Macro Legalization in Chip Design

A. ANTONIADIS!, F. BERTRAND?, S. BoRrsT?, F. BucC-
COLIERO?*, E. DONLON®, W. FOKKEMA®, M. KNEZEVIC,
W. MOLTMAKER” AND M. OVERMARS®

Abstract

The design of microchips is a complex process, and is therefore nat-
urally broken down to the design of many smaller components. The
largest such components are referred to as ‘macros’. In these proceed-
ings we investigate the problem of placing macros on a chip optimally,
subject to distance and grid constraints. This problem was formulated
by Synopsis®?. . As the general problem is known to be NP-hard, we
propose several algorithms with various heuristics.

KEYWORDS: Rectangle packing, Chip design, Mixed-integer program-
ming

1University of Twente, The Netherlands

2University of Twente, The Netherlands

3Centrum Wiskunde & Informatica (CWT), The Netherlands

4Vrije Universiteit Amsterdam, The Netherlands

5Technological University Dublin, Ireland

6University of Twente, The Netherlands

"Korteweg-de Vries Institute, University of Amsterdam, The Netherlands
8 University of Twente, The Netherlands

Yurlhttps: //www.synopsys.com /silicon-design.html

83

84 SWI 2022 Proceedings

4.1 Introduction

Advanced silicon chips power the amazing software we rely on every
day. Synopsys® is one of the leader in designing and verifying those
complex chips. In order to design chips, several components, such as
macros, standard cells and connections need to be placed on the chip.
The macros, which can be seen as black-boxes, are the largest blocks.
Because of their size, they are the components that must be placed
in the most efficient way on a chip. Their placement, though, is con-
strained by spacing rules and grid alignment.

Macros should keep from each other either a fixed (small) distance
or at least a (larger) distance. Moreover, they must not overlap with
any other component in the chip.

The macros must align to the grid present on the chip. This con-
straint transforms the problem of macro-placement into a discrete prob-
lem.

The challenge that Synopsys® proposed to SWI 2022 is to design
and implement a macro legalization algorithm. Such algorithm must
generate legal solutions, i.e. a macro placement where spacing rules
and grid alignment are satisfied. Moreover, it must be an eflicient
algorithm: any instance should not take more than 30 minutes to be
solved.

The algorithm should aim at minimizing the macro movement from
the initial configuration to the final legal one. The deviation from the
initial placement must be minimal, because the position of the macro
involves a software problem on top of a hardware one.

The problem proposed is similar to the horizontal rectangle packing
problem, which was proved to be NP-complete in E. D. Demaine and
M. L. Demaine (2007). The instance of the rectangle packing problem
provided by Synopsys® differs from the widely studied one, because
it presents a spacing rule for macros instead of a non-overlap condi-
tion. Similar problems have been studied before Brenner, Struzyna,
and Vygen (2008) and Silvanus (2019). In order to analyse alternative
approaches, we present four algorithms. The first one uses a MIP solver
to tackle the problem. Two proposed algorithms place the macros in
a greedy way and they are therefore called ‘greedy algorithms’. The
last is inspired by Brownian motion, a probabilistic algorithm based on

85

random walks.

In Section 4.2, the problem presented by Synopsys® is formally
introduced in mathematical terms. In Section 4.3.1, the horizontal
rectangle packing problem is formulated as a mixed integer program.

Section 4.3 is devoted to the introduction of the different algorithms
used to solve the problem: the MIP solver, the greedy and the flexible
greedy algorithm and the Brownian motion approach.

The results obtained by three of the four algorithms are presented
in Section 4.4. Due to lack of time, it was not possible to implement
the Brownian motion approach.

4.2 Problem Formulation

We begin by introducing our problem formally. To this end, let C' de-
note the chip on which macros and standard cells are placed. We model
C to be a square lying in the plane R?, equipped with a grid G’ whose
dimensions may depend on the specific instance of the problem. (Note
that G need not be aligned with C'.) We model macros by rectangles in
R2. In the problem at hand we restrict our attention to the placement
of the macros and hence neglect the standard cells.

Definition 4.2.1. Let S be a set of macros. A macro placement of
S is an assignment placing each rectangle representing a macro into C,
without scaling, deforming, or rotating it.

Note that in our definition the macros in a macro placement are
allowed to overlap. Such macro placements are clearly non-physical. In
the problem at hand we are given such a non-physical macro placement,
and are tasked with finding a ‘legal’ macro placement that is ‘close’ to
the given placement. We first define when macro placements are close,
reserving the exact definition of a legal placement for afterwards.

