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Abstract

We study the logistics problem associated with transporting parcels
from web shops (customers) to sorting centers (depots). Each customer
must be assigned to one or more depots where their parcels are sorted.
The core of the problem is the trade-off between the transportation
costs and the running costs of depots. The organization of depots is
bound by several constraints such as minimal working time, maximum
work load and maximum storage capacity. We present two approaches
to solve this problem, determining the required sorting capacity at each
depot and the routing of trucks from customers to depots in an optimal
way.
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2.1 Introduction

PostNL is a mail, parcel and e-commerce company based in the Nether-
lands. The most important service of PostNL after mail delivery is to
transport parcels ordered at web shops (PostNL’s customers) to con-
sumers. This service needs to be provided in a timely manner (most
parcels have to be delivered within 24 hours) and deals with consider-
able volumes, which requires a complex logistics process. The PostNL
process for transporting parcels from web shops to consumers is di-
vided into separate processes that can be studied and optimized more
or less independently: collection, first sorting (to level of rough des-
tination area), transport (cross docking), second sorting (to consumer
addresses) and distribution from second sorting center to consumer. In
this paper, we focus on the collection process, which comprises the con-
nection between customer and sorting center, and the sorting process.

The problem arises from the regional unbalance of web shops, i.e.
most of PostNL’s customers are located in the south of The Nether-
lands, whereas the destination locations of the consumers are more
concentrated around the big cities in the west. Therefore, the naive so-
lution that connects each customer to its nearest sorting center would
overload the southern sorting centers whereas the northern ones would
run under their capacity.

2.1.1 Background

The transportation between customers and sorting centers gives rise
to two costs: a transportation cost, which is roughly proportional to
the total travel time of trucks between customers and sorting center,
and a sorting cost, that depends on the amount of workforce that is
needed to handle the load in a given time frame. In modeling collection
systems, decisions are aimed at balancing these two costs. The two cost
types are interconnected by the effects of transportation delays on the
sorting process, causing potential overloads at some sorting centers.
This connection makes it impossible to treat both problems separately.

The problem is complicated further by time constraints. Customers
often only have their packages ready for collection late in the evening.
This means that sorting centers experience a peak of incoming parcels
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in the evening, requiring a large capacity /workforce to finish the sorting
in time before the deadline. This may cause the sorting center to be
overcapacitated for the process earlier in the day, resulting in workers
being idle. Furthermore, if parcels have to be driven a large distance
(from a customer in the south to a processing center in the north) this
will cause the parcels to arrive later, exacerbating the problem. Thus,
to ensure efficient utilization of resources, it is important to balance
the arrival of parcels over the day as evenly as possible, while taking
into account driving times.

2.1.2 Mathematical problem statement

The main question that needs to be answered is “to which depots should
each customer be connected?” (see Figure 2.1). The trivial solution of
connecting each customer to the nearest depot is not viable, since it
causes an overload at some depots, while underutilizing others. Apart
from knowing the customer-depot assignment, we also need to know a
feasible schedule for collecting parcels from the customers and process-
ing them (in a timely manner) in the depot.

A general mathematical description is as follows. Given are K cus-
tomers and D depots. The driving times between them are given by a
distance matrix T of size D x K, with each element 7,4 representing a
distance from depot d € {1,..., D} to customer k € {1,...,K}.

e The main goal is to find an optimal assignment between customers
and depots, where each customer is only assigned to one depot.
this connection is described by fu € {0,1}. far = 1 means that
customer k is connected to depot d, and 0 means no connection.
The task is to find a matrix F (an assignment matrix of size D x K
with elements fgx) such that the transportation and sorting cost
are as small as possible.

e For computing the collection schedule, we also need information
about the number of parcels p(t) x available at time ¢ at customer
K. For this goal we make the assumption that each truck is fully
loaded, unless it is the last truckload of the day for this customer
(there are not enough parcels to fill a truck). This creates the
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Figure 2.1: Graphical representation of the problem.

variable A: a list of ‘customer-truck-loads’, whose elements a
are all assigned to a customer K with time ¢.

The sorting speed of depots depends linearly on the number of
conveyor belts n € {0,...,12}” used. Each depot is operational be-
tween times T;egi“ and 75", In a simplified case, the sorting costs
depend linearly on the number of belts and the total operational time
Ténd — T; 8 see (2.4). In practice, there is also some constant over-
head in the sorting costs. Moreover, using 11 or 12 belts does not
actually give a linear increase over using 10 belts. This is because
the main carousel belt will become overloaded, resulting in diminishing
returns.

