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Abstract

Late diagnosis of cancer and cardiovascular diseases often leads to poor
chances of cure at high costs. An approach which has the potential
to improve the status quo by helping to detect diseases early on, and
thereby increase the chances of cure and reduce the costs for treatment,
are longitudinal biomarker measurements of microRNA. In this report,
we investigate the concept of a personalized baseline based on analysis
of variance as well as hierarchical clustering for healthy/sick groups and
individual patients in real data. Furthermore, we discuss mathematical
models for the detection of illnesses from longitudinal miRNA data.
For validation and verification of the proposed methods we develop a
data augmentation strategy to generate a large volume of longitudinal
miRNA data that can be used and continuously updated.

Keywords: miRNA, sequential detection, biomarkers, clustering

1.1 Introduction

Even with advancing medical treatment, cancer and cardiovascular
diseases remain a leading cause of death throughout the world. In
Europe alone, cardiovascular diseases claim more than 60 million po-
tential years of life each year Townsend, Kazakiewicz, Lucy Wright,
et al. (2022). Early detection of such diseases is very important to
improve chances of survival and to decrease medical costs. The com-
pany You2Yourself 15 (Y2Y) is working on a method to enable early
detection of such life-threatening diseases. For this method, urine and
blood samples are periodically taken from a large group of initially
healthy people over two years in a big study. Based on historical in-
cidence, approximately 7% of the participants of this study are ex-
pected to develop a form of cancer, a cardiovascular disease, or a dis-
ease of the central nervous system during the two-year duration of
the study. The samples are screened for a specific type of biomarker
called micro-RNA (miRNA). MiRNAs are small RNAs that play a key
role in post-transcriptional gene regulation Lu and Rothenberg (2018).

15https://you2yourself.com/

https://you2yourself.com/
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Even though different cell types produce the same type of miRNAs,
expression profiles vary by tissue type Ludwig et al. (2016). Changes
in organs (tumor/inflammation/damage) lead to changes in miRNA
profiles, which can be detected in the samples. For example, it has
been observed that miRNA patterns change upon tumor formation,
suggesting that they might be useful biomarkers for detecting cancer
Galvão-Lima, Morais, Valentim, et al. (2021). Taking multiple samples
of the same person over time makes it possible to establish a screening
procedure based on a personal baseline for the miRNA profile of the
blood and urine of the participants. By tracking deviations from that
baseline, one could discover the formation of a disease before the onset
of clear symptoms. Using a personal baseline instead of the current
population based diagnostics is expected to allow for a more sensitive
detection, since the biomarker profiles are unique per individual. Figure
1.1 shows a graphical representation of these steps of the study.

Figure 1.1: Graphical representation on how deviating miRNA
patterns (the biomarkers) end up in a sample. This patient
has a tumor forming in their lung. The miRNA concentrations are
different in the tumor microenvironment compared to other parts of the
lungs. Some of these biomarkers will end up in circulation, changing
the miRNA concentrations in the blood and urine samples as the tumor
develops.

The use of miRNAs from urine as biomarkers has the benefit of
being patient-friendly and non-invasive when compared to other peri-
odic screening methods or examinations. There are other biomarker
options for blood and urine samples, however using miRNA has cer-
tain benefits. Figure 1.2 illustrates how deviating biomarker patterns
detect formation of illnesses. We stress that this figure is a simplified
and idealized representation. In practice, due to the complexity of the
biomarker data from the samples, there are several challenges attached
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to the (statistical) analysis, which we will describe below.

Figure 1.2: Simplified illustration of how biomarker data could
develop over time. The two figures show the biomarker data of an
imaginary patient with one year in between. In January 2023, the
biomarker profile is acceptable in reference to the personal baseline.
In January 2024 however, a few different miRNAs concentrations are
deviating from the personal baseline, indicating that something could
be wrong.

1.1.1 Problem statement and organization of the
report

One main goal of the research of Y2Y is the extraction of disease de-
tection signatures from complex longitudinal measurements of miRNA
profiles. This is difficult because it involves the analysis of longitudinal
data in very high dimensions for which no tailor-made methodology
exists to the best of our knowledge (see the discussion in Section 1.2.3).
A first analysis of the overall project goal led us to define the following
three sub-problems, which will be addressed in this report.

1. For a monitoring approach to work, the (stochastic) behavior
of the miRNA profile of an average healthy person (a baseline)
needs to be explored and put to work as a reference profile. In
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Section 1.4.1 we take a closer look at the notion of a baseline and
specifically address the question whether a personalized baseline
is more suitable than a group or population baseline.

2. Statistical models to detect illnesses and disease progression are
needed once a clear notion of a baseline exists. In Section 1.4.3, we
discuss the potential of Markov models and mixed effects models
in this context.

3. Validation and verification of the proposed analysis tools is impor-
tant. Since to date only very few longitudinal measurements are
currently available, we present a data augmentation strategy in
Section 1.4.2, which allows to generate larger samples of synthetic
data. The approach is based on the existing data and can be fur-
ther optimized as soon as more data will become available. Such
synthetic data allow to systematically study the performance of
any method in the current context in a controlled, yet realistic
setting.

This report is organized as follows. We start with a literature review in
Section 1.2, followed by a description of the available data and related
challenges in Section 1.3. Section 1.4 introduces the approach proposed
to tackle some of the challenges. Section 1.5 presents the numerical
results and Section 1.6 closes the report with preliminary conclusions
and recommendation for future research.

1.2 Literature review

1.2.1 Related work (Medical potential of miRNA
for diagnosis)

Since the earliest evidence of miRNA involvement in human cancer was
presented in Calin (2002), the topic has been investigated in various
studies. A recent review and meta analysis regarding the applicability
in the medical field can be found in Condrat et al. (2020), where it is
anticipated that monitoring miRNAs will become a routine approach in
the development of personalized patient profiles, thus permitting more
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specific therapeutic interventions as compared to existing, traditional
approaches.

One of the two datasets that are analyzed in this report is a cross-
sectional data set of 14 controls and 16 patients with stage III and
stage IV lung cancer (see Section 1.3 for more details). Related to this,
in a meta analysis combining the results of 10 studies, J.-H. Li et al.
(2017) investigate the role of miRNAs for the diagnostic and prognostic
of lung cancer and the results indicate an excellent overall diagnostic
accuracy. Barger and Nana-Sinkam (2015) study miRNAs implicated
in lung cancer in general and discuss their usefulness in clinical appli-
cations, e.g., as tools for diagnosis, prognosis, and emerging targeted
therapeutics.

1.2.2 Related work (Classification and prediction
approaches)

Rincon et al. (2019) propose an ensemble feature selection strategy for
miRNA signatures for robust cancer classification and detection tasks.
They show that a 100-miRNA signature is sufficiently stable to pro-
vide nearly the same classification accuracy as the complete Cancer
Genome Atlas data set (TCGA, Weinstein, Collisson, and al (2013)).
Lopez-Rincon et al. (2020) study a dimensionality reduction and en-
semble classification approach for tumor classification from circulating
miRNA. Or and Veksler-Lublinsky (2021) recently examined the evo-
lution of miRNA interaction rules and investigate whether these rules
are transferable between species using classification methods. Sapre
et al. (2016) investigate whether the microRNA (miRNA) profiling of
urine could be used to detect urothelial carcinoma of the bladder. Sup-
port Vector Machine classifiers with a Student’s t-test feature selection
procedure is adopted for the detection and the results compared to well-
established method (cystoscopy). The authors conclude that miRNA
profiling of urine shows promise for the detection of tumour recurrence.
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1.2.3 Related work (Longitudinal data and mixed
models)

The literature on the analysis of high-dimensional longitudinal data is
rather scarce as pointed out recently by Zhong, J. Li, and Kokoszka
(2021), who consider analysis of variance and change-point detection
in such a setting. While the question of detecting changes over time
in high-dimensional data is clearly related to our situation, the view-
point is an asymptotic one with respect to time (and sample size). The
data in our study were measured at only three time points, using a
large sample approximation therefore seems unreasonable. The view-
point in the latter reference is related to the view-point in time series
analysis, where change point detection in high-dimensions has gained
attention in recent years (see, e.g., Jirak (2015) or Cho and Fryzlewicz
(2015)). However, in the time-series context many measurements over
time are considered and often asymptotic results with respect to time
are employed. This perspective is in contrast not only to the avail-
able measurements to date but also to future monitoring approaches,
where the number of time points will be negligible compared to the
data dimension or number of subjects.

Mixed models have been successfully utilized in the analysis of lon-
gitudinal biometric data and early disease detection. For example, the
predictiveness of ovarian cancer (as a bivalent response variable in de-
pendence of a single biomarker, i.e., a one-dimensional measurement
per time point) of two linear mixed models and a pattern mixture
model based on the linear mixed model have been compared Han et al.
(2020). These models could be extended to deal with the data con-
taining multiple biomarkers and outcomes. However, these methods
depend heavily on normality assumptions, which are questionable in
our context. S. Li, Cai, and H. Li (2021) consider statistical inference
for high-dimensional linear mixed-effects models via a quasi-likelihood
approach. The approach does not rely on strict normality assumptions,
only sub-Gaussian random components are assumed. The method is
based on the Lasso under sparsity conditions on the fixed effects. While
this seems suitable at the first glance, the setting and viewpoint con-
sidered is that of genome-wide association studies, where effects of ge-
netic variants on a measured phenotype is investigated, i.e., additional
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measurements on the subjects are regressed on the high dimensional
measurements.

Furthermore, it is intuitive that the predictiveness of models can
be improved by separation of relevant features and their outcomes, one
example is given in Blackwell et al. (2020). It is therefore important to
distinguish relevant biomarkers and reduce the model dimensions early
on, which is a difficult task in high dimensional data analysis, where
standard methodology such as principle component analysis (PCA) fails
to be valid (see, e.g., Birnbaum et al. (2013), where estimation of the
leading eigenvectors of the covariance matrix is studied under additional
structural assumptions on the covariance matrix).

1.2.4 Conclusion on the literature review

There is a clear gap in the literature concerning readily usable statistical
methodology to analyze longitudinal miRNA data. Derivation of a
fully functioning method is clearly beyond the scope of this workshop.
However, we discuss the potential of Markov models and mixed effects
models in Section 1.4.3 and fit a mixed effects model to a down-scaled
data set (see Section 1.5.5 for the results). The discussion of the existing
literature shows that statistical learning has been successfully applied
in the analysis of miRNA data. To this end, we apply hierarchical
clustering methods to investigate the properties of the data in more
detail. Since a serious limitation to date is the availability of large
scale longitudinal data sets. Therefore, we develop a data augmentation
startegy.

1.3 Description of the data

Two datasets were provided for this study and comprise measurements
of miRNA concentrations in urine samples for two independent exper-
iments. The tow data set comprise:

(1) Longitudinal miRNA samples from healthy patients.

(2) Cross-sectional miRNA samples from both healthy and unhealthy
patients.
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The two datasets will be presented in the next sections.

1.3.1 Longitudinal data
The first data set contains longitudinal data of 1941 miRNA concentra-
tions for 7 healthy subjects over 3 distinct time points. In the following,
these measurements will be denoted by

Y Li,t ∈ R1941, i ∈ {1, . . . , 7}, t ∈ {1, 2, 3}, (1.1)

where the index i denotes the individual and t denotes the time at which
a measurement was made. Since the exact point in time is irrelevant
for this study, t is set to l for the l-th measurement in time for each
individual. To provide a first idea of our data, Table 1.1 provides a
small excerpt of the concentrations of four exemplary miRNAs in two
subjects. The unit is ppm, i.e., parts per million.

Y L1,1 Y L1,2 Y L1,3 Y L2,1 Y L2,2 Y L2,3
131.94 21.47 68.35 0.00 53.03 6.26
27.16 8.05 17.09 0.00 13.26 0.00
38.80 17.45 187.97 190.76 92.80 12.53
7.76 0.00 3.42 0.00 0.00 0.00

Table 1.1: Small excerpt of the longitudinal data of four exemplary
miRNAs.

The data shown in the table already clearly suggest that we are
dealing with a difficult problem. The variation between the concentra-
tions is quite high and miRNAs with low concentrations might not be
measured at all for some individuals, resulting in many zeros. For this
data set, a healthy state is assumed for all the patients because regular
checks did not diagnose major illness, nonetheless, a disease could be
(at least in principle) be progressing without being undetected. Note
that more time points are to be added during the course of the study.

1.3.2 Cross-sectional data
The second data set comprises cross-sectional data of miRNA concen-
trations from 30 subjects, 16 of whom had been diagnosed with stage
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III or IV lung cancer prior to the study, and 14 are healthy. A cut-
off removing all zero-measurements (i.e. zero concentrations over all
subjects) is introduced in the second dataset, leaving 1400 miRNAs,
corresponding to observations

(Y CSi , ki) ∈ R1400 × {0, 1}, i ∈ {1, . . . , 30}. (1.2)

In the above model, the index i denotes the individual, whereas the
variable ki denotes the state of the i-th individual (0 for healthy, 1 for
sick). Note that the cross-sectional data set only has one measurement
per subject, making it unsuitable to investigate subject-specific miRNA
concentrations over time. Nevertheless, this data set has the advantage
of containing both healthy and sick labels and can thus be used to
provide a first idea about the kind of changes in the profiles to expect
as the result of the onset of a severe disease and which miRNAs are
relevant for disease detection in this case.

1.3.3 Difficulties

The use and analysis of miRNA biomarker data comes with manifold
challenges. For instance, one main goal of the research of Y2Y is the ex-
traction of disease detection signatures from complex longitudinal data.
However, statistical methods to analyse such longitudinal studies are
not standard, as our discussion of the related literature in Section 1.2
shows. Moreover, disease signatures are likely to overlap, making the
detection and prognostic tasks even harder to tackle. From the descrip-
tion of the data, is apparent that the data dimension is extremely high
compared to the sample sizes and therefore, methodology from classical
statistics may not be applicable and the viewpoint of high-dimensional
statistics should be assumed (see, e.g., Wainwright (2019) for a com-
prehensive monograph on high-dimensional statistics). Furthermore,
both data sets only contain a small number of samples (7 and 30 sub-
jects, respectively), which makes the results of data exploration analysis
only preliminary, requiring further validation when more samples are
available.
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1.4 The proposed approach

It is a long way to go until a fully developed health monitoring proce-
dure, for which all fundamental and practical issues will be resolved,
can be put to use. This work seeks the first step in this direction by in-
vestigating a generalized framework for health monitoring from miRNA
biomarker samples. Our main contributions to the existing literature
can be summarized as follows:

• A preliminary analysis regarding the concept and feasibility of a
personal vs. a population or group baseline in Section 1.4.1

• We present a data augmentation strategy to generate artificial
data (based on the already existing samples) and test models and
methods on larger data sets in Section 1.4.2.

• We examine and discuss modeling options for disease prognos-
tic and health monitoring from longitudinal bio-markers data in
Section 1.4.3.

We used various techniques (such as hierarchical clustering, classifica-
tion, variance decomposition, statistical tests, and more) to study per-
sonal and population-based prognostic models applicable to the longi-
tudinal and cross-sectional miRNA data sets. We present the outcomes
of the analyses in Section 1.5. Our findings and recommendations for
future research are summarized in Section 1.6.

1.4.1 The concept of a baseline
In mathematical terms, health monitoring can be seen as (sequentially)
testing for deviations of measured miRNA profiles from a suitable ref-
erence profile. In this report, such a reference profile will be referred to
as a baseline and it corresponds to the “typical miRNA pattern of an
average healthy person”.

In this section, we will discuss the concept of a baseline from a statis-
tical perspective to shed more light into the question what a reasonable
notion of a baseline could look like. Furthermore, we will provide an
exploratory analysis of the data in respect to the question whether or
not to use a personal baseline (in contrast to, e.g., a group baseline).
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Mathematical concept of personal and group baseline

The concept of a baseline is essential in order to establish a relative
rather than absolute meaning of the miRNA data. Measurements of
a healthy person will contain measurements of the miRNA concentra-
tions which are typical for this individual in a healthy state. Multiple
measurements of the same person over time will show sampling vari-
ability due to the measurement process and also due to the constitution
of the patient. A baseline needs to take into account both an average
profile (i.e., some measure of centrality of each miRNA) and a mea-
sure of expected variability, as both are needed to judge whether an
observed deviation from the baseline is significant or not.

Intuitively, it seems to be obvious that a personal baseline is prefer-
able over a group baseline. However, an important disadvantage of the
use of a personal baseline is that several measurements of the miRNA
profile of an individual in a healthy state are needed in order to properly
capture the individual profile including the natural, personal variations
in the measured values. In contrast, a group baseline could profit from
many prior measurements, so that already a person’s first measured
miRNA profile could be used for the detection of a disease. The ques-
tion is which of these two approaches is more feasible in practice. Also,
a hybrid approach, combining both personal information and pooled
information across individuals, could be a reasonable approach. Based
on the longitudinal data set described in Section 1.3 we will look into
these question in more detail.

Classification

Longitudinal data allow for the assessment of within individual varia-
tion of the miRNA samples over time. Intuitively, one may think that
two profiles of the same person should be closer to each other than
two profiles of different individuals. To investigate whether this is the
case, an attempt has been made to recognize different groups of sub-
jects using hierarchical (linkage) clustering. The hierarchical clustering
algorithm starts with a point-cloud, {Y Li,t}i,t, say, where every single
measured vector of miRNAs starts as a cluster for itself. In each step
of the algorithm the distances between the clusters are being calculated
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and two clusters with the smallest distance are then merged together.
This is done until only one cluster remains. The implementation of
the algorithm depends, of course, on the notion of distance between
the points (i.e. a metric or some dissimilarity function d between the
points in R1941) and a notion of a distance between the clusters, also
called the linkage function D. Some common linkage functions include
arithmetic, geometric and harmonic averages of distances between sin-
gular points in the two clusters and minimum and maximum of all
the distances. The last two linkage functions give rise to so-called sin-
gle and complete linkage methods, respectively. The results of such
clustering algorithms are dendrograms representing the merging of the
clusters, from which the relevant distances can be read. Besides the
Euclidean (l2) distance or the Manhattan (l1) distance, there are a va-
riety of other metrics and dissimilarity functions available which may
capture the separation of the clusters along selected features better. A
notion of distance suitable for this task should not put much emphasis
on absolute sizes of the components but rather consider the difference
of components relative to their sizes, that is, suitably re-scaled versions
of common norms might be more appropriate in our context. One such
example is the Canberra distance. For vectors u, v ∈ Rp, the Canberra
distance is given as

dCb(u, v) =

p∑
i=1

|ui − vi|
|ui|+ |vi|

.

This distance equalizes the contributions of the smaller and larger com-
ponents and is upper bounded by the dimension p of the space, i.e.,
∥dCb(·, ·)∥∞ ≤ p. The Canberra distance between two vectors is large
if a sparse vector is compared to a non-sparse vector, regardless of the
total size of the components of the non-zero vector. In contrast to the
Euclidean distance it does not result in extremely large values if the
components of one vector are much larger than the components of the
other vector. Table 1.2 and Table 1.3 show distance matrices of the
data vectors shown in Table 1.1, based on the Euclidean distance and
the Canberra distance, respectively. From this it is already obvious that
the notions of nearness are very different between these two distances.
The clustering results are presented in Section 1.5.1.
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Y L1,1 Y L1,2 Y L1,3 Y L2,1 Y L2,2 Y L2,3
Y L1,1 0 114.39 162.53 177.11 203.22 174.82
Y L1,2 114.39 0 177.11 174.82 81.86 17.90
Y L1,3 162.53 177.11 0 177.11 96.53 186.92
Y L2,1 177.11 174.82 70.59 0 112.18 178.34
Y L2,2 203.22 81.86 96.53 112.18 0 93.84
Y L2,3 174.82 17.90 186.92 178.34 93.84 0

Table 1.2: Distance matrix corresponding to the data presented in
Table 1.1, based on the Euclidean distance.

Y L1,1 Y L1,2 Y L1,3 Y L2,1 Y L2,2 Y L2,3
Y L1,1 0 2.64 1.59 3.66 2.18 3.42
Y L1,2 2.64 0 2.71 3.78 1.80 2.28
Y L1,3 1.59 2.71 0 3.01 1.59 3.71
Y L2,1 3.66 3.78 3.01 0 3.13 3.75
Y L2,2 2.18 1.80 1.59 3.13 0 3.40
Y L2,3 3.42 2.28 3.71 3.75 3.40 0

Table 1.3: Distance matrix corresponding to the data presented in
Table 1.1, based on the Canberra distance.

Analysis of variance

From a statistical viewpoint, a personal baseline is preferable over a
group baseline if the within person variation of the profiles is smaller
than the between person variation. Figure 1.3 shows the sample mean
± one sample standard deviation for two exemplary miRNAs for each
of the seven individuals of the longitudinal data set. While the first
miRNA seems to have a high variation between the different individu-
als, the second seems to be dominated by the between groups variation.
A statistical methodology that explores exactly this, is analysis of vari-
ance (ANOVA), which deals with the problem of testing whether the
means of several populations agree. More precisely, a statistical test
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Figure 1.3: sample mean ± one sample standard deviation for two
exemplary miRNAs for each of the seven individuals

problem with the following hypotheses is considered:

H0 : µ1 = . . . = µk vs. H1 : µi ̸= µj for at least one pair i ̸= j.

In the most basic, one-dimensional setting, observations Yi,j , where
i = 1, . . . , k and j = 1, . . . , ni are considered and it is assumed that
the Yi,j are independent and follow a normal distribution with mean µi
and variance σ2. The F statistic is the ratio of the MST and the MSE:

F =
MST

MSE
=

1
k−1

∑k
i=1 ni(Yi· − Y··)

2

1
n−k

∑k
i=1

∑ni

j=1(Yi,j − Yi·)2
.

Here, Yi· and Y·· denote the group means and the overall mean re-
spectively. The numerator and the denominator can be interpreted as
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components of the total variance, the residual sum of squares RSS:

RSS =
1

n

k∑
i=1

ni∑
j=1

(Yi,j − Y··)
2

︸ ︷︷ ︸
total variance

=
1

n

k∑
i=1

ni∑
j=1

(Yi,j − Yi·)
2

︸ ︷︷ ︸
within groups variance

+
1

n

k∑
i=1

ni

ni∑
j=1

(Yi,· − Y··)
2

︸ ︷︷ ︸
between groups variance

.

