can be detected in the samples. For example, it has
been observed that miRNA patterns change upon tumor formation,
suggesting that they might be useful biomarkers for detecting cancer
Galvão-Lima, Morais, Valentim, et al. (2021). Taking multiple samples
of the same person over time makes it possible to establish a screening
procedure based on a personal baseline for the miRNA profile of the
blood and urine of the participants. By tracking deviations from that
baseline, one could discover the formation of a disease before the onset
of clear symptoms. Using a personal baseline instead of the current
population based diagnostics is expected to allow for a more sensitive
detection, since the biomarker profiles are unique per individual. Figure
1.1 shows a graphical representation of these steps of the study.

Figure 1.1: Graphical representation on how deviating miRNA
patterns (the biomarkers) end up in a sample. This patient
has a tumor forming in their lung. The miRNA concentrations are
different in the tumor microenvironment compared to other parts of the
lungs. Some of these biomarkers will end up in circulation, changing
the miRNA concentrations in the blood and urine samples as the tumor
develops.

The use of miRNAs from urine as biomarkers has the benefit of
being patient-friendly and non-invasive when compared to other peri-
odic screening methods or examinations. There are other biomarker
options for blood and urine samples, however using miRNA has cer-
tain benefits. Figure 1.2 illustrates how deviating biomarker patterns
detect formation of illnesses. We stress that this figure is a simplified
and idealized representation. In practice, due to the complexity of the
biomarker data from the samples, there are several challenges attached
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to the (statistical) analysis, which we will describe below.

Figure 1.2: Simplified illustration of how biomarker data could
develop over time. The two figures show the biomarker data of an
imaginary patient with one year in between. In January 2023, the
biomarker profile is acceptable in reference to the personal baseline.
In January 2024 however, a few different miRNAs concentrations are
deviating from the personal baseline, indicating that something could
be wrong.

1.1.1 Problem statement and organization of the
report

One main goal of the research of Y2Y is the extraction of disease de-
tection signatures from complex longitudinal measurements of miRNA
profiles. This is difficult because it involves the analysis of longitudinal
data in very high dimensions for which no tailor-made methodology
exists to the best of our knowledge (see the discussion in Section 1.2.3).
A first analysis of the overall project goal led us to define the following
three sub-problems, which will be addressed in this report.

1. For a monitoring approach to work, the (stochastic) behavior
of the miRNA profile of an average healthy person (a baseline)
needs to be explored and put to work as a reference profile. In
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Section 1.4.1 we take a closer look at the notion of a baseline and
specifically address the question whether a personalized baseline
is more suitable than a group or population baseline.

2. Statistical models to detect illnesses and disease progression are
needed once a clear notion of a baseline exists. In Section 1.4.3, we
discuss the potential of Markov models and mixed effects models
in this context.

3. Validation and verification of the proposed analysis tools is impor-
tant. Since to date only very few longitudinal measurements are
currently available, we present a data augmentation strategy in
Section 1.4.2, which allows to generate larger samples of synthetic
data. The approach is based on the existing data and can be fur-
ther optimized as soon as more data will become available. Such
synthetic data allow to systematically study the performance of
any method in the current context in a controlled, yet realistic
setting.

This report is organized as follows. We start with a literature review in
Section 1.2, followed by a description of the available data and related
challenges in Section 1.3. Section 1.4 introduces the approach proposed
to tackle some of the challenges. Section 1.5 presents the numerical
results and Section 1.6 closes the report with preliminary conclusions
and recommendation for future research.

1.2 Literature review

1.2.1 Related work (Medical potential of miRNA
for diagnosis)

Since the earliest evidence of miRNA involvement in human cancer was
presented in Calin (2002), the topic has been investigated in various
studies. A recent review and meta analysis regarding the applicability
in the medical field can be found in Condrat et al. (2020), where it is
anticipated that monitoring miRNAs will become a routine approach in
the development of personalized patient profiles, thus permitting more
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specific therapeutic interventions as compared to existing, traditional
approaches.

One of the two datasets that are analyzed in this report is a cross-
sectional data set of 14 controls and 16 patients with stage III and
stage IV lung cancer (see Section 1.3 for more details). Related to this,
in a meta analysis combining the results of 10 studies, J.-H. Li et al.
(2017) investigate the role of miRNAs for the diagnostic and prognostic
of lung cancer and the results indicate an excellent overall diagnostic
accuracy. Barger and Nana-Sinkam (2015) study miRNAs implicated
in lung cancer in general and discuss their usefulness in clinical appli-
cations, e.g., as tools for diagnosis, prognosis, and emerging targeted
therapeutics.

1.2.2 Related work (Classification and prediction
approaches)

Rincon et al. (2019) propose an ensemble feature selection strategy for
miRNA signatures for robust cancer classification and detection tasks.
They show that a 100-miRNA signature is sufficiently stable to pro-
vide nearly the same classification accuracy as the complete Cancer
Genome Atlas data set (TCGA, Weinstein, Collisson, and al (2013)).
Lopez-Rincon et al. (2020) study a dimensionality reduction and en-
semble classification approach for tumor classification from circulating
miRNA. Or and Veksler-Lublinsky (2021) recently examined the evo-
lution of miRNA interaction rules and investigate whether these rules
are transferable between species using classification methods. Sapre
et al. (2016) investigate whether the microRNA (miRNA) profiling of
urine could be used to detect urothelial carcinoma of the bladder. Sup-
port Vector Machine classifiers with a Student’s t-test feature selection
procedure is adopted for the detection and the results compared to well-
established method (cystoscopy). The authors conclude that miRNA
profiling of urine shows promise for the detection of tumour recurrence.
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1.2.3 Related work (Longitudinal data and mixed
models)

The literature on the analysis of high-dimensional longitudinal data is
rather scarce as pointed out recently by Zhong, J. Li, and Kokoszka
(2021), who consider analysis of variance and change-point detection
in such a setting. While the question of detecting changes over time
in high-dimensional data is clearly related to our situation, the view-
point is an asymptotic one with respect to time (and sample size). The
data in our study were measured at only three time points, using a
large sample approximation therefore seems unreasonable. The view-
point in the latter reference is related to the view-point in time series
analysis, where change point detection in high-dimensions has gained
attention in recent years (see, e.g., Jirak (2015) or Cho and Fryzlewicz
(2015)). However, in the time-series context many measurements over
time are considered and often asymptotic results with respect to time
are employed. This perspective is in contrast not only to the avail-
able measurements to date but also to future monitoring approaches,
where the number of time points will be negligible compared to the
data dimension or number of subjects.