We present two approaches to solve the problem, a Convex Prog-
ramming-based one (section 2.3) and a Bilevel optimization approach
(section 2.4). In the respective sections, we provide more specified prob-
lem descriptions. The Convex Programming approach is guaranteed to
yield an optimal solution but is computationally expensive. The Bilevel
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optimization approach is not guaranteed to yield an optimal solution,
but is faster and does not require the use of an external solver.

Because both methods make use of slightly different assumptions
and due to the different nature of both approaches, it is interesting to
compare the results of both methods on a example data set. This will
be done in section 2.5. Conclusions will be drawn in section 2.6.

2.2 Data and model

The data provided for this case study consists of an anonymized and
randomized version of customer orders. Randomization has been per-
formed in such a way that the main characteristics, particularly the
imbalance of customers and consumers, is reflected in the pseudo data.
Data are given for five weekdays from Monday to Friday. Numerical
values of sorting costs and transportation costs used in the model, only
reflect the main component of the variable costs. Also, the model de-
scription presented here implies a simplification of reality. In practice,
parcels of different customers have different sizes and transport and
sorting costs depend on parcel weight and size. These parameters are
largely dependent on the customer. In addition, parcels with odd sizes
cannot be sorted by the sorting machines and need to be sorted by
hand. Furthermore, transport capacity is not available in unlimited
amounts at all times and in practice transports from small customers
to depots are combined in order to achieve much more efficiency in use
of transport capacity than suggested by the data set provided as input
this case study.

With these simplifications the essence of the depot-customer alloca~
tion problem is maintained and methods developed in this paper form
a solid basis for future simulation tools for strategic decision making of
PostNL.
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2.3 Convex Programming

2.3.1 Model development

For the convex programming method, we model the cumulative supply
of customer k by a non-decreasing function 0 < x4 (¢) < X, where X},
is the total number of parcels to have been collected by the end of the
day from customer k, and ¢ denotes the time. For this method, we make
the simplification that each customer is only connected to one depot.
this means that it is the task to find F such that the transportation
and sorting cost are as small as possible.

Transportation cost

The transportation cost depends linearly on the assignment matrix F'.
The total transportation cost is

Jr(F) = )\TZF;}-‘ far Tak, (2.1)
dk

where A\r is a known constant converting time per truck in Euros, Y
represents the maximum number of parcels that fit in one truck, and
[ ] denotes the ceiling operator. To represent the above cost function
in terms of matrices and vectors, we introduce a diagonal matrix L
with elements [, = [%1 that denotes the number of trucks for each
customer k. Hence, an algebraic representation of the transportation
cost (2.1) is

Jr(F) £ Ar Tr (FLT7), (2.2)
where Tr (X) = Y, 2;; denotes the trace of the matrix X, and XT
denotes the transpose of the matrix X. It is important to note few
assumptions here: (i) Each customer is connected to a single depot
everyday. This may not be the case in general. (i7) We assume that
the minimum number of transports are used. Alternatively, more than
[%1 transports could be used, with partial loads to obtain more effi-
cient supply lines at the depot. (iii) We do not account for the pos-
sibility to combine transports of different customers in one single trip.
We discuss the changes in transportation cost later if we do not assume
the above assumptions.



41

Sorting cost

The sorting cost requires the information about the supply lines at each
depot. We represent the cumulative number of parcels to be sorted at
depot d as

ag(t) =Y fanS (@x (t = 7ar)) ,
k

where the operator S rounds off the customer supply to whole truck
loads. Sorting tasks are executed by choosing the number of conveyor
belts ng € {0,1,...,12}, and hiring a number of labor forces propor-
tional to ng. The maximum speed by which parcels are sorted is propor-
tional to ng. Labor forces start sorting parcels at T;egm and completes
the sorting at Tsnd. Let us represent the number of conveyor belts as
vector n € {0,...,12}7. Hence, the sorting cost is given by

Ts(F,n) = As Y ng (T;nd - T;egin) , (2.3)
d

where \g is a known constant. To represent the sorting cost in an al-
gebraic format, we need to introduce a (cumulative) parcel-sort matrix
P € RT*P where T represents the total number of time stamps. An
each element of P, denoted by p.q, represents the number of parcels
sorted till time ¢ at the depot d. Denoting the last row of a matrix P
by Pr (it is a row vector of length D), we get an algebraic expression
for the sorting cost in (2.3):

Js(P) = As ZPTd = AsPrl, (2.4)
d

where 1 is a column vector of length D with every element equal to 1.
It is important to note here that P implicitly depends on the number
of conveyor belts n, and the working times of the labor force. Also,
the dependency of the parcel-sort matrix P on an assignment matrix
F will be incorporated through constraints (discussed below).

