
Optimizing Parcel Transportation of PostNL

Ruben Hoeksma1, Christopher Hojny2, Jan-Kees van
Ommeren3, Matthias Walter4

Abstract

We consider a multi-commodity transportation problem that arises in
parcel delivery in the Netherlands. We focus on its deterministic vari-
ant and propose a mixed-integer programming model to solve it. We
provide an implementation that is based on a multi-stage solution ap-
proach in order to overcome computational difficulties. This allows us
to solve practical instances to reasonable accuracy.

Keywords: transportation, network design, multi-commodity flow

2.1 Introduction

PostNL is a Netherlands-based mail and parcel delivery company. On
a daily basis, the company collects, sorts and delivers mail and parcels
throughout, mostly, the Netherlands. This report addresses the opti-
mization of the daily transportation of parcels by trucks between sorting
centers in the Netherlands.

1University of Twente, The Netherlands
2Eindhoven University of Technology, The Netherlands
3University of Twente, The Netherlands
4University of Twente, The Netherlands

41



42 SWI 2022 Proceedings

These parcels need to be carried between different sorting centers,
which are the hub locations where collected parcels are redistributed
and from which actual delivery to the recipients starts. To avoid having
to send several trucks from every sorting center to every other sorting
center, PostNL runs several so-called cross docks which are simply hubs
in the distribution network. We consider only the transportation of
trolleys, which are the units of identical size that are loaded with parcels
at their origin sorting center and are sent through the network to their
destination sorting center.

Deterministic problem. For the deterministic version of the prob-
lem we are given a set L of sorting locations, of which some have cross-
dock capabilities, which we denote by L× ⊆ L. For every pair i, j ∈ L
(i ̸= j) of locations we know the driving times d(i, j) ∈ R≥ 0 from i to
j. There is a set K of commodities to be sent through the network,
which correspond to the labels that are attached to each trolley sent
through the network. Each such commodity (i, t) ∈ K consists of a
location i ∈ L and a deadline t ∈ R until which all trolleys of this
commodity have to be delivered to their destination i. In the idealized
deterministic setting, a set G of generated trolleys is given. For each
trolley, we are given a tuple (i, t, i′, t′) ∈ G, where i ∈ L denotes the
location where it appears, a release time t at which it appears and
a commodity (i′, t′) ∈ K that indicates to which destination i′ and
by which time t′ it must be delivered. Note that although identical
tuples can occur multiple times, we consider them as unique for ease
of notation. Our implementation deals with multiplicities properly.
Transportation is done by identical trucks that each have a capacity of
U ∈ Z≥ 0 trolleys. Moreover, loading and unloading a truck at some
location takes an amount of time, tload(i) ∈ R≥ 0 and tunload(i) ∈ R≥ 0

for each location i ∈ L, respectively. At each location i ∈ L, at most
cpark(i) ∈ Z≥ 0 trucks can load or unload at the same time. Finally, at
most cout(i) ∈ Z≥ 0 generated trolleys can wait for being transported,
at most cin(i) ∈ Z≥ 0 trolleys can wait at their destination for their
deadline and c×(i) ∈ Z≥ 0 trolleys can wait for further transportation
after they have arrived at some cross dock i ∈ L×.



43

Demand forecasts. We were provided with a deterministic instance
of the optimization problem we just described. However, knowledge of
the exact time at which a trolley is ready to be shipped is quite unre-
alistic. In practice, PostNL has a demand forecast whose accuracy is
unknown to the authors. Moreover, there are further sources of uncer-
tainty, e.g., the actual traveling times or breakdowns in any part of the
logistics chain. However, as it will turn out already the deterministic
optimization problem is not easy to solve at all. This justifies our focus
on the perfect-knowledge version of the real-world problem.

Outline. The paper is structured as follows. We first describe our
modeling approach by means of time discretization in Section 2.2. In
that section we also derive a mixed-integer programming model and
refine it as an attempt to deal with robustness problems. Our solution
approach is described in Section 2.3 and the corresponding implemen-
tation prototype is explained in Section 2.4. Our results are presented
in Section 2.5. We conclude our paper with future recommendations
for PostNL in Section 2.6.

2.2 Time discretization and MIP models

In this section we first describe how we discretize the times that are
relevant to our problem. Then we explain an auxiliary graph that is
useful to derive a mixed-integer programming model for the problem.
Finally, a basic and a refined MIP model are described.