Mixed models have been successfully utilized in the analysis of lon-
gitudinal biometric data and early disease detection. For example, the
predictiveness of ovarian cancer (as a bivalent response variable in de-
pendence of a single biomarker, i.e., a one-dimensional measurement
per time point) of two linear mixed models and a pattern mixture
model based on the linear mixed model have been compared Han et al.
(2020). These models could be extended to deal with the data con-
taining multiple biomarkers and outcomes. However, these methods
depend heavily on normality assumptions, which are questionable in
our context. S. Li, Cai, and H. Li (2021) consider statistical inference
for high-dimensional linear mixed-effects models via a quasi-likelihood
approach. The approach does not rely on strict normality assumptions,
only sub-Gaussian random components are assumed. The method is
based on the Lasso under sparsity conditions on the fixed effects. While
this seems suitable at the first glance, the setting and viewpoint con-
sidered is that of genome-wide association studies, where effects of ge-
netic variants on a measured phenotype is investigated, i.e., additional
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measurements on the subjects are regressed on the high dimensional
measurements.

Furthermore, it is intuitive that the predictiveness of models can
be improved by separation of relevant features and their outcomes, one
example is given in Blackwell et al. (2020). It is therefore important to
distinguish relevant biomarkers and reduce the model dimensions early
on, which is a difficult task in high dimensional data analysis, where
standard methodology such as principle component analysis (PCA) fails
to be valid (see, e.g., Birnbaum et al. (2013), where estimation of the
leading eigenvectors of the covariance matrix is studied under additional
structural assumptions on the covariance matrix).

1.2.4 Conclusion on the literature review

There is a clear gap in the literature concerning readily usable statistical
methodology to analyze longitudinal miRNA data. Derivation of a
fully functioning method is clearly beyond the scope of this workshop.
However, we discuss the potential of Markov models and mixed effects
models in Section 1.4.3 and fit a mixed effects model to a down-scaled
data set (see Section 1.5.5 for the results). The discussion of the existing
literature shows that statistical learning has been successfully applied
in the analysis of miRNA data. To this end, we apply hierarchical
clustering methods to investigate the properties of the data in more
detail. Since a serious limitation to date is the availability of large
scale longitudinal data sets. Therefore, we develop a data augmentation
startegy.

1.3 Description of the data

Two datasets were provided for this study and comprise measurements
of miRNA concentrations in urine samples for two independent exper-
iments. The tow data set comprise:

(1) Longitudinal miRNA samples from healthy patients.

(2) Cross-sectional miRNA samples from both healthy and unhealthy
patients.
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The two datasets will be presented in the next sections.

1.3.1 Longitudinal data
The first data set contains longitudinal data of 1941 miRNA concentra-
tions for 7 healthy subjects over 3 distinct time points. In the following,
these measurements will be denoted by

Y Li,t ∈ R1941, i ∈ {1, . . . , 7}, t ∈ {1, 2, 3}, (1.1)

where the index i denotes the individual and t denotes the time at which
a measurement was made. Since the exact point in time is irrelevant
for this study, t is set to l for the l-th measurement in time for each
individual. To provide a first idea of our data, Table 1.1 provides a
small excerpt of the concentrations of four exemplary miRNAs in two
subjects. The unit is ppm, i.e., parts per million.

Y L1,1 Y L1,2 Y L1,3 Y L2,1 Y L2,2 Y L2,3
131.94 21.47 68.35 0.00 53.03 6.26
27.16 8.05 17.09 0.00 13.26 0.00
38.80 17.45 187.97 190.76 92.80 12.53
7.76 0.00 3.42 0.00 0.00 0.00

Table 1.1: Small excerpt of the longitudinal data of four exemplary
miRNAs.

The data shown in the table already clearly suggest that we are
dealing with a difficult problem. The variation between the concentra-
tions is quite high and miRNAs with low concentrations might not be
measured at all for some individuals, resulting in many zeros. For this
data set, a healthy state is assumed for all the patients because regular
checks did not diagnose major illness, nonetheless, a disease could be
(at least in principle) be progressing without being undetected. Note
that more time points are to be added during the course of the study.

1.3.2 Cross-sectional data
The second data set comprises cross-sectional data of miRNA concen-
trations from 30 subjects, 16 of whom had been diagnosed with stage
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III or IV lung cancer prior to the study, and 14 are healthy. A cut-
off removing all zero-measurements (i.e. zero concentrations over all
subjects) is introduced in the second dataset, leaving 1400 miRNAs,
corresponding to observations

(Y CSi , ki) ∈ R1400 × {0, 1}, i ∈ {1, . . . , 30}. (1.2)

In the above model, the index i denotes the individual, whereas the
variable ki denotes the state of the i-th individual (0 for healthy, 1 for
sick). Note that the cross-sectional data set only has one measurement
per subject, making it unsuitable to investigate subject-specific miRNA
concentrations over time. Nevertheless, this data set has the advantage
of containing both healthy and sick labels and can thus be used to
provide a first idea about the kind of changes in the profiles to expect
as the result of the onset of a severe disease and which miRNAs are
relevant for disease detection in this case.

1.3.3 Difficulties

The use and analysis of miRNA biomarker data comes with manifold
challenges. For instance, one main goal of the research of Y2Y is the ex-
traction of disease detection signatures from complex longitudinal data.
However, statistical methods to analyse such longitudinal studies are
not standard, as our discussion of the related literature in Section 1.2
shows. Moreover, disease signatures are likely to overlap, making the
detection and prognostic tasks even harder to tackle. From the descrip-
tion of the data, is apparent that the data dimension is extremely high
compared to the sample sizes and therefore, methodology from classical
statistics may not be applicable and the viewpoint of high-dimensional
statistics should be assumed (see, e.g., Wainwright (2019) for a com-
prehensive monograph on high-dimensional statistics). Furthermore,
both data sets only contain a small number of samples (7 and 30 sub-
jects, respectively), which makes the results of data exploration analysis
only preliminary, requiring further validation when more samples are
available.
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1.4 The proposed approach

It is a long way to go until a fully developed health monitoring proce-
dure, for which all fundamental and practical issues will be resolved,
can be put to use. This work seeks the first step in this direction by in-
vestigating a generalized framework for health monitoring from miRNA
biomarker samples. Our main contributions to the existing literature
can be summarized as follows:

• A preliminary analysis regarding the concept and feasibility of a
personal vs. a population or group baseline in Section 1.4.1

• We present a data augmentation strategy to generate artificial
data (based on the already existing samples) and test models and
methods on larger data sets in Section 1.4.2.

• We examine and discuss modeling options for disease prognos-
tic and health monitoring from longitudinal bio-markers data in
Section 1.4.3.

We used various techniques (such as hierarchical clustering, classifica-
tion, variance decomposition, statistical tests, and more) to study per-
sonal and population-based prognostic models applicable to the longi-
tudinal and cross-sectional miRNA data sets. We present the outcomes
of the analyses in Section 1.5. Our findings and recommendations for
future research are summarized in Section 1.6.