Constraints

Let us first discuss the constraints on the assignment matrix F. Each
element of the matrix F takes value 0 or 1, i.e., F € {0,1}P*X_ In
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other words, matrix F is a binary matrix. Furthermore, each customer
is assigned only one depot:

Zfdkzl Vk=1,...,. K = FT1=1,
d

where 1 is the vector of all ones of an appropriate size. The constraints
on the number of conveyor belts are also discrete, i.e., n € {0,...,12}7.
Now, let us look at the constraints on the parcel-sort matrix. First of
all, the parcel-sort matrix represents the cumulative number of parcels
sorted at each depot. Hence, all the entries of matrix P must be non-
negative. Furthermore, each column must be non-decreasing. To set
this constraint, we look at the gradient of each column of matrix P,
gqs=VPy ford=1,...,D, where V represents the gradient operator
whose discrete form (using forward difference scheme) is given by

-1 1

and P, denotes the d™-column of matrix P. The vector g, gives
the time-derivative of parcel-sort function for depot d. The (time-
derivative) constraints are:

0 <gq < agng, = 0<VPy; <agng, Vd=1,...,D,
where o4 is a given constant per depot. It is also important to note
that Py is a piecewise linear. To enforce this constraint, we look at the

second-derivative of P4, and count the size of non-zero elements. For
a piecewise linear function, the count is equal to two, i.e.,

[V2Pyllo=2 Vd=1,...,D,

where || - ||o denotes an ¢; norm that counts the number of non-zero
elements (|[x[jo = >_, 14,20), and V? is a second-order derivative, whose
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discrete form is represented by

The ¢y norm is a non-convex function, and hence, we reformulate the
constraint using its convex approximation. In this case, the second-
derivative of the parcel-sort vector for each depots should have jumps
that amounts to twice the number of belts. This constraint is imposed
as

[V?Pg4ll1 <2nqg Vd=1,...,D,

where || - |1 is an ¢;-norm or Manhattan norm (||x[jo = >, |z;|). Fig-
ure 2.2 shows the behavior of the first-order and second-order derivative
for a piecewise linear function. Note that the second-order derivative
has only two non-zero values, and they exactly occur during the start
and the end time. The sum of absolute values of these two peaks is
twice the slope of the function p, and hence ||V2p||; = 2n, where n
is the slope. We argue that the above constraints on the parcel-sort
matrix P makes it a cumulative matrix with respect dimension ¢ and
piecewise linear in the same dimension. We enlist these constraints
again below:

P >0,
OSVPdSand, Vdil,...,D,
[V*Pyll1 < 2ng Vd=1,...,D,

Next, we look at the buffer constraints on the parcel-sort matrix P.
Before we jump to the constraints, we define a parcel-receive quantity.
We call the matrix Q as a parcel-receive matrix. It has the same
size as matrix P i.e., T' x D. Each element of matrix Q, denoted by
¢+d, represents the number of parcels received until time ¢ at depot d.
We can represent each column of matrix Q using the supply lines of
customer and the assignment matrix F. To do this, let us denote the
supply lines of customers by matrix X of size T'x K. To account for the
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Figure 2.2: Demonstration of piecewise linear function and the behavior
of their first-order and second-order derivative.

delay from customer & to depot d (for each pair), we define matrices Xy,
ford=1,...,D. They are of size T' x K, with each element of matrix
X, is a delayed version of X with respect to the time required to reach
depot d. Matrices X, denotes the supply lines from all customers that
is available to depot d, if all of the customers are routed to d. Since
the assignment matrix F denotes the customer-depot relation, we can
now rewrite each column of matrix Q as

Qu=X,F} Vd=1,...,D,

where Fy represents the d"-row of matrix F. We note here that the
matrices Xy are known from the supply lines at customers X, and the
distance matrix T. The buffer constraints are:

Q;—Pyg>0, Vd=1,...,D,
Qi — Py < AT, Vd=1,...,D,

where AJ** is the maximum buffer size at depot d. Hence, the buffer
constraint on the parcel-sort matrix P is

