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Abstract

The KNLTB is looking for a new or improved rating system for dou-
bles matches in tennis. We have analysed how the current rating system
functions as a predictor of match outcome and how to assign a team rat-
ing based on the current individual ratings of the players. We propose
two new rating systems based on the Elo and Glicko ratings used in
other sports. In both systems each player gets a new rating which is the
old rating plus or minus a small amount based on the match results.
On top of that the Glicko system also tracks how much uncertainty
there is in each players rating.
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1.1 Introduction

The KNLTB, Koninklijke Nederlandse Lawn Tennis Bond, is the na-
tional governing body for tennis in the Netherlands. They promote
tennis as a sport and represent over half a million people who play ten-
nis. They organise tournaments from the amateur to the professional
level tennis and padel, an other racket sport. To unsure a fair com-
petition, they rate each player in their skills in singles tennis, doubles
tennis and padel.

The KNLTB has approached SWI, Studiegroup Wiskunde en Indus-
trie, with a problem they have with their rating system. The problem
mainly focused on how to design a good rating system for doubles
tennis. During the week at SWI we first brainstormed on possible al-
ternative rating sytems. In the end we chose to look at two systems:
the Elo and the Glicko rating system. We then split into three groups
with different objectives.

The first group did a statistical analysis of the current rating sys-
tem. We have looked how it functions as a predictor of the outcome of
matches in singles tennis. We also investigated whether, based on the
current ratings, the stronger or the weaker player has a larger impact
on the team rating. The second group did some theoretical work to
extend the Elo and Glicko rating systems to handle doubles matches.
The last group made a prototype implementation of these systems for
a complete season of tennis. The results of this implementation are not
discussed in this report.

This report is structured as follows: First we clearly define the
problem as we have received it from the KNLTB and look at some
other rating systems used in sports. Next we show our data analysis of
the current rating system. Then introduce our proposed rating systems
with a theoretical analysis. Finally we summarise our results and give
recommendations



1.1.1 Statement of the problem

The main problem proposed by the KNLTB at SWI 2020 was to give
a rating model that gives a good indication for the strength of pairs in
double matches of tennis. Nevertheless, also suggestions for adaptations
of the single rating are welcome, as at the end of the season multiple
data corrections in match results are needed with the current system.
An other question is how to deal with new players and re-entrants
without rating or prior matches.

1.1.2 Criteria for a good rating system

In this subsection, we summarize the properties that the KNLTB wants
the rating system to have. The old system of the KNLTB has some of
these, but not all. The important and essential properties of the rating
system are listed below.

e There should be always a rating change, in the sense that every
match is taken into account. Also the rating change should not
depend on the moment in the season the match has been played.
In particular, matches with unbalanced partnerships should not
be disregarded, they should still have an effect. The current sys-
tem of the KNLTB has not this property.

e It should be impossible to win and get a worse rating. This is
a logical assumption and the current KNLTB system has this

property.

e The system should be explainable to all players. Players have to
be able to know how winning or loosing a game will (approxi-
mately) influence their rating. This may be possible by imple-
menting a FAQ or a calculator at the website, such that people
can compute the possible outcomes for their rating in advance.

e The match result only affects the ratings of the players who were
playing during the match.

e Rating should be a good predictor of performance. The reason
for this is that tournaments are usually organised using ratings
to predict performance to have a fair tournament.
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Some other properties which can be taken into account, but are less
important, are listed next.

e Incentivise playing by small positive effect on rating. Here we
note that this should be a small effect as otherwise it can be
manipulated by people to find strategies to make their rating
better than it should be.

e People should not refuse to play games because they fear it hurts
their rating. Exactly as with the previous property, the KNLTB
wants people to enjoy and play a lot of tennis games.

e The double system should be a generalisation of the single system.
If two partnerships compete and both players of each partnership
have equal strength, the rating result should agree with the rating
result for singles of these strengths.

e Frequent partners should converge to the same rating. An unbal-
anced partnership should converge to the same rating for both
players if they play always together.

e We should disregard the amount of sets or games won. The out-
come should only depend on winning or loosing the match.

1.2 Rating systems

In this section we explain and review some rating systems used in tennis
and other sports, most notably chess.

1.2.1 Dynamisch Speelsterkte Systeem (DSS) of the
KNTLB

In the Dynamisch Speelsterkte Systeem (DSS), KNLTB (2017), the rat-
ing system used by the KNTLB, each player has a singles and doubles
rating between 1 and 9, where 1 is the best rating and 9 is the worst.
At the start of the year each player is given a starting rating based
on the previous year. After a match a player is given a rating result,
based on their own or the opponents rating and whether they lost or



win. However when the players skill varies too much, no rating result is
noted. The interpretation of this rating result is they played the match
like a player with that rating. During the year their current rating is
the average of the rating results achieved during that year. If there are
less than 6 rating results, the starting rating is added the average up
to 6 results.

For a match of singles tennis, the rating result is determined as
follow: The result of the winner is the opponents current rating minus
1 and the result of the loser is the opponents current rating plus 1.
Suppose player 1 has a rating of 4.3 and player 2 has a rating of 4.8.
If player 1 wins, he gets a result of 3.8 and player 2 a result of 5.3.
However if the difference in the rating is larger than 1.5 and the stronger
player wins, no player gets a rating result. This means that players
cannot improve their rating whenever they play against much lower
rated players, but can worsen their rating (drastically). For this reason,
it is very unattractive for competitive players that focus on getting a
low rating to play against much weaker players.

For a doubles match this becomes more complicated as we have 4
players each with their own rating. The result is based on the outcome
of the match, the own rating, the average rating of the opponents, the
sum of the winners ratings minus the sum of the losers ratings and
the largest within-team difference between ratings. The KNLTB uses a
flowchart to guide the players through the possibilities, which we have
summarised in Figure 1.1.