1.4.1 The concept of a baseline
In mathematical terms, health monitoring can be seen as (sequentially)
testing for deviations of measured miRNA profiles from a suitable ref-
erence profile. In this report, such a reference profile will be referred to
as a baseline and it corresponds to the “typical miRNA pattern of an
average healthy person”.

In this section, we will discuss the concept of a baseline from a statis-
tical perspective to shed more light into the question what a reasonable
notion of a baseline could look like. Furthermore, we will provide an
exploratory analysis of the data in respect to the question whether or
not to use a personal baseline (in contrast to, e.g., a group baseline).
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Mathematical concept of personal and group baseline

The concept of a baseline is essential in order to establish a relative
rather than absolute meaning of the miRNA data. Measurements of
a healthy person will contain measurements of the miRNA concentra-
tions which are typical for this individual in a healthy state. Multiple
measurements of the same person over time will show sampling vari-
ability due to the measurement process and also due to the constitution
of the patient. A baseline needs to take into account both an average
profile (i.e., some measure of centrality of each miRNA) and a mea-
sure of expected variability, as both are needed to judge whether an
observed deviation from the baseline is significant or not.

Intuitively, it seems to be obvious that a personal baseline is prefer-
able over a group baseline. However, an important disadvantage of the
use of a personal baseline is that several measurements of the miRNA
profile of an individual in a healthy state are needed in order to properly
capture the individual profile including the natural, personal variations
in the measured values. In contrast, a group baseline could profit from
many prior measurements, so that already a person’s first measured
miRNA profile could be used for the detection of a disease. The ques-
tion is which of these two approaches is more feasible in practice. Also,
a hybrid approach, combining both personal information and pooled
information across individuals, could be a reasonable approach. Based
on the longitudinal data set described in Section 1.3 we will look into
these question in more detail.

Classification

Longitudinal data allow for the assessment of within individual varia-
tion of the miRNA samples over time. Intuitively, one may think that
two profiles of the same person should be closer to each other than
two profiles of different individuals. To investigate whether this is the
case, an attempt has been made to recognize different groups of sub-
jects using hierarchical (linkage) clustering. The hierarchical clustering
algorithm starts with a point-cloud, {Y Li,t}i,t, say, where every single
measured vector of miRNAs starts as a cluster for itself. In each step
of the algorithm the distances between the clusters are being calculated
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and two clusters with the smallest distance are then merged together.
This is done until only one cluster remains. The implementation of
the algorithm depends, of course, on the notion of distance between
the points (i.e. a metric or some dissimilarity function d between the
points in R1941) and a notion of a distance between the clusters, also
called the linkage function D. Some common linkage functions include
arithmetic, geometric and harmonic averages of distances between sin-
gular points in the two clusters and minimum and maximum of all
the distances. The last two linkage functions give rise to so-called sin-
gle and complete linkage methods, respectively. The results of such
clustering algorithms are dendrograms representing the merging of the
clusters, from which the relevant distances can be read. Besides the
Euclidean (l2) distance or the Manhattan (l1) distance, there are a va-
riety of other metrics and dissimilarity functions available which may
capture the separation of the clusters along selected features better. A
notion of distance suitable for this task should not put much emphasis
on absolute sizes of the components but rather consider the difference
of components relative to their sizes, that is, suitably re-scaled versions
of common norms might be more appropriate in our context. One such
example is the Canberra distance. For vectors u, v ∈ Rp, the Canberra
distance is given as

dCb(u, v) =

p∑
i=1

|ui − vi|
|ui|+ |vi|

.

This distance equalizes the contributions of the smaller and larger com-
ponents and is upper bounded by the dimension p of the space, i.e.,
∥dCb(·, ·)∥∞ ≤ p. The Canberra distance between two vectors is large
if a sparse vector is compared to a non-sparse vector, regardless of the
total size of the components of the non-zero vector. In contrast to the
Euclidean distance it does not result in extremely large values if the
components of one vector are much larger than the components of the
other vector. Table 1.2 and Table 1.3 show distance matrices of the
data vectors shown in Table 1.1, based on the Euclidean distance and
the Canberra distance, respectively. From this it is already obvious that
the notions of nearness are very different between these two distances.
The clustering results are presented in Section 1.5.1.
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Y L1,1 Y L1,2 Y L1,3 Y L2,1 Y L2,2 Y L2,3
Y L1,1 0 114.39 162.53 177.11 203.22 174.82
Y L1,2 114.39 0 177.11 174.82 81.86 17.90
Y L1,3 162.53 177.11 0 177.11 96.53 186.92
Y L2,1 177.11 174.82 70.59 0 112.18 178.34
Y L2,2 203.22 81.86 96.53 112.18 0 93.84
Y L2,3 174.82 17.90 186.92 178.34 93.84 0

Table 1.2: Distance matrix corresponding to the data presented in
Table 1.1, based on the Euclidean distance.

Y L1,1 Y L1,2 Y L1,3 Y L2,1 Y L2,2 Y L2,3
Y L1,1 0 2.64 1.59 3.66 2.18 3.42
Y L1,2 2.64 0 2.71 3.78 1.80 2.28
Y L1,3 1.59 2.71 0 3.01 1.59 3.71
Y L2,1 3.66 3.78 3.01 0 3.13 3.75
Y L2,2 2.18 1.80 1.59 3.13 0 3.40
Y L2,3 3.42 2.28 3.71 3.75 3.40 0

Table 1.3: Distance matrix corresponding to the data presented in
Table 1.1, based on the Canberra distance.

Analysis of variance

From a statistical viewpoint, a personal baseline is preferable over a
group baseline if the within person variation of the profiles is smaller
than the between person variation. Figure 1.3 shows the sample mean
± one sample standard deviation for two exemplary miRNAs for each
of the seven individuals of the longitudinal data set. While the first
miRNA seems to have a high variation between the different individu-
als, the second seems to be dominated by the between groups variation.
A statistical methodology that explores exactly this, is analysis of vari-
ance (ANOVA), which deals with the problem of testing whether the
means of several populations agree. More precisely, a statistical test
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Figure 1.3: sample mean ± one sample standard deviation for two
exemplary miRNAs for each of the seven individuals

problem with the following hypotheses is considered:

H0 : µ1 = . . . = µk vs. H1 : µi ̸= µj for at least one pair i ̸= j.

In the most basic, one-dimensional setting, observations Yi,j , where
i = 1, . . . , k and j = 1, . . . , ni are considered and it is assumed that
the Yi,j are independent and follow a normal distribution with mean µi
and variance σ2. The F statistic is the ratio of the MST and the MSE:

F =
MST

MSE
=

1
k−1

∑k
i=1 ni(Yi· − Y··)

2

1
n−k

∑k
i=1

∑ni

j=1(Yi,j − Yi·)2
.

