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Abstract

Within the framework of the ShoQR project, Tim Gerbrands is inter-
ested in the analysis of human motion with acceleration sensors. In
particular, the challenging problem is to infer the knee load during a
patient walking. In this report, we investigate ways to extract meaning-
ful information about human gait using the acceleration sensors. Our
�rst approach is applying frequency domain analysis techniques to the
sensor measurements. Secondly, we propose a couple of mathematical
models of the leg that captures the quality of the knee. Furthermore, we
examine the capabilities of the sensors by performing new experiments.
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3.1 Introduction

ShoQR is a health care research project led by Tim Gerbrands at the
Fontys Paramedical University of Applied Science. The project objec-
tive is quantifying the shock-absorbing properties of the legs.

3.1.1 Tim Gerbrands and the ShoQR project

Tim Gerbrands is a specialist in human motion and especially gait
analysis. The modern technology supporting motion analysis includes
various advanced tools such as 3D motion capture, videotaping with
high-speed cameras, force plate measurements, and electromyographic
measures of muscle activity. Naturally, the equipment is expensive and
the measurements can only be done in a laboratory. An alternative
considered by Gerbrands is to use cheap and compact motion sensors
that can be placed on a human body. The sensors should be convenient
enough to allow physiotherapists or people with motion disorders to
own personal sensors and to use them outside a laboratory. On the
other hand, this approach raises the question of how to use the sensors
in a way that is useful for gait analysis and how to extract meaningful
information from data from this type of sensors.

To study what can be gained from the sensor data, we need to
understand what aspects of human gait are of interest for researchers
and therapists. While walking, people follow a repetitive pattern that is
known as the gait cycle. Every step we make begins with a heel strike.
At that moment, we experience a ground reaction force; consequently,
a shock wave is initiated at the foot and propagates through the body.
The shock absorption in the body correlates with the risk of injuries
and can be of particular importance for people with motion disorder.
One of the main research lines in the ShoQR project led by Gerbrands
concerns the shock absorption and measuring it with the sensors.

A particular application of ShoQR measurement devices that could
be realised is to help physiotherapists to treat patients with knee os-
teoarthritis. A manifestation of osteoarthritis is damaged or degen-
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erated knee cartilage. Therefore, a standard recommendation for the
patients is to reduce the load of joints and especially avoid overload.
For this purpose, a clinically feasible measurement instrument that al-
lows obtaining information on joint load can be extremely useful. Such
measurements can support training of patients by giving information
for adapting the walking style to reduce the load on the knees. More-
over, it could give warnings if the load is close to the danger threshold.

Previous experiments with the ShoQR measurement devices have
shown that it may be possible to obtain statistically di�erent outcomes
for people with healthy and damaged cartilage. Nonetheless, the re-
lation between the measurement and the quality of cartilage is not
well understood. The challenge proposed by Gerbrands is to build a
mathematical model to estimate joint loading and predict joint tissue
damage. His suggestion was to describe a leg as a series of springs or
spring-dampers with adjustable mechanical properties.

The sensors give a lot of freedom in their usage, and at the same
time, the data obtained from measurements requires critical interpre-
tation. We look at the description of sensors in the next section.

3.1.2 Description of the sensors

Gerbrands uses Trigno Avanti sensors made by the company Delsys8

(see Figure 3.1). These sensors consist of an Inertial Measurement Unit
(IMU) and a component that measures muscle activation. In this report
we only use the data from the IMU.

Figure 3.1: The Avanti sensors used by Gerbrands.

8https://www.delsys.com/products/
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An IMU consists of three parts: an accelerometer, a gyroscope, and
a magnetometer. Each produces three scalar outputs: the accelerom-
eter outputs acceleration in three directions, the gyroscope rotational
velocity around three axes, and the magnetometer for the vectorial
magnetic �eld.

The sensors used by Gerbrands can read at the maximum frequency
of 470 Hz, and provide all three types of output. The sensors are read
wirelessly, allowing them to be attached to the body without restricting
movement. The orientations of the sensors are chosen in the way to
measure the longitudinal and transversal components of acceleration
as shown in Figure 3.2.

Figure 3.2: Depiction of the longitudinal and transversal axis.

3.1.3 How we interpreted the challenges

After several discussions we decided that the best interpretation of the
question posed by Gerbrands is the following:

Can we extract clinically relevant information from IMU
sensor measurements?

We identi�ed the following subquestions:

1. What clinically relevant information can we deduce from frequency-
dependent behaviour?
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Our starting point for this question is the data from Gerbrand's
previous experiments with the sensors (Section 3.2.1). We fo-
cus on the measurements taken while a person was walking and
standing on a vibration plate. The primary step for extracting
relevant information is to reduce uncertainty and noise in the raw
data. We overview useful prepossessing steps, namely mapping to
the global coordinate system and removing noise in Section 3.2.2.

What can be clinically valuable information is a relation between
the signal from the ankle and the lower back that allows for dis-
tinguishing people with healthy and damaged knees. We study
frequency domain analysis methods that can give such a relation
for the normal gait data in Section 3.2.3. We also investigate if
the vibration plate data can provide information on the health of
joints in Section 3.2.4.

We used the opportunity to perform our experiments with sensors
and record the data during some participants of our group walking
(Section 3.4.1). That gave us the freedom to experiment with the
position of the sensors.

2. Can we infer material properties of the knee cartilage?

We attempt to quantify the quality of the cartilage in two mod-
els of the leg (Sections 3.3.2 and 3.3.3). In the �rst model, we
assume cartilage to be a viscoelastic medium. Then we expect
the viscosity parameter to measure the material property. In the
second approach, we model a knee as a spring with a damper;
thus, we relate the spring sti�ness and the dissipation coe�cient
with the material property. In both cases, the idea is to solve
the inverse problem: estimate these model parameters for given
measurements.