1.2.2 UTR

The Universal Tennis Rating is a global rating system. Every tennis
player in the world can get a rating between 1.0 and 16.5, with 16.5
being the best rating. Each match which is entered in the system
receives a match rating based on the difference of the amount of sets
won and the rating of the opponent. The final player rating is then
a weighted rolling average of the last 30 matches in the previous 12
months. The match weight is higher for longer of the games, more
recent games, games played against a similarly rated player and games
played against a player with a reliable rating. One of the consequences
is the rating of the player which had just won, can get deteriorate when
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Largest within-team difference: W
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Figure 1.1: The different rating results for a doubles match according
to the DSS of the KNLTB

they won less sets than expected or when the match result is worse than
the one which it supplants in the rolling average.

1.2.3 Elo rating system

The Elo-rating is a widely used rating system, initially developed by
Arpad Elo (see Elo (1978)) to determine the relative strengths of chess
players. The skill of players is relative to their rating and some uncer-
tainty. In contrary with the rating systems above, the Elo-rating is also
a predictive rating. Given the rating difference between two players, it
is possible to calculate the probability that a player wins.

After every match the rating is updated by taking the old rating
and adding or subtracting some points based on who won and how
likely they were to win. So if you win against a stronger player, your
rating improves much more than winning against a weaker player.

1.2.4 Glicko rating system

The Glicko-rating system Glickman (1999) was developed by Mark
Glickman as an extension to the Elo-rating. It takes the Elo rating



as a basis, but instead of using a fixed amount of uncertainty for each
player, it tracks how certain we are that the rating is a good reflection
of the skill of the player. So if a player plays a lot of matches and plays
very consistently, the uncertainty should be low. But for a new players
or a very inactive players, we shouldn’t be certain at all in their ratings.

This also factors into the win probability we can calculate, as the
chance of an upset win or loss should be higher if there are players with
uncertain ratings. This a similar effect on how the ratings are updated.
So for example if we are uncertain about a players rating, they can gain
or lose rating faster. However the opponent gains or loses rating slower,
as winning or losing against an opponent with an uncertain rating does
provide less information about their own skill.

1.2.5 Microsoft True Skil

The TrueSkill rating system Herbrich, Minka, and Graepel (2007) has
been developed by Microsoft to be used in a broad spectrum of games
offered on their Xbox game console. The main goal of this proprietary
rating system is to match players with equivalent skills, in essence max-
imizing draw probability of matches. This way competitive matches
between users on the platform ideally are between players of equal
strength. TrueSkill is also suitable for multi-player games, but it as-
sumes that player qualities are additive.

1.3 Analysis of the current system

Before we look at our proposed rating systems, we first investigate how
the current system, DSS, of the KNLTB performs. The KNLTB has
provided us with a data-set of all tennis matches of the last 3 years.
Using this data-set we look if the difference in rating can predict the
outcome of a match. In a good rating system, the probability of winning
should be a logistic function of the difference in rating.

For the doubles rating, we check if the stronger or the weaker player
has a larger impact on the team rating. We model the team rating by
the weighted average of the individual ratings of the players. Using
statistical analysis, we try to determine the optimal weight of each
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player’s rating. We repeat this analysis for a mixed doubles where we
team rating is a weighed average of the male and female player.

1.3.1 Singles rating

Figure 1.2 shows frequency histograms for rating and age across singles
matches for different groups of players. The peaks at integer ratings
correspond to starting/returning players, because not enough informa-
tion is available to assign a precise rating, so the KNLTB assigns them
an integer rating. Compared to adult male players, adult female and
young players are more concentrated around the lower ratings. The age
distributions are similar for male and female players. The histograms
clearly show that more matches are played by younger players (< 20
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Figure 1.2: Left: Rating histogram across all singles matches for adult
male, adult female, and underage players. Right: Age histogram across
all singles matches of male and female players.

We set out to estimate the performance of the current rating system,
as well as determine the effects of age and playing a home match on
the odds of winning. We assume that when player A plays a match



against player B, the log-odds of player A wining are given by

= fo+L1Homes+52(Ra—Rp)+F3(Age 4, —Agep),

(1.1)
where pa denotes the probability of player A winning the match, Rx
indicates the rating of player X, Agey indicates the age of player X,
and Home 4 is a dummy variable that equals 1 if player A plays a home
match and 0 otherwise.

We estimate the coefficients 3; by logistic regression, where we treat
every singles match as one observation. Matches usually have multiple
entries in the dataset (one for each player), but we remove all duplicate
match entries, so that for each match, one entry remains for one of the
two players who participated in the match. Player A in (1.1) is the
reference player for which the match is entered in the dataset.

The estimates are presented in Table 1.1. The first column focuses
on the role played by rating differences by excluding all control vari-
ables. This model based purely on rating differences correctly predicts
70% of all singles match outcomes. The negative coefficient indicates
that when a player’s rating increases compared to that of her opponent
(note that a worse player has a larger rating), her odds of winning go
down. Specifically, compared to the baseline of having equal ratings,
improving one’s rating by 1 increases the probability of winning from
50% to 85%. A rating difference of 2 implies a win probability of 97%
for the stronger player.

The second column includes controls for playing a home game and
age differences. We find evidence for a significant home advantage:
Given the rating and age differences between the two players, playing a
home game increases the odds of winning by 18.3%. In a match that is
equal in terms of age and rating, the home player has a win probability
of 52.8%. The negative coefficient on the age difference shows that given
the rating difference between two players and the home advantage, the
older player has lower odds of winning the match. The model predicts
that someone playing a home match against a 20-years-younger player
with the same rating has a probability of winning of only 42.8%.