Here, Yi· and Y·· denote the group means and the overall mean re-
spectively. The numerator and the denominator can be interpreted as
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components of the total variance, the residual sum of squares RSS:

RSS =
1

n

k∑
i=1

ni∑
j=1

(Yi,j − Y··)
2

︸ ︷︷ ︸
total variance

=
1

n

k∑
i=1

ni∑
j=1

(Yi,j − Yi·)
2

︸ ︷︷ ︸
within groups variance

+
1

n

k∑
i=1

ni

ni∑
j=1

(Yi,· − Y··)
2

︸ ︷︷ ︸
between groups variance

.

This means that the F -test compares the within groups variance to
the variance between groups. Under the null hypothesis and the given
a assumptions, the F statistic follows an F distribution with k − 1
and

∑k
i=1(ni − 1) degrees of freedom. We computed the values of

the F statistic for all miRNAs. The results of this analysis can be
found in Section 1.5.2. Clearly, the the validity of the assumptions is
questionable in this context, but all F values in relation to each other
can nonetheless be seen an indicator for stability.

1.4.2 Synthetic data generation mechanism

This section presents a data augmentation strategy to simulate a large-
scale longitudinal study with several volunteers. Data simulators can
support the validation and verification of algorithms and speed up the
development of data analysis pipelines. Furthermore, the analysis of
synthetic data can support decision-making, future data collection and
experiments. Once new empirical evidence is collected, it can tune and
improve the simulator’s accuracy and adherence to reality.

The proposed simulator generates miRNA concentrations from the
empirical marginal distributions conditional to the health state of the
subjects (healthy/sick). Mathematically, this corresponds to sampling
from F̂j(x|y = 0) for healthy patients and F̂j(x|y = 1) for sick patients.
For notation convenience, we referred to miRNA profiles as x and to
the health labels as y, where y = 0 indicates a healthy patient.

For a given label y, a miRNA concentration xj is sampled from the
empirical marginal distribution F̂Xj (x) =

1
n

∑n
i=1 1{xi,j≤x} and realiza-
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tions in-between samples are obtained by linear interpolation. The pro-
cedure work as described next. Consider a vector of miRNA densities
x = (x1, x2, . . . , xd), where d is the number of miRNA concentrations.
A probability value for each entry can be obtained as follows:

(U1, U2, . . . , Ud) = (F1(x1), F2(x2), . . . , Fd(xd)) (1.3)

where the probability values are uniformly distributed in the unit hyper-
cube [0, 1]d. Our simulator uses a copula model, which defines the
dependency between the components of the vector (U1, U2, . . . , Ud):

CΣ(u1, u2, . . . , ud) = P[U1 ≤ u1, U2 ≤ u2, , ..., Ud ≤ ud]. (1.4)

A Gaussian copula is used in this work,

CΣ = FG(Φ
−1(u1),Φ

−1(u2), ...,Φ
−1(ud); Σ), (1.5)

where FG is the joint Gaussian distribution parameterized by the cor-
relation matrix Σ and Φ−1(·) is the inverse cumulative distribution
function of a standard normal random variable. We use an empirical
Σ̂ estimated from data. Once a copula structure is defined, pseudo-
random samples are obtained sampling correlated uniform vectors

(u1, ..., ud) ∼ CΣ̂,

and then mapping these realization to the space of miRNA densities.
This last step is done by inverting of the empirical distributions evalu-
ated at (u1, ..., ud) :

(x1, . . . , xd) =
(
F̂−1
1 (u1), . . . , F̂

−1
d (ud)

)
. (1.6)

An example of the procedure is presented in Figure 1.4, where the
copula structure is assumed to be independent of the health state and
therefore shared among the two groups. Any distribution family can re-
place the empirical marginals F̂j and any copula can replace the heuris-
tic copula for healthy and sick patients. Selecting an appropriate distri-
bution family may be a patient-specific and disease-specific issue that
is not further considered in this work. Furthermore, a Gaussian copula
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family requires a large d×d correlation matrix as an input and this can
complicate numerical tractability given the high dimensionality of the
sample space. The selection of a subset of highly correlated miRNAs
may be advisable for future developments.

Disease progression model and generation of longitudinal data

Our simulation model samples miRNA concentrations of np patients
at time fixed time steps t1, t2, ..., tnt

. A health state index ki(tj), i =
1, .., np is assigned to to the patients at each time tj and patients are as-
sumed healthy at the beginning of the longitudinal study, i.e., ki(t1) = 0
for all i. Several patients will likely develop a sickness during the study.
Thus, we introduce a probabilistic transition model to simulate this
change in population health over time. The following discrete-time
Markov chain defines the transition probabilities:

P[k(tj+1) = 1|k(tj) = 0] = PH2S

where PH2S is the probability that an healthy patient will develop a
sickness in the interval [tj , tj+1]. We assume a sick patient to be unable
to recover during the course of the simulation, i.e., P[k(tj+1) = 1|(tj) =
1] = 1.

Because a sickness fully develops over some time, we propose a
disease progression model that combines the empirical distribution of
healthy and sick patients. The proposed mixture distribution model is
defined as follows:

xj(t) ∼ ρ(t)F̂j(x|k = 0) + (1− ρ(t)) · F̂j(x|k = 1)

where ρ(t) ∈ [0, 1] is a real-valued time-dependent sickness factor quan-
tifying the progression of the disease. A value of ρ(t) = 0 indicates an
healthy patient at time t whilst ρ(t) = 1 indicates a fully developed dis-
ease. We assume ρ(t) to be a linearly increasing function in the interval
ts and ts + ttrn, where y changes from 0 to 1 at ts and ρ(ts + ttrn) = 1
when the sickness is fully developed. Generally speaking, time ttrn is
a random time which depends on the individual characteristics of the
subject and disease. However, for the sake of simplicity, the transition
time ts is a constant input in our model.
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Figure 1.4: Left panel: Correlated samples and inverse empirical CDF
transformation for healthy and sick patients. Right Panel: Transition
from healthy distribution (blue) to a sick distribution (red).

1.4.3 Detection

This section introduces a mathematical framework for cancer disease
predictions that best captures the longitudinal biomarker data. The
proposed approach employs mixed effects models and Partially Observ-
able Markov Decision Processes and, due to a lack of time, the latter is
only mathematically introduced and not directly applied to the disease
prediction problem.