0 <X FF - P, <A1 Vd=1,...,D,

which gives the relationship between the parcel-sort matrix and the
assignment matrix. Finally, we have to take the time-constraints of
the labor force into account. Let T5%"* and Tjnd represents the start
and end time of the shift of labor at depot d. Correspondingly, we
define vectors I' o and T'y; of length T'; such that they denote non-zero
elements with respect to 75" and T5"4. That is,

Tg=[101...10...0], Ty =00...011...17.
OITsta” T;“d:T
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Using these vectors, we can write the constraints on the parcel-sort
matrix P: (i) No sorting of the parcels till 75, and (i) All parcels
must be sorted by T5"d. Hence, the (work) constraints are:

Vd=1,...D
r’P,;=0 (no work before T5%"*)

I (X4F) — agPq) =0 (parcels sorted by T5"d)

Optimization Problem

The goal is to find the optimal assignment matrix F*, the number of
active belts at sorting depots n* and the work schedules at each depots
by minimizing the sum of transportation cost and the sorting cost sub-
ject to the certain constraints described in the subsection above. Our
main contribution lies in the introduction of a parcel-sort matrix P that
help in making the cost function convex, and most of the constraints
affine. The optimization problem (2.5) describes the goal:

minimize A Tr (FLTT) + AgPrl
F.n,P —_—— N——

Jr Is
subject to F € {0,1}”*K FT1=1
nc{0,...,12}"
P>0, 0<VP;<n4l, |V?P4l1<2ng VYd=1,...D
0 < X FL — Py < AT Vd=1,...D

IyPy=0, T (XeFf—asPy)=0 Vd=1,...D
(2.5)

We note here that the cost parameters Ar and Ag, the (diagonal) load
matrix L, time matrix T, depot parameters: «ag, AT*, Ty, T'q1 for
all d = 1,..., D, and supply matrices X, are given. Except the two
constraints, binary structure of F and integer constraints on n, all other
constraints are either affine or semi-definite cones. By relaxing these
two constraints (by setting F € [0,1]°*X and 0 < n < 12), we get
a relaxed problem that is convex and can be solved very efficiently.
But formulation in (2.5) has a minor issue: the requirement on having
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less number of n is not taken into account explicitly. One can choose
ng =12 for alld = {1,..., D}, and still get a solution. In this case, we
may lose out the piecewise linearity of P. To mitigate this issue, we
add a penalty for the number of belts. The new formulation is

F,n,P

minimize Ar Tr (FLT") + APzl + A.n’1
~—_—— N——
TIr Ts
subject to F € {0,1}P*K Fl1=1
ne{0,...,12}"
P>0, 0<VP;<n4l, |V?Py4l1<2ny Vd=1,...D
0 < X FT — Py < A1 Vd=1,...D

Il Py=0, T% (X4F) —aqPy) =0 Vd=1,...D
(2.6)

where ), is the penalty weight for the number of active belts. It can
be chosen to have a high value with respect to the transportation cost
and sorting cost. For a sufficiently large value of \,, we argue that the
optimal P* will be piecewise linear with respect to time. This convex
optimization problem is a mixed integer program wherein the variables
F and n are integer types, and P is continuous. Since the cost function
is convex, and the constraints are semi-definite cones (note that affine
cones are a subset of semi-definite cones), the optimization problem will
give you an optimal solution if it is feasible [Boyd and Vandenberghe
(2004)].

2.3.2 Implementation

We use a CVX toolbox [Grant and Boyd (2014)] in MATLAB to solve
the optimization problem (2.6). A Gurobi solver [Gurobi Optimization
(2020)] helps to speed up the iterative process. Gurobi solver uses
simplex method to solve the mixed-integer program. The solver also
informs about in-feasibility of the solution when constraints are not
satisfied exactly. The computation takes about 2 hours for the non-
relaxed problem. The relaxed problem in n can be solved within a
minute.
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2.4 Bi-Level optimization

2.4.1 Decomposing the problem

The second approach we propose is a bilevel one. We decompose the
problem into two levels:

1. For each depot, choose the paramters: number of conveyor belts
n, opening time T;egm, closing time 75§74,

2. Given these paremeters, find a feasible assignment of customers
to depots that minimizes the driving cost.

More mathematically described, we minimize

min_ Jp(n, T8, T5), (2.7)
n,T;°8" Tend
where Jr is the solution of the transport problem.