The third and fourth column of Table 1.1 show the estimates for
matches between two females and between two males, respectively.
Comparing logistic regression coefficients across groups can be prob-

logit(pa) = log 7— "
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lematic, but the results suggest that the effects are similar to those
discussed above for all singles matches. Regressions where we also con-
trol for the province where each player is based do not give much new
insight: Results are mixed across specifications for female and male
players, and very few provinces have significantly different odds. The
other coefficients are practically unchanged by taking into account re-
gional differences.

Table 1.1: Singles estimates

Logit(pa) All Female Male
Intercept - —0.0568 —0.0560 —0.0671
- (0.0039) (0.0071) (0.0050)
Home 4 - 0.168 0.156 0.184
- (0.0055) (0.010) (0.0070)
Ra — Rp —1.74 —1.75 —1.80 —1.71
(0.0045) (0.0045) (0.0082) (0.0056)
Agey — Agep - —0.0201 —0.0169 —0.0212
- (0.00025) (0.00045) (0.00030)
Correct (%) 70.0 71.9 72.5 72.2
N (matches) 753,224 749,344 234,543 468,458
Controls N Y Y Y

Note. Standard errors are given in parentheses. Correct (%) indicates the
percentage of matches for which the outcome is correctly predicted by the
model. Player A is the reference player for which the match is entered in the
dataset. Where indicated, controls are included for playing a home match,
and for the age difference between the reference player and her opponent.
The Female and Male columns refer to matches between two females and be-
tween two males, respectively.

1.3.2 Doubles rating

We now consider the case where two teams of two players play a match.
We want to estimate a model similar to (1.1), but with single player
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ratings and ages replaced by effective team ratings and ages. We explain
this for the rating, as for age the analysis is similar.

We assume that the effective rating of a team, consisting of a
stronger player A and a weaker player B (R4 < Rp), is given by a
weighted average of the ratings of those two players:

Risp=0Ra+ (1-0)Rp, (1.2)

where 0 < 6 < 1 measures the degree to which the stronger player
carries the team. We denote by (R)ap the average rating of team AB:

_ Ra+Rp

(R)an 5

(1.3)

Now consider the case where team AB plays team CD, consisting of
stronger player C' and weaker player D. The difference between the
effective ratings is given by

Rap—Recp=0Ra+ (1—0)Rp — [0Rc + (1 —9)Rp)]
= (9 - ;) (Afp — Alp) +(R)as — (R)ep,
where we have defined
Allp = Ra—Rp, Ra<Rg, (1.4)
and used that
Ra+Rp=Rc+Rp+2((Ryap — (R)cp)-

Similarly, we model the effective age of the team to be a weighted
average of the age of its two players:

Ageyy = PAgey + (1 — ©)Agey,

where X is the older player, so that 0 < ® < 1 measures the weight on
the older player.



12 SWI 2020 Proceedings

We can now define the doubles equivalent of (1.1) for a match be-
tween team AB and team CD:

logit(pap) = Bo + f1Homeap + 2 (Rap — Rep) + B3 (Agesp — Agecp)
= Bo + f1Homeap + B2 (9 - ;) (ARg —AGp)+
B2 ((R)ap — (R)op) + Bs (‘I’ - ;) (A[Z%e - Aé%)
+ B3 ((Age)ap — (Age)cp) -
Table 1.2 presents some results on the estimates of 6 and ®.

Table 1.2: Doubles estimates: All, female, male

Logit(pas) Al Female Male

0 0.524 0.519 0.535
(0.0012) (0.0019) (0.0019)

® 0.517 0.470 0.512
(0.0076) (0.015) (0.011)

Correct (%) 73.8 74.5 73.9

N (matches) 1,526,808 616,209 585,242

Note. Controls are included for playing a home match, for the difference be-
tween the average age of the two teams, and for the difference in age differ-
ences within the two teams. The Female and Male columns refer to matches
between four females and between four males, respectively.

This suggests that the stronger player carries the team to a higher
level, as the estimate for 0 is larger than 0.5. Note that although 6
is statistically significantly different from 0.5, it is not very large. In
designing a rating system it might make sense to keep it at 0.5 for
simplicity. The effect of a team’s unbalancedness on rating outcomes
could be dampened by increasing its variance, for example. Similar
to singles matches, teams that are older on average have lower odds
of winning, given their effective rating. Asymmetries with respect to
age do not matter as much however, with ® barely larger than 0.5.
The female and male estimates do suggest that rating asymmetry is
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more important in male doubles matches, as can be seen by the larger
value for #. The difference might be negligible in terms of practical
implementation in a new rating system, however.

1.4 Proposal for a new system

In this section we propose two rating methods. A relatively simple
method based on the Elo rating and a more advanced method based
on the Glicko rating. We first show how this rating system would work
for singles and then we discuss the extension to doubles.

1.4.1 Elo method for singles

In this rating system, each player has a rating which signifies the players
strength. Suppose we have a match of a player with rating R; against a
player rating R, then using the Elo method the probability that player
1 wins can be computed by

1

pTOb = —1 + efq(leRz)

We can tune the constant ¢ such that these probabilities match what
we found for the original ratings in the previous sections. When player
1 wins, his rating should improve and when he loses his rating should
deteriorate. We can compute the new rating of player 1 by

Rinew = Rio1a + K(p’l"Ob — Tesult)

Here result is 0, when player 1 loses and 1 when he wins. This new
rating can then be used to compare other games. Note that for an
expected win, prob — result is small and thus the change in ratings is
small, however for an upset win the change in ratings is much larger.
The K-factor is also used to scale the size of the ratings change. For
young players this should be higher as their skills improves faster and
for professional players this factor should be smaller.