Markov models and POMDPs

In this subsection, we describe a Markovian approach to decision-making
problems under uncertainty. Chapter 4 of Poor and Hadjiliadis (2008)
gives a detailed description of Markov decision processes applications
to sequential detection. Similar ideas have also been explored in the
context of maintenance, see e.g., Linderman, McKone-Sweet, and An-
derson (2005), Mehrafrooz and Noorossana (2011), and Panagiotidou
and Tagaras (2010).

Partially observable Markov decision processes, or POMDPs, pro-
vide a formal framework for the interaction of a decision maker (an
agent) with a stochastic, partially observable environment. That is,
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it provides an agent with the capabilities to reason about both action
uncertainty, as well as state uncertainty. A POMDP is a discrete time
model, in which the agent selects an action at every time step or stage.
It extends the regular Markov decision process (MDP) to settings in
which the state of the environment cannot be observed. It can be for-
mally defined as a tuple M = (S,A,Ω, T ,O, C, h), where S is a (finite)
state space, A is a (finite) set of action, Ω is the space of observations,
T (s, a, s′) = P(s′|s, a) is a transaction probability function that speci-
fies the probability of a next state s′ given a current state s and action
a, O is an observation function, C(s, a, s′) is an immediate cost function
for a particular transition s, a, s′ and h is the horizon of the problem.

The model M can help a decision-maker by recommending good
actions that maximize the long-run revenue of the monitoring systems
or, similarly, that minimize the expected cumulative sum of costs over
the horizon h. The rule that dictates which action the agent must take
in each state is known as the policy, a map π : S → A from the state
space to the space of actions. In this work, we wish to maximize the re-
ward generated by a correct prediction of disease from miRNA readings
(and minimize costs due to wrong predictions and missed alerts).

States and actions

A state vector s ∈ S consists of three parts, s = (x, y, z), where x is the
actual profile of miRNA’s, y denotes the actual health status (stage of
cancer), and z is a binary variable indicating whether or not cancer has
been detected via a traditional diagnostic methods, i.e., an indicator
function defined as follows:

z =

{
0 if no cancer has been detected.
1 if cancer has been detected.

(1.7)

We also define action vectors a ∈ A as binary indicator of diagnosis
based on the miRNA profile:

a =

{
0 if diagnosed as healthy based on miRNA profile
1 if diagnosed as ill based on miRNA profile.

(1.8)
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Observations space and transition probability

The observation function O : S × A× Ω → [0, 1] is a function defining
the probabilistic accuracy of the miRNA counts and an observation ω ∈
Ω is a vector containing the miRNA counts. The transition function
T : S ×A× S → [0, 1] is based on the following probabilities:

• Let p1 : X × Y × X → [0, 1] denote the probabilistic transition
function between miRNA profiles, where X is the space of possible
profiles.

• Let p2 : Y×Y → [0, 1] denote the probabilistic transition function
between different stages of cancer, where Y denotes the set of
possible stages.

• Let p3 : Y → [0, 1] denote the probability that a patient has symp-
toms severe enough to see a doctor and that cancer is successfully
detected given the cancer stage.

Note that T combines the probability of moving from the present
miRNA x to a new concentration x′ and from a present cancer stage
y to a next stage y′. By definition, this is a map from state-to-state
P(s′|s), and diagnostic actions a have no effect on it.

Cost function

The Cost function C : S × A × S → R is a fundamental component of
POMPDs and must be carefully defined. The cost function assigns to
any transition, e.g. from a state-action pair to new state, a cost/reward
function. In this detection problem, a cost. The lower the cost, the
higher is the value of the action taken in a specific state. In this cancer
prediction problem, costs can arise due to delays in detecting (changes
in) the health status of a patients from miRNA counts, costs for false
diagnosis (false positives), and from missed diagnosis (false negatives).
Hence, the selected cost function include three terms:

C(s, a, s′) =


C1(y) if a = 1 and z = 1 (true positive)
C2 if a = 1 and z = 0 (false positive).
C3(y) if a = 0 and z = 1 (missed detection)

(1.9)
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where C1 : Y → R and C3 : Y → R are increasing functions of the
stage of cancer y. The cost C1, is cost associated to correct prediction
of illnesses, this quantity should be negative (a reward) and should
have a large in absolute value in the early stages (higher rewards for an
early detection). The cost C2 is associated to false positive events whilst
cost C3 arise when cancer is not predicted from the miRNA profile but
by other means, e.g., the cancer has detected due to symptoms, but
not detected from the miRNA profile. The cost C3 should be high,
especially for later stages.

Remarks and challenges

Numerical analysis of POMDPs generally assumes a finite horizon for
the analysis and computation of optimal decision-making policies. In
this work, we assume that a person is tested for cancer if either he
develops symptoms severe enough to see a doctor or his/hers miRNA
profile indicates the potential presence of cancer and we define the end
of the horizon as the moment a person is diagnosed with cancer (z = 1).
Unfortunately, the proposed cost function does not take into account
finite horizon and if the disease is not detected within a certain time
frame, it may result too late in magnitude. This consideration is similar
to other discussions on the performance of control charts in statistical
process control, where it has been argued that instead of looking at
average time to detection (called ARL = average run length), it is
more relevant to consider as performance the probability of successful
detection with a certain time frame (called PSD = probability of suc-
cessful detection). The interested reader is reminded to e.g. Kenett
and Pollak (2012) for a detailed discussion on this topic. Another is-
sue concerns the definition of cancer stage y and its relationship with
the diagnostic outcome z of established screening tests. To increasing
the predictive power of this framework, it would be advisable to study
a suitable quantifier for y. Moreover, it would be useful to study a
function y = ψ(x) that maps actual miRNA structure/changes to this
health state, i.e, a model for the minimal change in miRNA counts that
will cause a person transitioning from a healthy to sick state.
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Mixed effect models

Monitoring multiple patients over time on a series of miRNAs leads
to a high-dimensional dataset, multivariate and longitudinal. It can
be large in the number of patients (n), in the number of outcomes (m
miRNA) in the number of time points (T ), all at the same time. Mul-
tivariate longitudinal data come with the challenge of correlations and
heterogeneity: the clustering at individual level, different miRNAs can
have different variances, measurements can be correlated at each time
point for different markers, and counts from the same miRNA can be
correlated in time. Even picturing an idea of such correlations in the
whole dataset is challenging due to the high dimensionality. On the
other hand, the complexity and multidimensionality of the data offers
a wide choice of models and possible methods to detect changes. For
example, beside looking at the shifts and changes in trend of single mi-
croRNAs, it is possible to study how the multiple markers vary together
in the healthy status, and use this to detect changes.