This means that the F -test compares the within groups variance to
the variance between groups. Under the null hypothesis and the given
a assumptions, the F statistic follows an F distribution with k − 1
and

∑k
i=1(ni − 1) degrees of freedom. We computed the values of

the F statistic for all miRNAs. The results of this analysis can be
found in Section 1.5.2. Clearly, the the validity of the assumptions is
questionable in this context, but all F values in relation to each other
can nonetheless be seen an indicator for stability.

1.4.2 Synthetic data generation mechanism

This section presents a data augmentation strategy to simulate a large-
scale longitudinal study with several volunteers. Data simulators can
support the validation and verification of algorithms and speed up the
development of data analysis pipelines. Furthermore, the analysis of
synthetic data can support decision-making, future data collection and
experiments. Once new empirical evidence is collected, it can tune and
improve the simulator’s accuracy and adherence to reality.

The proposed simulator generates miRNA concentrations from the
empirical marginal distributions conditional to the health state of the
subjects (healthy/sick). Mathematically, this corresponds to sampling
from F̂j(x|y = 0) for healthy patients and F̂j(x|y = 1) for sick patients.
For notation convenience, we referred to miRNA profiles as x and to
the health labels as y, where y = 0 indicates a healthy patient.

For a given label y, a miRNA concentration xj is sampled from the
empirical marginal distribution F̂Xj (x) =

1
n

∑n
i=1 1{xi,j≤x} and realiza-
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tions in-between samples are obtained by linear interpolation. The pro-
cedure work as described next. Consider a vector of miRNA densities
x = (x1, x2, . . . , xd), where d is the number of miRNA concentrations.
A probability value for each entry can be obtained as follows:

(U1, U2, . . . , Ud) = (F1(x1), F2(x2), . . . , Fd(xd)) (1.3)

where the probability values are uniformly distributed in the unit hyper-
cube [0, 1]d. Our simulator uses a copula model, which defines the
dependency between the components of the vector (U1, U2, . . . , Ud):

CΣ(u1, u2, . . . , ud) = P[U1 ≤ u1, U2 ≤ u2, , ..., Ud ≤ ud]. (1.4)

A Gaussian copula is used in this work,

CΣ = FG(Φ
−1(u1),Φ

−1(u2), ...,Φ
−1(ud); Σ), (1.5)

where FG is the joint Gaussian distribution parameterized by the cor-
relation matrix Σ and Φ−1(·) is the inverse cumulative distribution
function of a standard normal random variable. We use an empirical
Σ̂ estimated from data. Once a copula structure is defined, pseudo-
random samples are obtained sampling correlated uniform vectors

(u1, ..., ud) ∼ CΣ̂,

and then mapping these realization to the space of miRNA densities.
This last step is done by inverting of the empirical distributions evalu-
ated at (u1, ..., ud) :

(x1, . . . , xd) =
(
F̂−1
1 (u1), . . . , F̂

−1
d (ud)

)
. (1.6)

An example of the procedure is presented in Figure 1.4, where the
copula structure is assumed to be independent of the health state and
therefore shared among the two groups. Any distribution family can re-
place the empirical marginals F̂j and any copula can replace the heuris-
tic copula for healthy and sick patients. Selecting an appropriate distri-
bution family may be a patient-specific and disease-specific issue that
is not further considered in this work. Furthermore, a Gaussian copula
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family requires a large d×d correlation matrix as an input and this can
complicate numerical tractability given the high dimensionality of the
sample space. The selection of a subset of highly correlated miRNAs
may be advisable for future developments.

Disease progression model and generation of longitudinal data

Our simulation model samples miRNA concentrations of np patients
at time fixed time steps t1, t2, ..., tnt

. A health state index ki(tj), i =
1, .., np is assigned to to the patients at each time tj and patients are as-
sumed healthy at the beginning of the longitudinal study, i.e., ki(t1) = 0
for all i. Several patients will likely develop a sickness during the study.
Thus, we introduce a probabilistic transition model to simulate this
change in population health over time. The following discrete-time
Markov chain defines the transition probabilities:

P[k(tj+1) = 1|k(tj) = 0] = PH2S

where PH2S is the probability that an healthy patient will develop a
sickness in the interval [tj , tj+1]. We assume a sick patient to be unable
to recover during the course of the simulation, i.e., P[k(tj+1) = 1|(tj) =
1] = 1.

Because a sickness fully develops over some time, we propose a
disease progression model that combines the empirical distribution of
healthy and sick patients. The proposed mixture distribution model is
defined as follows:

xj(t) ∼ ρ(t)F̂j(x|k = 0) + (1− ρ(t)) · F̂j(x|k = 1)

where ρ(t) ∈ [0, 1] is a real-valued time-dependent sickness factor quan-
tifying the progression of the disease. A value of ρ(t) = 0 indicates an
healthy patient at time t whilst ρ(t) = 1 indicates a fully developed dis-
ease. We assume ρ(t) to be a linearly increasing function in the interval
ts and ts + ttrn, where y changes from 0 to 1 at ts and ρ(ts + ttrn) = 1
when the sickness is fully developed. Generally speaking, time ttrn is
a random time which depends on the individual characteristics of the
subject and disease. However, for the sake of simplicity, the transition
time ts is a constant input in our model.
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Figure 1.4: Left panel: Correlated samples and inverse empirical CDF
transformation for healthy and sick patients. Right Panel: Transition
from healthy distribution (blue) to a sick distribution (red).

1.4.3 Detection

This section introduces a mathematical framework for cancer disease
predictions that best captures the longitudinal biomarker data. The
proposed approach employs mixed effects models and Partially Observ-
able Markov Decision Processes and, due to a lack of time, the latter is
only mathematically introduced and not directly applied to the disease
prediction problem.

Markov models and POMDPs

In this subsection, we describe a Markovian approach to decision-making
problems under uncertainty. Chapter 4 of Poor and Hadjiliadis (2008)
gives a detailed description of Markov decision processes applications
to sequential detection. Similar ideas have also been explored in the
context of maintenance, see e.g., Linderman, McKone-Sweet, and An-
derson (2005), Mehrafrooz and Noorossana (2011), and Panagiotidou
and Tagaras (2010).

Partially observable Markov decision processes, or POMDPs, pro-
vide a formal framework for the interaction of a decision maker (an
agent) with a stochastic, partially observable environment. That is,
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it provides an agent with the capabilities to reason about both action
uncertainty, as well as state uncertainty. A POMDP is a discrete time
model, in which the agent selects an action at every time step or stage.
It extends the regular Markov decision process (MDP) to settings in
which the state of the environment cannot be observed. It can be for-
mally defined as a tuple M = (S,A,Ω, T ,O, C, h), where S is a (finite)
state space, A is a (finite) set of action, Ω is the space of observations,
T (s, a, s′) = P(s′|s, a) is a transaction probability function that speci-
fies the probability of a next state s′ given a current state s and action
a, O is an observation function, C(s, a, s′) is an immediate cost function
for a particular transition s, a, s′ and h is the horizon of the problem.

The model M can help a decision-maker by recommending good
actions that maximize the long-run revenue of the monitoring systems
or, similarly, that minimize the expected cumulative sum of costs over
the horizon h. The rule that dictates which action the agent must take
in each state is known as the policy, a map π : S → A from the state
space to the space of actions. In this work, we wish to maximize the re-
ward generated by a correct prediction of disease from miRNA readings
(and minimize costs due to wrong predictions and missed alerts).

States and actions

A state vector s ∈ S consists of three parts, s = (x, y, z), where x is the
actual profile of miRNA’s, y denotes the actual health status (stage of
cancer), and z is a binary variable indicating whether or not cancer has
been detected via a traditional diagnostic methods, i.e., an indicator
function defined as follows:

z =

{
0 if no cancer has been detected.
1 if cancer has been detected.

(1.7)

We also define action vectors a ∈ A as binary indicator of diagnosis
based on the miRNA profile:

a =

{
0 if diagnosed as healthy based on miRNA profile
1 if diagnosed as ill based on miRNA profile.

(1.8)
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Observations space and transition probability

The observation function O : S × A× Ω → [0, 1] is a function defining
the probabilistic accuracy of the miRNA counts and an observation ω ∈
Ω is a vector containing the miRNA counts. The transition function
T : S ×A× S → [0, 1] is based on the following probabilities:

• Let p1 : X × Y × X → [0, 1] denote the probabilistic transition
function between miRNA profiles, where X is the space of possible
profiles.

• Let p2 : Y×Y → [0, 1] denote the probabilistic transition function
between different stages of cancer, where Y denotes the set of
possible stages.

• Let p3 : Y → [0, 1] denote the probability that a patient has symp-
toms severe enough to see a doctor and that cancer is successfully
detected given the cancer stage.

Note that T combines the probability of moving from the present
miRNA x to a new concentration x′ and from a present cancer stage
y to a next stage y′. By definition, this is a map from state-to-state
P(s′|s), and diagnostic actions a have no effect on it.

Cost function

The Cost function C : S × A × S → R is a fundamental component of
POMPDs and must be carefully defined. The cost function assigns to
any transition, e.g. from a state-action pair to new state, a cost/reward
function. In this detection problem, a cost. The lower the cost, the
higher is the value of the action taken in a specific state. In this cancer
prediction problem, costs can arise due to delays in detecting (changes
in) the health status of a patients from miRNA counts, costs for false
diagnosis (false positives), and from missed diagnosis (false negatives).
Hence, the selected cost function include three terms:

C(s, a, s′) =


C1(y) if a = 1 and z = 1 (true positive)
C2 if a = 1 and z = 0 (false positive).
C3(y) if a = 0 and z = 1 (missed detection)

(1.9)
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where C1 : Y → R and C3 : Y → R are increasing functions of the
stage of cancer y. The cost C1, is cost associated to correct prediction
of illnesses, this quantity should be negative (a reward) and should
have a large in absolute value in the early stages (higher rewards for an
early detection). The cost C2 is associated to false positive events whilst
cost C3 arise when cancer is not predicted from the miRNA profile but
by other means, e.g., the cancer has detected due to symptoms, but
not detected from the miRNA profile. The cost C3 should be high,
especially for later stages.

Remarks and challenges

Numerical analysis of POMDPs generally assumes a finite horizon for
the analysis and computation of optimal decision-making policies. In
this work, we assume that a person is tested for cancer if either he
develops symptoms severe enough to see a doctor or his/hers miRNA
profile indicates the potential presence of cancer and we define the end
of the horizon as the moment a person is diagnosed with cancer (z = 1).
Unfortunately, the proposed cost function does not take into account
finite horizon and if the disease is not detected within a certain time
frame, it may result too late in magnitude. This consideration is similar
to other discussions on the performance of control charts in statistical
process control, where it has been argued that instead of looking at
average time to detection (called ARL = average run length), it is
more relevant to consider as performance the probability of successful
detection with a certain time frame (called PSD = probability of suc-
cessful detection). The interested reader is reminded to e.g. Kenett
and Pollak (2012) for a detailed discussion on this topic. Another is-
sue concerns the definition of cancer stage y and its relationship with
the diagnostic outcome z of established screening tests. To increasing
the predictive power of this framework, it would be advisable to study
a suitable quantifier for y. Moreover, it would be useful to study a
function y = ψ(x) that maps actual miRNA structure/changes to this
health state, i.e, a model for the minimal change in miRNA counts that
will cause a person transitioning from a healthy to sick state.
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Mixed effect models

Monitoring multiple patients over time on a series of miRNAs leads
to a high-dimensional dataset, multivariate and longitudinal. It can
be large in the number of patients (n), in the number of outcomes (m
miRNA) in the number of time points (T ), all at the same time. Mul-
tivariate longitudinal data come with the challenge of correlations and
heterogeneity: the clustering at individual level, different miRNAs can
have different variances, measurements can be correlated at each time
point for different markers, and counts from the same miRNA can be
correlated in time. Even picturing an idea of such correlations in the
whole dataset is challenging due to the high dimensionality. On the
other hand, the complexity and multidimensionality of the data offers
a wide choice of models and possible methods to detect changes. For
example, beside looking at the shifts and changes in trend of single mi-
croRNAs, it is possible to study how the multiple markers vary together
in the healthy status, and use this to detect changes.

Mixed models offer a flexible framework to capture different forms
of correlation in the data, and to choose the most suitable covariance
structure. The general linear mixed model equation is given by

Yi = Xiβ + Ziui + ei (1.10)

Yi is the matrix of observations for the ith individual, Xi a matrix of
covariates of interest and β the corresponding matrix of coefficients
to be estimated. This term is defined as fixed and captures the trend
over the whole population, as opposed to ui that are called random
effects and model individual-specific characteristics. Normality is often
assumed for the random effects (ui ∼ N(0, τ2)). The design matrix for
the random effects Zi can be a subset of Xi but does not have to be.
Finally there is the error term ei that captures the correlations within
individual. It’s often assumed to be normal, but extensions exists. The
two random effects ui and ei are often assumed to be independent, but
through their covariances it is often possible to investigate the complex
dependency structure of the data. There exist different methods to ac-
commodate the structure of multivariate longitudinal data. One option
is to include a Kronecker product covariance V ⊗ Σ for the repeated
measurements - repeated for each subject on the different miRNAs and
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for multiple points in time, where V models the inter-miRNAs correla-
tions between multiple markers measured at the same time point, and
Σ the intra-marker correlation at different time points (again the same
for all miRNAs). One reasonable structure could involve unstructured
V and autoregressive Σ

σ2
1 σ12 . . . σ1m

σ21 σ2
2 . . . σ2m

. . . . . . . . . . . .
σm1 σm2 . . . σ2

m

⊗


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

. . . . . . . . . . . . . . .
ρT−1 ρT−2 . . . 1 . . .

 .

Such models can easily be fitted to a large number of study partic-
ipants (n) and/or to a long time period (large T ). Most likely the
implementation of mixed models is not easily scalable to a large num-
ber of outcomes (i.e. to the whole set of microRNAs), but they can
already be used to study how a number of biomarkers vary together,
for example a selection that is of particular interest. We will illustrate
this on a set of biomarkers in Section 1.5.5.

Generalized linear mixed models extend the linear mixed model in (1.10)
by introducing a link function g(x) that connects the linear predictor
η = Xiβ + Ziui to the observed outcome

g(E(Yi)) = η, (1.11)

so that also outcomes with distributions other than normal can be mod-
elled (for example binary or count outcomes).

For the current purpose, generalized linear mixed model would be
suitable - since the data at hand are count data. However, given the
time constraints for this initial investigation we have decided to use
the linear mixed model on the log-transformed variable. The main
reason concerns the available implementation of multivariate models for
continuous outcomes with complex covariance structures, but also the
fact that the actual data we are using is derived from count data. The
major limitation of this approach on the other hand is due to the zeros
present in the data (about 30% across the five modelled microRNAs),
that are lost with the log-transformation. Future research should focus
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on adapting existing methods to model the original counts with an
appropriate generalized linear mixed model. Our results can however
be an indication of how these methods could be used and what they
could provide - to enable informed decisions.

1.5 Results

1.5.1 Clustering based on available data

Due to the high dimensionality of the original data, we propose to apply
a dimensionality reduction technique using Kolmogorov-Smirnov (KS)
tests, which are based on the marginal empirical cdfs of the healthy vs.
diseased cohorts. Specifically, we tested the hypotheses

H0,j : FmiRNAj (· |healthy) = FmiRNAj (· | lung cancer)

and we included all miRNAS with p-values below 0.05 in the lower
dimensional space. A subset of 27 miRNAs was selected in this manner:

YKS,i,t ∈ R27, i = 1, . . . , 7, t = 1, 2, 3. (1.12)

Eight of these are also included in the 100 miRNA signature found by
Rincon et al. (2019). Figure 1.5 and Figure 1.6 show two exemplary
outcomes of linkage clusterings of the longitudinal data.

Figure 1.5 shows an arithmetic linkage clustering approach to the
data (1.12), where the Euclidean distance is used to measure the dis-
tance between the vectors YKS,i,t and YKS,k,s. We clearly see that the
nearest neighbors of the measurement YKS,i,t is typically one of the
YKS,k,s with k ̸= i, i.e., measurements between individuals may very
well be closer to each other than measurements of the same individ-
ual at different time points. The outcome of the clustering algorithm
suggests forming three clusters, whose elements are listed in Table 1.4.

Only for person 3 and person 4, all measurements are in the same
cluster. For person 1 the three measurements over time are even as-
signed to three different clusters. If seven clusters are formed, ideally,
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Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Person 7

Figure 1.5: Arithmetic linkage clustering approach to the data (1.12),
where the Euclidean distance is used to measure the distance between
the vectors YKS,i,j and YKS,k,l.

Cluster 1: YKS,1,1, YKS,4,2, YKS,4,1, YKS,4,3, YKS,6,3, YKS,7,2, YKS,7,3

Cluster 2: YKS,1,2, YKS,6,2, YKS,2,3, YKS,3,1, YKS,3,3, YKS,2,2, YKS,7,1,

YKS,3,2, YKS,5,2, YKS,6,1

Cluster 3: YKS,1,3, YKS,5,3, YKS,2,2, YKS,5,1

Table 1.4: Elements of the clusters as formed via average linkage clus-
tering using the Euclidean distance, when three clusters are formed.

one would see that each person forms their own cluster. Instead, we
see that the measurements of no person stay in the same cluster (see
table 1.5).

Arguably, the Euclidean distance might not be the best distance
measure when comparing miRNA profiles. However, while the cluster-
ing results using other metrics look different, the general tendency of
measurements of the same person over time end up in different clus-
ters, remains. To showcase this, Figure 1.6 shows the outcome of the
average linkage clustering based on the Canberra metric. The same can
be observed for different types of metrics and different types of linkage
functions. Furthermore, we performed the same clustering algorithms
for different sub-selections of miRNA, always yielding comparable re-
sults. In particular, we used a selection of five miRNA, which had been
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Cluster 1: YKS,1,1, YKS,4,2, YKS,4,1

Cluster 2: YKS,4,3, YKS,6,3, YKS,7,2, YKS,7,3

Cluster 3: YKS,1,2, YKS,6,2, YKS,2,3, YKS,3,1, YKS,3,3

Cluster 4: YKS,2,2, YKS,7,1, YKS,3,2, YKS,5,2, YKS,6,1

Cluster 5: YKS,1,3

Cluster 6: YKS,5,3

Cluster 7: YKS,2,2, YKS,5,1

Table 1.5: Elements of the clusters as formed via average linkage clus-
tering using the Euclidean distance, when seven clusters are formed.

previously found in an unpublished data set via differential expression
analysis, corresponding to the measurements

YDE,i,t ∈ R5, i = 1, . . . , 7, t = 1, 2, 3, (1.13)

for the longitudinal data set and

Y CS
DE,i ∈ R5, i = 1, . . . , 30, (1.14)

for the cross-sectional data.

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Person 7

Figure 1.6: Arithmetic linkage clustering approach to the data (1.12),
where the Canberra distance is used to measure the distance between
the vectors YKS,i,t and YKS,k,s.

In order to investigate whether such a clustering method can pro-
duce useful results in the context of miRNA analysis, we applied it
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to the cross-sectional data set {Y CS
DE,i | i = 1, . . . , 30, } as well. The

result (Figure 1.7) clearly shows that the observations of sick patients
seem to be comparable and close to each other. In particular, one big
cluster of mainly sick individuals and one big cluster of mainly healthy
individuals and two smaller clusters are suggested. This shows that,
up to fine tuning, such a clustering approach can yield quite reasonable
results.

Figure 1.7: Complete linkage clustering approach to the data (1.14),
where the Canberra metric is used to measure the distance between the
vectors Y CS

DE,i,j and Y CS
DE,k,l.

1.5.2 Analysis of variance
Table 1.6 contains values of the F-statistic and corresponding p-values
for seven exemplary miRNAs for the longitudinal data of the seven in-
dividuals. The two miRNAs from Figure 1.4 are highlighted in blue.
While certainly the normal assumption and the independence assump-
tion are highly questionable for our data, these values give a first indi-
cation of how difficult the problem is.

A histogram of all p-values is shown in Figure 1.8. Clearly, the
region from 0.45 to 0.7 is overpopulated. Most of the miRNAs that
have a p-value in this region are zero for most of the measurements.
If these are filtered out in a pre-processing step, the histogram would
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F-value 1.432 0.870 1.947 3.864 5.661 1.222
p-value 0.271 0.541 0.143 0.017 0.0036 0.352

Table 1.6: Values of the F-statistic and corresponding p-values for seven
exemplary miRNAs for the longitudinal data of the seven individuals.

look uniform with a slight elevation in the first bin, indicating that
indeed, several miRNAs differ substantially between individuals. In
fact, 11, 61 and 108 miRNAs have a p-value of less than 0.01, 0.05 or
0.1, respectively. Selecting the most significant miRNAs according to
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Figure 1.8: Histogram of all p-values from the F-tests.

this criterion, i.e., the most individually different ones, yields a selection
of 11 miRNAs. We applied the complete linkage clustering algorithm to
this sub-selection of miRNAs as well. The results are shown in Figure
1.9 for the Euclidean distance (right) and the Canberra distance (left).

While the clustering based on the Euclidean distance does not see
any strong within person similarities as compared to between person
similarities, the Canberra distance clearly does. When 7 clusters are
formed, six are person specific. Only one cluster consists of all three
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Figure 1.9: complete linkage clustering algorithm to the ANOVA sub-
selection of miRNAs with the Euclidean distance (right) and the Can-
berra distance (left).

measurements of one subject and one additional measurement of an-
other subject. This indicates once more that when comparing miRNA
measurements via their distances, the Canberra distance might be a
suitable measure of proximity.

Our first exploratory data analysis clearly suggests that some miR-
NAs might be better suited for a group baseline, whereas others require
a personal baseline. This is certainly an important topic for future re-
search.