2.2.1 Time-expanded network

We first choose a parameter ∆ > 0 and then transform all times t
to t/∆, which we call ticks. In fact, we only consider integer tick
values. To this end, transformed release, loading and unloading times
are rounded up to the next integer, while deadlines are rounded down.
We denote these rounded values by a ∆ superscript, e.g., t∆unload(i) :=
⌈tunload(i)/∆⌉. This rounding procedure is conservative in the sense
that the available time to route a trolley is never increased, while the
time necessary to transport it is never decreased. In particular, if ∆ is



44 SWI 2022 Proceedings

larger than tload(i) or tunload(i), then rounding up several parameters
yields values that sometimes overestimate the actual transport time by
too much. To resolve this problem, we do not transform the driving
times independently, but instead define the travel ticks as

d∆(i, j) := ⌈(d(i, j) + tload(i) + tunload(j))/∆⌉ .

We denote by tmin ∈ Z and tmax ∈ Z the largest (resp. smallest) tick
such that T := [tmin, tmax] ∩ Z contains all transformed release times
and deadlines.

Auxiliary network. We now define the auxiliary directed graphD =
(V,A) with V = L × T . In particular, we consider multi-commodity
flows (with further restrictions) in D, where a flow unit that traverses
through node (i, t) represents a trolley that is at i in tick t. Note
that the distinction of incoming and outgoing trolleys is easy, since the
commodity k = (j, t) contains the destination information and we have
i = j if and only if the trolley has i as its destination. The arc set of
D consists of arcs A = Amove ∪Astay with

Amove := {((i, t), (j, t′) : i ∈ L, j ∈ L, t, t′ ∈ T, t′ = t+ d∆(i, j)} ,
Astay := {((i, t), (i, t+ 1) : i ∈ L, t, t+ 1 ∈ T} .

We also introduce the following notation:

δout
t (i) := {a ∈ A : a = (i, t, j, t′) for some j ∈ L, t′ ∈ T} ,
δint (i) := {a ∈ A : a = (j, t′, i, t) for some j ∈ L, t′ ∈ T} .

2.2.2 Basic model

We first describe a base model for the problem. The main decision of the
multi-commodity flow interpretation of the trolley routing problem is to
decide how many commodities of a specific type traverse an arc a ∈ A
at a certain point of time. For arcs a ∈ Astay, we need to guarantee
that the capacities of the corresponding location are not exceeded. For
arcs a ∈ Amove, we must ensure that also sufficiently many trucks are
provided for transportation along a. For this reason, we introduce the



45

following variables, modeling the previously mentioned decisions. The
truck variables

xa ∈ Z≥0 ∀a ∈ Amove (2.1)

model how many trucks are available for transportation along arc a =
((i, t), (j, t′)). We assume that the loading procedure of these trucks
starts at tick t, i.e., the trucks are not necessarily leaving immediately.
To make sure that capacities of locations are not exceeded, we introduce
inventory variables

sti,k ∈ R≥0 ∀i ∈ L, ∀k ∈ K, ∀t ∈ T, (2.2)

which keep track of the number of trolleys of commodity k that are at
location i at time t. Finally, flow variables

ya,k ∈ R≥0 ∀a ∈ A, ∀k ∈ K (2.3)

model the number of trolleys of commodity k that traverse arc a. Note
that we model the flow of commodities using continuous variables. Pre-
liminary computational experiments showed that switching between
integer and continuous variables does not make much of a difference
for the optima. One potential reason is that actually sending a truck
along an arc often yields enough capacity that the full demand of one
commodity (at the source node) can be sent without the need to split
it across different arcs. However, already for smaller examples the
running time increased significantly when requiring integrality of the
y-variables. Hence, we decided to make them continuous.

Constraints. To make sure that the previously introduced variables
model a solution of the trolley routing problem, we introduce the fol-
lowing constraints. The truck capacity constraints guarantee that the
total number of trolleys sent via an arc a ∈ Amove does not exceed the
capacity f the available trucks:∑

k∈K

ya,k ≤ U · xa, ∀a ∈ Amove. (2.4)

Similarly, we need to make sure that the docking capacities at each
location are not exceeded. That is, the total number of trucks arriving



46 SWI 2022 Proceedings

and departing from a certain location i must not exceed the number of
docks Di:

t∆unload(i)−1∑
τ=0

∑
a∈δint+τ (i)

xa +

t∆load(i)−1∑
τ=0

∑
a∈δint−τ (i)

xa ≤ Di ∀i ∈ L, ∀t ∈ T. (2.5)

Note that we need to take the summation over τ into account to also
consider the trucks whose unloading (resp. loading) process at location i
has not finished yet until tick t.