One of the main benefits of this system is that it treats all the
games equally. Every game gives a change in rating and the rating
always improves when the player wins. It would also be a good idea
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to make a table of the formula for the win probability, as is also done
in chess. This makes it easier to understand for the players what they
can expect and how their rating is changed.

1.4.2 Glicko method for singles

An alternative to using the Elo system for singles ratings is to use the
Glicko system. The Glicko system can be seen as an extension to the
Elo system. Thus in comparison to the Elo system it is more difficult,
but also more accurate. The main improvement is that it can better
handle big differences in the number of matches played by different
people; and as a consequence new players can be added without a
special procedure.

In this section we first discuss how the implementation works and
then consider the positives and negatives of this system.

In the case of tennis singles it is actually possible to implement
standard Glicko, as written for chess. The only change we make in this
section is to allow for a change to the 1-9 scale of tennis.

The strength of every player R has two variables, their rating u,
and the variance o. The rating p is a measure of how good a player is
on average. The variance measures how well we know the rating; it will
be higher for new players and less-active players and lower for players
who play lots of matches and who play very consistently.

Update for a match

Suppose players 1 and 2 compete and player 1 wins. For the purposes
of this subsection we assume the original strength of the two players
are R; and Ry with ratings p; and po and the associated variances
are 02 and o3. These should be up to date (see the next subsection),
and for new players they should be generated first (see the subsequent
subsection).
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For the new ratings of the players we get

1
9(0%) = —————
1+ 3q¢%0?% /72
1 1
F, = FEy =

1 4+ e—29(03) (11 —p2) 1+ e—29(0?)(p2—p1)

2 2
01 2 g2

2 _ =
O1new — 1+ qgo,%g(o,%)gEl(l _ El) 92, new 1+ q20.§g(0%)2E2(1 — Eg)

Tlnew = M1 + qo’inewg(o'g)(l - El) "2new = H2 — qag,newg(o-%)E%

where ¢ is a scaling parameter which for chess is taken (standard) to
be gehess = In(10)/400. To adjust to the tennis scale a different value
can be used, the choice should be inferred from the data.

While the formulas look somewhat imposing, anyone with a calcu-
lator can easily calculate the results.

As with Elo, the new rating is equal to the old rating plus a factor
times obtained score (1 for winning or 0 for losing) minus the expected
score of the match (the probability of winning). This prefactor is varies
according to the variance of the player: Uncertain ratings mean high
variance thus big adjustments to the rating, and if the confidence in a
rating is high, the adjustment to the rating based on a single match is
low. As a secondary factor, when the rating of the opposing player is
uncertain the change in rating is reduced.

The formula for the new variance means that it is slightly less than
the old variance. If the match was unbalanced, so the outcome was
almost predetermined (a very good vs. a very bad player), the vari-
ance does not decrease by much, as this match does not give a lot of
information, likewise if the rating of the opponent is very uncertain.

Introducing new players

For new players you initially do not know anything. Therefore the
initial rating is placed at an average value and the initial variance is
made to be very large.

MU= Hinit 0 = Oinit
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Here fiinit, and o2, are parameters that can be chosen. The only effect
of rini is to move the ratings a fixed amount up or down, so it can be

adjusted to fit the current rating distribution if desired. The choice for
2

oi,; does not have a big impact on the ratings. A reasonable value is
4
2
Oinit = qu

Update for time

Before each match the variances of the players should be made up to
date. This means that the variance o2 for a player is increased by the
passage of time. The longer someone is inactive, the less certain we are
of their rating.

For the time update a new parameter 2 of the system is introduced.
The time update follows the formula

o?(t + At) = min(c?(t) + V2 At, ol;,)

Here At is the change in time passed between the previous update of
the ratings and the new one. The minimum is taken to ensure the new
variance is never higher than the variance for a new player. Basically
this only happens if a player has retired, or there is a long time between
the first match of a new player and the second match.
Implementationwise it suffices to measure time in days (or even
weeks or months), so At can be the number of days since the last
match. Updating the variances every day seems cumbersome, so it
might be wise to give each player a “time of last update”-variable and
only update the variance of a player when you need it: Either when
the player participates in a match, or when a ratings list is published.
A good choice of 2 should be inferred from the data. As a guideline
you can use that with At = o2, /v? any variance will become o2, , so
any rating will be completely uncertain after this period of time.

Presenting the ratings

As this system is a bit more complicated some thought must be put
in how to present the resulting rating list for less mathematically in-
clined people. Even if people cannot follow the way the ratings are
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calculated, they should understand the outcomes of the rating system.
The rating list consists of two numbers for every player. One number,
the rating gives the strength of that player, and big differences in that
number correspond to big differences in strengths, which should be un-
derstandable for everyone. In particular this is the variable upon which
you want to sort the ratings.

The variance for a player is more complicated to interpret. It is
suggested to suppress the numerical value from any rating list (though
it should be accessible for the mathematically inclined, perhaps after
a click or two). Instead the ratings can be coded to give the level of
confidence in the ratings. The coding can be done by a color or stars
or something. In particular uncertain ratings should be designated as
such (otherwise new players who win their first two matches might end
up very high on the list). It might also be wise to exclude people from
any ranking lists if the variance is too large. The exact cutoff points for
these codes are of course up to the rating administrators, and should
be decided upon inspection of the actual data.

Another option to show the variance is to give a confidence interval
(1t — 20, p+ 20), which gives 95% confidence that the interval contains
the actual strength. With this one can only really say that they are
stronger than someone else if their confidence intervals don’t overlap.