Taking into account the complexity of the human body, we pro-
pose to examine the capabilities of IMU sensors by doing well-
controlled experiments. For instance, we discuss an experiment
with wood and foam representing bones and cartilage in Sec-
tion 3.4.2.

3. Can we determine forces in the knee during walking?
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This question is of particular practical interest because, as men-
tioned in Section 3.1.1, reliable information about the load of
knees would help to treat the patients. However, determining
forces in the knee is challenging and gives direction for further
investigation. We make a small step in that direction because the
leg model presented in Section 3.3.2 allows determining the stress
in the knee.

3.2 Data exploration

3.2.1 Data received from previous experiments

We received data from Gerbrands' previous experiments. In these ex-
periments, three IMU sensors were attached to the ankles and the lower
back of patients. Each sensor is attached to bare skin to minimize the
in�uence of clothing on the measurements.

Gerbrands' reasoning for positioning the sensors on these positions
is that he expects to �nd a relation between the forces that act on the
ankles, the lower back, and the knee. No sensor is put on the knee itself
because it restricts movement. There is soft tissue directly above the
knee that in�uences the measurements, so the hip is the closest to the
knee position where soft tissue does not in�uence the measurements
too severely. If the force that acts on the ankles and the hip can be
measured, we might be able to determine the amount of absorption
of the shock by the knee. The idea is that there might be a relation
between the di�erence in force between the ankles and the hip and the
condition of the patient's knee-cartilage.

We analysed data of di�erent tests on one person. Each dataset
describes one of these tests. In each dataset, time series with di�erent
frequencies are included. The datasets include data from roughly 30
seconds measured at 148 Hz.

The di�erent datasets describe the di�erent tests that were exe-
cuted:

� Normal gait

� Running gait
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� Asymmetric gait

� Jump

� Right legged jump

� Vibration plate with straight legs

� Vibration plate with bend knees

� Vibration plate with pointed toes.

The data was obtained from a person without damaged cartilage;
we did not receive data from patients with damaged cartilage. Further-
more, information such as gender, height, and weight are not included
in the data.

We focused on the dataset describing the normal gait. In Figure 3.3
the accelerations in the longitudinal and transversal axis of one walking
cycle from one ankle for di�erent timestamps are given. Moreover, the
phases of the walking cycle (from touchdown of the right foot to the
next touchdown of the right foot) are given below the data.

longitudinal
transversal

Figure 3.3: Acceleration in the longitudinal (blue) and transversal (or-
ange) axis.

It can be seen that a large acceleration is measured when the patient
puts the heel on the ground. The leg goes from a backward motion to
a stop when the heel touches the ground, resulting in a forward force.
This explains the large acceleration peaks.
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3.2.2 Sensor fusion and removal of artifacts

The main data that are used are acceleration signals measured along
three axes. It is important to realize that the coordinate system is �xed
relative to the sensor and not a global one. This has the e�ect that the
rotation of the sensor unit (e.g. during motion) will result in changes
in the axes along which signals are being measured.

There are simple ways to deal with this, at least in principle. First,
the local character of the measurement coordinate system can even
be advantageous, e.g., when accelerations acting in the longitudinal
direction along the leg are of interest. Provided that the sensors are
oriented sensibly and accurately when attached for the experiments,
a single acceleration signal could be used. Second, if the signal of
interest is dominating the measurements, e.g., if the signal to noise ratio
is suitably high, one can use the resultant length of the acceleration
vector, i.e., the acceleration norm.

What complicates this, however, is the fact that the sensors also
measure the local gravitational acceleration - unfortunately this is roughly
of the same order of magnitude as the signals of interest. Rotation of
the sensor, either due to motion of the body, or due to motion rela-
tive to it, changes the direction of the local gravity vector. This will
be apparent even in the otherwise invariant acceleration norm, since
depending on direction the gravity vector can increase or decrease the
magnitude of the total acceleration. It is, therefore, desirable to remove
the gravitational acceleration from the measurements prior to using the
data.

This is one reason that IMU sensors contain not only accelerometers
but additional sensors. A tri-axial magnetometer senses the orientation
of the local magnetic �eld. Given that this �eld varies slowly over typ-
ical distances in our application scenarios, this is in principle su�cient
to estimate and correct measurements for the gravitational accelera-
tion. However, the magnetometer signals are in�uenced by magnetic
materials, and indoor measurements are not very reliable by itself. The
sensors are therefore complemented by gyroscopes that measure angu-
lar velocities.

Measurements with such an IMU are subject to noise (e.g. ther-
mal), and obtaining reliable orientation and/or position estimates is
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Figure 3.4: Correction of sensor data. Example shows acceleration
norms of combined ankle and hip time series. Top row: Reconstruction
of accelerometer data using gyroscope data (MATLAB function imu-
�lter). Bottom row: Reconstruction using both gyroscope and magne-
tometer data (MATLAB function ahrs�lter).

a challenging problem of data fusion, especially if no direct position
measurements (e.g. from a GPS unit) are additionally available. The
usual approach is based on assuming a noise and sensor model and
using a time-series �lter. Variants of the Kalman �lter have proved
to be relatively well understood and straightforward to implement for
this problem Madgwick, Harrison, and Vaidyanathan (2011) and Kok,
Hol, and Schön (2018). A number of algorithms are readily available in
the MATLAB Sensor Fusion and Tracking Toolbox Roetenberg et al.
(2005) and Valenti, Dryanovski, and Xiao (2015).
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Figure 3.4 shows an example of data correction by sensor fusion
during walking. The gravity vector contributes 1g to the hip signal
and 2g for the ankles signal, which is the vector sum of the signals
from both ankles. Its in�uence is clearly visible in the raw data at
stand-still (blue curves, initial part and middle segment). Subtracting
the estimate of the gravity vector leads to the other curves (red and
orange superimposed; the acceleration norms of the corrected signals in
the two di�erent coordinate systems are identical). The quality of the
reconstruction is far from perfect and depends on the reconstruction
algorithm. For example, including the magnetometer data (bottom
row) leads to a better reconstruction of the ankles signal, but the hip
signal starts to drift in the second half of the walk. Only using the
gyroscope data (top row) avoids this problematic issue, but leads to an
overall worse identi�cation of the gravity vector.