When routing the trolleys through the directed graph, we need to
make sure that the routing adheres to a flow structure, i.e., the following
flow balance constraints need to be satisfied for all i ∈ L, k = (j, t′) ∈
K, and t ∈ T \ {0}:

st−1
i,k +

∑
a∈δint (i)

ya,k −
∑

a∈δout
t (i)

ya,k + βin
i,k,t − βout

i,k,t = sti,k, (2.6)

where βin
i,k,t is the number of trolleys of commodity k that are due at

time t at location i, and βin
i,k,t is the number of trolleys created. Note

that these values can be easily computed from the instance data.
Finally, we need to guarantee that the inventory capacities at all

locations are not exceeded. Since locations have different capacities for
outgoing and incoming trolleys, we introduce∑

(j,t′)∈K :
j ̸=i

sti,(j,t′) ≤ cout ∀i ∈ L \ L×, ∀t ∈ T, (2.7)

∑
(j,t′)∈K :

j ̸=i

sti,(j,t′) ≤ c× ∀i ∈ L×, ∀t ∈ T, (2.8)

∑
t′∈T

sti,(i,t′) ≤ cin ∀i ∈ L, ∀t ∈ T. (2.9)

Objective function. Since we are interested in small total driving
times, we

minimize
∑

a=((i,t),(j,t′))∈A

d(i, j)xa. (2.10)



47

Note that while we use the rounded driving times (by means of travel
ticks d∆(i, j)) in order to define the auxiliary graph, we use the actual
driving times in the objective function. Hence, the objective values of
computed solutions can be related to the real world and do not require
a conversion from ticks to actual times.

2.2.3 Refined model
Later, we solve the MIP (2.1)–(2.10) for a certain problem instance
with a certain trolley production G. We then evaluate the solution for
different other sets G1, . . . , Gℓ of generated trolleys. The purpose is
to investigate the robustness of the computed solution (x⋆, s⋆, y⋆) with
respect to modified demands. For this we fix the truck decision variables
x = x⋆ and try to find vectors y and s that constitute a transportation
plan for a particular set Gi of generated trolleys. However, it may
happen that the instance for a Gi is infeasible: for instance, after the
last truck from a location leaves, another trolley appears, which has no
chance of reaching its destination.

A similar problem can appear already for the first optimization with
trolley production G if the discretization parameter ∆ is too large: in
this case, there might not be enough time to go to a destination via a
cross dock, and hence much of the transportation would have to arrive
exactly at the deadline which may in turn overload the available docks.

To this end, we extended the base model represented in the previous
section as follows.

Not delivering trolleys. We introduce additional variables

pin
k ∈ R≥ 0 ∀k ∈ K (2.11)

that count the number of trolleys of commodity k that are not delivered.
To match this to the total flow balance in the network, we also introduce
variables

pout
i,k,t ∈ [0, βin

i,k,t] ∀i ∈ L, ∀k ∈ K, ∀t ∈ T, (2.12)

that indicate the number of trolleys if commodity k that would be
produced in i at time t, but that are not released. These variables



48 SWI 2022 Proceedings

are incorporated into the basic model by adding, to the left-hand side
of (2.6), the term pout

i,k,t as well as subtracting pin
k in case k = (i, t)

holds. The modified constraint shall be denoted by (2.6’). In order to
encourage delivery, we penalize these variables with a certain factor in
the objective. In our case, we used a coefficient of 10, which is larger
than the extra costs of sending a single truck (say, with the considered
trolley) along the longest connection.

Extending the number of depots. For strategic planning, one
may want to analyze the effect of certain restrictions. In particular, it
could be interesting to judge the benefit of increasing certain capacities
such as the sorting capacity of a location or the number of depots.
To illustrate this flexibility of our proposed MIP approach we added a
corresponding extension regarding the depot numbers. To this end, we
introduced variables

ei ∈ R≥ 0 ∀i ∈ L, (2.13)

to indicate extended docking capacity at location i. The modification
of the docking constraint (2.5) is straight-forward: we replace its right-
hand side with Di + ei. The modified constraint shall be denoted
by (2.5’) Again, we add

∑
i∈L 10ei to the objective function in order to

penalize this dock extension. This is solely for demonstration purposes,
and for answering an actual strategic question a suitable value would
have to be found. The objective function (2.10) augmented with all
discussed penalty terms is denoted by (2.10’).

Final model. For further reference we denote the final model as

minimize (2.10’) over (x, s, y, pin, pout, e)

subject to (2.1)–(2.4), (2.5’), (2.6’), (2.7)–(2.13). (2.14)

2.3 Solution approach

Our main challenge is to produce solutions with total travel time as
small as possible. For this reason, we have focused in our approach on



49

generating solutions with a small objective value rather than deriving
strong lower bounds on the optimal travel time. To find solutions that
are as realistic as possible, one is interested solving Model (2.14) for
a time discretization of about 15 minutes. Refining the discretization
parameter ∆ to ∆

2 , however, roughly doubles the number of variables
and constraints in Model (2.14). This makes it a challenge to solve
Model (2.14) or finding good solutions for a very fine time discretiza-
tion. Our solution approach therefore consists of multiple phases in
which solutions for coarse time discretizations are used to initialize the
search for good solutions with a finer time discretization.