1.4.3 Extension to doubles

Our rating system for doubles relies on computing a team rating. Then
we pit the teams against each other as if it was a singles match. As in
section 3, we use a weighted average of the players ratings to compute
a team rating. Suppose we have a team with the stronger player with
rating Ry and with the weaker player with rating Rs, then the team
rating Rjs is given by

Ris =0R1 + (1 —0)Rs

If we take 6 = %, take we take a simple average and each team member
contributes equally. However, if § = 1 then it is basically a match be-
tween the two strongest players and the weaker players have no impact
on the game. Currently the KNLTB uses the rating of the strongest



18 SWI 2020 Proceedings

player to determine tournament eligibility, so it basically assumes 8 = 1
for this case.

For Glicko, we can do a similar thing for the team rating p12 and
variance o12. Now we can use the formulas above for either the Elo or
Glicko methods to compute a new team rating. Then we can divide the
change in rating between the individual players, such that this matches
the new team rating. Here it used that the player who contributed the
most to the team rating (based on 6) will also get the largest share of
the rating change.

There is also a different way to think about this problem. We can
view a doubles match as a 4 player game, where 2 players win. This
alternate view gives the same changes in rating for the Elo method, but
there is a slight difference in the Glicko method.

1.5 Theoretical analysis of the proposal

In this section we dive deeper into the mathematical aspects of the
rating systems. We will go in detail how the win probabilities and
ratings changes are derived using Bayesian statistics. We will also give
two ways to compute the Glicko update for doubles, via comparison of
team ratings (section 5.4) and as a 4 player game (section 5.5).

1.5.1 Relation between rating difference and win
probability

A one-sided game is to be expected in the event of a large disparity
between player ratings. To reflect for such relative ease/difficulty of
a match, the win probability serves as an important component in
determining the new ratings of both players, by compensating fairly to
those who has seemingly over /under-performed in a given match. Since
tennis matches have a binary outcome (either a win or a loss), the win
probability is equivalent to the expected score (which is generally the
win probability plus half the probability of a draw), and we use these
two terms interchangeably throughout the text.

In both Elo and Glicko systems, the win probability is calculated
using the difference between current player ratings and a scaling factor g
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(taken to be —In(10)/400 for chess). We examine exactly how these
probabilities are calculated, starting with the Elo system.

The Elo rating system assumes that the true rating of a player i
follows a logistic distribution with mean u; and a scale ¢, for i = 1, 2.
It follows that the expected score for player 1 against player 2, or the
win probability for player 1 against player 2, is

1

Er= 1+ e—a(pi—p2)’

The Glicko rating system assumes that the true rating R; of a
player 4 is normally distributed with mean y; and variance o? for i =
1,2. The win probability of player 1 against player 2, is, as in the
case of the Elo rating system, given by the distribution function of the
logistic distribution with scale q.

P(1 wins against 2|Ry, Rs) = m. (1.5)
Let N (r;u,0?) denote the probability density function of a normal
distribution with mean p and variance o2, evaluated at the point 7.
Then we may estimate the expectation of player 1 winning against
player 2 as follows.

E[1 wins against 2|Ry] = / P(1 wins against 2|R1, Ry = 72)N (ra; 12, 03 )dro
oo 1 1 _ (ro—pp)?
_ . 20
— /_OO S 271'(726 2 dry

1
1+ e—9(03)(R1—p2)’

where the approximation from Glickman (1999) is used in the final line,

and where 1

V1+3¢202/n2

Finally, we substitute Ry = p1 as this is a reasonable approximation of
player 1’s current rating.

g(0?) =

1
Er = 1+ e—a9(0) (m—p2)”
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1.5.2 Derivation of the Elo update for singles and
doubles

For singles matches, the Elo update has a fairly straightforward deriva-
tion. Given players 1 and 2, with Elo ratings p; and po, we model the
performance of each player as the random variables

P NE(N173/10g10)7 Py NE(M27S/lOg10)7

where L(u, s) is the logistic distribution with mean p and scale s. Then
the expected score of A vs B (for a single game) is given by

1 Qa

Ea=Pr(P1>p2) = 4 T10(2—m)/s ~ Qu+Qp

(1.6)

where Q4 := 10"1/% and likewise for Q5. Then given the actual score
Sy of A vs B, we update the rating of A linearly:

U1, new = M1 + K(SA — EA) (1.7)

and likewise for B.

For doubles matches, we apply the method that we will go into more
detail on in the Glicko case in section 1.5.4. That is, given players A
and B forming a doubles team AB, we combine the Elo ratings p1, ps
into a team Elo rating p12. Then when AB play CD we update the
team ratings via the above formulae to find 112 ye. Then we separate
this rating to find g1 pew and p2 new-

By the same argument as in Theorem 1.5.1, the only reasonable and
scale-invariant combination method is (choosing labels so that u; <
fi2):

iz = Op1 + (1 — 0)po (1.8)
where 6 € [0,1] is a parameter we infer from data (see section 1.3.2).
Then, given an updated team Elo rating p12new, we update the

individual ratings by finding the new ratings nearest to the old ones
which combine to form the updated team rating, i.e. we solve

min(ﬂl,vLew_N1)2+(U2,new_,U2)2 s.t. QUI,new‘F(l_G)HQ,new = M12,new
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which gives updated ratings

0
new — o . 4 o new s 1.9
, M1+ 021 (1-6)° (p12, Hi2) (1.9)
(1-0)
K2 new = H2 + 1102 (H12,new — p12) - (1.10)

1.5.3 Derivation of the Glicko update for singles

The Glicko system has two types of updates, one updates the ratings
after a match, one updates the ratings after a passage of time. We
consider both in the following, but first we detail the general setting.
The derivations here were obtained by Glickman in Glickman (1999).

We assume all players have at all times an intrinsic strength R,
which we do not know exactly. We do, however have an estimate for
this strength determined by the rating and variance, which means that
given rating and variance at a certain time we have R ~ N (u,0?). We
assume that all these ratings are independent of each other.