1.5.3 Generation of synthetic data

Algorithmic details

The data generating mechanism has been coded within the MATLAB
environment and in the ’Simulator_miRNA_LongDataGenMech.m’ func-
tion. The DGM takes as input the number of synthetic patientsNpatients,
number of time steps Nt (number of longitudinal measurements), and
a structure containing options and additional parameters for the transi-
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tion model. The simulator generates nt longitudinal samples ofNmiRNA =
1421 miRNA concentrations, health indices (0 health, 1 sick), and dis-
ease progression coefficients ρ(t) for each patient. The option input
structure contains three fields:

1. Option.Tran_prob_Healthy2Sick that represents the healthy to
sick transition probability PH2S .

2. Option.Sick_progression_interval that defines the number of lon-
gitudinal measurements needed for the disease to fully develop.

3. Option.UseCorrelation a Boolean index defining weather or the
empirical correlation Σ̂ has to be used when sampling miRNA
profiles.

Six are the outputs of the data simulator:
i miRNA: cell array [1 × Npatients] with the miRNA samples (grouped

by patients), where each elements is a [NmiRNA ×Nt] matrix.

ii Time vector : Vector of time indices (1, 2, ..., Nt).

iii Health indicators: [Npatients×Nt] matrix of Boolean health indicators.

iv miRNA names: [NmiRNA×1] string containing the names of the miR-
NAs.

v Sick Percentage: [Npatients ×Nt] matrix. Each element in the matrix
defines the sick percentage indicator ρ(t).

vi Data per miRNAType: cell array [1×NmiRNA] with miRNA samples
(grouped by miRNA type), where each element is a [Npatients × Nt]
matrix.

The data generating mechanism runs very efficiently.
If Option.UseCorrelation is set to FALSE, the function took 6.5 sec-
onds to generate data for Npatients = 1000 over a 2 years longitudinal
study (Nt = 8). On the other hand, 16 seconds were needed to generate
Npatients ×Nt = 1000× 8 applying the correlation structure.

Figure 1.10 presents an example of conditional marginal CDF FX(x|y)
for healthy and sick patients and compare simulated data and real mea-
surements. Note that the simulated marginal CDFs are very similar to
the empirical marginal density and, thus, the probabilistic behaviour of
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Figure 1.10: A comparison between simulated and experimental Fx for
six miRNA types. Solid and dashed red lines display, respectively, the
empirical CDFs for sick and healthy patients. The distributions of the
simulated data miRNA are presented by blue CDFs.

the real data (at least the behaviour of the marginals) is well-captured
by the simulator. Figure 1.11 shows correlated samples for the simu-
lated (blue) vs experimental data (red markers). Qualitatively the sim-
ulated samples display overall a reasonable trend, although sub-optimal
fitting can be observed for some of the miRNA intances. As example,
’hsa-let-7a-2-3p’ shows to be strongly correlated (linearly) with ’hsa-
let-7b-3p’, see red markers in the top right panel of Figure 1.11. Unfor-
tunately this strong correlation is partially lost in the synthetic data,
i.e., the blue markers (synthetic samples) are still positively correlated
but with larger dispersion. Despite these limitations, the proposed data
simulation tools offer a valuable contribution and can be used to design,
test and verify predictive models before expensive data collection is car-
ried out. This can speed up algorithmic developments, inform further
data collection, and improve the overall effectiveness of the study.
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Figure 1.11: An example of correlated synthetic miRNA samples (blue
markers) versus the experimental data (red markers). The off-diagonal
panels present pairs-wise comparison of four selected miRNA concen-
trations and the panels on the diagonal compare the marginal distri-
bution of the data (red histograms) and the simulated samples (blue
histograms).

1.5.4 Clustering based on synthetic data
The results for the clustering based on the simulated data are compa-
rable to what we obtained for the real data for the longitudinal data
sets. However, the separation in healthy versus sick seams is slightly
clearer for the real data.

1.5.5 POMDP and mixed effects model
We have fitted a mixed model jointly to a selection of five miRNAs,
YDE,i,t, that were indicated as informative by the problem owner, and
were also in large part found again in the baseline analysis (cf. Sec-
tion 1.4.1). Among the fixed effect we included a distinct intercept
(microRNA-specific average), and a distinct effect for time (taken as
categorical, so that no trend was imposed a priori) for each of the mi-
croRNAs. The model has no random effects, and a Kronecker product
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Figure 1.12: Complete linkage clustering of a synthetic data set.

for the covariance matrix as illustrated in Section 1.4.3. The estimates
of the fixed effect can be found in Table 1.7. For each of the modelled
microRNAs, we report the estimates of the intercept and the estimate
at two time points. The third (last) is taken as reference (= 0). Be-
side the estimate we report the standard error and the corresponding
p-value.

More of interest for the current analysis are the estimated variance-
covariance parameters between microRNAs (Table 1.8), and the esti-
mated autoregressive coefficient for the correlation in time. These can
be found in Table 1.8, together with their standard errors and p-values.
None of the covariances between microRNAs is estimated to be signif-
icantly different from zero.

1.6 Conclusions and Recommendations

1.6.1 Pros and cons of the proposed approaches

We explored the notion of a baseline using a classification approach and
ANOVA. This exploratory data analysis suggests that some miRNAs
might be better suited for a group baseline, whereas others might be
better suited for a personal baseline. Therefore, a hybrid version might
be a good solution and is certainly a direction to think about more in
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Intercept
microRNA estimate std. error pvalue
YDE(1) 2.85 0.50 <.0001
YDE(2) 2.95 0.39 <.0001
YDE(3) 3.04 0.31 <.0001
YDE(4) 4.01 0.33 <.0001
YDE(5) 2.63 0.62 0.0178

Effect of time
microRNA time estimate std. error pvalue
YDE(1) 1 1.63 0.70 0.0335

2 0.44 0.61 0.4877
YDE(2) 1 0.11 0.60 0.8564

2 -0.44 0.49 0.3889
YDE(3) 1 0.35 0.56 0.5469

2 -0.28 0.38 0.4867
YDE(4) 1 0.47 0.58 0.4356

2 -0.20 0.41 0.6239
YDE(5) 1 0.62 1.10 0.6089

2 0.22 0.76 0.7870

Table 1.7: Fixed effect estimates

the future. As a general finding it seems that complete linkage cluster-
ing based on the Canberra metric seems to suitable to find patterns in
our data, whereas other metrics and dissimilarity functions as well as
other linkage functions could not provide convincing results.

We developed a numerical simulator to generate large amount of
synthetic longitudinal miRNA data. The model was used to efficiently
simulate a 2-years long longitudinal study with 103 - 104 volunteers
and only took a few minuets to generate this large amount of labelled
longitudinal samples. We captured correlation between miRNA con-
centrations within the simulated data and the marginal distributions
of the synthetic miRNA realizations well-mimic the probabilistic be-
haviour of the empirical data. Because the simulator provides data for
sick patients and for the disease progression (although only artificial),
it can be conveniently used for the numerical validation and verifica-
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estimate std. error pvalue
VAR( YDE(1)) 1.58 0.56 0.0024
VAR( YDE(2)) 0.74 0.41 0.0374
VAR( YDE(3)) 0.59 0.32 0.0355
VAR( YDE(4)) 0.76 0.30 0.0057
VAR( YDE(5)) 2.15 1.91 0.1310

COV(YDE(1), YDE(2)) 0.40 0.40 0.3156
COV(YDE(1), YDE(3)) -0.02 0.25 0.9393
COV(YDE(1), YDE(4)) -0.10 0.29 0.7357
COV(YDE(1), YDE(5)) -0.13 0.52 0.8046
COV(YDE(2), YDE(3)) 0.11 0.22 0.6103
COV(YDE(2), YDE(4)) 0.33 0.31 0.2827
COV(YDE(2), YDE(5)) -0.46 0.58 0.4305
COV(YDE(3), YDE(4)) 0.50 0.27 0.0696
COV(YDE(3), YDE(5)) -0.12 0.45 0.7910
COV(YDE(4), YDE(5)) -0.87 0.78 0.2598

AR(1) 0.24 0.22 0.2741

Table 1.8: Covariance paramter estimates.

tion of the data analysis tools and to speed up the construction of data
analysis pipelines. For instance, it could be used to test the accuracy
of classification and disease detection methods and models to define a
baseline for healthy patients before more data is collected. Another
advantage of the proposed method is that it is possible to scale up and
tune the simulator with new experimental evidence, e.g., new miRNA
samples and discovered relationships between miRNA concentrations
and specific diseases and illness progressions. The simulation model
has however some limitations, specifically, (i) lack of data and knowl-
edge in literature makes it difficult to define a realistic model; (ii) the
model is relatively simple and for the time being only incorporates one
illness, neglects time-correlations (auto correlation and correlations be-
tween miRNAs) and neglects population heterogeneity; (iii) because
synthetic samples are generated from the empirical marginals, this ar-
tificially reduces the uncertainty in the distribution of healthy and sick
patients’; (iv) transition from healthy assumed linear;(v) censoring and
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study dropouts neglected; (vi) non-disease related changes not taken
into account; (vii) no personalized baseline.

1.6.2 Future research and recommendations
This study shows that it is difficult to prescribe personalized solutions
from uncertain low-density mRNA. More samples are needed to get
reliable results, e.g. though the URIMON study. In the meantime,
our synthetic data can be used to test and validate data analysis and
prediction methods. Conceptual approaches for timely detection of dis-
ease based on temporal evolution of miRNA counts have been discussed
and reviewed (POMDP,mixed effect models). These need to be further
developed. Possibly, a combination of POMDP and mixed effect mod-
els could be a feasible solution. In order to understand the properties
of the data better, quantification of the uncertainty in the measure-
ment process would be very helpful, e.g., repeated measurements on
the same urine sample. in order to be able to characterize the vari-
ability in the mRNA density per-patient, 1 sample per day (say) for
10 healthy persons for a week or two could be collected and analyzed.
Research directions for the future are Statistical Process Control theory
and concepts, such as self-starting control charts to automatically ob-
tain personalized baselines of healthy patients. Combinations of SPC
and Markov Decision Processes and SPC and mixed effect models ex-
ist in other application areas than health. Therefore, we believe that
the combination of POMDP, mixed effect models and SPC is a good
strategy to profit from the best of the three worlds.
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Optimizing Parcel Transportation of PostNL
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Abstract

We consider a multi-commodity transportation problem that arises in
parcel delivery in the Netherlands. We focus on its deterministic vari-
ant and propose a mixed-integer programming model to solve it. We
provide an implementation that is based on a multi-stage solution ap-
proach in order to overcome computational difficulties. This allows us
to solve practical instances to reasonable accuracy.

Keywords: transportation, network design, multi-commodity flow

2.1 Introduction

PostNL is a Netherlands-based mail and parcel delivery company. On
a daily basis, the company collects, sorts and delivers mail and parcels
throughout, mostly, the Netherlands. This report addresses the opti-
mization of the daily transportation of parcels by trucks between sorting
centers in the Netherlands.

1University of Twente, The Netherlands
2Eindhoven University of Technology, The Netherlands
3University of Twente, The Netherlands
4University of Twente, The Netherlands
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These parcels need to be carried between different sorting centers,
which are the hub locations where collected parcels are redistributed
and from which actual delivery to the recipients starts. To avoid having
to send several trucks from every sorting center to every other sorting
center, PostNL runs several so-called cross docks which are simply hubs
in the distribution network. We consider only the transportation of
trolleys, which are the units of identical size that are loaded with parcels
at their origin sorting center and are sent through the network to their
destination sorting center.

Deterministic problem. For the deterministic version of the prob-
lem we are given a set L of sorting locations, of which some have cross-
dock capabilities, which we denote by L× ⊆ L. For every pair i, j ∈ L
(i ̸= j) of locations we know the driving times d(i, j) ∈ R≥ 0 from i to
j. There is a set K of commodities to be sent through the network,
which correspond to the labels that are attached to each trolley sent
through the network. Each such commodity (i, t) ∈ K consists of a
location i ∈ L and a deadline t ∈ R until which all trolleys of this
commodity have to be delivered to their destination i. In the idealized
deterministic setting, a set G of generated trolleys is given. For each
trolley, we are given a tuple (i, t, i′, t′) ∈ G, where i ∈ L denotes the
location where it appears, a release time t at which it appears and
a commodity (i′, t′) ∈ K that indicates to which destination i′ and
by which time t′ it must be delivered. Note that although identical
tuples can occur multiple times, we consider them as unique for ease
of notation. Our implementation deals with multiplicities properly.
Transportation is done by identical trucks that each have a capacity of
U ∈ Z≥ 0 trolleys. Moreover, loading and unloading a truck at some
location takes an amount of time, tload(i) ∈ R≥ 0 and tunload(i) ∈ R≥ 0

for each location i ∈ L, respectively. At each location i ∈ L, at most
cpark(i) ∈ Z≥ 0 trucks can load or unload at the same time. Finally, at
most cout(i) ∈ Z≥ 0 generated trolleys can wait for being transported,
at most cin(i) ∈ Z≥ 0 trolleys can wait at their destination for their
deadline and c×(i) ∈ Z≥ 0 trolleys can wait for further transportation
after they have arrived at some cross dock i ∈ L×.
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Demand forecasts. We were provided with a deterministic instance
of the optimization problem we just described. However, knowledge of
the exact time at which a trolley is ready to be shipped is quite unre-
alistic. In practice, PostNL has a demand forecast whose accuracy is
unknown to the authors. Moreover, there are further sources of uncer-
tainty, e.g., the actual traveling times or breakdowns in any part of the
logistics chain. However, as it will turn out already the deterministic
optimization problem is not easy to solve at all. This justifies our focus
on the perfect-knowledge version of the real-world problem.

Outline. The paper is structured as follows. We first describe our
modeling approach by means of time discretization in Section 2.2. In
that section we also derive a mixed-integer programming model and
refine it as an attempt to deal with robustness problems. Our solution
approach is described in Section 2.3 and the corresponding implemen-
tation prototype is explained in Section 2.4. Our results are presented
in Section 2.5. We conclude our paper with future recommendations
for PostNL in Section 2.6.

2.2 Time discretization and MIP models

In this section we first describe how we discretize the times that are
relevant to our problem. Then we explain an auxiliary graph that is
useful to derive a mixed-integer programming model for the problem.
Finally, a basic and a refined MIP model are described.

2.2.1 Time-expanded network

We first choose a parameter ∆ > 0 and then transform all times t
to t/∆, which we call ticks. In fact, we only consider integer tick
values. To this end, transformed release, loading and unloading times
are rounded up to the next integer, while deadlines are rounded down.
We denote these rounded values by a ∆ superscript, e.g., t∆unload(i) :=
⌈tunload(i)/∆⌉. This rounding procedure is conservative in the sense
that the available time to route a trolley is never increased, while the
time necessary to transport it is never decreased. In particular, if ∆ is
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larger than tload(i) or tunload(i), then rounding up several parameters
yields values that sometimes overestimate the actual transport time by
too much. To resolve this problem, we do not transform the driving
times independently, but instead define the travel ticks as

d∆(i, j) := ⌈(d(i, j) + tload(i) + tunload(j))/∆⌉ .

We denote by tmin ∈ Z and tmax ∈ Z the largest (resp. smallest) tick
such that T := [tmin, tmax] ∩ Z contains all transformed release times
and deadlines.

Auxiliary network. We now define the auxiliary directed graphD =
(V,A) with V = L × T . In particular, we consider multi-commodity
flows (with further restrictions) in D, where a flow unit that traverses
through node (i, t) represents a trolley that is at i in tick t. Note
that the distinction of incoming and outgoing trolleys is easy, since the
commodity k = (j, t) contains the destination information and we have
i = j if and only if the trolley has i as its destination. The arc set of
D consists of arcs A = Amove ∪Astay with

Amove := {((i, t), (j, t′) : i ∈ L, j ∈ L, t, t′ ∈ T, t′ = t+ d∆(i, j)} ,
Astay := {((i, t), (i, t+ 1) : i ∈ L, t, t+ 1 ∈ T} .

We also introduce the following notation:

δout
t (i) := {a ∈ A : a = (i, t, j, t′) for some j ∈ L, t′ ∈ T} ,
δint (i) := {a ∈ A : a = (j, t′, i, t) for some j ∈ L, t′ ∈ T} .

2.2.2 Basic model

We first describe a base model for the problem. The main decision of the
multi-commodity flow interpretation of the trolley routing problem is to
decide how many commodities of a specific type traverse an arc a ∈ A
at a certain point of time. For arcs a ∈ Astay, we need to guarantee
that the capacities of the corresponding location are not exceeded. For
arcs a ∈ Amove, we must ensure that also sufficiently many trucks are
provided for transportation along a. For this reason, we introduce the
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following variables, modeling the previously mentioned decisions. The
truck variables

xa ∈ Z≥0 ∀a ∈ Amove (2.1)

model how many trucks are available for transportation along arc a =
((i, t), (j, t′)). We assume that the loading procedure of these trucks
starts at tick t, i.e., the trucks are not necessarily leaving immediately.
To make sure that capacities of locations are not exceeded, we introduce
inventory variables

sti,k ∈ R≥0 ∀i ∈ L, ∀k ∈ K, ∀t ∈ T, (2.2)

which keep track of the number of trolleys of commodity k that are at
location i at time t. Finally, flow variables

ya,k ∈ R≥0 ∀a ∈ A, ∀k ∈ K (2.3)

model the number of trolleys of commodity k that traverse arc a. Note
that we model the flow of commodities using continuous variables. Pre-
liminary computational experiments showed that switching between
integer and continuous variables does not make much of a difference
for the optima. One potential reason is that actually sending a truck
along an arc often yields enough capacity that the full demand of one
commodity (at the source node) can be sent without the need to split
it across different arcs. However, already for smaller examples the
running time increased significantly when requiring integrality of the
y-variables. Hence, we decided to make them continuous.

Constraints. To make sure that the previously introduced variables
model a solution of the trolley routing problem, we introduce the fol-
lowing constraints. The truck capacity constraints guarantee that the
total number of trolleys sent via an arc a ∈ Amove does not exceed the
capacity f the available trucks:∑

k∈K

ya,k ≤ U · xa, ∀a ∈ Amove. (2.4)

Similarly, we need to make sure that the docking capacities at each
location are not exceeded. That is, the total number of trucks arriving
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and departing from a certain location i must not exceed the number of
docks Di:

t∆unload(i)−1∑
τ=0

∑
a∈δint+τ (i)

xa +

t∆load(i)−1∑
τ=0

∑
a∈δint−τ (i)

xa ≤ Di ∀i ∈ L, ∀t ∈ T. (2.5)

Note that we need to take the summation over τ into account to also
consider the trucks whose unloading (resp. loading) process at location i
has not finished yet until tick t.

When routing the trolleys through the directed graph, we need to
make sure that the routing adheres to a flow structure, i.e., the following
flow balance constraints need to be satisfied for all i ∈ L, k = (j, t′) ∈
K, and t ∈ T \ {0}:

st−1
i,k +

∑
a∈δint (i)

ya,k −
∑

a∈δout
t (i)

ya,k + βin
i,k,t − βout

i,k,t = sti,k, (2.6)

where βin
i,k,t is the number of trolleys of commodity k that are due at

time t at location i, and βin
i,k,t is the number of trolleys created. Note

that these values can be easily computed from the instance data.
Finally, we need to guarantee that the inventory capacities at all

locations are not exceeded. Since locations have different capacities for
outgoing and incoming trolleys, we introduce∑

(j,t′)∈K :
j ̸=i

sti,(j,t′) ≤ cout ∀i ∈ L \ L×, ∀t ∈ T, (2.7)

∑
(j,t′)∈K :

j ̸=i

sti,(j,t′) ≤ c× ∀i ∈ L×, ∀t ∈ T, (2.8)

∑
t′∈T

sti,(i,t′) ≤ cin ∀i ∈ L, ∀t ∈ T. (2.9)

Objective function. Since we are interested in small total driving
times, we

minimize
∑

a=((i,t),(j,t′))∈A

d(i, j)xa. (2.10)
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Note that while we use the rounded driving times (by means of travel
ticks d∆(i, j)) in order to define the auxiliary graph, we use the actual
driving times in the objective function. Hence, the objective values of
computed solutions can be related to the real world and do not require
a conversion from ticks to actual times.

2.2.3 Refined model
Later, we solve the MIP (2.1)–(2.10) for a certain problem instance
with a certain trolley production G. We then evaluate the solution for
different other sets G1, . . . , Gℓ of generated trolleys. The purpose is
to investigate the robustness of the computed solution (x⋆, s⋆, y⋆) with
respect to modified demands. For this we fix the truck decision variables
x = x⋆ and try to find vectors y and s that constitute a transportation
plan for a particular set Gi of generated trolleys. However, it may
happen that the instance for a Gi is infeasible: for instance, after the
last truck from a location leaves, another trolley appears, which has no
chance of reaching its destination.

A similar problem can appear already for the first optimization with
trolley production G if the discretization parameter ∆ is too large: in
this case, there might not be enough time to go to a destination via a
cross dock, and hence much of the transportation would have to arrive
exactly at the deadline which may in turn overload the available docks.

To this end, we extended the base model represented in the previous
section as follows.

Not delivering trolleys. We introduce additional variables

pin
k ∈ R≥ 0 ∀k ∈ K (2.11)

that count the number of trolleys of commodity k that are not delivered.
To match this to the total flow balance in the network, we also introduce
variables

pout
i,k,t ∈ [0, βin

i,k,t] ∀i ∈ L, ∀k ∈ K, ∀t ∈ T, (2.12)

that indicate the number of trolleys if commodity k that would be
produced in i at time t, but that are not released. These variables
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are incorporated into the basic model by adding, to the left-hand side
of (2.6), the term pout

i,k,t as well as subtracting pin
k in case k = (i, t)

holds. The modified constraint shall be denoted by (2.6’). In order to
encourage delivery, we penalize these variables with a certain factor in
the objective. In our case, we used a coefficient of 10, which is larger
than the extra costs of sending a single truck (say, with the considered
trolley) along the longest connection.

Extending the number of depots. For strategic planning, one
may want to analyze the effect of certain restrictions. In particular, it
could be interesting to judge the benefit of increasing certain capacities
such as the sorting capacity of a location or the number of depots.
To illustrate this flexibility of our proposed MIP approach we added a
corresponding extension regarding the depot numbers. To this end, we
introduced variables

ei ∈ R≥ 0 ∀i ∈ L, (2.13)

to indicate extended docking capacity at location i. The modification
of the docking constraint (2.5) is straight-forward: we replace its right-
hand side with Di + ei. The modified constraint shall be denoted
by (2.5’) Again, we add

∑
i∈L 10ei to the objective function in order to

penalize this dock extension. This is solely for demonstration purposes,
and for answering an actual strategic question a suitable value would
have to be found. The objective function (2.10) augmented with all
discussed penalty terms is denoted by (2.10’).