Phase 1. In Phase 1, we start with a very coarse time discretization
∆ = 120min, and our aim is to find a solution in a very limited amount
of time. To this end, we define a placeholder solution (x⋆, s⋆, y⋆), and
initialize an upper bound on the optimal objective value of u = ∞.
Then, we iteratively attempt to solve Model (2.14). In each iteration,
we specify a time limit of 300 s and provide the model the best known
solution (x⋆, s⋆, y⋆) from a previous iteration as start solution. In the
first iteration, this solution is a placeholder solution which results in
not providing a solution at all. After the time limit is hit, we extract
the best solution found during this iteration. If the objective value of
the latter is smaller than 0.99u, we replace (x⋆, s⋆, y⋆) by the newly
found solution and update u to its objective value. Otherwise, Phase 1
terminates and returns the best solution found so far.

Our motivation for this strategy is based on the observation that
in many cases the solver was not able to improve on a found solution
in a reasonable amount of time. Restarting the entire solution process
and providing the best incumbent, however, the solver was able to very
quickly find an improving solution.

Phase 2. In Phase 2, we refine the time discretization to ∆ = 60min.
The remaining steps are essentially the same as in Phase 1. The only
difference is that we provide also the first iteration a solution, namely
the final solution of Phase 1, and that the time limit for each iteration
is set to 1800 s.



50 SWI 2022 Proceedings

Phase 3. Phase 3 iteratively attempts to solve Model (2.14) for ∆ =
30min. We provide the entire phase a total time limit of 86 400 s, i.e.,
one day. The remaining structure of Phase 3 is essentially the same as
before except for the following differences. Instead of providing each
iteration a fixed time limit, we work with a solution time limit. That
is, we do not specify an initial time limit for each iteration, but we wait
until the solver has found a solution improving on the initially provided
one. Afterwards, we allow the solver to continue with the search for
better solutions within the solution time limit. Our motivation for this
strategy is that we observed that the solver could rather often quickly
improve on a found solution, i.e., interrupting the solver right after
the first improving solution has been found might have blocked it from
providing even better solutions in a reasonable amount of time. For the
first iteration, the solution time limit has been set to 300 s. In every
succeeding iteration, we double the solution time limit if the newly
found solution does not improve on the previously best known solution
by at least 1%. Otherwise, the same solution time limit is used.

2.4 Instance format and software

We implemented the MIP model (2.14) and the solution approach de-
scribed in the previous section in Python. Our code is available on
github5. Since we cannot publish the actual instances as they contain
some confidential information, we describe the instance format that is
used by our code.

The instances are described in 2 files, one network file and one trolley
file. The former describes all properties of the network except for the
actual trolleys that are sent through it. This separation allowed us to
test a solution for a network with different trolley sets. The network
file has the following format:

U <NUMBER INDICATING THE CAPACITY OF EACH TRUCK>
i <UNLOADING TIME IN HOURS>
o <LOADING TIME IN HOURS>

# List of locations, one per line.
# <NAME> is a string

5https://github.com/discopt/postnl

https://github.com/discopt/postnl


51

# <X> is the longitude
# <Y> is the lattitude
# <OUT-CAPAC.> is the outgoing capacity
# <IN-CAPAC.> is the incoming capacity
# <CROSS-CAPAC.> is the crossdocking capacity.
# <NR. OF DOCKS> is the number of docks.
l <NAME> <X> <Y> <OUT-CAPAC.> <IN-CAPAC.> <CROSS-CAPAC.> <NR. OF DOCKS>
...

# List of distances, one per line.
# <i> and <j> are numbers from 0 up to |L|-1.
d <i> <j> <DISTANCE FROM i to j>
...

# List of commodities, one per line.
# c <TARGET LOCATION> <SHIFT NUMBER> <DEADLINE TIME IN HOURS>
...

The trolleys file is a CSV file with ; as a separator character. It
contains one header line and otherwise lines of the form

<NAME1>;<NAME2>;<SHIFT NUMBER>;<TIME>

where first two columns refer to names of some locations i, j ∈ L from
the network file, j together with the shift number constitute a com-
modity, and the last column specifies the time at which the trolley is
spawned.

All our experiments were run on a cluster with 32 Intel Xeon Gold
5217 CPU (3.00GHz) processors, a total of 64GB of RAM running an
Ubuntu Linux with Gurobi 9.5.1rc2 on 4 threads.