Due to these shortcomings and because of lack of time, we have
performed no sensor fusion and measurement correction in our analyses.
Note that when vibrations are of interest (e.g. in the frequency domain
analyses performed), a change in the mean level of the signals can be
neglected, as long as it is acting slowly enough.

3.2.3 Frequency domain analysis

It is reasonable to investigate a relation among di�erent signals from
IMU sensors in the frequency domain rather than in the time domain
because of the periodic nature of the walking data. For instance, one
can use the power spectral density. Power spectral density is a fre-
quency decomposition of the variance of a signal Bendat and Piersol
(2011). Gerbrands made the observation that the ratio between the
power spectral density of the ankle and lower back can give informa-
tion about the state of cartilage. In Henriksen et al. (2008) they use
the following �transfer function� relating the power spectral densities
of the lower back PSDback and of the ankle PSDankle

TF = 10 log10

(
PSDback

PSDankle

)
. (3.1)

Gerbrands observed that the following transfer function di�ers signi�-
cantly between people with healthy knees and with damaged knee car-
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tilage.

There are di�erent ways to preprocess signals from IMU sensors.
One way is to calculate the Euclidean norm of the accelerations on the
ankle and lower back before the data is transformed into the frequency
domain. This way it does not matter how the sensor is orientated. We
use the acceleration data in the transversal direction (Figure 3.2) be-
cause we think the transversal direction gives the most information. A
disadvantage of this method is that a small di�erence in the orientation
of the sensor will in�uence the results.
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Figure 3.5: Power spectral density of lower back signal and ankles.
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First, we will apply the same method as Gerbrands to see if we
can reproduce the results. We obtain the power spectral density (Fig-
ure 3.5). To compare them Gerbrands calculated the ratio between the
heights of the peaks. We suggest calculating the area under the graph
rather than the height of the peak in order to reduce the calculation
error. In particular, in our approach, we do not need to extract the
frequency corresponding to the peak.

To seek further con�rmation that there is a relation between the
signal from the ankles and the signal from the lower back, we take a
look at the coherence between the two signals. Coherence is a number
between 0 and 1 which can be used to examine the relation between two
signals. The higher the number, the stronger the correlation between
the two signals.

At di�erent frequencies, the coherence between the signals is de�ned
as

Cxy =
|Pxy|2

Pxx · Pyy
. (3.2)

Here, Cxy is the coherence between two signals x and y, Pxx and Pyy
are the power spectral density estimates of the two signals, and Pxy
is the cross spectral density estimate of the two signals Bendat and
Piersol (2011). Welch's method is used to compute the power spectral
densities Welch (1967).

In Figure 3.6 we show the coherence and the power spectral density.
Notice that the power spectral density is outside the visible range.
The frequency of the peaks is more important than the height of the
peaks. The coherence shown in Figure 3.6 is the coherence between
the Euclidean norm of the accelerations from the lower back and the
Euclidean norm of the accelerations of the ankles. One can observe
that at the dominant frequency the coherence is high. The harmonic
frequencies, depicted by the smaller power spectral density peaks in
Figure 3.6, also have relatively high coherence.

According to Henriksen et al. (2008) it is of interest to consider
the power spectral density for the frequencies higher than the walking
frequency because the e�ect of the cartilage can be seen for 6-20 Hz. In
Figure 3.7 one can notice that the coherence is high for the frequency
approximately 7 Hz.
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Figure 3.6: Coherence and Power Spectral Density of the ankles signal

We recall that the idea of the frequency domain analysis is to �nd
a relation between the signal from the ankle and the lower back such
that allows us to infer the quality of cartilage. We suggest using the
coherence to examine the relation. However, to make any conclusion
about this approach one has to apply it to a large amount of data that
allows one to make statistically signi�cant conclusions.

3.2.4 Is it possible to get useful information from
vibration plate data?

Vibration plates are used for exercise programs. They are designed to
vibrate the body while the subject maintains certain positions or move-
ments. These machines are relatively inexpensive, so the study group
was asked to investigate their potential usefulness as a tool to extract
information about the health of joints in the human body. Speci�cally,
we were provided accelerometer data, as described in Section 3.2.1, for a
person standing on a vibration plate. The goal is to see if this data can
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Figure 3.7: Coherence and Power Spectral Density of the ankles signal
at 6 to 20 Hertz

provide information about the joints by using it to estimate parameters
for a model of the body, such as those discussed later in Section 3.3.

The vibration plate has a platform on which the subject stands.
The platform moves vertically in an oscillatory fashion. It is important
to note that the platform moves in such a manner that each leg is
moving in a direction opposite to that of the other leg. Thus, if the
left leg is moving upwards, then the right leg is moving downwards,
and vice versa. Data for two di�erent postures were provided; standing
with straight legs and standing with bent legs. Accelerometers were
attached as close as possible to bony parts of the body in an attempt
to measure the movements of the bones and avoid spurious movements
of the soft tissue.