Several choices of metric are possible to encode the distance between
two macro placements. Letting A be one macro in a placement P, we
define (x4 p,ya,p) € R? to be the coordinates of its lower left corner.
We also define w4 to be the perimeter of A.

86 SWI 2022 Proceedings

Definition 4.2.2. Let P, be macro placements of the same set .S
of macros. Using the macro parameters (z4,ya,wa) we define the
following metrics on the space of macro placements of S:

e The linear L1 metric d:

di(P,Q):= Y |zar —zaql+|yar —yael:
AesS

e The weighted linear L1 metric dj 4,:

dw(P,Q) =Y wa(lzar—zagl+yar —vaql).
Aes

e The weighted squared linear L1 metric d ,,:

Ww(P.Q) = wallzar —zaql+lyar—yaql)’
Aes

e The weighted squared L2 metric dg ,,:

d2w(P, Q) : ZU)A zap—72Q) + (Yar —yaQ)’).
AesS

Remark 1. The weighted squared linear L1 metric di ,, defined above
does not satisfy the definition of a metric.

Indeed, the triangle inequality is in general not satisfied. Take for
example a single macro A and consider the following three placements
for such a macro: x4 p =yap =Yar = 0;Zar =TA,Q = Ya,Q = 2.
We obtain that

di (P,Q) =16 > 4 +4=di (P, R) +di ,(R, Q).

An advantage of the weighted metrics from Definition 4.2.2 is that
they prioritize the proximity of larger macros to their original place-
ment. An advantage of the squared metrics is that they prioritize many
small displacements of macros over one large displacement. Both of
these priorities are beneficial to retaining the chip design of the origi-
nal macro placement.

87

Choosing d to be one of the metrics from Definition 4.2.2, we can
formulate the problem of macro legalization as follows: given a macro
placement P, we wish to find a macro placement () that minimizes
d(P,Q), subject to the constraint that) be legal. The definition of
legality is quite involved, and hence we devote the next section to it.

4.2.1 Legal macro placement

We state the definition of a legal macro placement below. We first
introduce some new terminology that will be used to define a legal
macro placement.

Definition 4.2.3. A blockage is a rectangular component of the chip C'
where macros must not be placed. In practice, they represent clusters
of standard elements of the chip. Therefore, blockages can be viewed
as macros which cannot be displaced.

Any macro may have up to four keep-out margins. These are dis-
tances in each of the four directions. These keep-out margins must not
overlap with other macros or keep-out margins.

The chip C is provided with a discrete lattice, which will be called
a grid.

Definition 4.2.4. Let P be a macro placement of a set S of macros,
and let 0 < b < c. We say P is legal if the following constraints on the
placement of the macros are satisfied:

1. Any two macros A, B € S must not overlap.

2. Any two macros A, B € S need to be spaced at exactly a distance
of b or at least a distance of ¢ in either the x- or the y-direction.
This condition is referred to as a spacing rule.

3. Any macro A € S must not overlap with a blockage.

4. Keep-out margins must not overlap with macros, blockages and
other keep-out margins. Note that the spacing rule does not apply
for the keep-out margins.

5. The lower left corner (z4,p,ya,p) of any macro must lie on a
vertex of the grid.

88 SWI 2022 Proceedings

Before we formalize the constraints we define a few more parameters
of macros and blockages.

Definition 4.2.5. Let A € S be any macro. Then we will denote
by l4 and h4 the width and height of the macro. Furthermore, we
define ma,, ma,, ma, and ma, to be the keep-out margins for the
left, bottom, right and top borders of the macro respectively.

Definition 4.2.6. Let E be the set of blockages. For any blockage
e € E, the coordinates of its bottom left corner are given by (ze,ye)-
The width and height are denoted by [l. and h. respectively.

Overlap and spacing constraints

We will start with formalizing the overlap and spacing constraints of the
macros. If the spacing rule is satisfied for any two macros A, B € 5,
this immediately implies that these macros do not overlap. This is
because macros A and B will be separated by at least a distance of
b > 0 in one of the four directions.

To satisty the spacing rule for macros A and B we distinguish multi-
ple cases. Macro A needs to be to the left, right, below or above macro
B. Furthermore, the distance between the macros needs to be exactly
b or at least c¢. This leads to 4-2 = 8 cases, of which at least one needs
to hold. For each direction we can set up an equality (distance exactly
b) or inequality (distance at least c).