Match update

For simplicity we consider a single match between players 1 and 2.
Both players have their own strengths R;, and our estimates of those
strengths, the ratings ;; and the variances o?. The probability that a
player 1 wins from player 2, given the hypothesis R; = r; is given by
the distribution function of the logistic distribution:

ed(ri—r2)

P(l wins from 2) = m
e T1—T

Likewise we have

ed(ri—rz) 1 ed(r2—r1)

P(1 loses from 2) = 1 — Tt = T3 i = T etas)

We can combine these two formulas to

esa(r1—ra)

P(player 1 wins from opponent 2) = TF et
e
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where s = 1 if player 1 wins, and s = 0 if player 1 loses.
Now we can use a Bayesian analysis. The prior is given by

_(7'1*u1)2 1 _(1»2—;42)2 1 _(7'1*u1)2_(7'2*u2)2
202 2 2 2

e 2035 i e 207 205

1
e =
V2o V27moo 2109

The likelihood of the result is given by the probability that the outcome
occurs, so

prior =

€SQ(T1—T2) 1

lh

- 14 ea(ri=r2) - 1+ e(1=25)g(r1—r2)’ s=0,1.

Using Bayes’ rule we find that the posterior distribution is proportional
to

_("'1*#1)2_("'2*#2)2 1
207 203

post(ry,re) o prior - llh =e [T o020
where we removed R;-independent factors as we only get a proportional-
ity relation anyway. You will find that in the new posterior distribution
there is a positive correlation between the ratings of the two players, so
they are clearly not independent. The posterior distribution is also not
a normal distribution. However we want to approximate this posterior
distribution with a distribution where R; and Ry are independent nor-
mally distributed random variables to bring it back to our framework.
Therefore we first take the marginal distribution for player 1, that is

e}
margpost(ry) < / post(ri, o) dre

—00
This integral cannot be expressed in terms of simple functions, so we
have to approximate this integral. We do this by first approximating
the distribution function of the logarithmic distribution by the distribu-
tion function of a normal distribution with identical mean and variance,
after which the integral can be evaluated and expressed in terms of a
normal distribution function (with different mean and variance). We
can subsequently substitute a logistic distribution function with identi-
cal mean and variance for the distribution function of the new normal
distribution.
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Thus writing

o1 1,2
D(x) :/ \/ﬂefﬁ dt

for the distribution function of the standard normal distribution we use

1 V3

-  ~P(—
14+e 2 ( T ?)
and we get
oo _ (7'1ﬂ;1)2 _ (7-27;;2)2 1
20 20
margpost(rl) x [oo € ! 2 1 + e(1=2s)q(r1—r2) drz
00 (ri—p?_ (ro—po)? 3
R / e i SR £(1 —28)q(ry —r2) | dro
oo 0
e S ((VBa0 =25 — i)
V72 +3¢2(1 — 25)203
G 1
~ 09€ 209 74

= (1-25)(r1—p2)
1+e \/72+342(1-25)202

We can simplify this expression slightly by observing that (1—2s)? =1
for both s = 0 and s = 1. Also, recall the definition of the function g:

1

g(o®) = T
/14 34502
Thus we get

_(-p)? 1
202
margpost(ry) « e 1

1 + e—9(03)a(1=25)(r1—p2)

Next we want to approximate this marginal posterior distribution with
a normal distribution. As an approximation of the mean of the normal
distribution we take the mode of this marginal posterior distribution.

d? In(margpost(ry)) -1
drf
be constant if the distribution truly was a normal distribution. To find

For the variance we take 02 = — ( , which would

new
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the mode we need to solve that the derivative equals 0, and for easy of
calculations we actually consider the log-derivative. This gives

dIn(margpost(r1)) i — n g(03)q(1 — Qs)e—g(og)q(l—Qs)(m—/Lz)

dry J% 1 + e—9(03)a(1-2s)(r1—p2)

Solving this equation equals 0 is not possible in terms of elementary
functions, so we approximate the zero using a single Newton-Raphson
iteration, starting at r; = uy (this is a sensible starting point as you
would expect the new rating to be close to the old one). This gives
dl
n(mjrrlgpost) (Ml)

H1new = fi1 = & In(margpost) (,, )

2
dry

Now observe that we have the second derivative of the log-marginal
posterior appearing both in the expression for the new rating, as the
expression for the new variance. In the latter expression it was still
unclear at which point to evaluate this function (though it should not
matter too much). For consistency it now makes sense to evaluate the
new variance at the same point, r; = u1; this also makes sense as
is a reasonable approximation of the new rating. This last choice fixes
the approximations. Thus we get

1
Er = 1+ e—9(03) (p1—p2)’
52 _ 1 1
lnew — n(margpos == ’
Ehlmpowest) () 57 — 903 Ei(1 - Ey)

dIn(margpost
Hinew = p1 + U%,new%

(where we again simplify the formulas by using s = 0,1). You should
now be able to recognize these formulas as identical to what we had
before.

(/u‘l) = p1 + Uinewqg(ag)(s - E1)7

Time update

In this part we only consider the ratings of a single player. Thus we can
use the subscripts to refer to the time at which we take the parameter,
instead of using subscripts to denote whose rating we are talking about.
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We model the change in strength over time as following a Brownian
motion. That means that the strength r,1 A, at time ¢ + At given the
value of the strength r; at time t is chosen from a normal distribution
around r; with a variance which is a multiple of the change At in time.
Thus r44 ar — ¢ ~ N(0,2At) for some parameter v?. We assume that
this change in rating is independent of the ratings of all players (and
also of the rating of the relevant player at time t).