If we make some simplifying assumptions, the lower-level problem
can be solved using minimum weight matching. This problem can be ef-
ficiently solved using e.g., the Hungarian algorithm (see Pentico (2007)
for an overview of algorithms for solving matching problems).

The upper-level problem is in general not easy to solve. However, in
part thanks to the relatively low dimension of the problem (24 depots,
12 conveyor belts), we can find a solution by using a heuristic approach
(such as local search), by discrete optimization methods or by consult-
ing domain experts and manually changing depot parameters.

To solve the lower-level problem, we need to assume all trucks carry
the same number of parcels (i.e., there are no partially loaded trucks)
and we need to assume that either the buffer capacities are unlimited or
we are allowed to delay collection of parcels from customers. Moreover,
we allow one customer to be assigned to multiple distinct depots (if
that customer produces more than one full truck load of parcels).

2.4.2 Solving the lower-level problem using mini-
mum weight matching

To solve the lower-level problem, we first discretize the time for each
depot into time slots, during which one full truck load of parcels (1400
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parcels) can be processed. We build a bipartite graph G = (A, B, E)
where the vertices in B correspond to these time slots.

Next, for each customer, we determine how many trucks are needed
to collect the total number of parcels. For each customer-truck-load, we
create a vertex in A. For each such vertex, we store the time at which
the parcels are ready for collection: i.e., we determine what is the first
point in time the customer has 1400 parcels available for collection, and
create a vertex corresponding to that point in time, then we determine
at what point 2800 parcels are available and create a second vertex,
etc..

We now create edges between vertices in A and B as follows: For
a vertex a € A and a vertex b € B, we create an edge (a,b) if the
time at which the parcels in a are ready for collection, plus the driving
time from the customer associated with a to the depot associated with
b, is less than the start time of the processing slot associated with b.
The weight of this edge is equal to the cost of driving a truck from the
customer associated with a to the depot associated with b.

Clearly, minimum weight maximal matching of size |A| in this graph
provides an assignment of customer-trucks to depots in which all parcels
are processed in time (by construction) and with minimal driving costs
(by minimality of the solution). If no maximal matching of size |A|
exists, the problem is infeasible.

2.4.3 Dealing with partially filled trucks

The approach described in the previous section can not deal with par-
tially filled trucks. In the provided dataset, there are around 500 trucks
which are fully loaded and around 1000 trucks that are partially loaded.
Rounding up to full trucks is not an option, as this massively overesti-
mates the total number of parcels and leads to infeasibility. Rounding
down is not an option either, since this would ignore a substantial num-
ber of customers completely.

Many of the partially-loaded trucks contain only a small number
of parcels. Intuitively, it does not make sense to route these trucks far
away from the closest depot: if the closest depot is overloaded, it makes
much more sense to re-route a full truck to an underutilized depot that
is farther away, than to reroute a truck with only 60 parcels to that
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same alternative depot. Rerouting a full truck gains a much larger
redistribution of load for the same driving cost.

Therefore, as a heuristic, we assign partially loaded trucks to the
closest depot. This is done as a preprocessing step when building the
graph G described in the previous section: for each depot, we start
creating time slots (of the length required to process one full truck
load) from the opening time of the depot. As soon as a partially filled
truck from a customer is available, we create a gap in the schedule to
accommodate it. We then continue creating full truck slots, until the
next partial truck is available.

For customers that have a number of parcels greater than 1400 but
that is not evenly divisible by 1400, we assume the partially filled truck
is the one at the end of the day (so that we have some flexibility in case
the number of parcels turns out greater than expected).

2.4.4 Buffers: cost and modelling as flow

The previously described algorithm is not able to explicitly take the
buffer at the depot into account. The algorithm simply returns a
matching between customer truck loads (which are ready for collection
at some given time) and a depot time slot (during which time slot the
parcels are processed). If the start of the assigned time slot is (much)
later than the collection time, we either need to store the parcels in
the buffer or delay collection of the parcels from the customer. The
latter option is not desirable for PostNL, as the customers generally do
not have a large buffer capacity themselves and thus want the parcels
picked up as soon as possible.