Mixed models offer a flexible framework to capture different forms
of correlation in the data, and to choose the most suitable covariance
structure. The general linear mixed model equation is given by

Yi = Xiβ + Ziui + ei (1.10)

Yi is the matrix of observations for the ith individual, Xi a matrix of
covariates of interest and β the corresponding matrix of coefficients
to be estimated. This term is defined as fixed and captures the trend
over the whole population, as opposed to ui that are called random
effects and model individual-specific characteristics. Normality is often
assumed for the random effects (ui ∼ N(0, τ2)). The design matrix for
the random effects Zi can be a subset of Xi but does not have to be.
Finally there is the error term ei that captures the correlations within
individual. It’s often assumed to be normal, but extensions exists. The
two random effects ui and ei are often assumed to be independent, but
through their covariances it is often possible to investigate the complex
dependency structure of the data. There exist different methods to ac-
commodate the structure of multivariate longitudinal data. One option
is to include a Kronecker product covariance V ⊗ Σ for the repeated
measurements - repeated for each subject on the different miRNAs and
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for multiple points in time, where V models the inter-miRNAs correla-
tions between multiple markers measured at the same time point, and
Σ the intra-marker correlation at different time points (again the same
for all miRNAs). One reasonable structure could involve unstructured
V and autoregressive Σ

σ2
1 σ12 . . . σ1m

σ21 σ2
2 . . . σ2m

. . . . . . . . . . . .
σm1 σm2 . . . σ2

m

⊗


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

. . . . . . . . . . . . . . .
ρT−1 ρT−2 . . . 1 . . .

 .

Such models can easily be fitted to a large number of study partic-
ipants (n) and/or to a long time period (large T ). Most likely the
implementation of mixed models is not easily scalable to a large num-
ber of outcomes (i.e. to the whole set of microRNAs), but they can
already be used to study how a number of biomarkers vary together,
for example a selection that is of particular interest. We will illustrate
this on a set of biomarkers in Section 1.5.5.

Generalized linear mixed models extend the linear mixed model in (1.10)
by introducing a link function g(x) that connects the linear predictor
η = Xiβ + Ziui to the observed outcome

g(E(Yi)) = η, (1.11)

so that also outcomes with distributions other than normal can be mod-
elled (for example binary or count outcomes).

For the current purpose, generalized linear mixed model would be
suitable - since the data at hand are count data. However, given the
time constraints for this initial investigation we have decided to use
the linear mixed model on the log-transformed variable. The main
reason concerns the available implementation of multivariate models for
continuous outcomes with complex covariance structures, but also the
fact that the actual data we are using is derived from count data. The
major limitation of this approach on the other hand is due to the zeros
present in the data (about 30% across the five modelled microRNAs),
that are lost with the log-transformation. Future research should focus
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on adapting existing methods to model the original counts with an
appropriate generalized linear mixed model. Our results can however
be an indication of how these methods could be used and what they
could provide - to enable informed decisions.

1.5 Results

1.5.1 Clustering based on available data

Due to the high dimensionality of the original data, we propose to apply
a dimensionality reduction technique using Kolmogorov-Smirnov (KS)
tests, which are based on the marginal empirical cdfs of the healthy vs.
diseased cohorts. Specifically, we tested the hypotheses

H0,j : FmiRNAj (· |healthy) = FmiRNAj (· | lung cancer)

and we included all miRNAS with p-values below 0.05 in the lower
dimensional space. A subset of 27 miRNAs was selected in this manner:

YKS,i,t ∈ R27, i = 1, . . . , 7, t = 1, 2, 3. (1.12)

Eight of these are also included in the 100 miRNA signature found by
Rincon et al. (2019). Figure 1.5 and Figure 1.6 show two exemplary
outcomes of linkage clusterings of the longitudinal data.

Figure 1.5 shows an arithmetic linkage clustering approach to the
data (1.12), where the Euclidean distance is used to measure the dis-
tance between the vectors YKS,i,t and YKS,k,s. We clearly see that the
nearest neighbors of the measurement YKS,i,t is typically one of the
YKS,k,s with k ̸= i, i.e., measurements between individuals may very
well be closer to each other than measurements of the same individ-
ual at different time points. The outcome of the clustering algorithm
suggests forming three clusters, whose elements are listed in Table 1.4.

Only for person 3 and person 4, all measurements are in the same
cluster. For person 1 the three measurements over time are even as-
signed to three different clusters. If seven clusters are formed, ideally,
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Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Person 7

Figure 1.5: Arithmetic linkage clustering approach to the data (1.12),
where the Euclidean distance is used to measure the distance between
the vectors YKS,i,j and YKS,k,l.

Cluster 1: YKS,1,1, YKS,4,2, YKS,4,1, YKS,4,3, YKS,6,3, YKS,7,2, YKS,7,3

Cluster 2: YKS,1,2, YKS,6,2, YKS,2,3, YKS,3,1, YKS,3,3, YKS,2,2, YKS,7,1,

YKS,3,2, YKS,5,2, YKS,6,1

Cluster 3: YKS,1,3, YKS,5,3, YKS,2,2, YKS,5,1

Table 1.4: Elements of the clusters as formed via average linkage clus-
tering using the Euclidean distance, when three clusters are formed.

one would see that each person forms their own cluster. Instead, we
see that the measurements of no person stay in the same cluster (see
table 1.5).

Arguably, the Euclidean distance might not be the best distance
measure when comparing miRNA profiles. However, while the cluster-
ing results using other metrics look different, the general tendency of
measurements of the same person over time end up in different clus-
ters, remains. To showcase this, Figure 1.6 shows the outcome of the
average linkage clustering based on the Canberra metric. The same can
be observed for different types of metrics and different types of linkage
functions. Furthermore, we performed the same clustering algorithms
for different sub-selections of miRNA, always yielding comparable re-
sults. In particular, we used a selection of five miRNA, which had been
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Cluster 1: YKS,1,1, YKS,4,2, YKS,4,1

Cluster 2: YKS,4,3, YKS,6,3, YKS,7,2, YKS,7,3

Cluster 3: YKS,1,2, YKS,6,2, YKS,2,3, YKS,3,1, YKS,3,3

Cluster 4: YKS,2,2, YKS,7,1, YKS,3,2, YKS,5,2, YKS,6,1

Cluster 5: YKS,1,3

Cluster 6: YKS,5,3

Cluster 7: YKS,2,2, YKS,5,1

Table 1.5: Elements of the clusters as formed via average linkage clus-
tering using the Euclidean distance, when seven clusters are formed.

previously found in an unpublished data set via differential expression
analysis, corresponding to the measurements

YDE,i,t ∈ R5, i = 1, . . . , 7, t = 1, 2, 3, (1.13)

for the longitudinal data set and

Y CS
DE,i ∈ R5, i = 1, . . . , 30, (1.14)

for the cross-sectional data.