Final model. For further reference we denote the final model as

minimize (2.10’) over (x, s, y, pin, pout, e)

subject to (2.1)–(2.4), (2.5’), (2.6’), (2.7)–(2.13). (2.14)

2.3 Solution approach

Our main challenge is to produce solutions with total travel time as
small as possible. For this reason, we have focused in our approach on
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generating solutions with a small objective value rather than deriving
strong lower bounds on the optimal travel time. To find solutions that
are as realistic as possible, one is interested solving Model (2.14) for
a time discretization of about 15 minutes. Refining the discretization
parameter ∆ to ∆

2 , however, roughly doubles the number of variables
and constraints in Model (2.14). This makes it a challenge to solve
Model (2.14) or finding good solutions for a very fine time discretiza-
tion. Our solution approach therefore consists of multiple phases in
which solutions for coarse time discretizations are used to initialize the
search for good solutions with a finer time discretization.

Phase 1. In Phase 1, we start with a very coarse time discretization
∆ = 120min, and our aim is to find a solution in a very limited amount
of time. To this end, we define a placeholder solution (x⋆, s⋆, y⋆), and
initialize an upper bound on the optimal objective value of u = ∞.
Then, we iteratively attempt to solve Model (2.14). In each iteration,
we specify a time limit of 300 s and provide the model the best known
solution (x⋆, s⋆, y⋆) from a previous iteration as start solution. In the
first iteration, this solution is a placeholder solution which results in
not providing a solution at all. After the time limit is hit, we extract
the best solution found during this iteration. If the objective value of
the latter is smaller than 0.99u, we replace (x⋆, s⋆, y⋆) by the newly
found solution and update u to its objective value. Otherwise, Phase 1
terminates and returns the best solution found so far.

Our motivation for this strategy is based on the observation that
in many cases the solver was not able to improve on a found solution
in a reasonable amount of time. Restarting the entire solution process
and providing the best incumbent, however, the solver was able to very
quickly find an improving solution.

Phase 2. In Phase 2, we refine the time discretization to ∆ = 60min.
The remaining steps are essentially the same as in Phase 1. The only
difference is that we provide also the first iteration a solution, namely
the final solution of Phase 1, and that the time limit for each iteration
is set to 1800 s.
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Phase 3. Phase 3 iteratively attempts to solve Model (2.14) for ∆ =
30min. We provide the entire phase a total time limit of 86 400 s, i.e.,
one day. The remaining structure of Phase 3 is essentially the same as
before except for the following differences. Instead of providing each
iteration a fixed time limit, we work with a solution time limit. That
is, we do not specify an initial time limit for each iteration, but we wait
until the solver has found a solution improving on the initially provided
one. Afterwards, we allow the solver to continue with the search for
better solutions within the solution time limit. Our motivation for this
strategy is that we observed that the solver could rather often quickly
improve on a found solution, i.e., interrupting the solver right after
the first improving solution has been found might have blocked it from
providing even better solutions in a reasonable amount of time. For the
first iteration, the solution time limit has been set to 300 s. In every
succeeding iteration, we double the solution time limit if the newly
found solution does not improve on the previously best known solution
by at least 1%. Otherwise, the same solution time limit is used.

2.4 Instance format and software

We implemented the MIP model (2.14) and the solution approach de-
scribed in the previous section in Python. Our code is available on
github5. Since we cannot publish the actual instances as they contain
some confidential information, we describe the instance format that is
used by our code.

The instances are described in 2 files, one network file and one trolley
file. The former describes all properties of the network except for the
actual trolleys that are sent through it. This separation allowed us to
test a solution for a network with different trolley sets. The network
file has the following format:

U <NUMBER INDICATING THE CAPACITY OF EACH TRUCK>
i <UNLOADING TIME IN HOURS>
o <LOADING TIME IN HOURS>

# List of locations, one per line.
# <NAME> is a string

5https://github.com/discopt/postnl

https://github.com/discopt/postnl
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# <X> is the longitude
# <Y> is the lattitude
# <OUT-CAPAC.> is the outgoing capacity
# <IN-CAPAC.> is the incoming capacity
# <CROSS-CAPAC.> is the crossdocking capacity.
# <NR. OF DOCKS> is the number of docks.
l <NAME> <X> <Y> <OUT-CAPAC.> <IN-CAPAC.> <CROSS-CAPAC.> <NR. OF DOCKS>
...

# List of distances, one per line.
# <i> and <j> are numbers from 0 up to |L|-1.
d <i> <j> <DISTANCE FROM i to j>
...

# List of commodities, one per line.
# c <TARGET LOCATION> <SHIFT NUMBER> <DEADLINE TIME IN HOURS>
...

The trolleys file is a CSV file with ; as a separator character. It
contains one header line and otherwise lines of the form

<NAME1>;<NAME2>;<SHIFT NUMBER>;<TIME>

where first two columns refer to names of some locations i, j ∈ L from
the network file, j together with the shift number constitute a com-
modity, and the last column specifies the time at which the trolley is
spawned.

All our experiments were run on a cluster with 32 Intel Xeon Gold
5217 CPU (3.00GHz) processors, a total of 64GB of RAM running an
Ubuntu Linux with Gurobi 9.5.1rc2 on 4 threads.

2.5 Results

PostNL provided us one instance on that we could test our solution
approach. This instance features 31 locations of which six are classified
as cross docks; the remaining 25 locations are regular sorting centers.
A regular sorting center has a capacity of 400 outgoing and 1200 in-
going trolleys, for cross docks no limits on the trolley capacities are
imposed. Trolleys are assumed to start arriving at sorting centers late
afternoon and need to be shipped to their destination until an indi-
vidually specified time the next morning. Finally, a truck is assumed
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to have a capacity of 48 trolleys and loading (resp. unloading) a truck
takes 10 minutes (resp. 15 minutes).

2.5.1 Solution quality and robustness

One downside of our solution approach is that the produced solution
arguably is not robust against changes in the data. In practice, this
means that arrival times of trolleys are not deterministic and one needs
to find a schedule of trucks that is able to transport as many trolleys
on time while still minimizing total mileage. Therefore, we have tried
increase robustness of our solution by reducing capacities of sorting
centers and/or trucks with which we compute it. If we reduce, for ex-
ample, the outgoing capacities of sorting centers, we are able to deal
with uncertainties of arrival times of trolleys; reducing the truck capac-
ities sends more trucks than strictly needed in the considered scenario.
I.e., if more trolleys arrive than expected, we increase the chance that
all trolleys can be delivered on time.

In our experiments, we used the method described in Section 2.3 to
produce solutions for the original instance (referred to as “original” in
the following) provided by PostNL as well as three variations to add
aspects of robustness to the solution approach. To this end, we either
reduced the outgoing capacity (O) by 25%, the truck capacity (T)
by 8.3%, or both (OT). Table 2.1 summarizes our results. For each of
the three phases, it shows the value of the best known solution (columns
2–4) as well as the number of iterations within this phase (columns 8–
10). Moreover, it provides the best known final dual bound (column 5)
and the corresponding gap (column 6) in the 30 minutes discretization
as well as the final penalty value (column 7) caused by trolleys not
delivered on time.

We can see that the formulations with a very coarse discretization
of ∆ = 120min are able to provide good solutions in terms of total
mileage as the primal bound of Phase 1 is much smaller than the primal
bound of Phases 2 and 3. In particular, the primal bounds of Phase 1
almost match the final dual bounds. From a practical point of view,
however, these solutions are not useful as the trucks can only leave every
two hours. Introducing finer discretizations, Gurobi is only able to find
solutions with a relatively large mileage in comparison to the coarse



53

Table 2.1: Overview of numerical results using the approach of Sec-
tion 2.3.

primal bounds/phase best dual gap penalty #iter./phase

1 2 3 1 2 3

original 1333.6 1743.3 1559.6 1330.6 14.7% 60 4 1 8
O 1371.0 1858.7 1546.1 1326.1 14.2% 40 6 1 8
T 1439.0 1815.9 1641.9 1417.1 13.7% 40 5 1 8
OT 1468.6 1933.7 1775.4 1416.8 20.2% 40 5 1 8

discretization. But note that we cannot conclude that the mileages
from Phase 1 are also the right mileages for Phase 3 as also the arrival
time of trolleys gets discretized.

Reductions of outgoing- or truck capacities lead, in general, to an
increase of value for the best known incumbent solution. The only ex-
ception is the reduction of outgoing capacity, where the objective value
drops slightly in comparison with the original instance. Reducing the
truck capacity (both capacities) leads to increase of the best incum-
bent’s objective value by 5.3% (13.8%). Of course, since we could
solve neither of the four models to optimality, we cannot conclude that
the price of robustness in the sense of the different variations is exactly
this value. However, it indicates that the increase in total mileage and
penalty values can be rather large. For this reason, it might be inter-
esting to explore different ways to robustify our approach to find robust
solutions that have less impact on total mileage.

Table 2.2 depicts the results for different scenarios. A scenario is
given by its trolley production Gi and we evaluated our solution (keep-
ing the truck decision that we computed for our instance) for 9 such
sets, all of which were provided by PostNL. Interestingly, in terms of ro-
bustness the original instance and the one with a reduction of the truck
and the outgoing capacities (OT) gives the most robust results. Unfor-
tunately, we could not determine an actual reason for this surprising
behavior. In fact, for different solutions that we had produced dur-
ing the project the robustness of the original solution was much worse.
Hence, we conjecture that more computation time (per scenario) would
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Table 2.2: Robustness of solution when challenged with different sets
of trolley productions. The column base indicates the number of unde-
livered trolleys and required extra docks for the trolley production that
was used as input for our solution approach. The nine further columns
indicate these amounts for different productions, and the right-most
column shows the average over these 9 instances.

instance obj. value undelivered trolleys / extra docks for different scenarios
base 1 2 3 4 5 6 7 8 9 average

original 1559.6 3/0 17/1 11/3 11/0 18/0 14/0 15/0 16/0 14/1 17/1 15.1/0.7
O 1546.1 2/0 27/0 80/0 16/0 44/0 18/3 47/1 29/0 20/0 49/4 37.0/0.9
T 1641.9 2/0 65/0 75/0 14/0 39/0 21/0 42/0 20/0 16/0 49/0 38.3/0.0
OT 1775.4 2/0 63/0 19/0 7/0 5/0 7/0 2/0 13/0 12/0 10/0 15.6/0.0

be needed to get a fair assessment of the robustness.

2.5.2 Insights from the solution

We now analyze the properties of the computed solution. Figure 2.1
depicts all connections that are used at all over the day.

It is easy to see that the resulting graph is relatively dense, but
also that many of the connections are green or blue, indicating that
at most 2 trucks use the connection. However, we believe that this
large amount of direct connections is due to the disretization error.
If ∆ ≥ 30min, some indirect connections are infeasible, although in
practice they would have been feasible. Since one cannot extract any
detailed information from this map, we also made corresponding maps
that only depict the direct (resp. indirect connections (see Figure 2.2)).

To untangle the large amount of connections from Figure 2.1 even
further, we depict in Figure 2.4 the proposed truck activity on an hourly
basis. First, most of the trucks do not depart very early since there
are not enough trolleys to be transported. Second, there are only a
few late trucks, which is to be expected because the deadlines of the
commodities differ significantly. Note that the figures depict truck ac-
tivity per hour whereas our final time discretization is ∆ = 30min,
that is, solution values are aggregated. Moreover, our very first time
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Figure 2.1: Map with all used connections in our computed solution.
Colors indicate the number of times a connection is used (green: 1
truck; blue: 2 trucks; orange: 3 trucks; red: 4 trucks; purple: ≥ 5
trucks).
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(a) Indirect connections. (b) Direct connections.

Figure 2.2: Maps with all connections in our computed solution that
either involve a cross dock (2.2a) or are direct (2.2b). Colors indicate
the number of times a connection is used (green: 1 truck; blue: 2 trucks;
orange: 3 trucks; red: 4 trucks; purple: ≥ 5 trucks).
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(a) Time slot 1. (b) Time slot 2. (c) Time slot 3. (d) Time slot 4.

(e) Time slot 5. (f) Time slot 6. (g) Time slot 7. (h) Time slot 8.

(i) Time slot 9. (j) Time slot 10. (k) Time slot 11. (l) Time slot 12.

(m) Time slot 13. (n) Time slot 14. (o) Time slot 15. (p) Time slot 16.
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(p) Time slot 17. (q) Time slot 18. (r) Time slot 19. (s) Time slot 20.

Figure 2.4: Maps with connections in our computed solution distributed
over 20 subsequent time intervals of length 1 h each. Time slot 1 is the
hour of the first released trolley, and time slot 20 is the hour in which
the last trucks arrived at their destinations. Colors indicate the number
of times a connection is used (green: 1 truck; blue: 2 trucks; orange: 3
trucks; red: 4 trucks; purple: ≥ 5 trucks).

discretization was ∆ = 120min, which seems to have an effect on the
computed solution: it is apparent that there is much more activity in
time slots 9, 11 and 13 than in 8, 10, 12 or 14. We suspect that indeed
this is because our computation for ∆ = 60min was warm-started from
a solution with ∆ = 120min. This implies that there might be poten-
tial for improving the computed solution by making use of these less
used slots.

Finally, it is worth to have a closer look at how a specific sorting
center is connected. In Figures 2.5 and 2.6, we depict the trucks that
have a particular sorting center as a destination, where we vary the
shifts (and thus the deadlines). Note that while a connection indicates
that there is a truck going from a sorting center to another sorting
center with trolleys for the specific deadline, this does not mean that all
trolleys on such a truck have the same deadline. In particular, if there
is only a direct connection from a location i to destination location j
for two shifts then it is likely that these connections represent the same
truck.

Our first observation is that the overall picture does not change
significantly over subsequent shifts, which may indeed be due to sharing
of trucks. Of course, some connections appear or disappear, which often
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(a) Shift 4. (b) Shift 5. (c) Shift 6. (d) Shift 7.

Figure 2.5: Maps with connections in our computed solution that have
a distribution center in the west as its destination, but have different
shfits/deadlines. Colors indicate the number of times a connection is
used (green: 1 truck; blue: 2 trucks; orange: 3 trucks; red: 4 trucks;
purple: ≥ 5 trucks).

happens for single truck connections (colored in green).

In Figure 2.5 one can see that the indirect connections mainly use a
cross dock that is very close to the destination, and only make limited
use of other cross docks. On the contrary, the destination in the east
(Figure 2.6) does not have a cross dock nearby. While there are 3 cross
docks of similar distance (the three most eastern ones), only one of
them is heavily used. This highlights the optimization potential in our
approach as compared to a solution with only direct connections, i.e.,
that effective aggregation of trolleys can save many truck rides.

We have pointed out a few observations on our computed solution,
but we believe that much more insight can be gained when studying
it with appropriate background knowledge. In particular, an in-depth
comparison to the actual transportation plan is beyond the scope of
this paper. Similarly, an evaluation of the computed solution by means
of a simulation (that might be based on a more realistic model) would
be interesting.
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(a) Shift 1. (b) Shift 2. (c) Shift 3. (d) Shift 4.

Figure 2.6: Maps with connections in our computed solution that have
a distribution center in the east as its destination, but have different
shfits/deadlines. Colors indicate the number of times a connection is
used (green: 1 truck; blue: 2 trucks; orange: 3 trucks; red: 4 trucks;
purple: ≥ 5 trucks).

2.6 Conclusions and recommendations

We believe that our computed solutions indicate that our solution ap-
proach is promising in general. However, we also think that the ability
to solve instances with ∆ ≤ 15min would be crucial to obtain solutions
that are close to being practically relevant. For this reason we would
like to point out relevant work in the literature as we think that this is
most useful for PostNL to finally obtain a method that can be used in
practice.

2.6.1 Column generation

One idea to deal with the large number of variables is to apply column
generation in order to only explicitly work with a subset of the vari-
ables. The other variables are implicitly set to 0, and a so-called pricing
problem has to be solved in order to generate promising columns that
are turned into explicit variables. Computational results are reported
in Gendron and Larose (2014). For a general introduction to column
generation, we refer to Desrosiers and Lübbecke (2005), Lübbecke and
Desrosiers (2005), and Vanderbeck (2005).
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2.6.2 Benders’ reformulation

One idea to avoid a large number of continuous variables (in our case all
but the x-variables) is that of a Benders’ reformulation Benders (1962).
Instead of working with an LP relaxation Q ⊆ Rn+d (where n indicates
the number of x-variables and d the number of other variables), one
works with the projection P ⊆ Rn of Q on the these n variables. The
obvious advantage is that the number of variables is decreased, which
in our case would be a reduction by a factor larger than 200. The
disadvantage is that one has to be able to describe P by means of linear
inequalities, which are usually too many to state explicitly. Hence, one
needs to generate the inequalities describing P on demand, i.e., be able
to find out if a given x̂ lies in P or not, and in the latter case, find a
violated inequality. This problem is known as the separation problem.

One way to do this is to try to lift the vector x̂ to one in Q, i.e., to
solve the LP of finding (x̂, z) ∈ Q for given x̂. If there exists such a z,
then x̂ ∈ P follows. Otherwise, one obtains so-called Farkas multipli-
ersSchrijver (1986, Section 7.3) which can be used to derive a (violated)
inequality in the x-space. This approach still requires to solve an LP
with a huge amount of y-variables and s-variables, which may not be
practical. However, certain classes of inequalities (that are part of P ’s
inequality description) are known for which the separation problem can
be solved more effectively. A prime example are cut-based inequalities:
if one partitions the node set of a network into two sets V1 and V2,
then the total transportation demand for trolleys that originate some-
where in V1 but must be carried to a destination in V2 is known. This
implies that the total number of trucks sent along arcs from V1 to V2
must be at least this total demand divided by the truck capacity. Such
inequalities can be computed using maximum flow algorithms, which is
generally much faster than large LPs. More such inequalities and their
computational impact can be found in Bienstock and Günlük (1996),
Sridhar and Park (2000), Costa, Cordeau, and Gendron (2009), Raack
(2012), and Agarwal and Aneja (2017)
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2.6.3 Solving multi-commodity flow subproblems
Despite the use of known inequalities in the Benders’ approach sketched
above, one may need to solve the underlying multi-commodity flow
problem for a fixed number of trucks x̂. This effectively yields a multi-
commodity flow problem in the (time-expanded network) where the
x̂-vector imposes capacities on certain arcs. While this problem can be
phrased as an LP of which several variables can be removed because of 0
capacity, solution times may still be prohibitively large. An alternative
is to cast the problem by means of path variables Tomlin (1966). More
precisely, for each commodity and suitable path (having a source node
with production and a destination node with demand) there is a path
variable. These path variables also have to be dealt with by means of
column generation. Here, the pricing problem turns out to be a shortest
path problem in the network which can be solved very efficiently. This
approach is also promising because a commodity is typically sent via
very few paths only, even way fewer than one has arcs in the network.
Hence, a final LP solution can be represented very compactly in such
a model and the hope is that also for intermediate solution steps, not
too many such path variables must be considered at the same time.

There also exist other approaches to solve the problem, e.g. based
on Lagrangean relaxation, but care must be taken that proper dual
information can be extracted in order to be able to obtain inequalities
for the Benders’ reformulation. Computational insights appear, for
instance, in Caprara (2015).
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5University of Twente, The Netherlands
6University of Twente, The Netherlands
7University of Twente, The Netherlands
8CWI, The Netherlands
9University of Twente, The Netherlands
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3.1 Introduction

More than half (57%) of the Dutch population experiences foot prob-
lems that can be treated by a pedorthist, i.e., an orthopedic shoe en-
gineer. Approximately 20% of the foot problems can be treated with
orthoses that support the natural shape of the foot. An orthosis is an
externally applied device used to straighten or align parts of the neuro-
muscular system or the skeleton. A smaller group of people with foot
problems require complex orthopedic aids, such as ankle-foot orthoses
or custom-made shoes. Especially in this group, a careful fitting pro-
cess is required to avoid injuries, which may lead to complications and
in the worst case to amputation.

The main goal of the Smartscan project is to develop a high-tech in-
strument to renew the fitting/casting process to overcome shortcomings
of the current method, such as risk of injuries or fittings that depend
on the medicating person. With this new method, the plaster cast of
the foot is replaced by a digital representation of the geometry of the
foot. Based on this digital twin of the foot, it becomes possible to per-
form peer consultation. In addition, it provides the additional option
to compare foot models digitally and remotely.

To create such a digital twin of the foot, an instrumented glove
equipped with a position sensor on each fingertip and pressure sensors in
the palm of the hand will be used. The benefit of an instrumented glove
is that it is a minor change from the current manual approach, where
latex gloves are used by the orthopaedic expert to diagnose the foot
problem. The pressure sensors in the palm area of the glove measure
the pressure applied by the orthopaedic expert during the casting and
correction phase. The acquired pressures will give insight in the amount
of occurring pressure points that can influence the desired corrections.
The position and pressure data can subsequently be used to develop
3D digital computer-aided design (CAD) models that can be further
edited for manufacturing. A digital representation of the geometry of
the foot together with the applied pressures will assist the orthopaedic
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expert in finding the optimal solution.
The main research question is how to clean and control the flow

of data from sensors to CAD in real time in an efficient and effective
manner, as real time processing would provide the operator of the glove
direct feedback.

In the following we report on several approaches to obtain a digital
foot model from sensor data. The methods range from using available
meshing tools, such as meshlab, a signed distance function approach,
and a linear regression model. We show that all approaches yield us-
able models, while the latter two models can be easily used for further
development.

3.2 Procedure

According to NDI10, i.e., the manufacturer of the sensors, electromag-
netic tracking works along the following steps.

1. The transmitter emits a low-intensity, varying electromagnetic
field that establishes the measurement volume.

2. Small currents are induced inside the sensors when they enter the
EM field.

3. These currents are relayed to the sensor interface unit, where they
are amplified and digitized as signals.

4. The signals are transmitted to the system control unit, which cal-
culates each sensor’s position and orientation as a transformation.