One possible way to model this in the previous model is to enforce
that parcels ready for collection at some time must be matched to a
time slot not much later in time (by simply not creating the corre-
sponding edges); the maximum delay can be related to the processing
speed of the depot and size of the buffer to obtain a guarantee the
buffer never overflows. However, this approach means the buffer may
be underutilized. A longer delay can be used, but this runs the risk of
returning an infeasible solution with buffer overflows. Alternatively, a
cost (possibly superlinear) could be associated with delaying the pick
up of parcels.
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It is however possible to take the buffers into account explicitly by
switching from a matching formulation to a minimum-cost flow formu-
lation. We have nodes corresponding to customer-truck-loads in A as
before, nodes corresponding to processing time slots in B as before, but
also have one source node s and one sink node t. We create an edge
with capacity 1 and cost 0 from s to every node in A, for each node
a € A and every depot, we create an edge from a to the node b € B
corresponding to the first possible processing time slot at that depot;
the capacity of this edge is 1 and the cost is equal to the correspond-
ing driving cost. Further, possible extra buffers associated with a cost
(such as the cost of keeping a retaining a truck parked next to a depot)
can be also be integrating to the model.

Next, for each depot, the buffers are modelled as follows: from each
time slot node b; € B we create an edge with capacity equal to the
buffer size (in whole trucks) and cost 0 to the immediately succeeding
time slot node by € B. Sending flow over an edge b;by models keeping
the corresponding truck loads in the buffer. Finally, we create an edge
from every node b € B to ¢t with capacity 1 and weight 0; sending flow
over this edge corresponds to processing one truck load at that point
in time. An example of this construction is illustrated on Figure 2.3.

Trucks Sorting slots Trucks Sorting slots

18:00-18:20

17:40 18:20-18:40 | Depot C
Customer A
18:10 18:40-19:00

18:30-18:45 Source

18:45-19:00
Depot D
19:00-19:15

19:15-19:30

Figure 2.3: Construction of the minimum-cost flow problem. Here the
driving times are 74,c = 20, T4,p = 60, 7Tg,c = 45 and 73,p = 10 in
minutes. Left: the graph for the maximum matching problem. Right:
The graph for the minimum-cost problem. The label on the edges
correspond to their cost. Every edge has capacity 1 except the edges
between red vertices whose capacity is the buffer capacity of the depot.
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An integral flow form s to ¢ with value n in this graph corresponds
to the assignment of n trucks to the depot that respect both buffer
and sorting constraints. The cost of such a flow correspond to the
corresponding traveling cost. Therefore, looking for a flow of minimal
cost and value equal to the total number of trucks solves our problem.

The minimum-cost flow problem can be solved in polynomial time
by the Network Simplex Algorithm [Orlin (1997) and Tarjan (1997)].
Moreover, the solution provided by this algorithm is guaranteed to
have integral values provided that all capacities are integers, which is
the case in our application.

2.4.5 Metaheuristics

The upper-level problem could be solved using any of a number of
metaheuristics, such as local search, simulated annealing or gradient
descent. Alternatively, the upper-level problem could be solved manu-
ally, by using expert domain knowledge and making informed, iterative
guesses at the solution. Since there are currently only 24 depots, it
could also be possible to explore a large part of the search space by
brute force (e.g., if we wanted to completely close a number of depots,
it is easily possible to explore all possible subsets of depots that can
be closed given that we may only close a small number due to capacity
constraints).

As an example, we implemented a simple heuristic to optimize the
upper-level problem. With each depot ¢ we associate a real number
d; € [0, 1], representing which fraction of the depot’s maximum capacity
is used (e.g., d; = 1 corresponds to using all 12 belts from the earliest
possible starting time to the latest possible closing time).

Given a vector of utilization fractions for all depots, for each depot
we compute the minimum number of belts required to achieve this
fraction (rounding up). We fix the closing time at the latest possible
closing time, and then compute the required starting time to achieve
exactly the requested fraction of processing capacity.

This approach again simplifies the problem somewhat, since we do
not consider the possibility of closing the depot earlier or using more
belts and starting later to process the same number of parcels. However,
PostNL prefers solutions using fewer belts (as this makes the solution
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more robust) and closing a depot earlier does not seem to be a beneficial
choice since most processing capacity is required late in the evening.

We now repeatedly apply the following procedure: we pick a uniform
random depot i, and with probability 1/2 we increase its load d; by a
small amount €, and with probability 1/2 we decrease it by the same
amount. This amount e decreases as the algorithm progresses. We
then recompute the solution to the lower-level problem, and accept
the change if the score decreases, and reject the change if the score
increases.

2.4.6 Implementation and computation time

We prepared an implementation of the approach using minimum weight
matching in C#, using Google’s ORTools as solver for the matching
problem. The underlying matching problem can be solved in a fraction
of a second, and within two minutes our simple local search heuristic
finds a solution.