2.5 Results

PostNL provided us one instance on that we could test our solution
approach. This instance features 31 locations of which six are classified
as cross docks; the remaining 25 locations are regular sorting centers.
A regular sorting center has a capacity of 400 outgoing and 1200 in-
going trolleys, for cross docks no limits on the trolley capacities are
imposed. Trolleys are assumed to start arriving at sorting centers late
afternoon and need to be shipped to their destination until an indi-
vidually specified time the next morning. Finally, a truck is assumed



52 SWI 2022 Proceedings

to have a capacity of 48 trolleys and loading (resp. unloading) a truck
takes 10 minutes (resp. 15 minutes).

2.5.1 Solution quality and robustness

One downside of our solution approach is that the produced solution
arguably is not robust against changes in the data. In practice, this
means that arrival times of trolleys are not deterministic and one needs
to find a schedule of trucks that is able to transport as many trolleys
on time while still minimizing total mileage. Therefore, we have tried
increase robustness of our solution by reducing capacities of sorting
centers and/or trucks with which we compute it. If we reduce, for ex-
ample, the outgoing capacities of sorting centers, we are able to deal
with uncertainties of arrival times of trolleys; reducing the truck capac-
ities sends more trucks than strictly needed in the considered scenario.
I.e., if more trolleys arrive than expected, we increase the chance that
all trolleys can be delivered on time.

In our experiments, we used the method described in Section 2.3 to
produce solutions for the original instance (referred to as “original” in
the following) provided by PostNL as well as three variations to add
aspects of robustness to the solution approach. To this end, we either
reduced the outgoing capacity (O) by 25%, the truck capacity (T)
by 8.3%, or both (OT). Table 2.1 summarizes our results. For each of
the three phases, it shows the value of the best known solution (columns
2–4) as well as the number of iterations within this phase (columns 8–
10). Moreover, it provides the best known final dual bound (column 5)
and the corresponding gap (column 6) in the 30 minutes discretization
as well as the final penalty value (column 7) caused by trolleys not
delivered on time.

We can see that the formulations with a very coarse discretization
of ∆ = 120min are able to provide good solutions in terms of total
mileage as the primal bound of Phase 1 is much smaller than the primal
bound of Phases 2 and 3. In particular, the primal bounds of Phase 1
almost match the final dual bounds. From a practical point of view,
however, these solutions are not useful as the trucks can only leave every
two hours. Introducing finer discretizations, Gurobi is only able to find
solutions with a relatively large mileage in comparison to the coarse



53

Table 2.1: Overview of numerical results using the approach of Sec-
tion 2.3.

primal bounds/phase best dual gap penalty #iter./phase

1 2 3 1 2 3

original 1333.6 1743.3 1559.6 1330.6 14.7% 60 4 1 8
O 1371.0 1858.7 1546.1 1326.1 14.2% 40 6 1 8
T 1439.0 1815.9 1641.9 1417.1 13.7% 40 5 1 8
OT 1468.6 1933.7 1775.4 1416.8 20.2% 40 5 1 8

discretization. But note that we cannot conclude that the mileages
from Phase 1 are also the right mileages for Phase 3 as also the arrival
time of trolleys gets discretized.

Reductions of outgoing- or truck capacities lead, in general, to an
increase of value for the best known incumbent solution. The only ex-
ception is the reduction of outgoing capacity, where the objective value
drops slightly in comparison with the original instance. Reducing the
truck capacity (both capacities) leads to increase of the best incum-
bent’s objective value by 5.3% (13.8%). Of course, since we could
solve neither of the four models to optimality, we cannot conclude that
the price of robustness in the sense of the different variations is exactly
this value. However, it indicates that the increase in total mileage and
penalty values can be rather large. For this reason, it might be inter-
esting to explore different ways to robustify our approach to find robust
solutions that have less impact on total mileage.

Table 2.2 depicts the results for different scenarios. A scenario is
given by its trolley production Gi and we evaluated our solution (keep-
ing the truck decision that we computed for our instance) for 9 such
sets, all of which were provided by PostNL. Interestingly, in terms of ro-
bustness the original instance and the one with a reduction of the truck
and the outgoing capacities (OT) gives the most robust results. Unfor-
tunately, we could not determine an actual reason for this surprising
behavior. In fact, for different solutions that we had produced dur-
ing the project the robustness of the original solution was much worse.
Hence, we conjecture that more computation time (per scenario) would



54 SWI 2022 Proceedings

Table 2.2: Robustness of solution when challenged with different sets
of trolley productions. The column base indicates the number of unde-
livered trolleys and required extra docks for the trolley production that
was used as input for our solution approach. The nine further columns
indicate these amounts for different productions, and the right-most
column shows the average over these 9 instances.

instance obj. value undelivered trolleys / extra docks for different scenarios
base 1 2 3 4 5 6 7 8 9 average

original 1559.6 3/0 17/1 11/3 11/0 18/0 14/0 15/0 16/0 14/1 17/1 15.1/0.7
O 1546.1 2/0 27/0 80/0 16/0 44/0 18/3 47/1 29/0 20/0 49/4 37.0/0.9
T 1641.9 2/0 65/0 75/0 14/0 39/0 21/0 42/0 20/0 16/0 49/0 38.3/0.0
OT 1775.4 2/0 63/0 19/0 7/0 5/0 7/0 2/0 13/0 12/0 10/0 15.6/0.0

be needed to get a fair assessment of the robustness.