To give an example, if macro A is to the left of macro B exactly at
a distance of b, we need that the difference between the right border
T4 + a4 of macro A and the left border xp of macro B is exactly b. In
total, this leads to the following eight constraints, of which at least one

89

constraint has to be satisfied.

a:B—:EA—lA:b
T —Ta—la>c
TAa—2x2g—Ilp =0
ra—zp—Ilp>c
yp —ya —ha=>
yp —ya—ha>c
ya—yp —hp =10
ya—xp—hp>c

Furthermore, we also get 4 inequalities for the keep-out margins, of
which at least one has to be satisfied. Because these inequalities are
similar to the inequalities for the spacing rules, it is tempting to com-
bine these inequalities and only keep the strongest one. However, this
is a simplification. For example, it is possible for two macros to satisfy
the spacing rules in the vertical direction and the keep-out margins in
the horizontal direction, when the macros are placed diagonally with
respect to each other. All in all, it can be considered to combine the
spacing rules with the keep-out margins because it reduces the number
of inequalities, but it might give suboptimal solutions.

4.3 Solution approaches

We will consider four different techniques for obtaining a solution. One
of them consists of solving a Mized Integer Programming (MIP) formu-
lation using a solver. In principle, this is an exact solving method that
obtains optimal solutions.

Because solving the MIP to optimality is not always tractable, we
also consider three different heuristics that all use a MIP-solver as sub-
routine: the greedy algorithm, the flexible greedy algorithm and the
Brownian motion algorithm.

90 SWI 2022 Proceedings

4.3.1 MIP formulation
Objective

If we want our model to be linear, we need to restrict ourselves to
the linear metrics dy and dy . The only problem left to tackle is the
absolute values in the objectives, which are nonlinear. This can easily
be modeled in the following way: we replace every absolute value |al
by a nonnegative variable b and add the constraints b > a and b > —a.
These constraints are equivalent to b > |a|, and because b is minimized
(because it is in the objective), we get b = |al.

Spacing constraints

For each pair of macros, at least one of the spacing constraints given in
Section 4.2.1 has to hold. To model this, we introduce a binary variable
daB,p,s for each p € {z,y}, s € {b,c} and each pair (A, B) of macros.
If dap,p,s = 1 the corresponding constraint has to hold. On the other
hand, if dap p,s = 0 we can simply add a large number M to the part
of the inequality that needs to be larger. To do this for the equalities
we will simply split them into two equivalent inequalities. For every
pair of macros (4, B) and every p € {x,y} this leads to the following
constraints:

g —2a—la+ M1 —dapa.c)>c
g — x4 —la— M1 —dap.p) <b
tp—24—la+MQ—dapgp) >b

Note that if one of the binary variables equals 1, the corresponding
condition must be satisfied. To ensure that at least one constraint
holds, we also need the following inequality.

Z Z (daBps+dBaps) > 1.

pef{z,y} se{b.c}

to ensure that at least one of the eight cases holds.

91

Blockage constraints

The blockage constraints can be added in a similar manner to the MIP
formulation. For each macro-blockage pair (A4, e) € S x E we have four
constraints, of which at least one needs to be active. We again will
introduce a binary variable da.; with j = 1,...,4 for each constraint.
Again using big-M constraints we get

Te— 24 —la—ma, + M(1—dae,) >0,
A —ma, —Te—le+M(1—dae,) >0,
Ye —Ya —ha —ma, + M(1 —dae,) >0,
YA —Mma, — Ye — he + M(1 —dae,) > 0.

We then need the additional constraint that

4
Z dAej >1
j=1

Keepout margin constraints

For the keepout margins the process is similar. We have four constraints
for every pair of macros. We introduce binary variables dap, with
1=29,...12 and obtain constraints

xp—mp, —xA—la—ma, + M(1—dap,)

TA—ma, —xp —Ilp—mp, +M(1 dABm)

Yyp —mp, —ya —ha—ma, + M(1 —dag,,)
(

>0
>0
>0,
Yya —ma, —yp —hp —mp, + M(1 — dABlg)ZO

)

with the additional constraint that

12
Z dap, > 1.
=9

92 SWI 2022 Proceedings

Grid alignment

To enforce that the bottom left corners align with grid points in a MIP
formulation, we can scale grid spacing such that every grid point is
integral. We can then require the variables x4 and y4 to be integers
within the MIP, so they will align with the grid points.