The result of this procedure is a data set of the form as illustrated on
the left in Figure 3.1. This particular dataset constructed contains n =
3963 samples in time, measured at a frequency of 50Hz. Each sample
consists of 9 observed parameters for the three sensors attached to
three fingers. The first parameter is time. Next, there are the recorded
x, y and z coordinates of each of the sensors, and the orientation of the
sensors measured with respect to the reference sensor placed on the foot,

10https://www.ndigital.com/technology/em-overview/

https://www.ndigital.com/technology/em-overview/
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in the Euler angles α, β, γ. A scalar quality measure is included that
indicates the amount of metal interference present in the observations
for each finger. Finally, a label is included that should indicate the
state of the examination: ‘off foot’ (0), ‘on foot’ (1), or ‘manipulation’
(2). The latter has not been used since only 0-values are reported. The
data provide a rough outline of a foot but also contain the movement of
the glove towards and away from the foot. To obtain a better estimate
of the foot’s surface at subsequent steps, we filter this data by removing
the initial and final movement of the glove. On the right in Figure 3.1
a filtering procedure has been applied, which has removed the data
points indicated in red. The filtering procedure is explained in more
detail in Cazacu et al. (2021, Section 2).

Figure 3.1: Time series position data of a calibration phase of the glove
with three location sensors. The black dot indicates the origin. Left:
time is indicated by color, from green at the initial time to red at the
terminal time. Right: removed point in pre-applied filtering procedure
are indicated in red, retained points in green.

After having established a reference data set by means of the cal-
ibration phase, the practitioner performs the diagnostics required to
gain the knowledge required to construct a correcting cast. This would
be for instance pressure data that would then be projected on a surface
created out of the point cloud date from the calibration phase. The
calibration data together with the adjustment data should be used to
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generate a CAD model for a correcting cast.

3.3 Methods and results

The filtered point cloud can be associated with a surface in a number
of meaningful ways.

3.3.1 Meshlab

Meshlab11 is open source software that takes as input a point cloud
and outputs a meshed surface. A guideline how to create a surface
mesh from point cloud data can be found here12. The meshed surface
produced in this way by MeshLab associated to the point cloud data
of the foot is shown in Figure 3.2.

Since MeshLab is a ready-to-use package, one can quickly produce
surface meshes from the given point cloud data. MeshLab can export
such meshes in different formats, such as STL, which can then be used
for 3D printing. While the availability of different meshing techniques
is quite powerful, a drawback is that several parameters can be tuned,
which also needs manual interaction by an operator. Moreover, post-
processing the obtained mesh needs further tools. Also, the exploitation
of the available time-data seems not possible.

11https://www.meshlab.net
12http://fabacademy.org/2019/docs/FabAcademy-Tutorials/week05_

3dscanning_and_printing/point_cloud_mesh.html

https://www.meshlab.net
http://fabacademy.org/2019/docs/FabAcademy-Tutorials/week05_3dscanning_and_printing/point_cloud_mesh.html
http://fabacademy.org/2019/docs/FabAcademy-Tutorials/week05_3dscanning_and_printing/point_cloud_mesh.html


70 SWI 2022 Proceedings

Figure 3.2: A MeshLab mesh from pre-filtered point cloud data.

3.3.2 Signed distance function
As uniform function approximators, deep neural networks can learn a
wide class of functions up to arbitrary accuracy under some smoothness
conditions. We propose to represent the volume V bounded by the
manifold Ω by the zero level-set of its signed distance function (SDF)
with arbitrary distance measure d

ϕt(p) : p 7→

{
−d(Ω(t), p) p ∈ V (t),

d(Ω(t), p) p /∈ V (t),

where Ω(t) = {p | ϕt(p) = 0}. We optimize a multi-layer perceptron
neural network that takes as input the x, y and z coordinates of a
point p, and as output provides its SDF value d(Ω, p). In machine
learning research, using a neural network to represent a shape or func-
tion implicitly is known as an implicit neural representation (INR). For
downstream applications, ϕt can be queried at any point p in V to find
the surface representing the polygonal mesh using the marching cubes
algorithm (see Figure 3.3).

Any suitable deep neural network can be trained to become such
a signed distance function by minimising a certain objective over the
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Figure 3.3: Once a SDF is available it can be queried on a voxel grid
to recover an arbitrary amount of points on the manifold p ∈ Ω(t) at
ϕt(p) = 0. Marching cubes algorithm then yields a polygonal surface
mesh which is depicted here.

space W of its trainable parameters. To construct a suitable optimi-
sation objective, we sample points q ∈ Br(p) which lie beyond the
manifold p ∈ Ω:

min
w∈W

log(1 + ϕt,w(p))
2︸ ︷︷ ︸

manifold loss

+λ (∥∇qϕt,w(q)∥ − 1)2︸ ︷︷ ︸
eikonal term

p ∈ Ω(t), q ∈ Br(p)

The manifold loss (compare Figure 3.4) acts as regularisation to
deal with noisy measurement data by penalising negative SDF values,
following the rationale that during tracing of the foot no measurement
can lie inside it. This approach is similar to a (deep-learning-free)
regression model without shape prior which fits the surface implicitly
and by a sophisticated optimisation objective. It was inspired by Gropp
et al. (2020) and uses their open-source code.

Once a SDF ϕt(p) is computed, normal vectors on the manifold are
trivially available as gradient ∇pϕt(p) for p ∈ Ω(t) on the surface. Our
implementation is available on GitHub13.

13https://github.com/sukjulian/swi-fontys-smartscan

https://github.com/sukjulian/swi-fontys-smartscan
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Figure 3.4: Manifold loss f(x) = log(1 + x)2 to deal with noisy point
cloud data conditions the SDF to regard only the innermost points.

x

mleg

0

mfoot

Figure 3.5: A center-line is drawn through the lower leg, and another
one through the foot.

3.3.3 Linear regression model

A simple model of a person’s lower leg and foot

Figure 3.5 shows a picture of a person’s lower leg and foot. We will
use this to make a parametric description of the leg in the case where
the leg does not move. We shall discuss the situation of a moving foot
later.



73

Center line

A center line can be computed directly from the data set to provide a
basis for a linear regression model. This can be achieved by means of
univariate splines for each coordinate direction. This method produces
a single center line through the point cloud. The spline approach can
be applied to any point cloud data set, but is sensitive to the quality
of the data. It can be seen in Figure 3.6, in the picture on the right,
that one side of the toe area has many more data entries than the
other side. This causes the algorithm to produce a center line that is
biased towards the number of measurements in a certain area. This
issue can be addressed in several ways. A first option is to make sure
that the data is evenly distributed, which could be difficult in practice.
A second option is to increase the weight of undersampled areas, but
this also amplifies outliers. A third option is to apply an additional
filter to make the data set more suitable for spline methods.

Figure 3.6: Spline fitted through the point cloud data set. The side
view in the left figure shows a good fit to the data set, but the figure
on the right indicates that the point cloud is undersampled on the left-
hand side of the foot.

Alternatively, one can use principal component analysis to find cen-
ter lines. In Figure 3.1 we can see that the orthopedic expert traces
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out the foot as time progresses. The idea is to regard the point cloud
as time series data, and consider time windows in which the fingers of
the expert have traced out a part of the foot. We choose a window of
100 data points, or two seconds, and consider only the filtered data set.
If we then consider the average position of the data points in each win-
dow, we obtain a cloud of averages which lies inside the foot (see Figure
3.7 top left). This moving average lies somewhat around a center line
through the foot, which is revealed by a principle component analysis.
In particular, the first principle component contains the direction of
the most amount of variance of the moving average, and is shown as
the yellow line in Figure 3.7 top right. This trend allows us to split the
leg from the foot, by considering the plane orthogonal to this line at
the center. We then repeat the procedure of averaging time windows
and principle component analysis for the foot part and leg part sep-
arately, to get two candidate center lines (Figure 3.7 bottom left). In
order to have them intersect, these can be slightly adjusted, producing
the desired center lines (Figure 3.7 bottom right). This method is fully
data driven, since the time window (which we took as 100 data points)
can be chosen depending on the number of data points available.
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Figure 3.7: Point cloud of filtered data set. Top left: moving average in
the inside of the foot is shown. Top right: line along the first principle
component of the moving average is shown, with its center as black dot.
Bottom left: point cloud is split into foot part and leg part and for each
part the line along the first principle component of the corresponding
moving average is shown, with centers as black dots. Bottom right:
The obtained center lines, which intersect at the black dot.

To overcome potential errors in the data-driven centerline extraction
approach, a center line can also be introduced manually. The linear
regression model that we will now describe is based on two center lines.
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The manual procedure uses the point x⃗0, which is the location of the
ankle joint, and the unit vectors m⃗leg and m⃗foot, which indicate the
direction of the leg and foot, respectively. This point and these vectors
are used to define center lines, one through the leg, and one through
the foot. This is illustrated in Figure 3.5 below.

We introduce the additional unit vectors a⃗leg and b⃗leg, which are
both perpendicular to each other and to m⃗leg for the leg. Similarly, we
introduce a⃗foot and b⃗foot for the foot. Using this data, we can describe
the foot and the leg as two separate shapes, each with the following
parametrisation:

x⃗(l, ϕ) = x⃗0 + lm⃗+ (cos(ϕ)⃗a+ sin(ϕ)⃗b)r(l, ϕ), (3.1)

where the symbols have the following meaning

• The origin x⃗0,

• The leg’s orientation: m⃗leg, a⃗leg, (⃗bleg = a⃗leg × m⃗leg),

• The leg’s radius function: rleg(l, ϕ)

• The foot’s orientation: m⃗foot, a⃗foot, (⃗bfoot = a⃗foot × m⃗foot),

• The foot’s radius function: rfoot(l, ϕ)

Now we have two separate problems, which can be coupled because
they share the point x⃗0.

Finding the radius function

For a given orientation, the radius function can be determined. The
samples are converted from x⃗ = (x, y, z) to the parametrization (l, ϕ, r):

l = (x⃗− x⃗0) · m⃗,
ϕ = atan2((x⃗− x⃗0)⃗b, (x⃗− x⃗0)⃗a),

r = |x⃗− x⃗0 − lm⃗|. (3.2)

For the measurement x⃗1, ..., x⃗N this will give parameter pairs (l1, ϕ1), ..., (lN , ϕN )
and measured radii (r1, ..., rN ).
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Next, we introduce a sampling grid for r:

ri,j ≈ r(i ∗ δl, j ∗ δϕ) (3.3)

And we determine interpolation weights for all available (l, ϕ) cou-
ples:

r(l, ϕ) = rfloor(l/δl),floor(ϕ/δϕ)(1− mod(l, δl))(1− mod(ϕ, δϕ))

+ rfloor(l/δl),ceil(ϕ/δϕ)(1− mod(l, δl))mod(ϕ, δϕ)

+ rceil(l/δl),floor(ϕ/δϕ)mod(l, δl)(1− mod(ϕ, δϕ))

+ rceil(l/δl),ceil(ϕ/δϕ)mod(l, δl)mod(ϕ, δϕ) (3.4)

Doing this for the available measurements (ln, ϕn), we get an overde-
termined system  r1

...
rN

 ≈ Interp r, (3.5)

for which r is the least squares solution. We get the result shown in
Figure 3.8.

3.4 Filtered inputs

As mentioned before, the input was given to us by Fontys in two forms:
there were raw and filtered data. The reconstruction process itself,
however, also goes through some iterative filtering: points which are
too far from the reconstructed surface are discarded.

The results are shown in Figure 3.9. When using the filtered data,
the algorithm’s own filtering has to be disabled, to avoid removing
essential parts of the input. With these modifications in the treatment,
the results based on the filtered data seem to be slightly smoother. This
means that the filtering technique that was employed by Fontys did a
slightly better job of removing unreliable data.
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Figure 3.8: 3D pictures of the reconstructed foot using the regression
approach.

Figure 3.9: Left: reconstructed foot made from raw data. Right: re-
constructed foot from filtered data



79

Figure 3.10: A scalar field was mapped onto the surface, and is dis-
played here in false-color.

3.5 Mapping a scalar field on the surface

Eventually, a goal will be to display pressure fields on the 3D image of
the foot. We do not have pressure data, but for now we can use the
’quality’ data that were supplied in the input.

These values (like the pressure values) are time-dependent, and we
visualize only the contributions of a chosen time interval.

To map the scalar field from the data points to the surface, we
first create an array that contains the scalar values in the selected data
points (the ones in the chosen time frame), and zeros elsewhere. Next,
we create a similar array, containing ones in the selected time frame
and zero outside.

Next, we apply the same interpolation to the two arrays as we did
to the input radii r. Finally, the interpolated scalar values are scaled
with the interpolated ones to get the values which we display, like in
Figure 3.10.
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3.6 Conclusion and outlook

Figure 3.11: Side-by-side comparison of reconstructions from the
linear regression model (left) and the implicit neural representation
(right). The resolution of the implicit neural representation recon-
struction is chosen extremely fine at the cost of considerable computa-
tional overhead.

Figure 3.11 shows a comparison of the reconstructed foot model using
the linear regression model and the neural field representation, respec-
tively. We observe that both models represent the overall foot quite
well. Both models depend on certain parameters, which influence the
smoothness of the reconstructed foot, and balance smoothness against
data noise. Both computational models are available in GitHub14 and
can be used for further developments.

A suggested procedure for producing more reliable point clouds us-
ing the glove is by introducing a number of calibration stages. The
calibration stages depend on the glove, for instance, whether pressure
sensors are included or not. If the glove has a combination of location
and pressure sensors, the practitioner should touch the pressure sensor
with each of the location sensors to determine the distance between
the location and the pressure sensors. If the glove touches the foot, a
certain minimal pressure should be applied to distinguish sensor data
touching the foot and outliers.

14https://github.com/sukjulian/swi-fontys-smartscan

https://github.com/sukjulian/swi-fontys-smartscan
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In case the glove only consists of location sensors, the practitioner
shall first create a virtual cast of the foot in its current position. For
that a prescribed number of steps may be performed to allow for sim-
ple preprocessing of the data, i.e., filtering outliers and creating easily
center lines for the linear regression model.
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The design of microchips is a complex process, and is therefore nat-
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4.1 Introduction

Advanced silicon chips power the amazing software we rely on every
day. Synopsys® is one of the leader in designing and verifying those
complex chips. In order to design chips, several components, such as
macros, standard cells and connections need to be placed on the chip.
The macros, which can be seen as black-boxes, are the largest blocks.
Because of their size, they are the components that must be placed
in the most efficient way on a chip. Their placement, though, is con-
strained by spacing rules and grid alignment.

Macros should keep from each other either a fixed (small) distance
or at least a (larger) distance. Moreover, they must not overlap with
any other component in the chip.

The macros must align to the grid present on the chip. This con-
straint transforms the problem of macro-placement into a discrete prob-
lem.

The challenge that Synopsys® proposed to SWI 2022 is to design
and implement a macro legalization algorithm. Such algorithm must
generate legal solutions, i.e. a macro placement where spacing rules
and grid alignment are satisfied. Moreover, it must be an efficient
algorithm: any instance should not take more than 30 minutes to be
solved.

The algorithm should aim at minimizing the macro movement from
the initial configuration to the final legal one. The deviation from the
initial placement must be minimal, because the position of the macro
involves a software problem on top of a hardware one.

The problem proposed is similar to the horizontal rectangle packing
problem, which was proved to be NP-complete in E. D. Demaine and
M. L. Demaine (2007). The instance of the rectangle packing problem
provided by Synopsys® differs from the widely studied one, because
it presents a spacing rule for macros instead of a non-overlap condi-
tion. Similar problems have been studied before Brenner, Struzyna,
and Vygen (2008) and Silvanus (2019). In order to analyse alternative
approaches, we present four algorithms. The first one uses a MIP solver
to tackle the problem. Two proposed algorithms place the macros in
a greedy way and they are therefore called ‘greedy algorithms’. The
last is inspired by Brownian motion, a probabilistic algorithm based on
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random walks.
In Section 4.2, the problem presented by Synopsys® is formally

introduced in mathematical terms. In Section 4.3.1, the horizontal
rectangle packing problem is formulated as a mixed integer program.

Section 4.3 is devoted to the introduction of the different algorithms
used to solve the problem: the MIP solver, the greedy and the flexible
greedy algorithm and the Brownian motion approach.

The results obtained by three of the four algorithms are presented
in Section 4.4. Due to lack of time, it was not possible to implement
the Brownian motion approach.

4.2 Problem Formulation

We begin by introducing our problem formally. To this end, let C de-
note the chip on which macros and standard cells are placed. We model
C to be a square lying in the plane R2, equipped with a grid G whose
dimensions may depend on the specific instance of the problem. (Note
that G need not be aligned with C.) We model macros by rectangles in
R2. In the problem at hand we restrict our attention to the placement
of the macros and hence neglect the standard cells.

Definition 4.2.1. Let S be a set of macros. A macro placement of
S is an assignment placing each rectangle representing a macro into C,
without scaling, deforming, or rotating it.

Note that in our definition the macros in a macro placement are
allowed to overlap. Such macro placements are clearly non-physical. In
the problem at hand we are given such a non-physical macro placement,
and are tasked with finding a ‘legal’ macro placement that is ‘close’ to
the given placement. We first define when macro placements are close,
reserving the exact definition of a legal placement for afterwards.

Several choices of metric are possible to encode the distance between
two macro placements. Letting A be one macro in a placement P , we
define (xA,P , yA,P ) ∈ R2 to be the coordinates of its lower left corner.
We also define wA to be the perimeter of A.
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Definition 4.2.2. Let P,Q be macro placements of the same set S
of macros. Using the macro parameters (xA, yA, wA) we define the
following metrics on the space of macro placements of S:

• The linear L1 metric d1:

d1(P,Q) :=
∑
A∈S

|xA,P − xA,Q|+ |yA,P − yA,Q|.

• The weighted linear L1 metric d1,w:

d1,w(P,Q) :=
∑
A∈S

wA (|xA,P − xA,Q|+ |yA,P − yA,Q|) .

• The weighted squared linear L1 metric d21,w:

d21,w(P,Q) :=
∑
A∈S

wA (|xA,P − xA,Q|+ |yA,P − yA,Q|)2 .

• The weighted squared L2 metric d2,w:

d2,w(P,Q) :=
∑
A∈S

wA
(
(xA,P − xA,Q)

2 + (yA,P − yA,Q)
2
)
.

Remark 1. The weighted squared linear L1 metric d21,w defined above
does not satisfy the definition of a metric.

Indeed, the triangle inequality is in general not satisfied. Take for
example a single macro A and consider the following three placements
for such a macro: xA,P = yA,P = yA,R = 0;xA,R = xA,Q = yA,Q = 2.
We obtain that

d21,w(P,Q) = 16 > 4 + 4 = d21,w(P,R) + d21,w(R,Q).

An advantage of the weighted metrics from Definition 4.2.2 is that
they prioritize the proximity of larger macros to their original place-
ment. An advantage of the squared metrics is that they prioritize many
small displacements of macros over one large displacement. Both of
these priorities are beneficial to retaining the chip design of the origi-
nal macro placement.
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Choosing d to be one of the metrics from Definition 4.2.2, we can
formulate the problem of macro legalization as follows: given a macro
placement P , we wish to find a macro placement Q that minimizes
d(P,Q), subject to the constraint that Q be legal. The definition of
legality is quite involved, and hence we devote the next section to it.

4.2.1 Legal macro placement
We state the definition of a legal macro placement below. We first
introduce some new terminology that will be used to define a legal
macro placement.

Definition 4.2.3. A blockage is a rectangular component of the chip C
where macros must not be placed. In practice, they represent clusters
of standard elements of the chip. Therefore, blockages can be viewed
as macros which cannot be displaced.

Any macro may have up to four keep-out margins. These are dis-
tances in each of the four directions. These keep-out margins must not
overlap with other macros or keep-out margins.

The chip C is provided with a discrete lattice, which will be called
a grid.

Definition 4.2.4. Let P be a macro placement of a set S of macros,
and let 0 ≤ b < c. We say P is legal if the following constraints on the
placement of the macros are satisfied:

1. Any two macros A,B ∈ S must not overlap.

2. Any two macros A,B ∈ S need to be spaced at exactly a distance
of b or at least a distance of c in either the x- or the y-direction.
This condition is referred to as a spacing rule.

3. Any macro A ∈ S must not overlap with a blockage.

4. Keep-out margins must not overlap with macros, blockages and
other keep-out margins. Note that the spacing rule does not apply
for the keep-out margins.

5. The lower left corner (xA,P , yA,P ) of any macro must lie on a
vertex of the grid.
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Before we formalize the constraints we define a few more parameters
of macros and blockages.

Definition 4.2.5. Let A ∈ S be any macro. Then we will denote
by lA and hA the width and height of the macro. Furthermore, we
define mA1

, mA2
, mA3

and mA4
to be the keep-out margins for the

left, bottom, right and top borders of the macro respectively.

Definition 4.2.6. Let E be the set of blockages. For any blockage
e ∈ E, the coordinates of its bottom left corner are given by (xe, ye).
The width and height are denoted by le and he respectively.

Overlap and spacing constraints

We will start with formalizing the overlap and spacing constraints of the
macros. If the spacing rule is satisfied for any two macros A,B ∈ S,
this immediately implies that these macros do not overlap. This is
because macros A and B will be separated by at least a distance of
b ≥ 0 in one of the four directions.

To satisfy the spacing rule for macros A and B we distinguish multi-
ple cases. Macro A needs to be to the left, right, below or above macro
B. Furthermore, the distance between the macros needs to be exactly
b or at least c. This leads to 4 · 2 = 8 cases, of which at least one needs
to hold. For each direction we can set up an equality (distance exactly
b) or inequality (distance at least c).