Since we have assumed R; ~ N(u,07) to begin with we thus ob-
tain that Rt+At = (Rt+At - Rt) + Rt ~ N(O,U2At) + J\/(ut,af) =
N (¢, 02 + v2At). Here we use that the sum of two independent nor-
mally distributed random variables is again a normally distributed ran-
dom variable. We thus observe that for the time update we have

2 2, 2
Hitat = it Oitar = 0p + VAL

1.5.4 Derivation of the Glicko update for doubles
by information projection

The basic idea of this method is to apply the following three steps to
reduce the 2v2 match to a single 1v1 Glicko update:

1. Combination Given players x = {z;}7_; with ratings (u;,0;),
construct a Glicko rating (ux,ox) for the team x.

2. Match update When x play y, given (ux,0x), (¢y,0y) and the
result of the match, use Glicko to update the combined rating to

(e, 0%)-
3. Separation Given (u}, 0% ) and the original ratings (p;,0;), con-
struct the updated ratings (7, of).
Combination
We have players x = {z;}7_, with ‘true ratings’
R; ~ N (pi,07)
and we wish to combine these into

Ry ~ N(Nmai)-
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We note some properties that this combination should obey:

I. If Vi R; — R; + ¢, then Ry — Ry + c¢ as Glicko ratings are shift-
invariant.

II. Ry is independent of the ordering of the z;.
III. pyx is monotonic increasing in each of the ;.
IV. If u; = p, then puyx = p.
Theorem 1.5.1. If Ry obeys (I)-(IV), and furthermore we impose that
pxe = [ (pa, p2) (1.11)

i-e., that the mean of the combined rating depends only on the means
of the players, and

if Vi R; — kR; for k >0, then Ry — kRx (1.12)

then f must have the form:

apy + bus, i > o,
f(ﬂ1>//42):{'u1 Hay A 2 o (1.13)

bur + apz, if p2 > pa,
fora,b>0 witha+b=1.
Proof. By (I) and (1.12), for any k > 0 we have that
Flua, po) = 1 + kFO, k™ (2 — 1))

By (IV), it suffices to consider the case 1 # pa. Then, setting k =
|2 — pual,

)t (= p2) f(0, 1), i > po,
Tl pz) = {uﬁ(uzm)f((),l), if o > pur.
By (II) f(p1, p2) = f(p2, pa), so

pa+ (p1 — p2) f(0,=1) = p2 + (p1 — p2) (0, 1)
or

pa + (p2 = p1) £(0,1) = po + (p2 — pa) £(0, —1)
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which implies that f(0,1) = 1 + f(0,—1). Finally, recalling (III), we
define a := f(0,1) > f(0,0) and b := —f(0,—1) > —f(0,0). By (IV),
f(0,0) =0, so a,b >0 and a+ b =1, and the result follows. O

By (III), without loss of generality we can suppose that p; < po.
Then Theorem 1.5.1 suggests that we should combine the ratings as
a weighted average with weights 6 corresponding to a player’s skill
ranking within the team. This allows for the possibility that strong
players/weak players may have a larger impact on the outcome than
others, e.g. a strong player carrying the team. Mathematically

Ry =Y 0;R; (1.14)

where 6; > 0, Y. 60; = 1 and the values of ¢ are inferred from data (see
section 1.3.2).

Then supposing that the R; are independent, the standard formulae
for linear sums of independent Gaussian variables give:

Px = Zei,ui» (1.15)

oz =) 6} (1.16)

K2

Separation
After the Glicko update, we now have p, and o} describing some
Ry ~ N (e, 00).

We suppose that this random variable can be modelled as

R, =Y 0;R;. (1.17)
This then gives

=3 0 (113

ol =Y 0] (1.19)
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and we seek to recover the new ratings R, ~ N (u},0}). One prob-

lem which makes this hard is that formally speaking the new ratings
are correlated with the ratings of the other players. However, for our
method we require that the strengths of all players are independent.
We solve this by finding the ’smallest’ change from the old ratings
R; ~ N(pi,0;) to new independent ratings R, ~ N (u},o}) which give
the correct new team rating R/.. This change should be as small as pos-
sible’ as you don’t want to change anything besides what you learned
from the match.

We formulate this as the problem of minimising the Kullback—Leibler
divergence Kullback and Leibler (1951) of the posterior ratings s.t. the
combination condition:

mmZDKLRHR s.t. R, = Z&R’ (1.20)

In words, out of all the updated ratings for the players x that would give
rise to R}, we choose the ones that minimise the amount of information
gained in moving from the old ratings to the new ratings. As R} and R;
are assumed to be all independent Gaussian variables we can explicitly
write the Kullback—Leibler divergences as:

2 ! 2
/ o 1
Dicw(R[Re) = log(or) ~ logo) + U020 1y
So the problem becomes
/2 / 2
2) ot + (i — i)
mlnz ol % s.t. (1.18),(1.19).  (1.22)
This decouples for the p/ and o”.
Solving for i/ The problem for ,u’ becomes
mlnz MZ ) s.t. o = Zeiu;.
Which has solution
0,02
/ (e’ /
pi = i + =g (Hx — i) - (1.23)
259503
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Solving for ¢/ Next, the problem for the ¢’ becomes
1
. _ = 1 {2
mln; 5 og(o;”) +
Let v; := 020, %, B; := 670?. Then we seek to solve

min f(v sz log v; s.t. Zﬂzfuzfo

Note that f is strictly convex and bounded below, and that the con-
straint is linear, so this problem has a unique minimiser v*. For some
dual variable v € R, it is straightforward to show that for all i,

2
Oy -

=(1+vp)™!
which gives update rule
2
2 gi
= . 1.24
= T (1.24)
Note that we can write this in Glicko-like terms as
o % =0 +vb?. (1.25)

Plugging into the constraint we get that v is the unique solution to

6252
2 _ N—lp
o=y (1+vB) '8 = Z TRt (1.26)

Note that since 072 < o2 (by the formula for a Glicko update) we must
have v > 0. Multiplying (1.26) out, it becomes

V(07 201 P05 0y 2 =200 2 o (07 P01 20y 20y P (07 oy 20y R0y %)l ?)

which we can solve and take the unique positive root to compute v, i.e.

b: (9—2 —2+0 2 —2 20_/72)’

X

0_2 0/2

ci=—(0r 207 %0705 — (07207 + 05205 )0 ) = =252 > 0,

af@ %9202 N
v=—-b+Vb?+ec

=0
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1.5.5 Derivation of the Glicko update for doubles
by direct estimation

In this part we use a different approach to derive updating formulas
for the doubles system. It follows closely both the method behind the
Glicko system as the approximations that were made there.