4.3.2 Greedy algorithm

The MIP formulation models the problem correctly, but it might be-
come intractable for large instances. This is mainly due to the fact
that for every pair of macros, we need to add multiple constraints to
prevent overlap. The number of variables will also be quadratic, since
we need binary decision variables for each of these constraints. As a
result, the amount of constraints in the MIP formulation is quadratic
in the number of macros.

Thus, we considered other algorithms such as a greedy algorithm.
The basic idea of the greedy algorithm is to place the macros one by
one, where each next macro does not overlap with all macros that
have already been placed. The algorithm is greedy because each macro
is placed as close as possible to its original location. To implement
the greedy algorithm, we need to clarify two more aspects: how to
determine the order in which the macros are placed and how each macro
is placed.

To place the macros, we used an adapted version of the MIP formu-
lation as described in Section 4.3.1. In this case, we only add variables
for the current macro that has to be placed. The fixed macros are then
treated as fixed parameters. We let A denote the macro to be placed
and Sg the set of fixed macros. Then, we only need to add variables x4
and y4 for the placement and binary variables dap ;s for all B € Sp
to satisfy the overlap and keepout margin constraints. The number of
constraints and variables is then linear in the number of fixed macros.
This should lead to better tractability, however in practice this was not
always the case as can be seen in Section 4.4.2.

We could also use other approaches to do this placement step. In
principle we only need to determine the regions in which the new macro
can be placed to not overlap with the fixed macros. Then we simply

93

calculate the smallest distance to the original location among these
regions. This also allows us to use other metrics such as the Lo metric,
which was not possible in the MIP due to its linearity requirement.

The ordering of the macros is also very important and can have a
large influence on the performance of the algorithm as can be seen in
Section 4.4.2. For instance, if the first macros in the order lead to a
lot of the area being blocked off, we will run into issues when placing
the final macros. However, we also want that large macros are placed
earlier since they have a large impact on the objective. As a result, we
considered different rules for the initial placement, such as macros with
the largest perimeter first, macros closest to the bottom left corner first
and keeping the same ordering from the instance. The blockages were
always put in front and since these do not overlap with each other they
will always be placed on their fixed locations.

To improve on the performance of the algorithm, we also wanted to
iteratively try different orderings. After applying the greedy algorithm
to an ordering, we consider the impact that each macro had on the
solution. We then provide a new ordering of the macros, where macros
with large impacts are placed first. Finally, we run the algorithm again
with this new ordering. We stop this iterative process if we see no
improvement on the solution for some number of iterations.

The final algorithm will be the following.

1. Read the instance P and determine an initial ordering S for the
set of macros S. Also read input parameter max;s., and initialize
Njter = 0.

2. Initialize the set of placed macros Sr as the empty set and the
value of the solution as 0. Then, for each macro A in S we do:

(a) Run the MIP solver on the MIP with fixed macros Sr and
macro to be placed A to obtain the placement of this macro.

(b) Add macro A to the set of placed macros Sp.

(¢) Add the objective of the MIP to the total solution value

3. Obtain the value of the solution of the algorithm.

(a) If the value of the solution is smaller than the current best
solution, set 1, to 0 and continue to step 4.

94 SWI 2022 Proceedings

(b) If the solution value is not better, but njie, < max;te,, in-
crement 1. by 1 and continue to step 4.

(c¢) In the last case where the solution value does not improve
and Ngter > MaTiie, the algorithm is terminated and we
return the best found solution.

4. Reorder the macros according to their impact on the objective to
obtain new ordering S. Return to step 2 using this new ordering
of macros.

A disadvantage of the greedy algorithm is that it does not always
lead to optimal solutions and we also do not obtain a bound of the
gap to the optimal solution. To see this, consider a macro placement
problem where the optimal solution is to move every macro a small
distance away from its original location. For any ordering of macros,
the greedy algorithm will always place the first macro in this ordering
at its original location. Thus, we have no guarantees that the greedy
algorithm will find the optimal solution.