To give an example, if macro A is to the left of macro B exactly at
a distance of b, we need that the difference between the right border
xA + lA of macro A and the left border xB of macro B is exactly b. In
total, this leads to the following eight constraints, of which at least one
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constraint has to be satisfied.

xB − xA − lA = b

xB − xA − lA ≥ c

xA − xB − lB = b

xA − xB − lB ≥ c

yB − yA − hA = b

yB − yA − hA ≥ c

yA − yB − hB = b

yA − xB − hB ≥ c

Furthermore, we also get 4 inequalities for the keep-out margins, of
which at least one has to be satisfied. Because these inequalities are
similar to the inequalities for the spacing rules, it is tempting to com-
bine these inequalities and only keep the strongest one. However, this
is a simplification. For example, it is possible for two macros to satisfy
the spacing rules in the vertical direction and the keep-out margins in
the horizontal direction, when the macros are placed diagonally with
respect to each other. All in all, it can be considered to combine the
spacing rules with the keep-out margins because it reduces the number
of inequalities, but it might give suboptimal solutions.

4.3 Solution approaches

We will consider four different techniques for obtaining a solution. One
of them consists of solving a Mixed Integer Programming (MIP) formu-
lation using a solver. In principle, this is an exact solving method that
obtains optimal solutions.

Because solving the MIP to optimality is not always tractable, we
also consider three different heuristics that all use a MIP-solver as sub-
routine: the greedy algorithm, the flexible greedy algorithm and the
Brownian motion algorithm.
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4.3.1 MIP formulation

Objective

If we want our model to be linear, we need to restrict ourselves to
the linear metrics d1 and d1,w. The only problem left to tackle is the
absolute values in the objectives, which are nonlinear. This can easily
be modeled in the following way: we replace every absolute value |a|
by a nonnegative variable b and add the constraints b ≥ a and b ≥ −a.
These constraints are equivalent to b ≥ |a|, and because b is minimized
(because it is in the objective), we get b = |a|.

Spacing constraints

For each pair of macros, at least one of the spacing constraints given in
Section 4.2.1 has to hold. To model this, we introduce a binary variable
dAB,p,s for each p ∈ {x, y}, s ∈ {b, c} and each pair (A,B) of macros.
If dAB,p,s = 1 the corresponding constraint has to hold. On the other
hand, if dAB,p,s = 0 we can simply add a large number M to the part
of the inequality that needs to be larger. To do this for the equalities
we will simply split them into two equivalent inequalities. For every
pair of macros (A,B) and every p ∈ {x, y} this leads to the following
constraints:

xB − xA − lA +M(1− dAB,x,c) ≥ c

xB − xA − lA −M(1− dAB,x,b) ≤ b

xB − xA − lA +M(1− dAB,x,b) ≥ b

Note that if one of the binary variables equals 1, the corresponding
condition must be satisfied. To ensure that at least one constraint
holds, we also need the following inequality.∑

p∈{x,y}

∑
s∈{b,c}

(dAB,p,s + dBA,p,s) ≥ 1.

to ensure that at least one of the eight cases holds.
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Blockage constraints

The blockage constraints can be added in a similar manner to the MIP
formulation. For each macro-blockage pair (A, e) ∈ S×E we have four
constraints, of which at least one needs to be active. We again will
introduce a binary variable dAej with j = 1, . . . , 4 for each constraint.
Again using big-M constraints we get

xe − xA − lA −mA3
+M(1− dAe1) ≥ 0,

xA −mA1
− xe − le +M(1− dAe2) ≥ 0,

ye − yA − hA −mA4
+M(1− dAe3) ≥ 0,

yA −mA2
− ye − he +M(1− dAe4) ≥ 0.

We then need the additional constraint that

4∑
j=1

dAej ≥ 1

Keepout margin constraints

For the keepout margins the process is similar. We have four constraints
for every pair of macros. We introduce binary variables dABi

with
i = 9, . . . 12 and obtain constraints

xB −mB1
− xA − lA −mA3

+M(1− dAB9
) ≥ 0,

xA −mA1
− xB − lB −mB3

+M(1− dAB10
) ≥ 0,

yB −mB2
− yA − hA −mA4

+M(1− dAB11
) ≥ 0,

yA −mA2
− yB − hB −mB4

+M(1− dAB12
) ≥ 0,

with the additional constraint that

12∑
i=9

dABi
≥ 1.
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Grid alignment

To enforce that the bottom left corners align with grid points in a MIP
formulation, we can scale grid spacing such that every grid point is
integral. We can then require the variables xA and yA to be integers
within the MIP, so they will align with the grid points.

4.3.2 Greedy algorithm

The MIP formulation models the problem correctly, but it might be-
come intractable for large instances. This is mainly due to the fact
that for every pair of macros, we need to add multiple constraints to
prevent overlap. The number of variables will also be quadratic, since
we need binary decision variables for each of these constraints. As a
result, the amount of constraints in the MIP formulation is quadratic
in the number of macros.

Thus, we considered other algorithms such as a greedy algorithm.
The basic idea of the greedy algorithm is to place the macros one by
one, where each next macro does not overlap with all macros that
have already been placed. The algorithm is greedy because each macro
is placed as close as possible to its original location. To implement
the greedy algorithm, we need to clarify two more aspects: how to
determine the order in which the macros are placed and how each macro
is placed.

To place the macros, we used an adapted version of the MIP formu-
lation as described in Section 4.3.1. In this case, we only add variables
for the current macro that has to be placed. The fixed macros are then
treated as fixed parameters. We let A denote the macro to be placed
and SF the set of fixed macros. Then, we only need to add variables xA
and yA for the placement and binary variables dAB,p,s for all B ∈ SF
to satisfy the overlap and keepout margin constraints. The number of
constraints and variables is then linear in the number of fixed macros.
This should lead to better tractability, however in practice this was not
always the case as can be seen in Section 4.4.2.

We could also use other approaches to do this placement step. In
principle we only need to determine the regions in which the new macro
can be placed to not overlap with the fixed macros. Then we simply
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calculate the smallest distance to the original location among these
regions. This also allows us to use other metrics such as the L2 metric,
which was not possible in the MIP due to its linearity requirement.

The ordering of the macros is also very important and can have a
large influence on the performance of the algorithm as can be seen in
Section 4.4.2. For instance, if the first macros in the order lead to a
lot of the area being blocked off, we will run into issues when placing
the final macros. However, we also want that large macros are placed
earlier since they have a large impact on the objective. As a result, we
considered different rules for the initial placement, such as macros with
the largest perimeter first, macros closest to the bottom left corner first
and keeping the same ordering from the instance. The blockages were
always put in front and since these do not overlap with each other they
will always be placed on their fixed locations.

To improve on the performance of the algorithm, we also wanted to
iteratively try different orderings. After applying the greedy algorithm
to an ordering, we consider the impact that each macro had on the
solution. We then provide a new ordering of the macros, where macros
with large impacts are placed first. Finally, we run the algorithm again
with this new ordering. We stop this iterative process if we see no
improvement on the solution for some number of iterations.

The final algorithm will be the following.

1. Read the instance P and determine an initial ordering S̃ for the
set of macros S. Also read input parameter maxiter and initialize
niter = 0.

2. Initialize the set of placed macros SF as the empty set and the
value of the solution as 0. Then, for each macro A in S̃ we do:

(a) Run the MIP solver on the MIP with fixed macros SF and
macro to be placed A to obtain the placement of this macro.

(b) Add macro A to the set of placed macros SF .
(c) Add the objective of the MIP to the total solution value

3. Obtain the value of the solution of the algorithm.

(a) If the value of the solution is smaller than the current best
solution, set niter to 0 and continue to step 4.
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(b) If the solution value is not better, but niter < maxiter, in-
crement niter by 1 and continue to step 4.

(c) In the last case where the solution value does not improve
and niter > maxiter the algorithm is terminated and we
return the best found solution.

4. Reorder the macros according to their impact on the objective to
obtain new ordering S̃. Return to step 2 using this new ordering
of macros.

A disadvantage of the greedy algorithm is that it does not always
lead to optimal solutions and we also do not obtain a bound of the
gap to the optimal solution. To see this, consider a macro placement
problem where the optimal solution is to move every macro a small
distance away from its original location. For any ordering of macros,
the greedy algorithm will always place the first macro in this ordering
at its original location. Thus, we have no guarantees that the greedy
algorithm will find the optimal solution.

4.3.3 Flexible greedy algorithm

The greedy algorithm described in the previous section fixes the exact
location of a newly placed macro. This can lead to situations where
a macro can not be placed, due to a lack of free space. When this
happens, the algorithm does not find a feasible solution, even if enough
open space could be obtained by moving the already placed macros.

The ‘flexible greedy algorithm’ is a slight modification of the original
greedy algorithm, that tries to solve this issue. It does so, by not fixing
the exact location of a placed macro, but only its position relative to the
other macros. Like in the last section, every iteration of the algorithm
a new macro is added to the problem and the corresponding MIP is
solved. But for an already placed macro A, we no longer require its
position (xA, yA) to be equal to its previous position. Instead, for every
pair of already placed macros, we fix all variables dAB,p,s and dBA,p,s
for p ∈ {x, y}, s ∈ {b, c}. This leaves us with a larger solution space,
while not making the problem much harder to solve. This is because
the hardness of solving a MIP comes from the integer constraints. By
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fixing the integer variables corresponding to the already placed macros,
we reduce the problem of placing these macros to an LP.

4.3.4 Brownian motion

The last algorithm we considered is one inspired by Brownian motion,
i.e. a probabilistic algorithm based on random walks meant to approx-
imate the optimal solution.

Remark 2. This kind of heuristic is generally also referred to as sim-
ulated annealing.

The idea behind this algorithm is to let each illegally placed block
‘jiggle’ away from its position according to Brownian motion, i.e. along
a 2-dimensional random walk of its bottom-left corner along the grid.
The severity of the jiggle should be inversely proportional to the weight
wA of a given macro. As random walks on a 2-dimensional square grid
are expected to stay near the origin on average, it is reasonable to
expect this will have a good chance of minimizing the weighted L1
metric.

As an additional heuristic, we demand that macros which are al-
ready optimally packed should ‘stick together’, so that this optimal
packing is preserved during the Brownian motion even if the cluster of
optimally packed macros is illegally placed. To this end we define a
graph whose components are these clusters:

Definition 4.3.1. Let V be the set of macros. We let Gx = (V,Ex)
be the graph whose edge set Ex consists of pairs (A,B) of macros such
that the horizontal distance between A and B is exactly b, and A and
B are horizontally adjacent, meaning that the bottom of macro A lies
below the top op macro B and vice versa. Similarly we define Gy =
(V,Ey) where Ey consists of pairs of macros that are vertically spaced
at distance b and are vertically adjacent. We then let G = (V,Ex∪Ey)
and define a cluster of macros to be a connected component of G. The
weight of a cluster is defined by

w(C) :=
∑
A∈C

wA.
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If a macro or cluster is illegally placed, the algorithm requires some
information about the direction in which this illegality occurs. This is
made precise as follows:

Definition 4.3.2. Let A be an illegally placed macro or cluster. We
consider the four compass directions {up, down, left, right} in the plane.
We say such a direction x is a direction of illegality for A if some
intersection causing A to be illegally placed occurs in the x-half10 of A.
Note that any intersection defines at least two directions of illegality.

Given these preliminaries, a schematic description of the algorithm is
as follows:

1. Generate the graph G and create clusters according to its con-
nected components.

2. Determine which clusters and macros are illegally placed.

• If there are no such macros or clusters, halt.

3. LetW be the sum of all weight reciprocals 1/wA of illegally placed
macros and clusters. Pick an illegally placed macro or cluster A
with probability W/wA.

4. Determine the directions of illegality of A.

5. Randomly move the macro by 1 grid space (or keep it where it
is), with probabilities depending on the directions of illegality:
see the list of probabilities below.

6. If the new position of A intersects a blockage or lies partially
outside of the chip (and the old position did not), revert the
movement.

7. Update G.

8. Return to step 2.

10By this we mean e.g. the left half or top half.
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Below is a list prescribing which way to move a macro or cluster with
which probability, depending on its direction of illegality. The proba-
bilities are given in percentages, in the format [up/down/left/right/do
not move]. These probabilities can be tweaked, of course.

• If there is illegality in all directions, we move with probabilities
[20/20/20/20/20].

• If there is illegality in three directions, without loss of generality
left, right, and up, we move with probabilities [5/5/5/65/20].

• If there is illegality in two directions, there are two subcases:

– These directions are opposite, say left and right. In this case
we move with probabilities [35/35/5/5/20].

– These directions are adjacent, say left and up. In this case
we move with probabilities [5/35/5/35/20].

Remark 3. During the SWI we did not get the chance to imple-
ment this algorithm due to time constraints. Nevertheless, we included
a description of the algorithm here as the Synopsis® representatives
thought it might hold potential.

4.4 Experimental results

The three algorithms that we implemented are solving the full problem
with a MIP-solver, the greedy algorithm and the flexible greedy algo-
rithm. In our implementations we relaxed the discrete grid constraints,
allowing a macro to be placed at every continuous position. We imple-
mented all algorithms in Python, from which we call the MIP-solver.
Python is not a very fast programming language and we also did not
try to optimize the running time of our implementations. However,
in practice we can assume the running time of our algorithm to be
dominated by our calls to the MIP-solver.

4.4.1 Using MIP-solver
Using the MIP-solver, we could not directly solve the larger instances.
This was mainly due to the grid alignment constraints. In some cases,
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these grid alignment constraints are incompatible with the small spac-
ing option. This could be solved by preprocessing the instance and
investigating which spacing constraints are valid for which pairs of
macro’s. Using this approach, one could even relax the grid alignment
during the solving process and round the given solution to the grid af-
terwards. This would preserve the b-spacing rules, but it might violate
the c-spacing rules by at most 1 grid-spacing. This could be solved by
increasing the c-spacing rule by half a grid-spacing, at the cost of a
slight loss in the objective function. During the project, we decided to
relax the grid alignment rules and otherwise solve to optimality.

Using a commercial solver, we managed to solve four of the larger
instances in a reasonable time (instance 101, 102, 104 and 106). For
all other large instances, the solver did not produce a reasonably good
solution in the given time.

Because our MIP model is quite basic, we conclude that it might
be possible to solve larger instances, but the modelling choices would
need to be carefully considered. If optimality is required, then heuristic
solutions might be provided at the start, and problem-specific cutting
planes could be added.

The spacing and margin constraints do not have to be added for all
macros because they will never be near each other in a local optimum.
This could be implemented by inspecting the solution afterwards for
any rule violations, and running the model with additional constraints
if any rules were broken. Furthermore, a divide and conquer strategy
could be implemented.

4.4.2 Greedy algorithm

Due to time constraints we did not manage to implement the reordering
of the macros. We instead ran the greedy algorithm only for different
initial orderings of the macros. We applied the greedy algorithms on
both the small and big instances. For the small instances the greedy al-
gorithm found optimal or close to optimal solutions very quickly. How-
ever, this was also the case for the other algorithms, so these are not
very interesting to look at. In this section we will look at instance
101, which is one of the large instances. The initial placement of this
instance is given in Figure 4.1.
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Figure 4.1: Original placement of macros in instance 101.

The greedy algorithm was applied on this instance for two differ-
ent initial orderings. In the first ordering, the macros were ordered
according to their distance from the origin (bottom left corner of the
placement region), with small distances coming first. In the second
case we put the macros with the largest perimeter first and those with
the smallest perimeter last. The resulting placements can be seen in
Figure 4.2.

From this figure we can see a large difference in the final placement
depending on the ordering. For the ordering according to distance from
the origin the macros are quite close to their original placements, with
only small deviations except for some individual macros. However, the
found solution is not feasible as the macros in the top right corner
overlap. The final placement for the ordering where we consider the
perimeter has a lot of movement of the macros. However, the final
solution is feasible in this case. The likely reason for this difference is
that for the distance ordering we place the macros in a structured way
from the bottom left to the top right. In each placement we often only
need to shift the macros a bit more to the right or top. In the end this
can lead to problems, when we reach the top and right borders and do
not have any space left, because all these small movements add up.

The perimeter ordering is a lot less structured, because larger macros
are not necessarily grouped together. As a result, the available re-
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(a) Ordered according to distance
from origin.

(b) Ordered according to perime-
ter of the macro.

Figure 4.2: Final placements by applying the greedy algorithm on in-
stance 101 for different initial orderings of the macros. Black lines
denote the distances to the original position of the macros.

gion more quickly becomes irregular, making placement of macros quite
hard. But because we placed the large macros first, we do in the end
obtain a feasible solution even if it is suboptimal.

Interestingly, run time was also very different for both orderings.
The greedy algorithm was quite fast for the distance ordering, while the
perimeter ordering led to way longer run times likely for similar rea-
sons. The distance ordering had a runtime of only a few minutes, while
the perimeter ordering took over 20 minutes to place all the macros.
This may be improved by using a different routine to place the macros
instead of the MIP formulation.

A general problem of the greedy algorithm approach is that when
macros become fixed, we cannot move them anymore. Thus, the macros
that are placed first do not move and as such also do not take advantage
of extra space which we need later when the other macros are placed.
Changing the ordering does not always fix this, since then we will simply
have other macros that stay in their place. The overall problem is very
connected, in the sense that changing the position of one macro can
influence macros on the other side of the region. This was apparent in
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our examples, where we either get a solution that does well for a lot of
macros but in the end is infeasible, because we did not use the available
space, or we get a solution that is feasible but suboptimal because the
final macros have to move a lot. The other solution approaches can
fare better in this aspect.

4.4.3 Flexible greedy algorithm
For the flexible greedy algorithm, we see that it generally finds sub-
stantially better solutions than the greedy algorithm. For example, we
see that in Figure 4.3a the macros are substantially closer to their orig-
inal position, as compared to Figure 4.2. In particular we see that in
Figure 4.2 many macros are at their original position, while there are a
few macros that are very far from it. On the other hand, in Figure 4.3a
most macros are a small distance away from the original position. We
also see that the flexible greedy algorithm finds a feasible solution for
most of our test instances, whereas this was not true for the greedy
algorithm.

Because the MIPs that we need to solve are more complex than in
the greedy algorithm, we observe that the total MIP solving time is
larger. Still, the MIPs are not as large as the MIP-formulation of the
entire problem. This means that it is still tractable to solve very large
instances using the flexible greedy algorithm, even if they could not be
solved in the full MIP approach.
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(a) Solution for instance101,
found with the flexible greedy al-
gorithm.

(b) Solution for instance109,
found with the flexible greedy al-
gorithm.

Figure 4.3: Solutions found by the flexible greedy algorithm. Black
lines denote the distances to the original position of the macros.

4.4.4 Comparison
In Table 4.1 we provide a comparison of the results obtained using the
different algorithms.
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Instance # Macros L1-error of found solution
MIP Greedy Flexible Greedy

instance101 59 134.70 10566.39 165.65
instance102 59 302.28 11092.53 364.34
instance103 131 - 14263.16 3795.64
instance104 100 704.15 2379.79 771.49
instance105 313 - - 1575.85
instance106 13 101.66 478.86 113.99
instance107 147 - - 5511.64
instance108 571 - - 14717.14
instance109 1171 - - 26484.18

Table 4.1: Comparison of the quality of the solutions found using the
three algorithms. If an algorithm was not able to find a feasible solution,
within the time limit, we denote this by a dash.

4.5 Conclusion

Summarizing, we have shown that it is tractable to solve small in-
stances of the macro placement problem to optimality. On the other
hand, for larger instances we have provided several heuristics. The so-
lutions found by these heuristics are not optimal, but in some cases
they still give solutions which do not differ greatly from the optimal
one. However, the quality of these solutions greatly depends on the
chosen heuristic.

We expect that the heuristics we designed may still have room for
improvement. For example, by changing the order in which the macros
are considered. Therefore, we conclude that heuristics may be a promis-
ing way to solve the macro placement problem.
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Abstract

Properly flying a walkalong glider is a challenging control problem, in-
volving many internal and external influences. We have shed some light
on this problem from both a model-driven and data-driven viewpoint.
We construct a mathematical model, based on well-established models
from literature. This model is used to derive an optimal paddle angle,
as well as an optimal distance between the paddle and the glider for
steady level flight. Moreover, we derive parameters of the glider during
uniform circular flight, as well as their relation to movement of the pad-
dle from our model. As the glider is in practice very sensitive to small
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disturbances in the airflow, we have developed a data-driven model that
tracks the status of the glider using video data, recorded by a camera
mounted on the paddle. We use image processing and deep learning to
automatically detect glider position with respect to the paddle and its
yaw. Information from mathematical and data-driven models could be
jointly used as an input for a control algorithm on the paddle, allowing
for automatic operation of the walkalong glider.

Keywords: walkalong glider, plane, flight dynamics, image analysis,
control problem

5.1 Introduction

The artist Zoro Feigl works on a new art project in which a small
glider flies on the wake of a moving board, controlled by a robot arm.
The project is based on an idea of Joseph E. Grant in 1955, called the
walkalong glider Grant (1955). This walkalong glider is controlled by
a board, called the paddle (Figure 5.1). The glider flies on the airwave

Figure 5.1: Sketch of the walkalong glider idea by Grant (1955).

that is caused by movement of the paddle, and by adjusting the angle
of the paddle, the glider’s trajectory can be influenced. See Feigl (2021)
for a video clip of a walkalong glider demonstration.
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5.1.1 Robot arm

The glider in the art project will be controlled by a robot arm with
a transparent board mounted on its tip. The model that will be used
is the FANUC M-710iC/12L, shown in Figure 5.2. This robot has
six axes, which allows for a large range of motion. Figure 5.3 shows
its length when fully extended (3.123 meters) and a side view of its
reach. The flight path of the glider should always stay within this
range. Additionally, we must stay above ground level, as the robot arm
will be mounted to the floor. The wrist of the arm can move along three
axes: the ‘hand’ can bend with respect to the arm and the wrist and
tip (where the board is mounted) can be rotated 400 and 720 degrees
respectively. This allows us to adjust the position and angle of the
board relative to the glider.

Figure 5.2: The FANUC M-710iC/12L robot arm which is planned to
be used to control the glider FANUC Benelux BV (2022).

An important restriction of this robot arm is that it can only rotate
up to 360 degrees around its center. Hence, we cannot create a circular
flight path by spinning the arm indefinitely.