2.5.2 Insights from the solution

We now analyze the properties of the computed solution. Figure 2.1
depicts all connections that are used at all over the day.

It is easy to see that the resulting graph is relatively dense, but
also that many of the connections are green or blue, indicating that
at most 2 trucks use the connection. However, we believe that this
large amount of direct connections is due to the disretization error.
If ∆ ≥ 30min, some indirect connections are infeasible, although in
practice they would have been feasible. Since one cannot extract any
detailed information from this map, we also made corresponding maps
that only depict the direct (resp. indirect connections (see Figure 2.2)).

To untangle the large amount of connections from Figure 2.1 even
further, we depict in Figure 2.4 the proposed truck activity on an hourly
basis. First, most of the trucks do not depart very early since there
are not enough trolleys to be transported. Second, there are only a
few late trucks, which is to be expected because the deadlines of the
commodities differ significantly. Note that the figures depict truck ac-
tivity per hour whereas our final time discretization is ∆ = 30min,
that is, solution values are aggregated. Moreover, our very first time



55

Figure 2.1: Map with all used connections in our computed solution.
Colors indicate the number of times a connection is used (green: 1
truck; blue: 2 trucks; orange: 3 trucks; red: 4 trucks; purple: ≥ 5
trucks).



56 SWI 2022 Proceedings

(a) Indirect connections. (b) Direct connections.

Figure 2.2: Maps with all connections in our computed solution that
either involve a cross dock (2.2a) or are direct (2.2b). Colors indicate
the number of times a connection is used (green: 1 truck; blue: 2 trucks;
orange: 3 trucks; red: 4 trucks; purple: ≥ 5 trucks).



57

(a) Time slot 1. (b) Time slot 2. (c) Time slot 3. (d) Time slot 4.

(e) Time slot 5. (f) Time slot 6. (g) Time slot 7. (h) Time slot 8.

(i) Time slot 9. (j) Time slot 10. (k) Time slot 11. (l) Time slot 12.

(m) Time slot 13. (n) Time slot 14. (o) Time slot 15. (p) Time slot 16.



58 SWI 2022 Proceedings

(p) Time slot 17. (q) Time slot 18. (r) Time slot 19. (s) Time slot 20.

Figure 2.4: Maps with connections in our computed solution distributed
over 20 subsequent time intervals of length 1 h each. Time slot 1 is the
hour of the first released trolley, and time slot 20 is the hour in which
the last trucks arrived at their destinations. Colors indicate the number
of times a connection is used (green: 1 truck; blue: 2 trucks; orange: 3
trucks; red: 4 trucks; purple: ≥ 5 trucks).

discretization was ∆ = 120min, which seems to have an effect on the
computed solution: it is apparent that there is much more activity in
time slots 9, 11 and 13 than in 8, 10, 12 or 14. We suspect that indeed
this is because our computation for ∆ = 60min was warm-started from
a solution with ∆ = 120min. This implies that there might be poten-
tial for improving the computed solution by making use of these less
used slots.

Finally, it is worth to have a closer look at how a specific sorting
center is connected. In Figures 2.5 and 2.6, we depict the trucks that
have a particular sorting center as a destination, where we vary the
shifts (and thus the deadlines). Note that while a connection indicates
that there is a truck going from a sorting center to another sorting
center with trolleys for the specific deadline, this does not mean that all
trolleys on such a truck have the same deadline. In particular, if there
is only a direct connection from a location i to destination location j
for two shifts then it is likely that these connections represent the same
truck.

Our first observation is that the overall picture does not change
significantly over subsequent shifts, which may indeed be due to sharing
of trucks. Of course, some connections appear or disappear, which often



59

(a) Shift 4. (b) Shift 5. (c) Shift 6. (d) Shift 7.

Figure 2.5: Maps with connections in our computed solution that have
a distribution center in the west as its destination, but have different
shfits/deadlines. Colors indicate the number of times a connection is
used (green: 1 truck; blue: 2 trucks; orange: 3 trucks; red: 4 trucks;
purple: ≥ 5 trucks).

happens for single truck connections (colored in green).

In Figure 2.5 one can see that the indirect connections mainly use a
cross dock that is very close to the destination, and only make limited
use of other cross docks. On the contrary, the destination in the east
(Figure 2.6) does not have a cross dock nearby. While there are 3 cross
docks of similar distance (the three most eastern ones), only one of
them is heavily used. This highlights the optimization potential in our
approach as compared to a solution with only direct connections, i.e.,
that effective aggregation of trolleys can save many truck rides.