Figures 3.8 and 3.9 show Fourier transforms of the acceleration mea-
surements of the vibration plate, the ankle, and the lower back, for
straight and bent legs respectively. The frequency of vibrations is ap-
proximately 7 Hz. We observe that the amplitudes of the knee accelera-
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Figure 3.8: Fourier transform of vertical accelerations for a person on
a vibration plate with straight legs.

tions at this frequency are larger than those of the vibration plate itself,
indicating that the system is close to its resonant frequency. However,
the amplitudes of the tailbone oscillations at this frequency are smaller
than those of the vibration plate. This is explained by the fact that the
sensor at the lower back is positioned at the tailbone and this is midway
between the two legs. The legs are moving in opposite directions, so
the acceleration of any part of the body midway between the two legs is
expected to be smaller. We also observe that the system has signi�cant
responses at 2, 3 and 4 times the forcing frequency. The presence of
these higher modes of vibration indicates a nonlinear response to the
forcing.

The resonance e�ects that we observe in the data are not surpris-
ing when one considers that the vibrating plate is designed for exer-
cise by vibrating the muscular tissue of the body as much as possible.
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Figure 3.9: Fourier transform of vertical accelerations for a person on
a vibration plate with bent legs.

Large scale movement of this soft tissue is accompanied by large scale
movement of the skin. Thus this resonance behaviour dominates the
measurements and we get no useful information about the joints.

It may well be worth considering di�erent frequencies. Harazin and
Grzesik (1998) investigate the response of standing humans in various
postures when the subjects are standing on plates vibrating at a range
of frequencies. These authors also observe a resonance close to the 7 Hz
frequency. For frequencies less than this, they remark that �individual
body parts are linked and behave as one resultant mass in the region
of the main resonance frequency�. It follows that frequencies less than
7 Hz would also not be useful to us.

We must therefore conclude that using a vibrating plate to gen-
erate data useful for the analysis of joints would require frequencies
higher than the approximately 7 Hz of a standard vibrating plate. For
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frequencies around 7 Hz, the soft tissue movement dominates the mea-
surements. Harazin and Grzesik (1998) �nd that soft tissue movement
is damped at higher frequencies, so it might be possible to extract useful
information at a su�ciently high frequency.

3.3 Models

In the section, we attempt to understand how to develop a model of the
leg that captures the material properties of the knee cartilage. We begin
by investigating the physics background of wave propagation from ankle
to hip during walking. The important question is what role the cartilage
plays in wave propagation. Furthermore, we present two physics-based
mathematical models of the legs.

In the �rst model (1D straight-leg model), we neglect the inherent
complexity of walking and instead opt to consider a straight leg. In
this straight-leg model, we capture the critical viscoelastic response of
each component of the leg. By combining the straight-leg model with
experimental data obtained by applying an impact force to a patient's
straightened leg, we propose a simple method for determining critical
knee cartilage parameters, which we hypothesise to be correlated with
the health of a patient's knee.

The second model (two-segment leg model) neglects the detailed
viscoelastic response of the various elements of the leg and instead
considers the bending of a knee. In this model, the upper and lower
leg are treated as rigid bodies whilst the rotational e�ects of the knee
ligaments are captured by a spring and dashpot element. We presume
the damping coe�cient of the dashpot to be correlated with quality
of cartilage. The focus of this model is to recover the change in angle
between the upper leg and lower leg during walking.

3.3.1 Physics background

From the physical point of view a walking cycle includes processes with
di�erent time scales. Acceleration data from IMU sensors show a spiky,
relatively high-frequent shock at the time of heel strike when walk-
ing. This spiky signal is superimposed on the recordings of smooth,
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relatively low-frequent movements of walking. Besides high-frequent
shocks and low-frequent steps, the role of muscles and tendons should
be considered, because they play an important role in shock absorp-
tion. Experiments conducted in Konow and Roberts (2015) show that
the time-rate of build-up and release of forces by muscles and tendons
is slower than that of the �uctuations of the ground force, although
they constrain the movement of the bones to some extent.

The high-frequent oscillations in the IMU data are seen as a shock,
propagating from ankle to hip following principles of (visco-)elastic
wave propagation. To understand the physical meaning of wave propa-
gation in the human leg we will introduce the basics of wave propagation
theory for a thin and su�ciently long elastic rod. Amirkulova (2011)
shows that there exist waves with displacement merely in the longitu-
dinal direction, namely compressional guided waves, and �exural waves
with displacements almost entirely in a uniform transverse direction.
Recall the directions shown in Figure 3.2 and see the illustration of
waves in Figure 3.10.

Figure 3.10: Particle displacements for a longitudinal, compressional
guided wave (above) and a �exural wave (below).

A longitudinal, compressional guided wave occurs in case of uni-
axial stress, and is described by the following wave equation,

E
∂2uL
∂x2

− ρ∂
2uL
∂t2

= F,
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where ul is the dominant displacement along the longitudinal x-axis
(subscript L stands for longitudinal), E is Young's modulus, ρ is den-
sity, t is time, and F is an external force. Via Poisson's ratio (typical
value of 0.3), there is also a sub-dominant component of displacement
in the transverse radial direction. The propagation velocity of longitu-
dinal, compressional guided waves is expressed by vL =

√
E/ρ. Now

we can estimate the propagation velocity in bones by using typical elas-
ticity parameters as found in Van Buskirk, Cowin, and Ward (1981):
E ≈ 9.7 GPa and ρ = 1000 kg/m3, and hence vL = 3000 m/s. Note
that one may �nd a rather wide range of values for E reported in the
literature. For instance, Ghosh et al. (2017) report a value of E ≈ 17
GPa for tibia (frontal bone in the lower leg). However, the order of
magnitude is rather consistent.