5.1.2 Goal

The objective of this project is to explore how control on the glider’s
trajectory can be automated. Instead of a human operating the paddle,
it is mounted on a robot arm that should autonomously keep the glider
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Figure 5.3: Range of motion of the FANUC M-710iC/12L robot arm
FANUC Benelux BV (2022, datasheet).

in the air. This objective requires a control strategy for the robot arm
that keeps the glider in the air, even under perturbations in the airflow
(such as movement of observers). As a first step towards this objective,
we investigated how to model the glider, which data is required to
control the glider, and how this data should be processed.

5.1.3 Approach

We have split up this problem into two parts: a model-driven and a
data-driven part. These two approaches both focus on a different aspect
of the total control strategy: based on the model, we should be able to
determine a global flight-path and predict where the glider will be at
each moment in time. Additionally, we use a data-driven approach to
make small corrections to the flight path and account for disturbances
caused by external influences.

This report is set up as follows: first, we give an overview of im-
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portant models from literature in Section 5.2, and investigate the effect
of the paddle on the glider. Subsequently, in Section 5.3, we show the
behaviour of the glider based on data analysis and show some key vari-
ables that are important to control in order to be able to keep the glider
flying. We end this report with some recommendations and an outlook
for further research in Section 5.4.

5.2 Model-driven approach

In this section, we consider two different approaches to calculate the
flight path of the glider. Firstly, we study a more elaborate model,
representing the glider by a point mass. First we introduce this model
in a setting with no wind and then extend it to a scenario where wind
is present. Subsequently, we simplify this model to approximate the
glider angle and turning radius. This is explained in Section 5.2.3.

Both versions of the model rely on characteristics of the glider, as
well as known equations from the literature. We begin this section with
an overview of all parameters involved.

5.2.1 Definitions and formulas

Our models use several well-known formulas and physical constants
from the literature. In this section, we give a brief overview. For a
more detailed description, we refer to Stengel (2004, Chapter 1).

Table 5.1 gives a schematic overview of the symbols used in the
glider model, their meaning and their value or formula. Some are known
constants, such as the density of air at room temperature. However,
most parameters depend on the particular glider that we use.

Our glider is based on the Baby Bug model from Harrison Science-
toyMaker (2022). It is made out of thin EMS foam with an aluminum
weight at the nose. This glider has a total wing span of 20cm and a
surface area of 12.2cm2. Figure 5.4 shows the layout of a single wing;
its mass is 0.147g.

Some other parameters from Table 5.1 depend on the characteristics
of the glider, and cannot be measured directly; for example the Oswald
efficiency number and drag coefficient at zero lift. For these parameters,
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Symbol Description Value/formula
D Drag force 1

2CDρV
2S

L Lift force 1
2CLρV

2S
CL Lift coefficient CLαα
CLα

Lift-slope derivative πAR

1+
√

1+(AR/2)2

CD Drag coefficient CD0
+ εC2

L

CD0
Drag coefficient at zero lift 0.02

ϵ Induced-drag factor 1/(πARe)
AR Aspect ratio b2/S
e Oswald efficiency number 0.9
m Mass of the glider 1.47 · 10−4kg
g Gravitational acceleration 9.807 m/s2
S Surface area of the glider 0.0122m2

ρ Density of air 1.225 kg/m3

b Total wing span of the glider 0.2m
V Relative air speed See Section 5.2.2
α Angle of attack

Table 5.1: A description and its corresponding formula or value of the
symbols used in the models.
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10cm

Figure 5.4: A left wing of the Baby Bug glider. The dashed line marks
the center of the glider.

we used values for a similar paper airplane in Stengel (2004, Chapter
1).

5.2.2 Glider one point mass model

We first propose to model the glider as a one-point mass in space,
similar to Etkin (2005) and Hull (2007). Figure 5.5 illustrates a free-
body diagram of the forces acting on the centre of mass; note that the
depiction of the glider is for illustrative purposes only.

The velocity of the glider relative to the ground (U) will be written
as the sum

U = V + W, (5.1)

with V the velocity of the airplane relative to the atmosphere and
W the velocity of the atmosphere relative to the ground. Since the
drag and lift are functions of the airspeed V = ∥V∥, decomposing the
glider velocity U is more convenient. The lift and drag are respectively
defined as:

L =
1

2
ρV 2SCL and D =

1

2
ρV 2SCD, (5.2)

where the constants CL = CL(α) and CD = CD(α) depend on the angle
of attack α. For our intents and purposes, we may assume there are no
side forces acting on the glider. Differently put, the sideslip angle is
assumed to be zero. For more information, we refer to Beeler, Moerder,
and Cox (2003).
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L

D

V

xy-plane

h

G

γ

ĥV
x̂V

Figure 5.5: A free-body diagram of a glider with no ambient winds. The
forces acting on the glider are assumed to be the lift force vector L,
the drag force vector D and the gravity force vector G = (0, 0,−mg)T .
The airspeed vector V is parallel to the vector D and perpendicular to
the vector L, and x̂V is defined to be the unit vector in the direction
of V.

In this section, we will make use of the following two reference
frames. Assuming a flat9, non-rotating Earth, we obtain an inertial
reference frame defined with axes aligned with the unit vector set

ÛI =

 x̂ ŷ ĥ

 =

 1 0 0
0 1 0
0 0 1

 . (5.3)

9The flat earth assumption suffices for our applications, but it is not necessary.
See Etkin (2005) and Hull (2007) for flight models over a spherical Earth.
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We refer to this inertial system as the “ground axes frame”. A sequence
of three simple rotations relates the inertial reference frame to a non-
inertial, rotating reference frame whose axes are defined such that ÛV =(
x̂V ŷV ĥV

)
with x̂V = V/V . We call this the “wind axes frame”;

in the absence of wind, the latter coincides with the ”velocity frame”.
In particular, we define

ÛV =

(
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

)(
cos γ 0 − sin γ
0 1 0

sin γ 0 cos γ

)(
1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

)
(5.4)

=

(
cos γ cosψ − cosϕ sinψ + sinϕ sin γ cosψ − sinϕ sinψ − cosϕ sin γ cosψ
cos γ sinψ cosϕ cosψ + sinϕ sin γ sinψ sinϕ cosψ − cosϕ sin γ sinψ

sin γ − sinϕ cos γ cosϕ cos γ

)
,

(5.5)

where ψ is the velocity yaw (heading angle), γ the velocity pitch (flight-
path angle), and ϕ the roll (banking angle). Observe that x̂V = ÛV x̂,

ŷV = ÛV ŷ, and ĥV = ÛV ĥ.

Before we continue, it is worth pointing out that the orientation
of our coordinate systems deviates from the convention in flight me-
chanics. Often the x, y, and z-axis are interpreted as north, east, and
downwards, respectively, hence one defines the altitude then as h = −z,
see, e.g., Beeler, Moerder, and Cox (2003) and Hull (2007). We prefer
to work with x, y, and h only, which results into a different rotation
matrix ÛV .

Flight with the absence of wind

Let us assume our glider experiences no moving atmosphere. In the
three dimensional setting, a standard form for the equations of motion
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x

y

h

V

ψ

γ

Figure 5.6: A three-dimensional sketch of the ground axes frame. Note
that the banking angle ϕ is the only angle not being depicted in the
diagram; this particular angle depends on how much the plane is rolling
about the airspeed vector V.

for a point mass glider is

V̇ = −D
m

− g sin γ (5.6)

γ̇ =
L cosϕ

mV
− g

V
cos γ (5.7)

ψ̇ =
L sinϕ

mV cos γ
(5.8)

ẋ = V cosψ cos γ (5.9)
ẏ = V sinψ cos γ (5.10)

ḣ = V sin γ. (5.11)
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Equations (5.6)–(5.8) are the so-called dynamics equations. The kine-
matic equations for the velocity vector V =

(
ẋ ẏ ḣ

)
are given by

(5.9)–(5.11). Relatively more advanced equations of motion, taking ei-
ther side or thrust forces into account as well, can be found in Beeler,
Moerder, and Cox (2003) and Hull (2007), respectively.

Remark 4. Observe that in the equations above, the banking angle ϕ
is presumed to be a control parameter (which may be time dependent).
Usually, in the study of flight mechanics, this is a feasible presumption,
because a pilot is able to adjust this angle by simply adjusting the wing
flaps of the airplane.

It is clear that we cannot control this as easily in our application.
Nevertheless, observe that the changes in ϕ = ϕ(t) are caused by the
paddle only and that ϕ = 0 holds when the paddle is absent. In partic-
ular, under additional assumptions, we are able to relate the banking
angle ϕ with the angles made by the paddle, see Subsections 5.2.3
and 5.2.3. Alternatively, one is able to obtain an approximation of ϕ
by looking at the data (see recommendations and outlook). Different
model assumptions, such as saying that ϕ is proportional to ψ̇ at an
earlier time instant (hence, a delay differential equation), are thought
to be possible and numerically tractable.

So, from now we just assume that—indeed—we are able to control
the angle ϕ.

A derivation of the equations of motion above can be found in Weitz
(2015). Although elementary, we show its derivation for the sake of
completeness and because the several observations made are useful for
the flight model with wind. By recalling Figure 5.5, we see that the
resultant external force becomes

F = L + D + G (5.12)

= [−D −mg sin γ]x̂V +mg cos γ sinϕŷV + [L−mg cos γ cosϕ]ĥV .
(5.13)

On the other hand, since V = V x̂V holds, we obtain that the acceler-
ation relative to the ground is given by

a =
dV
dt

= V̇ x̂V + V
dx̂V
dt

. (5.14)
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Expressing the time derivative of x̂V within the coordinates of the ro-
tating reference frame, gives us

dx̂V
dt

= −[γ̇ sinϕ− ψ̇ cos γ cosϕ]ŷV + [γ̇ cosϕ+ ψ̇ cos γ sinϕ]ĥV . (5.15)

This relationship is easily verified; a direct calculation uses the angular
velocities and invokes the transport theorem, see, e.g., Weitz (2015).
Substituting equation (5.15) in equation (5.14) yields

a = V̇ x̂V − V [γ̇ sinϕ− ψ̇ cos γ cosϕ]ŷV + V [γ̇ cosϕ+ ψ̇ cos γ sinϕ]ĥV .
(5.16)

Using the second law of Newton, equation (5.13), and equation (5.16),
we get the following dynamics equations:

mV̇ = −D −mg sin γ, (5.17)

mV [γ̇ sinϕ− ψ̇ cos γ cosϕ] = −mg cos γ sinϕ, (5.18)

mV [γ̇ cosϕ+ ψ̇ cos γ sinϕ] = L−mg cos γ cosϕ. (5.19)

It is obvious (5.17) is equivalent to (5.6). The following observation is
extremely useful: we are able to decouple the other two equations in
such ways that we will get the first order differential equations (5.7)
and (5.8).

When we multiply equation (5.18) by sinϕ and equation (5.19) by
cosϕ and add the resulting two expressions, we obtain

mV γ̇ = L cosϕ−mg cos γ. (5.20)

Similarly, when we multiply equation (5.18) by cosϕ and equation
(5.19) by sinϕ and subtract the resulting two expressions from one
another, we find

mV cos γψ̇ = L sinϕ. (5.21)

This motivates the equations of motion (5.6)–(5.11).

Flight with the presence of wind

For the two dimensional setting, we refer to Chapter 2 of Hull (2007)
for an analogous model to the one below (with thrust) which includes
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a comprehensive derivation as well. In line with their approach, we
derive our three dimensional model. Also, note the similarities with
Weitz (2015), yet we will follow slightly different assumptions.

L

xy-plane

h

V

D

γ

ĥV
x̂V

W

U

G

Figure 5.7: A force diagram in the case of a moving atmosphere W.

By writing W = (Wx,Wy,Wz)
T , we notice that the kinematic equa-

tions become

ẋ = V cos γ cosψ +Wx (5.22)
ẏ = V cos γ sinψ +Wy (5.23)
ż = V sin γ +Wz. (5.24)

In the scenario where the wind velocity is constant, the dynamic equa-
tions (5.6)–(5.8) do not change. In other words, the equations of motion
of the glider are then given by the coupled differential equations (5.6)–
(5.8) together with (5.22)–(5.24).
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Nevertheless, given that the wind field W changes over time (which
is the case for our application), we need to consider the time derivative
of W into the dynamics equations. The acceleration relative to the
ground is given by

a =
dU
dt

=
dV
dt

+
dW
dt

=
dV
dt

+ (Ẇx, Ẇy, Ẇz)
T . (5.25)

As before, we would like to express a in terms of the wind axes frame
(now a moving atmosphere is present). Recall that

dV
dt

= V̇ x̂V −V [γ̇ sinϕ− ψ̇ cos γ cosϕ]ŷV +V [γ̇ cosϕ+ ψ̇ cos γ sinϕ]ĥV .

(5.26)
Consequently, in the wind axes frame we have

a =
dV
dt

+ ÛV (Ẇx, Ẇy, Ẇz)
T (5.27)

=
(
V̇ + Ẇx cos γ cosψ + Ẇy cos γ sinψ + Ẇz sin γ

)
x̂V +(

− V [γ̇ sinϕ− ψ̇ cos γ cosϕ] + ẆxÛ21 + ẆyÛ22 + ẆzÛ23

)
ŷV +

(5.28)(
V [γ̇ cosϕ+ ψ̇ cos γ sinϕ] + ẆxÛ31 + ẆyÛ32 + ẆzÛ33

)
ẑV ,

where Ûij := (ÛV )ij . Once again, using the second law of Newton,
equation (5.13), and equation (5.28), we get the following dynamics
equations:

mV̇ = −D −mg sin γ+ (5.29)

−m
(
Ẇx cos γ cosψ + Ẇy cos γ sinψ + Ẇz sin γ

)
, (5.30)

mV [γ̇ sinϕ− ψ̇ cos γ cosϕ] = −mg cos γ sinϕ+m
(
ẆxÛ21 + ẆyÛ22 + ẆzÛ23

)
,

(5.31)

mV [γ̇ cosϕ+ ψ̇ cos γ sinϕ] = L−mg cos γ cosϕ−m
(
ẆxÛ31 + ẆyÛ32 + ẆzÛ33

)
.

(5.32)

Decoupling equations (5.31) and (5.32) as before, results into the dy-
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namics equations:

V̇ = −D
m

− g sin γ − Ẇx cos γ cosψ − Ẇy cos γ sinψ − Ẇz sin γ (5.33)

γ̇ =
L cosϕ

mV
− g

V
cos γ +

1

V

(
Ẇx sin γ cosψ + Ẇy sin γ sinψ − Ẇz cos γ

)
(5.34)

ψ̇ =
L sinϕ

mV cos γ
+

1

V cos γ

(
Ẇx sinψ − Ẇy cosψ

)
. (5.35)

In conclusion, the equations of motion of the glider with a general wind
field is given by

V̇ = −D
m

− g sin γ − Ẇx cos γ cosψ − Ẇy cos γ sinψ − Ẇz sin γ (5.36)

γ̇ =
L cosϕ

mV
− g

V
cos γ +

1

V

(
Ẇx sin γ cosψ + Ẇy sin γ sinψ − Ẇz cos γ

)
(5.37)

ψ̇ =
L sinϕ

mV cos γ
+

1

V cos γ

(
Ẇx sinψ − Ẇy cosψ

)
. (5.38)

ẋ = V cosψ cos γ +Wx (5.39)
ẏ = V sinψ cos γ +Wy (5.40)

ḣ = V sin γ +Wz, (5.41)

where we recall

L =
1

2
ρV 2SCL and D =

1

2
ρV 2SCD, (5.42)

Apart from different angles orientations, a major difference between
the model above compared to the model in Weitz (2015) is that we do
not assume the wind direction is in the xy-plane. For our intents and
purposes, we require Wz and Ẇz. Additionally, one usually assumes
that Wx, Wy, and Wz are functions of t, x, y, and h, and computes
the time derivatives with the chain rule, see also Hull (2007). We will
not do this, since Wx,Wy,Wz and their time derivatives are supposed
to be obtained from the data or/and by means of computational fluid
dynamics simulations (see recommendations and outlook).
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5.2.3 A simplified flight model

The model in the previous section is useful for doing detailed simula-
tions on the glider when coupled to a computational fluid dynamics
simulator of the airflow generated by the paddle. In this section, how-
ever, we take an alternative approach by simplifying the models above.
These can then be used to approximate several quantities like the glide
angle and the turning radius. This section can be read independently
from the section above.

Flying straight ahead

Firstly, we look at the case where the glider flies straight, so that the
y-component can be ignored. Like earlier, we let U = (Ux, Uz) denote
the velocity of the glider with respect to the ground and W = (Wx,Wz)
the velocity of the wind generated by the paddle. The relative airspeed
of the glider with respect to the wind is given by V = U − W. The
angle of the vector V relative to the ground (i.e., with the x-axis),
which we denote with γ, is given by

arctan

(
Vz
Vx

)
. (5.43)

The total aerodynamic force acting on the glider is a combination of
the drag D in the opposite direction of V and the lift L perpendicular
to V. By introducing the unit vectors eV = (cos γ, sin γ) and e⊥V =
(− sin γ, cos γ), we can mathematically express the above as

Faero = Le⊥V −DeV =
1

2
ρV 2S(CLe⊥V − CDeV). (5.44)

where V = ∥V∥. For the lift and drag coefficients, CL and CD, we use
a standard formulation like in Beeler, Moerder, and Cox (2003):

CD = CD0
+ εC2

L, CL = CLα
α, (5.45)

where
ε =

1

πARe
, CLα

=
πAR

1 +
√
1 + (AR/2)2

. (5.46)
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Note that these equations are only valid for a small angle of attack
α = χ−γ, i.e., the angle between the pitch angle of the wing χ and the
airspeed vector V. Subsequently, taking the aerodynamic force Faero
and the gravity, Fg = −mgez, into account results into the following
set of equations of motion:

U̇x = − 1

2m
ρV 2S(CL sin γ + CD cos γ), (5.47)

U̇z = −g + 1

2m
ρV 2S(CL cos γ − CD sin γ), (5.48)

ẋ = Ux, (5.49)
ż = Uz. (5.50)

The equations above can be made more explicit by observing that V 2 =
(Ux −Wx)

2 + (Uz −Wz)
2 holds, which reduces to V 2 = U2

x + U2
z in

absence of the paddle.
For these equations we will now analytically investigate the equilib-

rium situation U̇x = U̇z = 0. In words, we solve for a flight trajectory
with constant velocity. Notice that setting U̇x = 0 yields the equality

CL sin γ+CD cos γ = CLα(χ−γ) sin γ+(CD0+εC
2
Lα

(χ−γ)2) cos γ = 0,
(5.51)

which we can solve for γ. Using χ ≈ 0 as the value for the pitch angle
and applying the small angle formulae sin γ ≈ γ and cos γ ≈ 1 gives us
the following approximation for γ at equilibrium:

γeq ≈ −
√

CD0

CLα
− C2

Lα
ε
. (5.52)

The minus sign is due to the fact that V is pointing downwards. Conse-
quently, setting U̇z = 0 gives us a value for the airspeed at equilibrium,
namely

Veq =

√
2mg

ρS(CL cos γeq − CD sin γeq)
. (5.53)

Using the values in Table 5.1, we find

γeq ≈ −5.5◦ and Veq ≈ 0.75m/s. (5.54)
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Note that these values hold regardless of the wind field W, as long as
the wind field is not accelerating. In the scenario where wind is absent,
γ is the glide angle and V the velocity of the glider. This implies
that without the paddle—and assuming that the glider is not going
to accelerate—the glider falls down with an approximate speed of 0.75
m/s and under an angle of 5.5◦. In particular, we can decompose Veq
as

Vx,eq ≈ 0.74m/s and Vz,eq ≈ 0.07m/s. (5.55)

This equilibrium is, in fact, stable (which is easily verified with stan-
dard techniques). If we simulate the equations of motion (5.47)–(5.50)
without wind (see Figure 5.8), we see that the glider’s angle and veloc-
ity converge to the found values in (5.54) and (5.55).

A simplified wind model

A full treatment of the airflow induced by the paddle requires a quite
complex computational fluid dynamics (CFD) simulation, like in Fig-
ure 5.9 from Sweden International Physicist’s Tournament (2017). To
circumvent this heavy machinery, we introduce some simplifications,
enabling us to do some elementary calculations.

1. We assume that we can perfectly match the speed of the paddle
with the horizontal speed of the glider Ux and we keep it at a
fixed angle θ and a fixed height above the ground.

2. We assume that we can see the airflow as two dimensional, so it
only has a component in the x and z direction.

3. We model only the airflow above the boundary layer, a small
region where the friction with the paddle has a large effect.

4. In the co-moving frame of reference of the paddle, there is an
incoming horizontal airflow with speed Ux. We assume that the
paddle only deflects the airflow and that the speed of the airflow
is conserved.

5. We assume that at the edge of the boundary the airflow is paral-
lel with the paddle and that the vertical component decays expo-
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Figure 5.8: A simulation of the equations of motion (5.47)–(5.50) with
values of Table 5.1 and initial conditions x = 0m, z = 1m, Ux =
0.75m/s, Uz = 0m/s. Observe that the solution quickly converges to
the equilibrium state; see equations (5.54) and (5.55).

nentially with a factor cw and the perpendicular distance to the
paddle.

Now, let z denote the height above the boundary layer and consider
the perpendicular distance to the paddle given by z

cos θ . To transform
back to the ground reference frame, we are required to add the velocity
of the paddle (Ux, 0). With the assumptions above, we use the following
equation to model the wind from the ground perspective:

W(Ux, z, θ) = Ux(1−
√
1− e−

2cwz
cos θ sin2 θ, e−

cwz
cos θ sin θ). (5.56)
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Figure 5.9: A CFD simulation of the airflow induced by the paddle
from Sweden International Physicist’s Tournament (2017).

Remark 5. The model in (5.56) is an ad hoc description and sim-
plication of the wind generated by the paddle. We have chosen this
specific formulation, but we would like to emphasise that we do not
exclude other possibilities. This particular choice for the wind field
also enabled us to obtain nice closed forms for Ux and z, see (5.58) and
(5.59).