We have pointed out a few observations on our computed solution,
but we believe that much more insight can be gained when studying
it with appropriate background knowledge. In particular, an in-depth
comparison to the actual transportation plan is beyond the scope of
this paper. Similarly, an evaluation of the computed solution by means
of a simulation (that might be based on a more realistic model) would
be interesting.



60 SWI 2022 Proceedings

(a) Shift 1. (b) Shift 2. (c) Shift 3. (d) Shift 4.

Figure 2.6: Maps with connections in our computed solution that have
a distribution center in the east as its destination, but have different
shfits/deadlines. Colors indicate the number of times a connection is
used (green: 1 truck; blue: 2 trucks; orange: 3 trucks; red: 4 trucks;
purple: ≥ 5 trucks).

2.6 Conclusions and recommendations

We believe that our computed solutions indicate that our solution ap-
proach is promising in general. However, we also think that the ability
to solve instances with ∆ ≤ 15min would be crucial to obtain solutions
that are close to being practically relevant. For this reason we would
like to point out relevant work in the literature as we think that this is
most useful for PostNL to finally obtain a method that can be used in
practice.

2.6.1 Column generation

One idea to deal with the large number of variables is to apply column
generation in order to only explicitly work with a subset of the vari-
ables. The other variables are implicitly set to 0, and a so-called pricing
problem has to be solved in order to generate promising columns that
are turned into explicit variables. Computational results are reported
in Gendron and Larose (2014). For a general introduction to column
generation, we refer to Desrosiers and Lübbecke (2005), Lübbecke and
Desrosiers (2005), and Vanderbeck (2005).



61

2.6.2 Benders’ reformulation

One idea to avoid a large number of continuous variables (in our case all
but the x-variables) is that of a Benders’ reformulation Benders (1962).
Instead of working with an LP relaxation Q ⊆ Rn+d (where n indicates
the number of x-variables and d the number of other variables), one
works with the projection P ⊆ Rn of Q on the these n variables. The
obvious advantage is that the number of variables is decreased, which
in our case would be a reduction by a factor larger than 200. The
disadvantage is that one has to be able to describe P by means of linear
inequalities, which are usually too many to state explicitly. Hence, one
needs to generate the inequalities describing P on demand, i.e., be able
to find out if a given x̂ lies in P or not, and in the latter case, find a
violated inequality. This problem is known as the separation problem.

One way to do this is to try to lift the vector x̂ to one in Q, i.e., to
solve the LP of finding (x̂, z) ∈ Q for given x̂. If there exists such a z,
then x̂ ∈ P follows. Otherwise, one obtains so-called Farkas multipli-
ersSchrijver (1986, Section 7.3) which can be used to derive a (violated)
inequality in the x-space. This approach still requires to solve an LP
with a huge amount of y-variables and s-variables, which may not be
practical. However, certain classes of inequalities (that are part of P ’s
inequality description) are known for which the separation problem can
be solved more effectively. A prime example are cut-based inequalities:
if one partitions the node set of a network into two sets V1 and V2,
then the total transportation demand for trolleys that originate some-
where in V1 but must be carried to a destination in V2 is known. This
implies that the total number of trucks sent along arcs from V1 to V2
must be at least this total demand divided by the truck capacity. Such
inequalities can be computed using maximum flow algorithms, which is
generally much faster than large LPs. More such inequalities and their
computational impact can be found in Bienstock and Günlük (1996),
Sridhar and Park (2000), Costa, Cordeau, and Gendron (2009), Raack
(2012), and Agarwal and Aneja (2017)



62 SWI 2022 Proceedings

2.6.3 Solving multi-commodity flow subproblems
Despite the use of known inequalities in the Benders’ approach sketched
above, one may need to solve the underlying multi-commodity flow
problem for a fixed number of trucks x̂. This effectively yields a multi-
commodity flow problem in the (time-expanded network) where the
x̂-vector imposes capacities on certain arcs. While this problem can be
phrased as an LP of which several variables can be removed because of 0
capacity, solution times may still be prohibitively large. An alternative
is to cast the problem by means of path variables Tomlin (1966). More
precisely, for each commodity and suitable path (having a source node
with production and a destination node with demand) there is a path
variable. These path variables also have to be dealt with by means of
column generation. Here, the pricing problem turns out to be a shortest
path problem in the network which can be solved very efficiently. This
approach is also promising because a commodity is typically sent via
very few paths only, even way fewer than one has arcs in the network.
Hence, a final LP solution can be represented very compactly in such
a model and the hope is that also for intermediate solution steps, not
too many such path variables must be considered at the same time.