Flexural waves have a displacement component uT (and accelera-
tion ∂2uT /∂t

2) in a uniform transverse direction, perpendicular to the
longitudinal axis of the rod. The other components of particle displace-
ment almost vanish. Thus, a �exural wave follows a shear movement
in the plane spanned by the relevant transverse direction and the lon-
gitudinal axis of the rod.

Such a �exural wave satis�es the Euler-Bernoulli beam equation
(e.g. see Hörchens (2010) for an elaborate derivation),

∂4uT
∂x4

+
ρA

EI

∂2uT
∂t2

= F,

or re�nements thereof (Rayleigh beam theory or Timoshenko beam
theory), describing in�nitesimal bending of the rod. Here, uT is the
particle displacement in a transverse direction, x is the coordinate along
the longitudinal axis of the rod, t is time, and the coe�cient in front of
∂2uT
∂t2 includes Young's modulus E, density ρ, the cross-sectional area
of the rod A, and I =

∫
z2dA is the area moment of inertia (z is the

coordinate in the relevant transverse direction, relative to a 'neutral
surface' in the centre). Solving this equation in the frequency domain

leads to a phase velocity of vF =
√
ω
(
EI
ρA

)1/4

. For a circular cross-

section of the rod, I = π
4R

4 where R is the radius of the rod, and A =
πR2. To estimate the wave velocity in the tibia bone we take a radius
of 2 cm, with E and ρ as before, and substituting ω = 2πf , we get vF =
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5.6
√
ω = 14

√
f m/s. At a frequency of 25 Hz (as a dominant shock

frequency in ShoQR IMU acceleration data), this implies a �exural
wave velocity of 70 m/s. This value is considerably lower than �exural
velocities reported in the literature for human tibial bones, measured
at higher frequencies.

The �exural waves have the property that the amplitude strongly
decays with propagation distance. This dispersive property is illus-
trated in several experiments. With two accelerometers at 10 cm dis-
tance Girrbach et al. (2001) measured velocities in a range of 220-250
m/s for signals excited by a hammer. Aygün et al. (2015) measure dom-
inant frequencies of 558.4 Hz, 285.2 Hz, 294.4 Hz and 288.5 Hz for an
impact hammer under the knee and with an accelerometer placed at 5,
10, 15 and 20 cm distance from the hammer, respectively. A dominant
frequency of 127.1 Hz is measured at the ankle. At a frequency of 300
Hz, the analysis above leads to a velocity of 242 m/s, which is reason-
ably consistent with these values in the literature. In their work, Bruin
et al. (2005) measure velocities of 426 - 464 m/s for an impact hammer
and a short distance between two accelerometers (10 a 15 cm). The
majority of measurements by Vogl et al. (2016) is also in this range,
with a central frequency of 3 kHz.

These numerical values of velocities and frequencies of �exural waves
show that the typical wavelengths in the context of the ShoQR experi-
ments are much larger than the length of a human leg. Hence, accurate
modelling of the dynamics of wave propagation in a leg is extremely dif-
�cult. Due to the long wavelengths in comparison to the length of the
leg, the (uncertain) boundary conditions will play a dominant role. It
may be more appropriate adopting a quasi-static point of view, where
stress and strain are in equilibrium, and the dynamics is completely
controlled by source excitation.

The geometry of bones and joints is signi�cant for physical mod-
elling. We consider the role of the interfaces between cartilage and
bones in the knee. Very clear illustrations (including a video) of the
knee can be found in Meyler (2018). During normal walking, the car-
tilage is compressed and sheared.

The displacements at the interface between cartilage and tibia plateau
(after integrating accelerations over time twice) are decomposed into a
longitudinal component uL (associated with compressional guided wave
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propagation, with an additional radial component via Poisson's ratio)
and a transversal component uF , associated to �exural wave propaga-
tion. The longitudinal compressional guided wave goes with a single
stress component σL,m which is normal to the interface. This compo-
nent is continuous across the interface, and relates to normal strain by
Young's modulus, σL,m = EεL,m. Typical values of compressive mod-
ulus in human cartilage (typically 2 - 10 MPa, see Setton, Elliott, and
Mow (1999)) are orders of magnitude smaller than for bones. Thus, for
propagation of compressive waves cartilage acts as a cushion (with rel-
atively large strain) between the upper and lower leg. Since the upper
leg is not moving freely, boundary conditions at the hip largely reduce
the amount of energy transferred from the lower leg to the upper leg.

Similar arguments hold for the displacements and stresses associ-
ated to a �exural wave. Assuming that the transversal component uF
is the only non-zero component of the particle displacement vector,
there is only one non-zero shear strain component, εF = 1

2uF,n, which
is related to the associated shear stress by σF = GεF , where G is the
dynamic shear modulus (assuming isotropy). For healthy cartilage,
Setton, Elliott, and Mow (1999) and Wong et al. (2008) report values
of G in order of magnitude of 0.26 - 0.5 MPa, which is orders of mag-
nitude lower than the shear modulus of tibia (e.g., 6.5 GPa is reported
by Ghosh et al. (2017)). So, cartilage also acts as a cushion between
the upper and lower leg for transmitting shear stress and associated
particle displacement. Interesting shear experiments on cartilage tis-
sue are reported by Wong et al. (2008), showing that cartilage elastic
properties vary with depth from the top surface at which shear traction
is applied in their experiments. A thin surface layer is weaker, leading
to decay of shear strain as a function of depth. Moreover, �uids play
an important role as lubricant.