4.3.3 Flexible greedy algorithm

The greedy algorithm described in the previous section fixes the exact
location of a newly placed macro. This can lead to situations where
a macro can not be placed, due to a lack of free space. When this
happens, the algorithm does not find a feasible solution, even if enough
open space could be obtained by moving the already placed macros.
The ‘flexible greedy algorithm’ is a slight modification of the original
greedy algorithm, that tries to solve this issue. It does so, by not fixing
the exact location of a placed macro, but only its position relative to the
other macros. Like in the last section, every iteration of the algorithm
a new macro is added to the problem and the corresponding MIP is
solved. But for an already placed macro A, we no longer require its
position (x4,y4) to be equal to its previous position. Instead, for every
pair of already placed macros, we fix all variables dap s and dpap s
for p € {z,y},s € {b,c}. This leaves us with a larger solution space,
while not making the problem much harder to solve. This is because
the hardness of solving a MIP comes from the integer constraints. By

95

fixing the integer variables corresponding to the already placed macros,
we reduce the problem of placing these macros to an LP.

4.3.4 Brownian motion

The last algorithm we considered is one inspired by Brownian motion,
i.e. a probabilistic algorithm based on random walks meant to approx-
imate the optimal solution.

Remark 2. This kind of heuristic is generally also referred to as sim-
ulated annealing.

The idea behind this algorithm is to let each illegally placed block
‘jiggle’ away from its position according to Brownian motion, i.e. along
a 2-dimensional random walk of its bottom-left corner along the grid.
The severity of the jiggle should be inversely proportional to the weight
w4 of a given macro. As random walks on a 2-dimensional square grid
are expected to stay near the origin on average, it is reasonable to
expect this will have a good chance of minimizing the weighted L1
metric.

As an additional heuristic, we demand that macros which are al-
ready optimally packed should ‘stick together’, so that this optimal
packing is preserved during the Brownian motion even if the cluster of
optimally packed macros is illegally placed. To this end we define a
graph whose components are these clusters:

Definition 4.3.1. Let V be the set of macros. We let G, = (V, Ey)
be the graph whose edge set E, consists of pairs (A, B) of macros such
that the horizontal distance between A and B is exactly b, and A and
B are horizontally adjacent, meaning that the bottom of macro A lies
below the top op macro B and vice versa. Similarly we define G, =
(V, Ey) where E, consists of pairs of macros that are vertically spaced
at distance b and are vertically adjacent. We then let G = (V, E, UE,)
and define a cluster of macros to be a connected component of G. The
weight of a cluster is defined by

w(C) = Z wy.

AeC

96 SWI 2022 Proceedings

If a macro or cluster is illegally placed, the algorithm requires some
information about the direction in which this illegality occurs. This is
made precise as follows:

Definition 4.3.2. Let A be an illegally placed macro or cluster. We
consider the four compass directions {up, down, left, right} in the plane.
We say such a direction x is a direction of illegality for A if some
intersection causing A to be illegally placed occurs in the z-half'® of A.
Note that any intersection defines at least two directions of illegality.

Given these preliminaries, a schematic description of the algorithm is
as follows:

1. Generate the graph G and create clusters according to its con-
nected components.

2. Determine which clusters and macros are illegally placed.
e If there are no such macros or clusters, halt.

3. Let W be the sum of all weight reciprocals 1/w 4 of illegally placed
macros and clusters. Pick an illegally placed macro or cluster A
with probability W/wa4.

4. Determine the directions of illegality of A.

5. Randomly move the macro by 1 grid space (or keep it where it
is), with probabilities depending on the directions of illegality:
see the list of probabilities below.

6. If the new position of A intersects a blockage or lies partially
outside of the chip (and the old position did not), revert the
movement.

7. Update G.

8. Return to step 2.

10By this we mean e.g. the left half or top half.

97

Below is a list prescribing which way to move a macro or cluster with
which probability, depending on its direction of illegality. The proba-
bilities are given in percentages, in the format [up/down/left/right/do
not move|. These probabilities can be tweaked, of course.

e If there is illegality in all directions, we move with probabilities
[20/20/20/20/20].

e If there is illegality in three directions, without loss of generality
left, right, and up, we move with probabilities [5/5/5/65,/20].

o If there is illegality in two directions, there are two subcases:

— These directions are opposite, say left and right. In this case
we move with probabilities [35/35/5/5/20].

— These directions are adjacent, say left and up. In this case
we move with probabilities [5/35/5/35/20].

Remark 3. During the SWI we did not get the chance to imple-
ment this algorithm due to time constraints. Nevertheless, we included
a description of the algorithm here as the Synopsis® representatives
thought it might hold potential.