There also exist other approaches to solve the problem, e.g. based
on Lagrangean relaxation, but care must be taken that proper dual
information can be extracted in order to be able to obtain inequalities
for the Benders’ reformulation. Computational insights appear, for
instance, in Caprara (2015).

References

Agarwal, Yogesh Kumar and Yash P Aneja (2017). “Fixed charge mul-
ticommodity network design using p-partition facets”. In: European
Journal of Operational Research 258.1, pp. 124–135. doi: 10.1016/
j.ejor.2016.09.015.

Benders, Jacques F. (1962). “Partitioning procedures for solving mixed-
variables programming problems”. In: Numerische Mathematik 4.1,
pp. 238–252. issn: 0945-3245. doi: 10.1007/BF01386316.

https://doi.org/10.1016/j.ejor.2016.09.015
https://doi.org/10.1016/j.ejor.2016.09.015
https://doi.org/10.1007/BF01386316


63

Bienstock, Daniel and Oktay Günlük (1996). “Capacitated Network
Design–Polyhedral Structure and Computation”. In: INFORMS Jour-
nal on Computing 8.3, pp. 243–259. doi: 10.1287/ijoc.8.3.243.

Caprara, Alberto (2015). “Timetabling and assignment problems in
railway planning and integer multicommodity flow”. In: Networks
66.1, pp. 1–10. doi: 10.1002/net.21611.

Costa, Alysson M., Jean-François Cordeau, and Bernard Gendron (2009).
“Benders, metric and cutset inequalities for multicommodity capac-
itated network design”. In: Computational Optimization and Appli-
cations 42.3, pp. 371–392. doi: 10.1007/s10589-007-9122-0.

Desrosiers, Jacques and Marco E. Lübbecke (2005). “A Primer in Col-
umn Generation”. In: Column Generation. Ed. by Guy Desaulniers,
Jacques Desrosiers, and Marius M. Solomon. Boston, MA: Springer
US, pp. 1–32. isbn: 978-0-387-25486-9. doi: 10 . 1007 / 0 - 387 -
25486-2_1.

Gendron, Bernard and Mathieu Larose (2014). “Branch-and-price-and-
cut for large-scale multicommodity capacitated fixed-charge net-
work design”. In: EURO Journal on Computational Optimization
2.1, pp. 55–75. issn: 2192-4406. doi: 10.1007/s13675-014-0020-
9.

Lübbecke, Marco E. and Jacques Desrosiers (2005). “Selected Topics in
Column Generation”. In: Operations Research 53.6, pp. 1007–1023.
issn: 0030-364X. doi: 10.1287/opre.1050.0234.

Raack, Christian (2012). “Capacitated Network Design - Multi-Commodity
Flow Formulations, Cutting Planes, and Demand Uncertainty”. Doc-
toral Thesis. Berlin: Technische Universität Berlin, Fakultät II -
Mathematik und Naturwissenschaften. doi: 10.14279/depositonce-
3291.

Schrijver, Alexander (1986). Theory of Linear and Integer Program-
ming. New York, NY, USA: John Wiley & Sons, Inc.

Sridhar, Varadharajan and June S. Park (2000). “Benders-and-cut al-
gorithm for fixed-charge capacitated network design problem”. In:
European Journal of Operational Research 125.3, pp. 622–632. issn:
0377-2217. doi: 10.1016/S0377-2217(99)00272-6.

Tomlin, J.A. (1966). “Minimum-cost multicommodity network flows”.
In: Operations Research 14.1, pp. 45–51. doi: 10.1287/opre.14.
1.45.

https://doi.org/10.1287/ijoc.8.3.243
https://doi.org/10.1002/net.21611
https://doi.org/10.1007/s10589-007-9122-0
https://doi.org/10.1007/0-387-25486-2_1
https://doi.org/10.1007/0-387-25486-2_1
https://doi.org/10.1007/s13675-014-0020-9
https://doi.org/10.1007/s13675-014-0020-9
https://doi.org/10.1287/opre.1050.0234
https://doi.org/10.14279/depositonce-3291
https://doi.org/10.14279/depositonce-3291
https://doi.org/10.1016/S0377-2217(99)00272-6
https://doi.org/10.1287/opre.14.1.45
https://doi.org/10.1287/opre.14.1.45


64 SWI 2022 Proceedings

Vanderbeck, François (2005). “Implementing Mixed Integer Column
Generation”. In: Column Generation. Ed. by Guy Desaulniers, Jacques
Desrosiers, and Marius M. Solomon. Boston, MA: Springer US,
pp. 331–358. isbn: 978-0-387-25486-9. doi: 10.1007/0-387-25486-
2_12.

https://doi.org/10.1007/0-387-25486-2_12
https://doi.org/10.1007/0-387-25486-2_12