Osteoarthritis tends to considerably reduce the compressive and
shear moduli of cartilage. Setton, Elliott, and Mow (1999) reports
reductions up to 65% for E and up to 45% for G, and Wong et al.
(2008) reports a reduction by a factor of 3 for G in the surface layer
in an initial phase of osteoarthritis. This might be a plausible, partial
explanation of the �ndings in the ShoQR project of the substantially
stronger amplitude attenuation of measured hip IMU accelerations for
patients su�ering from osteoarthritis, relative to healthy persons (im-
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pact reduction of 87% versus 57%).
Furthermore, it should be noted that cartilage is known to be a

visco-elastic tissue, see Fulcher, Hukins, and Shepherd (2009). We will
build 1D straight-leg model (Section 3.3.2) assuming that the wave
propagates in the knee as in linearly visco-elastic medium. This means
that the stress σ(t) is not just linearly related to strain ε(t) = ∂u

∂x by
elasticity parameters (e.g., σ(t) = Eε(t) with Young's modulus), but
it also depends linearly on strain rate dε

dt . It is convenient to use a
complex-valued extension of the elasticity parameters E = E′ + iE′′,
where E′ is known as the storage modulus, and E′′ is known as the loss
modulus. Then the stress is

σ(t) = E′ε(t) +
E′′

ω

dε

dt
.

Note that if the strain is harmonic, thus can be expressed in the form
ε(t) = ε0 sin(ωt) with some amplitude ε0 and frequency ω, then the
associated stress is expressed by

σ(t) = ε0E
′ sin(ωt) + ε0E

′′ cos(ωt).

It is common practice expressing the amount of viscosity by the loss an-
gle δ = tan−1 (E′′/E′). Fulcher, Hukins, and Shepherd (2009) measure
values of δ ≈ 5◦. Little seems to be known about relationships between
cartilage viscosity and osteoarthritis, except from the fact that lubri-
cant �uids in the knee tend to be less viscous for patients su�ering from
osteoarthritis (see Conrad (2001)).

3.3.2 1D Straight-Leg Model

In this section, we introduce our 1D model of a straight leg. We divide
the leg into three sub-domains: the lower leg (LL), the knee (K), and
the upper leg (UL) and also couple our leg model to a simple model of
the upper body (UB), see Figure 3.11. We denote the length of each
domain by Li with i = LL, K, UL, UB. Note that the model is one
dimensional model with x is in the horizontal direction in Figure 3.11.
The time between detection of a signal at the lower back and the ankle
is very short, therefore we assume that bone is the main medium of
propagation in both the lower and upper legs. However, in the knee,



83

LLL

Lower Leg

LK

Knee

LUL

Upper Leg

LUB

Upper Body

Ankle Sensor Waist Sensor

Figure 3.11: Schematic of 1D leg and upper body model.

there is no bone and therefore we expect that cartilage is the main
medium of propagation. In our model, we consider longitudinal, com-
pressional guided wave propagation through each sub-domain and treat
each material (bone and cartilage) as viscoelastic, assuming a constitu-
tive law of Kelvin-Voigt form. A Kelvin-Voigt consists of a spring and
a dashpot (viscous damper) in parallel. The upper body is also treated
as a viscoelastic material with a Kelvin-Voigt constitutive law but we
consider this too as a collection of multiple bones, cartilage, etc in the
upper body. Therefore, for a displacement ui, we take the governing
equations in each sub-domain (i = LL, K, UL, UB) to be

ρiAi
∂2ui
∂t2

=
∂

∂x
(Aiσi) , (3.3a)

σi = Ei
∂ui
∂x

+ ηi
∂

∂t

(
∂ui
∂x

)
, (3.3b)

where ρi, Ai, Ei, and ηi are the density, area, Young's modulus, and
viscosity of the material of propagation in sub-domain i. Here, σi is
the Cauchy stress. We have neglected any e�ects of the foot in this
model but this could be incorporated using another viscoelastic model
similar to those in the other sub-domains. Therefore, we apply a force
F (t) at the ankle. We model this by the boundary condition on the
left boundary of the lower leg

ALLσLL(0, t) = F (t). (3.4a)

We also enforce continuity of displacement, and a force balance at the
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boundaries between each sub-domain. Therefore, we take

uLL(LLL, t) = uK(LLL, t), ALLσLL(LLL, t) = AKσK(LLL, t),
(3.4b)

uK(LLL + LK , t) = uUL(LLL + LK , t), (3.4c)

AKσK(LLL + LK , t) = AULσUL(LLL + LK , t), (3.4d)

uUL(LLL + LK + LUL, t) = uUB(LLL + LK + LUL, t), (3.4e)

AULσK(LLL + LK + LUL, t) = AUBσUL(LLL + LK + LUL, t). (3.4f)

For simplicity, we also assume that the upper body will damp out all
disturbances before the top of the upper body. Therefore, we impose
zero displacement at the top of the upper body

uUB(LLL + LLK + LUL + LUB , t) = 0. (3.4g)

Finally, we assume that every component of the leg is initially undis-
placed and stationary. Therefore, for i = LL, K, UL, UB, we have

ui(x, 0) = 0,
∂ui
∂t

(x, 0) = 0. (3.4h)

Model Parameters

Our ultimate goal is to �t a single parameter, namely, the damping
coe�cient of the knee, ηK , to the accelerometer data at the lower back
when we employ the accelerometer data at the ankle as in input. How-
ever, the 1D leg model contains 20 unknown parameters and so we must
provide typical values for the remaining 19 parameters. In this section,
we explain the reasoning behind the parameter values that we have cho-
sen but it should be noted that these values are just rough estimates
and should be re�ned. In particular, we use the parameters for bone
in the upper body but it is probably more realistic to take lumped/av-
eraged cartilage and bone values. The parameter values that we use in
our simulations are given in Table 3.1.
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As a �rst approximation, we simply take a rough order of magnitude
estimate of the lengths of the lower leg, knee, upper leg, and upper
body. These can easily be re�ned by measuring a particular patient or
average person.