2.5 Results and discussion

In this section we discuss and compare results for both methods. Since
Monday is the busiest day of the week, this is the most challenging to
optimize for. Therefore we only consider this day for our results.

2.5.1 Comparison between both methods

Without disclosing the given numbers for the sorting costs, transport
costs and the data sets, we will provide some rough numbers and visu-
alizations as results from both methods. As a benchmark, we computed
the minimum sorting costs and the minimum transport costs, provided
in Table 2.1.

The minimum sorting costs comprise the costs to sort all packages
by any depot, the minimum transport costs comprise the costs of trans-
porting all parcels to the nearest depot, independent of buffer capacity
and other constraints. In the same table, the solution for our methods
is provided. It can be seen that both methods perform very similar
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benchmark Convex Bilevel
programming optimization
Transport costs 22.3k€ 24.1k€ 24.3k€
Sorting costs 164.4k€ 164.4k€ 164.4k€
Total costs 186.7k€ 188.4k€ 188.7kE€

Table 2.1: Costs for our solutions compared to benchmark.

with only a small difference (less than 2.0k€) from the benchmark so-
lution. Both methods have found a viable solution where the sorting
costs are the same for both methods and the benchmark: this means
that there is no idle time at the depots. It can be seen that both meth-
ods find a solution within 10% of the benchmark transport costs. This
is not very surprising, because the bulk of the parcels are expected to
be transported to the nearest depot. Since the transport costs are only
a small fraction of the total costs, the total costs only increase by 1.1%
compared to the benchmark.

Figure 2.4 shows a visualization of the matching between customers
with depots for both methods. It can be seen that both methods
provide a solution in which most customers are connected to a de-
pot nearby: there is no transport over large distances. Note that in
Figure 2.4b some customers are connected with multiple depots, which
is not possible in Figure 2.4a, due the the assumptions. This figure only
shows the matching of customers with depots, without any indication
of the time of the transport.

A different visualization from Figure 2.4b, using the same bilevel
solution, is given in Figure 2.5. Here it can be nicely seen that many
depots mainly take customers south of its location, especially in the
south of the Netherlands (Noord-Brabant) and in the north (Friesland
and Groningen). This is an expected result, since it was already stated
in the problem description that there are relatively few depots for the
number of parcels in the south. Because of this, the ‘mean’ transport
has to be from south to north.

In both methods, there is no constraint on the number of trucks
available. This is done intentionally, because the number of available
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(a) Convex programming (b) Bilevel optimization

Figure 2.4: Visual matching of customers with depots for both methods.
In this visualization, two depots were mistakenly closed in (a).

trucks depends on other parts of the full process, described in the in-
troduction (section 2.1). In Figure 2.6, the number of necessary trucks
is plotted against time of the day. The feasibility of such a demand is
beyond the scope of this paper.

2.5.2 Closing early or closing a depot

PostNL notices that due to various reasons, depots do not always man-
age to finish the sorting before they officially close. If the closing time
would be set 30 minutes earlier, this would create a ‘buffer’ of 30 min-
utes to handle this unfinished sorting. Moreover, it would be inter-
esting to see the effects of closing one depot entirely. This could be
done deliberately, to save certain costs for instance, or it can have an
unintentional external reason, such as a malfunction.

In Table 2.2, the normal scenario is compared with the scenario
where all depots are closed 30 minutes early and the scenario where
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Figure 2.5: Colorful representation of the bilevel solution matching
customers (disks) with depots (squares).
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Figure 2.6: Number of trucks necessary as function of time (hours) for
the bilevel solution. A time after 24h means the truck is driving after
midnight.
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the depot in Opmeer is closed respectively. We state the number of
conveyor belts used and the usage of the depot as percentage of the
maximum capacity, when all belts are used for the maximum possible
time. Note that the maximum capacity decreases when all depots close
30 minutes early. For this comparison, we made use of the bilevel
optimization method.

First of all, in the bottom of Table 2.2 it can be seen that the total
costs do not increase a lot when all depots are closed early or if one
depot is closed entirely. Secondly, in case of a 30 minute early closure,
depots are generally used more, as expected. However, some of them
(e.g. Opmeer, Amersfoort) are used significantly more, while others
(e.g. Breda) are even used less. Something similar can be seen in the
case where Opmeer is closed entirely: Amersfoort is used a lot more,
while Breda is used less. Finally, in both alterations, Kolham is used
to almost full capacity. This shows that the alterations truly have a
‘global’ (or national) effect in the solution, which shows the necessity
for finding the solution automatically.