As above we assume that every participant has a strength parameter
r;, and that we have prior estimates of these strength parameters as
being normally distributed around the ratings pu;, according to R; ~
N (i, 02). Here we label the participants such that 1 and 2, correspond
to the winning team, and 3 and 4 to the losing team. Thus the prior
becomes

_ (r1—pp? _ (ro—ug)? _ (rg—o3)? _ (rg—o4)?
207 203 203 203

prior x e

We assume the probability of winning is given by the same formula

as for singles, but with teams performing as though their rating was

the average of the ratings of the members. This is the 6§ = % case of

the previous subsection. We use § = % mostly for ease of exposition,

the method also works for other values of §. However for 6 # % the
approximations need a slightly new justification.

Thus we find for the likelihood of team 1-2 winning from team 3-4

that
1

Uh =

Therefore the posterior is equal to

_rimep? rp—pp)?  (ra—om)?  (ra—oy)? 1
2 2 2

2
207 205 203 20%

pOSt e 1+ e—%Q(T1+7"2—7"3—7“4)

Now we want the marginal posterior for the first participant, giving

_ (r1—pp? _ (T2*/{2)2 _ (r3—o3)? _ (T4*<j4)2

e 207 202 202 207
margpost(ry) o« /// drodrsdry.

1+ e~ 34(ritra—rz—rq)

In the derivation of the original Glicko system we derived what amounts
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to the approximation

oo 1 ICEDE 1
e 202
———dy = —————, 9(0°,¢) = ———
[m1+€ q(z—y) 1+ e—99(c?:9)(n—v) /1+%202

Here we made g explicitly depend on ¢, as we will need to use the
approximation for other values of ¢q. Indeed using this approximation
three times, and subsequently simplifying the product of g-functions
that arise we find

T — M1 2
_(m /21) 1

margpost(ry) xe 271

14 e~ 59929394 (r1+p2—p3—pa)

_ (r1—t;1>2 1
20
= e 1

1 + e~ 399(03+03+03,39) (r+p2—ps—pia)
2 1 2 1 2 1
g2=49 0'275(1 y 93 =4g 0’375(192 y g4=49 0‘4,§qg3

This expression looks very much like the marginal distribution in the
singles case. We can once again apply the same approximations (in this
case literally the same), to arrive at formulas for the new ratings for
player 1.

1
By = 1 + e~ 329(03+05+03,50) (n1+p2—pa—pa)
! 1+12(2+2+21)E(1 E1)
—_— 4= o5 +05+0oy, = -
O_inew 0_% 4q g 2 3 4> 2(] 1 1

H1lnew = M1 + %J%newqg(ag + U?2> + UZ? %q)(l - El)
The formulas for the update of the rating of participant is of course
similar, for participants 3 and 4 the big difference is that the change in
rating is multiplied by —Fs5 (respectively —F}y) instead of (1 — Ey).

The updates of the ratings for a change in time and the introduction
of new players is identical to the system for singles.
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0+1
If we do take 6 # % the obvious likelihood would be

1
= 1+ e—q(@max(rl,rg)-i-(l—ﬂ) min(ry,r2)—0 max(rg,rq)—(1—60) min(rz,rs)

lth

However this likelihood is non-differentiable (when 1 = ry or r3 = r4),
and our approximations become trickier. If we assume p; > po and
3 > pa we can instead use the likelihood

1
1+ efq(Grl+(179)r2707‘37(179)r4 ’

which has the benefit of the derivation of the approximations to proceed
as above, but the detriment of breaking the symmetry between r; and
ro. Now if g1 is much bigger then uo, this would not change much,
because in practice r; will be bigger than ry. If the difference u; — o
is small, this does seem a bit stranger. Anyway, the resulting updating
formulas are

br=0=05, O=1-0=0,

1
9= 3¢260202 3¢26203 3¢26203
I+ =32 +=32+"=
1
E = T
1+ e~ 399(01p1+02p2—03 304 p14)
1 1 9 9
5 = — +0iq"gE (1 — Ey)
Ul,new 07

M1 new = $1 + eloinewqg(l - El)

1.6 Conclusion

We have done a statistical analysis of DSS, the current rating system
used by the KNLTB. We found that a difference in rating of 1 increases
the odd of winning to 85% and a difference of 2 even to 97% in singles
tennis. For doubles tennis we found that the stronger player carries the
team more than you should expect if both player contributed equally to
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the strength of a team. Although this result was statistically significant,
the size of the effect was very small.

We have proposed two alternative rating systems based on the Elo
and Glicko methods. One of the main benefits of this system is that
every game gives a change in rating and the rating always improves
when the player wins. The Glicko model is more advanced by track-
ing also how certain we are that the assigned rating is correct. This
makes the players rating change faster when it is uncertain, but the
ratings change is smaller when playing against someone with an uncer-
tain rating. The trade-off is that the Glicko model is more complex and
harder to understand intuitively. However for a good implementation,
one needs to determine the optimal values for certain parameters in the
rating systems.
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