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Person 7

Figure 1.6: Arithmetic linkage clustering approach to the data (1.12),
where the Canberra distance is used to measure the distance between
the vectors YKS,i,t and YKS,k,s.

In order to investigate whether such a clustering method can pro-
duce useful results in the context of miRNA analysis, we applied it
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to the cross-sectional data set {Y CS
DE,i | i = 1, . . . , 30, } as well. The

result (Figure 1.7) clearly shows that the observations of sick patients
seem to be comparable and close to each other. In particular, one big
cluster of mainly sick individuals and one big cluster of mainly healthy
individuals and two smaller clusters are suggested. This shows that,
up to fine tuning, such a clustering approach can yield quite reasonable
results.

Figure 1.7: Complete linkage clustering approach to the data (1.14),
where the Canberra metric is used to measure the distance between the
vectors Y CS

DE,i,j and Y CS
DE,k,l.

1.5.2 Analysis of variance
Table 1.6 contains values of the F-statistic and corresponding p-values
for seven exemplary miRNAs for the longitudinal data of the seven in-
dividuals. The two miRNAs from Figure 1.4 are highlighted in blue.
While certainly the normal assumption and the independence assump-
tion are highly questionable for our data, these values give a first indi-
cation of how difficult the problem is.

A histogram of all p-values is shown in Figure 1.8. Clearly, the
region from 0.45 to 0.7 is overpopulated. Most of the miRNAs that
have a p-value in this region are zero for most of the measurements.
If these are filtered out in a pre-processing step, the histogram would



29

F-value 1.432 0.870 1.947 3.864 5.661 1.222
p-value 0.271 0.541 0.143 0.017 0.0036 0.352

Table 1.6: Values of the F-statistic and corresponding p-values for seven
exemplary miRNAs for the longitudinal data of the seven individuals.

look uniform with a slight elevation in the first bin, indicating that
indeed, several miRNAs differ substantially between individuals. In
fact, 11, 61 and 108 miRNAs have a p-value of less than 0.01, 0.05 or
0.1, respectively. Selecting the most significant miRNAs according to
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Figure 1.8: Histogram of all p-values from the F-tests.

this criterion, i.e., the most individually different ones, yields a selection
of 11 miRNAs. We applied the complete linkage clustering algorithm to
this sub-selection of miRNAs as well. The results are shown in Figure
1.9 for the Euclidean distance (right) and the Canberra distance (left).

While the clustering based on the Euclidean distance does not see
any strong within person similarities as compared to between person
similarities, the Canberra distance clearly does. When 7 clusters are
formed, six are person specific. Only one cluster consists of all three
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Figure 1.9: complete linkage clustering algorithm to the ANOVA sub-
selection of miRNAs with the Euclidean distance (right) and the Can-
berra distance (left).

measurements of one subject and one additional measurement of an-
other subject. This indicates once more that when comparing miRNA
measurements via their distances, the Canberra distance might be a
suitable measure of proximity.

Our first exploratory data analysis clearly suggests that some miR-
NAs might be better suited for a group baseline, whereas others require
a personal baseline. This is certainly an important topic for future re-
search.

1.5.3 Generation of synthetic data

Algorithmic details

The data generating mechanism has been coded within the MATLAB
environment and in the ’Simulator_miRNA_LongDataGenMech.m’ func-
tion. The DGM takes as input the number of synthetic patientsNpatients,
number of time steps Nt (number of longitudinal measurements), and
a structure containing options and additional parameters for the transi-
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tion model. The simulator generates nt longitudinal samples ofNmiRNA =
1421 miRNA concentrations, health indices (0 health, 1 sick), and dis-
ease progression coefficients ρ(t) for each patient. The option input
structure contains three fields:

1. Option.Tran_prob_Healthy2Sick that represents the healthy to
sick transition probability PH2S .

2. Option.Sick_progression_interval that defines the number of lon-
gitudinal measurements needed for the disease to fully develop.

3. Option.UseCorrelation a Boolean index defining weather or the
empirical correlation Σ̂ has to be used when sampling miRNA
profiles.

Six are the outputs of the data simulator:
i miRNA: cell array [1 × Npatients] with the miRNA samples (grouped

by patients), where each elements is a [NmiRNA ×Nt] matrix.

ii Time vector : Vector of time indices (1, 2, ..., Nt).

iii Health indicators: [Npatients×Nt] matrix of Boolean health indicators.

iv miRNA names: [NmiRNA×1] string containing the names of the miR-
NAs.

v Sick Percentage: [Npatients ×Nt] matrix. Each element in the matrix
defines the sick percentage indicator ρ(t).

vi Data per miRNAType: cell array [1×NmiRNA] with miRNA samples
(grouped by miRNA type), where each element is a [Npatients × Nt]
matrix.

The data generating mechanism runs very efficiently.
If Option.UseCorrelation is set to FALSE, the function took 6.5 sec-
onds to generate data for Npatients = 1000 over a 2 years longitudinal
study (Nt = 8). On the other hand, 16 seconds were needed to generate
Npatients ×Nt = 1000× 8 applying the correlation structure.

Figure 1.10 presents an example of conditional marginal CDF FX(x|y)
for healthy and sick patients and compare simulated data and real mea-
surements. Note that the simulated marginal CDFs are very similar to
the empirical marginal density and, thus, the probabilistic behaviour of
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Figure 1.10: A comparison between simulated and experimental Fx for
six miRNA types. Solid and dashed red lines display, respectively, the
empirical CDFs for sick and healthy patients. The distributions of the
simulated data miRNA are presented by blue CDFs.

the real data (at least the behaviour of the marginals) is well-captured
by the simulator. Figure 1.11 shows correlated samples for the simu-
lated (blue) vs experimental data (red markers). Qualitatively the sim-
ulated samples display overall a reasonable trend, although sub-optimal
fitting can be observed for some of the miRNA intances. As example,
’hsa-let-7a-2-3p’ shows to be strongly correlated (linearly) with ’hsa-
let-7b-3p’, see red markers in the top right panel of Figure 1.11. Unfor-
tunately this strong correlation is partially lost in the synthetic data,
i.e., the blue markers (synthetic samples) are still positively correlated
but with larger dispersion. Despite these limitations, the proposed data
simulation tools offer a valuable contribution and can be used to design,
test and verify predictive models before expensive data collection is car-
ried out. This can speed up algorithmic developments, inform further
data collection, and improve the overall effectiveness of the study.
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Figure 1.11: An example of correlated synthetic miRNA samples (blue
markers) versus the experimental data (red markers). The off-diagonal
panels present pairs-wise comparison of four selected miRNA concen-
trations and the panels on the diagonal compare the marginal distri-
bution of the data (red histograms) and the simulated samples (blue
histograms).