In the lower leg, upper leg, and upper body we simply take the
densities to be given by the typical density of bone as reported in John
and Cameron (1999). In the knee, we employ the density of cartilage
reported in It'is (2010 (accessed June 2, 2020)). The values should be
re�ned depending upon a patient's age etc.

In the lower leg, upper leg, and upper body we �nd the cross-
sectional area of the conducting material to be given by a bone with
a 3 cm radius via the expression A = πr2. We recommend that these
numbers are re�ned by neglecting the bone marrow in the inner bone
and also by obtaining more accurate values that capture the di�erence
in the upper and lower leg bones as well as a more accurate averaged
value in the upper body. These can be obtained by �nding average
values of bone thicknesses in each sub-domain. For the cartilage, we
take the cross-sectional area to be given by a disc with a radius 1 cm,
which is less than the cross-sectional area of a bone to represent the
fact that not every part of the cross-sectional area of the bone is in
contact with the cartilage.

For Young's modulus in the lower leg, upper leg, and upper body, we
use a typical value for Young's modulus of cortical bone Rho, Ashman,
and Turner (1993). For the Young's Modulus of the cartilage we take a
value provided by Gerbrands. The viscosity values that we have chosen
in each region are rough estimates based on bone and cartilage values
we obtained from the literature.

Normal stresses

An important aspect of the model is that after solving the proposed
equations numerically, one can determine the normal stress at the
joints. We draw attention to this because potentially, this allows infer-
ring the force in the knee caused by applying a force F at the ankle.
Recall that the stress is de�ned by the equation (3.3b):

σi = Ei
∂ui
∂x

+ ηi
∂

∂t

(
∂ui
∂x

)
.
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Figure 3.12: Comparison of high viscosity cartilage (ηK = 2 × 106

kg m−1 s−1) and low viscosity cartilage (ηK = 1× 106 kg m−1 s−1).

The model is capable of examining the amount of normal stresses at the
cross-section of each joint between domains as a result of peak impacts.
This allows investigating whether the joint load represented by those
stresses is under the danger threshold.

Impulse Response

In Figure 3.12, we present impulse response results from the 1D Straight-
Leg Model for a high value of cartilage viscosity and for a low value of
cartilage viscosity. We observe a great di�erence in the response pre-
dicted at the ankle dependent upon the knee cartilage value. However,
the response at the hip is relatively unchanged. It should be noted
that with more realistic parameter values the response at the hip may
be a�ected to a greater degree. As a result, we may be able to detect
changes in the knee viscosity with only a single sensor at the ankle.
These results are promising and suggest that this model as good po-
tential to be used to identify the cartilage viscosity. We therefore highly
recommend further re�nement and investigation of this model.
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Proposed experiment

In this section, we propose an experimental procedure using the 1D Leg
Model that could be applied to determine the viscosity of the cartilage
in the knee. Our hypothesis is that the viscosity of the cartilage in
the knee is correlated with degree of knee osteoarthritis and therefore
determination of the knee viscosity, ηK , will assist in diagnosis.

In the experiment, we propose that accelerometer sensors are at-
tached to the ankle and hip as in the gait experiments, with the sen-
sors precisely aligned with the leg. The patient should then sit down,
remove any shoes or footwear, and place their straightened leg onto a
stand such that their leg is parallel with the �oor. This ensures that
it clear in which direction gravity is acting so that this can be easily
factored out of the sensor data. The patient should aim to remain as
still as possible throughout the experiment. After a few seconds after
starting the recording with IMU, a known force should be applied to
the bottom of the patient's foot. This could perhaps be done by at-
taching a ball of a chosen mass to a swing, holding it horizontally, then
releasing it. At the bottom of the swing, the ball will make contact
with the foot, thus exerting a force on it. It is simple to calculate this
force by applying Newton's laws of motion to a swing. Both the ac-
celerometer at the ankle and the hip will register an acceleration. Once
the response has died down, the recording of the data can be stopped.

The described experiment will result in a time series for the acceler-
ation at the ankle and the hip. We can then use the 1D Leg Model with
the known force input. The 1D Leg Model will provide a prediction for
the acceleration at both the ankle and hip. However, the model output
will likely not match the experimental data for the chosen viscosity. By
running the model with di�erent values of ηK , that is the knee viscos-
ity, one may �nd a value of ηK that leads to an accurate prediction of
the experimental data. This process of choosing the `best' ηK can be
done systematically using mathematical optimization. This value of ηK
is the knee viscosity that we have inferred from the data. The health
of a patient can then be determined by comparing this value with the
values of ηK obtained from healthy people and patients with damaged
knees by this same method.



88 SWI 2020 Proceedings

3.3.3 Two-segment leg model

In this section, we introduce the two-segment leg model. Following
the approach presented in Rao (2013) we consider the leg consisting of
two segments, the lower leg and the upper leg, and take into account
joint-moments acting at the hip, knee, and ankle. The motivation
for the two-segment leg model is to describe human gait dynamics by
considering the joint-moments working together.