4.4 Experimental results

The three algorithms that we implemented are solving the full problem
with a MIP-solver, the greedy algorithm and the flexible greedy algo-
rithm. In our implementations we relaxed the discrete grid constraints,
allowing a macro to be placed at every continuous position. We imple-
mented all algorithms in Python, from which we call the MIP-solver.
Python is not a very fast programming language and we also did not
try to optimize the running time of our implementations. However,
in practice we can assume the running time of our algorithm to be
dominated by our calls to the MIP-solver.

4.4.1 Using MIP-solver

Using the MIP-solver, we could not directly solve the larger instances.
This was mainly due to the grid alignment constraints. In some cases,

98 SWI 2022 Proceedings

these grid alignment constraints are incompatible with the small spac-
ing option. This could be solved by preprocessing the instance and
investigating which spacing constraints are valid for which pairs of
macro’s. Using this approach, one could even relax the grid alignment
during the solving process and round the given solution to the grid af-
terwards. This would preserve the b-spacing rules, but it might violate
the c-spacing rules by at most 1 grid-spacing. This could be solved by
increasing the c-spacing rule by half a grid-spacing, at the cost of a
slight loss in the objective function. During the project, we decided to
relax the grid alignment rules and otherwise solve to optimality.

Using a commercial solver, we managed to solve four of the larger
instances in a reasonable time (instance 101, 102, 104 and 106). For
all other large instances, the solver did not produce a reasonably good
solution in the given time.

Because our MIP model is quite basic, we conclude that it might
be possible to solve larger instances, but the modelling choices would
need to be carefully considered. If optimality is required, then heuristic
solutions might be provided at the start, and problem-specific cutting
planes could be added.

The spacing and margin constraints do not have to be added for all
macros because they will never be near each other in a local optimum.
This could be implemented by inspecting the solution afterwards for
any rule violations, and running the model with additional constraints
if any rules were broken. Furthermore, a divide and conquer strategy
could be implemented.

4.4.2 Greedy algorithm

Due to time constraints we did not manage to implement the reordering
of the macros. We instead ran the greedy algorithm only for different
initial orderings of the macros. We applied the greedy algorithms on
both the small and big instances. For the small instances the greedy al-
gorithm found optimal or close to optimal solutions very quickly. How-
ever, this was also the case for the other algorithms, so these are not
very interesting to look at. In this section we will look at instance
101, which is one of the large instances. The initial placement of this
instance is given in Figure 4.1.

99

Figure 4.1: Original placement of macros in instance 101.

The greedy algorithm was applied on this instance for two differ-
ent initial orderings. In the first ordering, the macros were ordered
according to their distance from the origin (bottom left corner of the
placement region), with small distances coming first. In the second
case we put the macros with the largest perimeter first and those with
the smallest perimeter last. The resulting placements can be seen in
Figure 4.2.

From this figure we can see a large difference in the final placement
depending on the ordering. For the ordering according to distance from
the origin the macros are quite close to their original placements, with
only small deviations except for some individual macros. However, the
found solution is not feasible as the macros in the top right corner
overlap. The final placement for the ordering where we consider the
perimeter has a lot of movement of the macros. However, the final
solution is feasible in this case. The likely reason for this difference is
that for the distance ordering we place the macros in a structured way
from the bottom left to the top right. In each placement we often only
need to shift the macros a bit more to the right or top. In the end this
can lead to problems, when we reach the top and right borders and do
not have any space left, because all these small movements add up.

The perimeter ordering is a lot less structured, because larger macros
are not necessarily grouped together. As a result, the available re-

100 SWI 2022 Proceedings

(a) Ordered according to distance (b) Ordered according to perime-
from origin. ter of the macro.

Figure 4.2: Final placements by applying the greedy algorithm on in-
stance 101 for different initial orderings of the macros. Black lines
denote the distances to the original position of the macros.

gion more quickly becomes irregular, making placement of macros quite
hard. But because we placed the large macros first, we do in the end
obtain a feasible solution even if it is suboptimal.

Interestingly, run time was also very different for both orderings.
The greedy algorithm was quite fast for the distance ordering, while the
perimeter ordering led to way longer run times likely for similar rea-
sons. The distance ordering had a runtime of only a few minutes, while
the perimeter ordering took over 20 minutes to place all the macros.
This may be improved by using a different routine to place the macros
instead of the MIP formulation.