2.5.3 Advantages and disadvantages of both meth-
ods

Here we summarize some advantages and disadvantages of both meth-
ods by comparing them in several aspects.

e Convex programming provides an exact solution in finite time,
while it is not guaranteed that Bilevel optimization solves the
given optimization problem, due to the heuristic approach.

e Convex programming solves a problem where each customer needs
to be assigned to one depot, which might not be optimal. Bilevel
optimization does not have this restriction.

e It is relatively easy to add additional constraints to the convex
programming method, while it is not clear if this is possible for
the bilevel method.

e Convex programming is relatively slow (unrelaxed) or does not
provide a usable solution (relaxed), while bilevel optimization
provides a usable solution in less than 2 minutes.
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normal 30 minutes early Opmeer closed
Depot #belts usage Fbelts usage  #belts usage
Apeldoorn 10 80% 10 88% 10 84 %
Waddinxveen 10 80% 10 78% 10 81 %
Halfweg 10 88% 10 92% 10 90 %
Opmeer 8 70% 10 82% 0 0%
Den Hoorn 10 84% 10 86% 10 88 %
Amersfoort 8 67% 10 76% 10 78 %
Den Bosch 8 62% 8 69% 8 66 %
Nieuwegein 8 72% 8 68% 10 78 %
Kolham 10 92% 12 94% 12 98 %
Zwolle 6 38% 6 46% 6 33 %
Goes 8 67% 8 69% 8 68 %
Amsterdam 10 86% 10 90% 10 88 %
Sassenheim 10 80% 10 86% 10 86 %
Ridderkerk 10 76% 10 8% 10 78 %
Utrecht 6 44% 6 52% 6 48 %
Hengelo 8 58% 8 60% 8 68 %
Elst 10 84% 10 84% 10 80 %
Dordrecht 8 62% 8 70% 8 65 %
Breda 10 7% 8 70% 8 70 %
Venlo 8 62% 8 62% 8 64 %
Born 10 74% 10 76% 10 78 %
Almere 8 74% 10 78% 8 72 %
Son 10 % 10 83% 8 70 %
Leeuwarden 10 80% 10 86% 10 84 %
Total costs 188.7k€ 189.6k€ 190.0k€

Table 2.2: number of conveyor belts and usage as percentage of the
maximum capacity.
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e Bilevel optimization can compute a very fast solution (less than a
second) once the operational constraints (number of belts, operat-
ing time) has been set. This can be very useful for ‘real-time’ dis-
tribution of parcels once the depots have opened. Moreover it can
be used in case a depot suddenly has to close due to unexpected
circumstances. This is not possible for the convex programming
method.

e The bilevel optimization method first assigns all non-full trucks
to the nearest depot. If this already creates an overflow in the
depots, the rest of the method does not work. This could be cir-
cumvented by assigning a lower ‘average’ truckload to all trucks,
which results in a less exact solution. However, it is not likely
that the non-full trucks already create an overflow in the depots.

2.6 Conclusion

In this paper, we have investigated two methods that solve an optimal
allocation problem for a parcel delivery company in the Netherlands.
Both methods, using convex programming and a bilevel optimization
approach respectively, find an optimal solution to the problem. The
solutions are slightly different due to different assumptions. It was
found that the optimal solution for a Monday, the busiest day, has a
transport cost that is only 10% higher than allocating each customer
to the nearest depot. This means that near-optimal allocation is pos-
sible. Moreover, idle time at depots is avoided completely, resulting in
a sorting cost that is optimal.

Our two solution methods make it possible to quickly compute the
effect of many changes, such as opening times of depots, location of
(new) depots, closure of a depot and sorting speed of depots. This
enables the company to quickly investigate the effect from changes in
their operation on the parcel collection process and its finances. As an
example, we have shown that closing 30 minutes early or closing one
depot entirely is possible and not very expensive.

The focus of this paper was in the allocation of parcels to depots
coming from customers. This is only a part of the full process of han-
dling all parcels, therefore our optimal solutions might not be optimal
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for the full process. Further research could be put in other parts of the
process and connecting all of them in one large optimization problem.
Since this might not be feasible, another option is to include stochas-
ticity in the data and the assumptions to find a suboptimal, but robust
solution.
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