1.5.4 Clustering based on synthetic data
The results for the clustering based on the simulated data are compa-
rable to what we obtained for the real data for the longitudinal data
sets. However, the separation in healthy versus sick seams is slightly
clearer for the real data.

1.5.5 POMDP and mixed effects model
We have fitted a mixed model jointly to a selection of five miRNAs,
YDE,i,t, that were indicated as informative by the problem owner, and
were also in large part found again in the baseline analysis (cf. Sec-
tion 1.4.1). Among the fixed effect we included a distinct intercept
(microRNA-specific average), and a distinct effect for time (taken as
categorical, so that no trend was imposed a priori) for each of the mi-
croRNAs. The model has no random effects, and a Kronecker product
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Figure 1.12: Complete linkage clustering of a synthetic data set.

for the covariance matrix as illustrated in Section 1.4.3. The estimates
of the fixed effect can be found in Table 1.7. For each of the modelled
microRNAs, we report the estimates of the intercept and the estimate
at two time points. The third (last) is taken as reference (= 0). Be-
side the estimate we report the standard error and the corresponding
p-value.

More of interest for the current analysis are the estimated variance-
covariance parameters between microRNAs (Table 1.8), and the esti-
mated autoregressive coefficient for the correlation in time. These can
be found in Table 1.8, together with their standard errors and p-values.
None of the covariances between microRNAs is estimated to be signif-
icantly different from zero.

1.6 Conclusions and Recommendations

1.6.1 Pros and cons of the proposed approaches

We explored the notion of a baseline using a classification approach and
ANOVA. This exploratory data analysis suggests that some miRNAs
might be better suited for a group baseline, whereas others might be
better suited for a personal baseline. Therefore, a hybrid version might
be a good solution and is certainly a direction to think about more in
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Intercept
microRNA estimate std. error pvalue
YDE(1) 2.85 0.50 <.0001
YDE(2) 2.95 0.39 <.0001
YDE(3) 3.04 0.31 <.0001
YDE(4) 4.01 0.33 <.0001
YDE(5) 2.63 0.62 0.0178

Effect of time
microRNA time estimate std. error pvalue
YDE(1) 1 1.63 0.70 0.0335

2 0.44 0.61 0.4877
YDE(2) 1 0.11 0.60 0.8564

2 -0.44 0.49 0.3889
YDE(3) 1 0.35 0.56 0.5469

2 -0.28 0.38 0.4867
YDE(4) 1 0.47 0.58 0.4356

2 -0.20 0.41 0.6239
YDE(5) 1 0.62 1.10 0.6089

2 0.22 0.76 0.7870

Table 1.7: Fixed effect estimates

the future. As a general finding it seems that complete linkage cluster-
ing based on the Canberra metric seems to suitable to find patterns in
our data, whereas other metrics and dissimilarity functions as well as
other linkage functions could not provide convincing results.

We developed a numerical simulator to generate large amount of
synthetic longitudinal miRNA data. The model was used to efficiently
simulate a 2-years long longitudinal study with 103 - 104 volunteers
and only took a few minuets to generate this large amount of labelled
longitudinal samples. We captured correlation between miRNA con-
centrations within the simulated data and the marginal distributions
of the synthetic miRNA realizations well-mimic the probabilistic be-
haviour of the empirical data. Because the simulator provides data for
sick patients and for the disease progression (although only artificial),
it can be conveniently used for the numerical validation and verifica-
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estimate std. error pvalue
VAR( YDE(1)) 1.58 0.56 0.0024
VAR( YDE(2)) 0.74 0.41 0.0374
VAR( YDE(3)) 0.59 0.32 0.0355
VAR( YDE(4)) 0.76 0.30 0.0057
VAR( YDE(5)) 2.15 1.91 0.1310

COV(YDE(1), YDE(2)) 0.40 0.40 0.3156
COV(YDE(1), YDE(3)) -0.02 0.25 0.9393
COV(YDE(1), YDE(4)) -0.10 0.29 0.7357
COV(YDE(1), YDE(5)) -0.13 0.52 0.8046
COV(YDE(2), YDE(3)) 0.11 0.22 0.6103
COV(YDE(2), YDE(4)) 0.33 0.31 0.2827
COV(YDE(2), YDE(5)) -0.46 0.58 0.4305
COV(YDE(3), YDE(4)) 0.50 0.27 0.0696
COV(YDE(3), YDE(5)) -0.12 0.45 0.7910
COV(YDE(4), YDE(5)) -0.87 0.78 0.2598

AR(1) 0.24 0.22 0.2741

Table 1.8: Covariance paramter estimates.

tion of the data analysis tools and to speed up the construction of data
analysis pipelines. For instance, it could be used to test the accuracy
of classification and disease detection methods and models to define a
baseline for healthy patients before more data is collected. Another
advantage of the proposed method is that it is possible to scale up and
tune the simulator with new experimental evidence, e.g., new miRNA
samples and discovered relationships between miRNA concentrations
and specific diseases and illness progressions. The simulation model
has however some limitations, specifically, (i) lack of data and knowl-
edge in literature makes it difficult to define a realistic model; (ii) the
model is relatively simple and for the time being only incorporates one
illness, neglects time-correlations (auto correlation and correlations be-
tween miRNAs) and neglects population heterogeneity; (iii) because
synthetic samples are generated from the empirical marginals, this ar-
tificially reduces the uncertainty in the distribution of healthy and sick
patients’; (iv) transition from healthy assumed linear;(v) censoring and



37

study dropouts neglected; (vi) non-disease related changes not taken
into account; (vii) no personalized baseline.

1.6.2 Future research and recommendations
This study shows that it is difficult to prescribe personalized solutions
from uncertain low-density mRNA. More samples are needed to get
reliable results, e.g. though the URIMON study. In the meantime,
our synthetic data can be used to test and validate data analysis and
prediction methods. Conceptual approaches for timely detection of dis-
ease based on temporal evolution of miRNA counts have been discussed
and reviewed (POMDP,mixed effect models). These need to be further
developed. Possibly, a combination of POMDP and mixed effect mod-
els could be a feasible solution. In order to understand the properties
of the data better, quantification of the uncertainty in the measure-
ment process would be very helpful, e.g., repeated measurements on
the same urine sample. in order to be able to characterize the vari-
ability in the mRNA density per-patient, 1 sample per day (say) for
10 healthy persons for a week or two could be collected and analyzed.
Research directions for the future are Statistical Process Control theory
and concepts, such as self-starting control charts to automatically ob-
tain personalized baselines of healthy patients. Combinations of SPC
and Markov Decision Processes and SPC and mixed effect models ex-
ist in other application areas than health. Therefore, we believe that
the combination of POMDP, mixed effect models and SPC is a good
strategy to profit from the best of the three worlds.
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