A general problem of the greedy algorithm approach is that when
macros become fixed, we cannot move them anymore. Thus, the macros
that are placed first do not move and as such also do not take advantage
of extra space which we need later when the other macros are placed.
Changing the ordering does not always fix this, since then we will simply
have other macros that stay in their place. The overall problem is very
connected, in the sense that changing the position of one macro can
influence macros on the other side of the region. This was apparent in

101

our examples, where we either get a solution that does well for a lot of
macros but in the end is infeasible, because we did not use the available
space, or we get a solution that is feasible but suboptimal because the
final macros have to move a lot. The other solution approaches can
fare better in this aspect.

4.4.3 Flexible greedy algorithm

For the flexible greedy algorithm, we see that it generally finds sub-
stantially better solutions than the greedy algorithm. For example, we
see that in Figure 4.3a the macros are substantially closer to their orig-
inal position, as compared to Figure 4.2. In particular we see that in
Figure 4.2 many macros are at their original position, while there are a
few macros that are very far from it. On the other hand, in Figure 4.3a
most macros are a small distance away from the original position. We
also see that the flexible greedy algorithm finds a feasible solution for
most of our test instances, whereas this was not true for the greedy
algorithm.

Because the MIPs that we need to solve are more complex than in
the greedy algorithm, we observe that the total MIP solving time is
larger. Still, the MIPs are not as large as the MIP-formulation of the
entire problem. This means that it is still tractable to solve very large
instances using the flexible greedy algorithm, even if they could not be
solved in the full MIP approach.

102 SWI 2022 Proceedings

(a) Solution for instancel01, (instance109,
found with the flexible greedy al- found with the flexible greedy al-
gorithm. gorithm.

Figure 4.3: Solutions found by the flexible greedy algorithm. Black
lines denote the distances to the original position of the macros.

4.4.4 Comparison

In Table 4.1 we provide a comparison of the results obtained using the
different algorithms.

103

Instance # Macros Lq-error of found solution
MIP Greedy Flexible Greedy
instance101 59 | 134.70 10566.39 165.65
instance102 59 | 302.28 11092.53 364.34
instance103 131 - 14263.16 3795.64
instancel104 100 | 704.15 2379.79 771.49
instancel105 313 - - 1575.85
instancel06 13 | 101.66 478.86 113.99
instancel07 147 - - 5511.64
instancel108 571 - - 14717.14
instance109 1171 - - 26484.18

Table 4.1: Comparison of the quality of the solutions found using the
three algorithms. If an algorithm was not able to find a feasible solution,
within the time limit, we denote this by a dash.

4.5 Conclusion

Summarizing, we have shown that it is tractable to solve small in-
stances of the macro placement problem to optimality. On the other
hand, for larger instances we have provided several heuristics. The so-
lutions found by these heuristics are not optimal, but in some cases
they still give solutions which do not differ greatly from the optimal
one. However, the quality of these solutions greatly depends on the
chosen heuristic.

We expect that the heuristics we designed may still have room for
improvement. For example, by changing the order in which the macros
are considered. Therefore, we conclude that heuristics may be a promis-
ing way to solve the macro placement problem.

References

Brenner, Ulrich, Markus Struzyna, and Jens Vygen (Sept. 2008). “Bon-
nPlace: Placement of Leading-Edge Chips by Advanced Combinato-

104 SWI 2022 Proceedings

rial Algorithms”. In: IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst. 27.9, pp. 1607-1620. 1ssN: 0278-0070. poI1: 10.1109/
TCAD.2008.927674.

Demaine, Erik D. and Martin L. Demaine (2007). “Jigsaw puzzles, edge
matching, and polyomino packing: connections and complexity”. In:
Graphs Combin. 23.suppl. 1, pp. 195-208. 1ssN: 0911-0119. por1: 10.
1007 /s00373-007-0713-4. URL: https://doi.org/10.1007/
s00373-007-0713-4.

Silvanus, Jannik (2019). “Improved Cardinality Bounds for Rectan-
gle Packing Representations”. PhD thesis. Rheinischen Friedrich-
Wilhelms-Universitdt Bonn.

https://doi.org/10.1109/TCAD.2008.927674
https://doi.org/10.1109/TCAD.2008.927674
https://doi.org/10.1007/s00373-007-0713-4
https://doi.org/10.1007/s00373-007-0713-4
https://doi.org/10.1007/s00373-007-0713-4
https://doi.org/10.1007/s00373-007-0713-4