Remark 6. Assuming that the wind direction is two dimensional,
the paddle length is effectively infinite. For a relatively small paddle,
this assumption could be problematic. Moreover, we do not treat the
boundary layer, as we assume that the glider is unable to fly here, so it
does not need to be modelled. The exponential decay e−

cwz
cos θ matches

the properties observed from the CFD simulations (Figure 5.9): for
z = 0 this factor is 1, for z → ∞ it vanishes, and the gradient of
the speed difference is proportional with the distance. Ultimately, the
choice z

cos θ , instead of, e.g., z cos θ, was to better reflect the fact that
the wind velocity substantially decreases as θ increases.
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We can now use the values of constant flight of the previous sub-
section, i.e.,

γeq = −5.5◦ and Veq = 0.75m/s, (5.57)
to solve for the case where the glider keeps its altitude, i.e., Uz = 0.
From the equation V = U−W and the wind model description (5.56),
we deduce

Ux = Veq and sin(−γeq) = e−
cwz
cos θ sin θ. (5.58)

Using that the height is postive, i.e., z > 0, we obtain θ > −γeq = 5.5◦.
By analysing Figure 5.9, we estimate cw ≈ 3m−1. An estimation for
cw suffices, since it only defines the length scale of z. We can solve for
the height of z:

z = −cos θ

cw
log

(
sin(−γeq)

sin θ

)
. (5.59)

We can plot the height z as a function of the paddle angle θ, see Figure
5.10.
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Figure 5.10: The height above the paddle z for a glider with constant
speed (5.59) as a function of the paddle angle θ with the parameters
cw = 3m−1 and γeq = −5.5◦.

The optimal paddle angle is when the stable height above the paddle
z is maximal. In this case if there is a disturbance in the airflow, there
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is more space to recover before the glider enters the turbulent boundary
layer and is unable to fly.

Differentiating the function in (5.59) and setting it equal to zero,
we find that for γeq = −5.5◦ the optimal angle is θ = 36◦. For different
glider angles see Figure 5.11.
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Figure 5.11: For each γ = γeq, we plot the optimal paddle angle θ, i.e.,
the paddle angle for which the function in equation (5.59) is maximal.

Turning radius of the glider

We can make the glider turn by just rotating the paddle. Indeed, rotat-
ing the paddle causes a difference in the airflow at each wing, initiating
a different lift force on each wing, see Figure 5.12. The imbalance in
lift induces a torque on the glider, which makes the glider bank.

To compute the turning radius, we assume that the glider is flying
a perfect circle of radius R with constant speed Ux. In this section we
consider the vehicle reference frame to be our coordinate system, so we
write x for the tangential direction of the circular trajectory—positive
in the direction of movement—and write y for the radial direction—
positive in the inward direction for a left turn. For uniform circular
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Figure 5.12: The effect of rotating the paddle below the glider. The
red spot illustrated on the paddle is often referred to as the sweet spot.
This figure is a modified version of a figure in Sweden International
Physicist’s Tournament (2017).

motion, we need the centripetal force of the glider to be equal to

Fc =
mU2

x

R
. (5.60)

Denote the banking angle by ϕ, which is positive if the right wing
tips up. Now, we can decompose the aerodynamic force along the
z-direction of the coordinate system used in (5.47)–(5.50), where we
have ϕ = 0, into a upwards, z-direction, and a sidewards, y-direction,
pointing vector. For a left turn with constant speed and radius, we can
derive the equations of motion by equating the forces in the x, z and y
direction, respectively:

1
2ρV

2S(CL sin γ + CD cos γ) cosϕ = 0 (5.61)
1
2ρV

2S(CL cos γ − CD sin γ) cosϕ = mg (5.62)

1
2ρV

2S(CL cos γ − CD sin γ) sinϕ =
mU2

x

R
, (5.63)
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where V = ∥V∥. The first equation gives us (5.51), where we had
found γeq ≈ −5.5◦. Equation (5.62) yields a solution for V , which we
will denote by Veq,c, where

Veq,c =

√
2mg

ρS(CL cos γeq − CD sin γeq) cosϕ
=

Veq√
cosϕ

. (5.64)

By using the wind model (5.56), we can set Ux = Veq,c (similar as
before), and solving the last equation (5.63) results into the closed
form

R =
2m

ρS(CL cos γeq − CD sin γeq) sinϕ
. (5.65)

We have plotted Veq,c and R against the banking angle ϕ in Figure
5.13. For ϕ = 30◦, we find that Veq,c ≈ 0.78m/s and R ≈ 17 cm holds.
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Figure 5.13: The relative speed Veq,c, see (5.64), and turning radius R,
see (5.65), plotted against the banking angle ϕ. The glider then moves
in a perfect circular trajectory, assuming that the wind generated by
the paddle can be approximated with the function in equation (5.56).

Increasing the banking angle with the paddle

As mentioned previously, we can model the aerodynamic force on each
on the wings individually. We denote the airflow at the left wing by
Wleft and at the right wing by Wright, which consequently induces a
force on the left wing Faero,left and a force on the right wing Faero,right.
For this section we only consider the force in the upwards direction
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with respect to the ground. When this force on the left and right wing
is unequal, the induced torque makes the glider bank. This torque is
the difference between the forces on the left and right wing multiplied
by the arm d. Recall, the arm is the distance between the centerline
of the glider and the point on the wing where the force acts, which we
approximate as b/4. The second derivative of ϕ is then given by the
torque divided by the moment of inertia. We approximate the latter as
1
12mb

2, resulting into the equation

ϕ̈ =
3

mb
(Fleft − Fright). (5.66)

Our goal is to model the change in airflow W due to turning the paddle
by an angle ξ. The factor in (5.56) which is the most significant, right
now, is the height z. By turning the paddle we increase the height
of the left wing and decrease the height of the right wing. With some
trigonometric computations, we find that this increase/decrease is equal
to d sin ξ sin θ. On the other hand, when the banking angle ϕ increases
and the plane banks to the right, we find the height decreases on the
right wing and increases on the left wing. This increase/decrease is
equal to d sinϕ. These two effects cancel out when sin ξ sin θ = sinϕ,
which means that Wleft = Wright and the torque is zero. Combining
this relation with (5.65) connects the angle turning angle of the glider
to the turning radius of the paddle. Mathematically put, we obtain

R sin ξ sin θ =
2m

ρS(CL cos γeq − CD sin γeq)
= constant. (5.67)

5.3 Data-driven approach

In parallel to the model-driven approach described in Section 5.2, we
used the video data recorded by Zoro Feigl as a starting point of this
problem. We begin by discussing the contents of these videos. We
then describe our methods for generating data based on the videos and
conclude with an analysis of the obtained data.
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5.3.1 Available data

Several videos were available of Zoro Feigl flying the walkalong glider
in his workplace. In these videos, the camera is mounted behind the
paddle. The panel is transparent, allowing for a view of the glider in
a consistent perspective. Moreover, the bottom of the glider is marked
with a cross consisting of a line from the top to the bottom of the
glider in its center and a line from the left wing to the right wing. A
characteristic frame from one of the videos is shown in Figure 5.14.

Figure 5.14: Frame of one of the available videos in which Zoro Feigl
flies the walkalong glider.

In the videos we observed that the pitch of the glider does not vary
much throughout the flight. Hence, we have made the assumption that
the pitch of the plane is constant (χ = 0). To extract useful information
from the videos, the first step is to detect and locate the glider. This
problem is challenging due to a few factors at play.

First, at some points in the videos there is significant background
light, which makes it difficult, even for humans, to locate the cross
on the glider exactly. Moreover, the perspective of the camera varies
between videos and is not completely consistent even within one video.
This complicates relating the measurements from these videos to the
world coordinate system. Furthermore, the trajectory of the paddle is
unknown, which makes relating the data to movements made with the
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Figure 5.15: Tracking of the cross on the glider by image processing.

paddle impossible. Lastly some relevant factors, as discussed in the
modeling section, for example the distance between the glider and the
paddle, are challenging to acquire from 2D video data from a single
viewpoint.

5.3.2 Detecting the glider

In order to detect the glider in the video footage, we used two methods.
First, we implemented an image processing procedure to detect the
plane. Subsequently, we implemented a deep learning algorithm in
order to make the tracking more robust against variations in lighting
and environment.

Classic image processing

Based on the frames as shown in Figure 5.14, we detected the white
glider and the cross on the glider, which gave us a location of the 4
points on all ends of the cross (Figure 5.15).

However, this detection is far from perfect, as changes in light/background
may result in failures, making the measurements that we obtain with
this method very noisy and imperfect.
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Figure 5.16: Deep learning approach for estimating the location of the
glider. Resampled frame is used as input for a CNN, predicting four
2D functions indicating the location of the vertices of the cross drawn
on the glider.

Deep learning approach

As we identified in the classic imaging approach, the automatic detec-
tion of the plane is not robust against changes in lighting and back-
ground. Over the last number of years, convolutional neural networks
(CNN’s) have become very popular in common imaging processing
tasks, such as classification, detection and segmentation. CNN’s handle
image data by extracting distinctive features using consecutive convo-
lution operations. The weights of the convolution kernels and hence
the features they pick up are based on the data and follow from an
extensive optimization process we refer to as training. It has been well-
established that CNN’s can be trained to become invariant to these
type of conditions, by means of proper data augmentation Shorten and
Khoshgoftaar (2019). This means that the automatic detection system
can be deployed in a wide variety of surroundings.

To train our network, we first need proper ground-truth data. For
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this, we manually annotated the four vertices of the cross in a number of
frames of one video. The CNN should predict the locations of these four
vertices based on image data. To solve this image detection problem,
we adapt the method introduced in Sironi et al. (2015), that casts this
as a regression problem. For each vertex, we construct a 2D function
indicating the location of the vertex with a Gaussian peak, as shown
on the right of Figure 5.16. The CNN that we use maps the 2D input
image to four 2D output images, predicting the function value for each
of their respective vertices, also shown in Figure 5.16. To retrieve the
location of each vertex in the image frame, we can simply take the
argmax of each of the four images.

We trained a U-Net architecture on a small dataset consisting of
30 samples. The frames from the original video had a resolution of
3840 × 2160 and had three colour channels. As a preprocessing step,
we first resampled the frames to 256×256 pixels, and reduced the colour
channels to gray values. These resampled input images are shown on
the left of Figure 5.16. We trained the network for 1000 epochs, using
an Adam optimizer with a mean squared error loss with learning rate
0.001.

We tested this method on unseen frames, similar to the ones with
ground truth annotations. A resulting prediction on one of these frames
is shown in Figure 5.17a. The maxima of the predicted locations align
with the actual locations of the cross. We only annotated slices at
the beginning of the video, due to time constraints in this project 10.
Therefore, for new and unseen situations, the network shows a poor
performance (Figure 5.17b). In this case, the glider angle and back-
ground lighting differ a lot from the data used for optimization, the
network struggles to detect the vertices on the glider. Since detect-
ing the glider on familiar scenes looks promising, we recommend using
more annotations with more variety in background and lighting, as well
as orientation of the glider as training data for the network.

10Annotating the cross on additional video data is not extremely labour intensive.
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(a) Unseen, similar frame (b) Unseen, non-similar frame

Figure 5.17: Vertex locations determined using the trained network on
different frames of the video.

5.3.3 Analysis of obtained data

We now analyse the data as obtained using the classic image processing
approach. As the four points of the cross drawn on the glider are
detected, it is possible to find the center point of the cross under the
assumption that the paper does not bend. This can then be done by
taking the intersection of the line between the leftmost and rightmost
point and the line between the top point and bottom point. We then
plot the distribution of the measured center points as a heatmap, shown
in Figure 5.18. Note that badly detected crosses, identified by a small
difference between coordinates of the four points, are not included in
the heatmap.

In this heatmap, we see that the glider’s position remains close to a
specific position relative to the camera. This suggests that it is benefi-
cial for control of the glider to also keep the glider relatively constant in
respect to a camera mounted on the robot. Further analysis of videos
in which the glider falls could give more insight into the feasibility of
certain positions.
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Figure 5.18: Heatmap of the center of the glider relative to the camera.
Colours represent the number of frames the center of the glider was in
that location in the image frame.

Next, we attempt to find the yaw of the glider. To do this, we
assume that the pitch and roll relative to the board are constant, and
we thus take the yaw to be the angle of the observed vertical line of
the cross. This angle is taken so that an angle of 0 rad corresponds to
a vertical line. A positive angle corresponds to the plane turning right
and a negative angle corresponds to the plane turning left (Figure 5.19).

Figure 5.19: Examples of frames for which a small negative yaw (left)
and a positive yaw (right) are detected.

Measuring the angle of the plane as observed through the screen
for one of the videos provided, we find the result shown in Figure 5.20.
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When viewing the video next to this data, large spikes in the observed
yaw seemed to correspond to the plane turning in various instances.
Therefore, our notion based on these results was that measuring the
yaw while flying the glider could help in determining whether controlled
actions of the robot have the desired effect. Particularly, it could be
used as an indication of whether the glider is turning at a desired rate.

Figure 5.20: Plot of the estimated yaw over time.

5.4 Recommendations and outlook

Based on our findings, we have several recommendations for further
development of a control system for the glider project.

From our analysis of the position of the glider, we observed the
position of the center of the glider relative to the board is very stable
in the correctly scored frames. We expect this could be used as an
indication for a control algorithm, as the glider straying too far from
the “stable” state could indicate that the control is not working as
intended. Moreover, imprecise comparisons between the measured yaw
of the glider relative to the board and the corresponding video seem to
indicate that a change in yaw correlates with the plane making a turn.
This is an observation that can be taken into account when constructing
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a control strategy. Lastly, the results of our deep learning approach for
locating the glider are promising, though more time and data are needed
to properly train this network. We expect that such a deep learning
approach is appropriate for locating the glider and finetuning control
parameters based on processed data on-the-fly.

Large improvements to the data-driven methodologies can be ob-
tained if more details of the data are collected. If the location and
distance relative to the camera of all four points of the cross on the
glider are known, the metrics discussed in this report could be mea-
sured and analysed in much more detail. This leads to more insight
in the stable position and rotation of the glider both while turning
and flying straight. Finally, we have noticed that the image process-
ing methods applied in this report tend to fail in case of high contrast
within the background, or heavy backlight in the video data. This in-
dicates that the room where the installation is placed can influence the
effectiveness of control strategies that are based on real-time collected
data. Therefore, testing the installation relatively long before the ex-
hibition is opened to visitors is recommended as then changes to either
the room or parameters in the control strategy can still be made.

Note that enhancing the data-driven models as proposed above sig-
nificantly improves the practicality of the model-driven part already.
In particular, when we predict the trajectory of the glider, we require a
lot of information that should be retrieved from the data. For a proper
prediction we need the live location of the glider, as well as its speed
and its velocity yaw and pitch. Retrieving the banking angle from the
data would be very useful as well, but when the glider is forced to move
in a perfect circle, this angle can simply be determined by the angles
made by the paddle (see Subsections 5.2.3 and 5.2.3). We think that
the banking angle can be retrieved by clever markings on the glider.
Also, due to the fact that the location of the paddle is always known—
thanks to the technology of the robot arm—we recommend a setup that
is able to measure all the angles and distances between the glider and
the paddle. This information is just essential for prediction.

Furthermore, we advise those who continue with this project to
investigate whether our (simplified) models are realistic. Especially, in
the simplified model we approximate the wind generated by the paddle
instead of using CFD simulations in order to win computation time,
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but perhaps this simplification does not coincide with experiments and
thus it needs to be verified. Doing more numerical analyses may yield
more insight in the flight dynamics of the glider as well. In particular,
we expect that several parameters in the models can be quite sensitive.
For example, slight changes in the mass parameter m may result into
very different results, since the mass of the glider is relatively small
(see Table 5.1) and we divide by m in the models. In addition, we
do not expect that all the constants in Table 5.1 are correct; these
constants can be found by doing enough experiments and subsequently
data fitting.

We also recommend—from a modelling perspective—to start with
one of the following “simple” trajectories: 1) an almost-circle, i.e., a
circular trajectory where the glider needs to fly partly in a straight line
without a paddle underneath for a short while (which is due to the fact
the robot arm is unable to move in circles indefinitely); 2) an eight-like
figure, where the intersection point is above the robot arm. Option 1
is favourable, because then one can use the simplified models. Note
that the glider can fly a long distance straight ahead without upward
lifting. Option 2 is a favourable trajectory in the sense that it would
then not be necessary to let the glider leave the paddle at all. How
often one needs to do small corrections and subsequently predict the
glider’s trajectory again, is something to look into. We actually expect
predictions will hold for quite a long time in a proper environment, but
there is no problem with regularly applying corrections (if computation
time allows it).

Ultimately, a useful continuation of this project may include the
construction of a control algorithm. This control algorithm can at
least partly be based on the models and observations presented in this
report. One idea would be to use funnel control Hackl, Endisch, and
Schroder (2008). This particular type of control does not rely on precise
knowledge of the underlying system, and aims to limit the solution of
the system to a decaying limiting function in time.



139

References

Beeler, Scott C, Daniel D Moerder, and David E Cox (2003). A flight
dynamics model for a small glider in ambient winds. Tech. rep. Na-
tional Aeronautics and Space Administration (NASA).

Etkin, Bernard (2005). Dynamics of Atmospheric Flight. Courier Cor-
poration.

FANUC Benelux BV (2022). Robot arm, M-710iC/12L. URL https:
//www.fanuc.eu/be/en/robots/robot-filter-page/m-710-
series/m-710ic-12l, last accessed on February 17, 2022.

Feigl, Zoro (2021). Spooky action spatial sketch. URL https://www.
youtube.com/watch?v=BKchk4GLtQc&ab_channel=ZoroFeigl,
last accessed on March 10, 2022.

Grant, Joseph E (1955). Method of flying toy airplane and means there-
for. US Patent 2,718,092.

Hackl, Christoph M, Christian Endisch, and D Schroder (2008). “Funnel-
control in robotics: An introduction”. In: 2008 16th Mediterranean
Conference on Control and Automation. IEEE, pp. 913–919.

Harrison SciencetoyMaker, Slater (2022). Make the Baby Bug Walka-
long Glider. URL https://sciencetoymaker.org/walkalong-
glider-airsurf-air-surfing/make-your-own-gliders/baby-
bug/, last accessed on February 17, 2022.

Hull, David G (2007). Fundamentals of airplane flight mechanics. Vol. 19.
Springer.

Shorten, Connor and Taghi M Khoshgoftaar (2019). “A survey on image
data augmentation for deep learning”. In: Journal of Big Data 6.1,
pp. 1–48.

Sironi, Amos et al. (2015). “Multiscale centerline detection”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 38.7,
pp. 1327–1341.

Stengel, Robert F (2004). Flight Dynamics. Princeton University Press.
Sweden International Physicist’s Tournament, KTH Royal Institute of

Technology (2017). Handy glider.
Weitz, Lesley A (2015). Derivation of a point-mass aircraft model used

for fast-time simulation. Tech. rep. MITRE Corporation.

https://www.fanuc.eu/be/en/robots/robot-filter-page/m-710-series/m-710ic-12l
https://www.fanuc.eu/be/en/robots/robot-filter-page/m-710-series/m-710ic-12l
https://www.fanuc.eu/be/en/robots/robot-filter-page/m-710-series/m-710ic-12l
https://www.youtube.com/watch?v=BKchk4GLtQc&ab_channel=ZoroFeigl
https://www.youtube.com/watch?v=BKchk4GLtQc&ab_channel=ZoroFeigl
https://sciencetoymaker.org/walkalong-glider-airsurf-air-surfing/make-your-own-gliders/baby-bug/
https://sciencetoymaker.org/walkalong-glider-airsurf-air-surfing/make-your-own-gliders/baby-bug/
https://sciencetoymaker.org/walkalong-glider-airsurf-air-surfing/make-your-own-gliders/baby-bug/


140 SWI 2022 Proceedings



Acknowledgements

The main sponsor for the SWI 2022 was The Netherlands Organisation
for Scientific Research (NWO). We gratefully acknowledge their gener-
ous support for this event, as well as their continued support for these
events in the Netherlands. Additional financial support was provided by
4TU.AMI which we gratefully acknowledge as well. Moreover, the com-
panies who submitted the problems (You2Yourself, PostNL, Fontys,
Synopsis) also contributed financially to SWI 2022. Our institution
(the University of Twente) as well as PWN (Platform Wiskundig Ned-
erland) provided organizational support. Last but not least we would
like to thank all participants for creating an inspiring week of industrial
mathematics.

The SWI 2022 organizing committee

141


	Preface
	Personalised Health Monitoring for Early Disease Detection
	Introduction
	Problem statement and organization of the report

	Literature review
	Related work (Medical potential of miRNA for diagnosis)
	Related work (Classification and prediction approaches)
	Related work (Longitudinal data and mixed models)
	Conclusion on the literature review

	Description of the data
	Longitudinal data
	Cross-sectional data
	Difficulties

	The proposed approach
	The concept of a baseline
	Synthetic data generation mechanism
	Detection

	Results
	Clustering based on available data
	Analysis of variance
	Generation of synthetic data
	Clustering based on synthetic data
	POMDP and mixed effects model

	Conclusions and Recommendations
	Pros and cons of the proposed approaches
	Future research and recommendations


	Optimizing Parcel Transportation of PostNL
	Introduction
	Time discretization and MIP models
	Time-expanded network
	Basic model
	Refined model

	Solution approach
	Instance format and software
	Results
	Solution quality and robustness
	Insights from the solution

	Conclusions and recommendations
	Column generation
	Benders' reformulation
	Solving multi-commodity flow subproblems


	Smartscan
	Introduction
	Procedure
	Methods and results
	Meshlab
	Signed distance function
	Linear regression model

	Filtered inputs
	Mapping a scalar field on the surface
	Conclusion and outlook

	Macro Legalization in Chip Design
	Introduction
	Problem Formulation
	Legal macro placement

	Solution approaches
	MIP formulation
	Greedy algorithm
	Flexible greedy algorithm
	Brownian motion

	Experimental results
	Using MIP-solver
	Greedy algorithm
	Flexible greedy algorithm
	Comparison

	Conclusion

	A Joint Data- and Model-Driven Approach Simulating the Behaviour of a Walkalong Glider
	Introduction
	Robot arm
	Goal
	Approach

	Model-driven approach
	Definitions and formulas
	Glider one point mass model
	A simplified flight model

	Data-driven approach
	Available data
	Detecting the glider
	Analysis of obtained data

	Recommendations and outlook

	Acknowledgements