In the two-segment leg model we make several assumptions which
are reasonable for kinetic gait modeling (see for example Ewins and
Collins (2014)). Namely, we treat the lower and upper parts of the
leg as two rigid bodies with a �xed length. Moreover, both segments
are assumed to have point masses (the center of mass) to which the
external forces (gravity) are applied. Consequently, mass moments of
inertia remain constant. We consider one internal forcing in the hip
given by the hip torque. The knee is modeled as a spring that joins the
two segments.

The dynamics can be described as dynamics of a double pendulum
during its swing phase, where the upper pendulum corresponds to the
upper part of a leg and lower pendulum corresponds to the lower part
of a leg.

We derive the equations for the double pendulum dynamics in terms
of the angular orientations θ1 and θ2, as shown in the Figure 3.13, using
the Lagrangian approach. From simple geometric observation we �nd
the following relations between coordinates and angles:

x1 =
l1
2

cos θ1, y1 =
l1
2

sin θ1;

x2 =
l2
2

cos θ2 + 2x1, y2 =
l2
2

sin θ2 + 2x2;

x = l2 cos θ2 + 2x1, y = l2 sin θ2 + 2x2,

where li is the length of the segment, the center of mass of the segment
is at (xi, yi) for i = 1, 2, and (x, y) are coordinates of the hip.

With these relations, we can write down the Lagrangian of the sys-
tem. We include rotational energy in the kinetic energy, where we
denote by Ii the moment of inertia of the segment i. We also assume
that the lower and upper part of the pendulum are connected by a
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Figure 3.13: Schematic of two-segment leg model
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spring with sti�ness k which gives the term 1
2k(θ2 − θ1)2 in the poten-

tial energy. Hence, the Lagrangian is

L = T − U

=
1

2
m
[
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

]
+

1

2
m2

[
l21θ̇

2
1 +

1

4
l22θ̇

2
2 + l1l2θ̇1θ̇2 cos(θ1 − θ2)

]
+

1

8
m1l

2
1θ̇

2
1 +

1

2
I1θ̇1 +

1

2
I2θ̇2

−mg(l1 sin θ1 + l2 sin θ2)−m2g(l1 sin θ1 +
l2
2

sin θ2)−m1gl1 sin θ1

− 1

2
k(θ2 − θ1)2,

where mi is the mass of the segment i = 1, 2 and m is the mass of the
hip.

We assume the behaviour of the system to be non-conservative be-
cause of frictional forces acting in the knee. This leads to introducing
the Rayleigh dissipation function

R =
1

2
c
(
θ̇1 − θ̇2

)2

.

Another way of introducing the dissipation into the model is to assume
that a damping element is attached in parallel to the spring at the knee.
Hence, we refer to the constant c either as the damping or dissipation
coe�cient.

Now we have all the ingredients to write down the Lagrange equa-
tions of motion in the same way as it done in Rao (2013). The only one
simpli�cation we do is we assume the resting angle of the knee to be
equal to π, but if one needs it is straightforward to incorporate another
angle. Eventually, the Lagrange equation for the lower leg is

θ̈1

[
l21

(
m+m2 +

m1

4

)
+ I1

]
+ θ̈2l

2
2 cos (θ1 − θ2)

(
m+

m2

2

)
+ θ̇2

2l
2
2 sin (θ1 − θ2)

(
m+

m2

2

)
+ gl1 cos θ1

(
m+m2 +

m1

2

)
+ k (θ2 − θ1) + c

(
θ̇2 − θ̇1

)
= 0,

(3.5)



91

and for the upper leg, taking into account the hip torque Thip - the
only force acting on the upper-leg segment.

θ̈2

[
l22

(
m+

m2

4

)
+ I2

]
+ θ̈1l

2
1 cos (θ1 − θ2)

(
m+

m2

2

)
− θ̇2

1l
2
1 sin (θ1 − θ2)

(
m+

m2

2

)
+ gl2 cos θ2 (m+m2)

− k (θ2 − θ1)− c
(
θ̇2 − θ̇1

)
= −Thip.

(3.6)

As mentioned before, we use the double pendulum to describe the
dynamics of a gait during the swing phase. During the stance, as
described in Rao (2013), the entire leg is treated as a point mass, and
the only force acting is gravity in the vertical direction. Hence, the
equations of motions are:

ẍ = 0

ÿ = −g.
(3.7)

Model parameters

Two parameters of the model are related to the properties of the knee,
namely, the spring sti�ness k and the dissipation coe�cient c. The main
goal is to �t these parameters when we exploit the time-dependent angle
in the ankle θ1 as input for the model and the corresponding angle in
the knee θ2 as output. Hence, we treat variable θ1 as given through
data from the lower-leg sensor and so we do not solve the di�erential
equation for θ1.

Other than k and c, the model incorporates eight parameters which
can be estimated individually for each person, which we describe in the
table below. As a simpli�cation, the hip torque is considered to be a
constant in this model.

Numerical method

We investigate a numerical method that estimates parameters of a knee
based on given time series of ankle and knee angular orientations. The
equations for the two-segment leg model are derived in terms of these
orientations (θ1 and θ2) as variables. Now we aim to infer the param-
eters for which the model produces desired knee angular orientation
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θ2 (output) for given ankle angular orientation θ1 (input). Therefore,
for known angles θ1, we numerically solve second-order equation (3.6)
for θ2. In order to do so, we �rst transform this second-order ODE
into a system of two �rst-order ODEs and then use MATLAB solver
ODE45 to solve the resulting system. For initial conditions θ2(0) and
θ′2(0) we have used the data from the knee sensor. We note that, in
order to simplify the numerical analysis, the stance phase of the gait is
neglected, so we did not take equations in (3.7) into account.

Numerical experiment

The data that we need for the numerical experiment is time series of
the angular orientations of the ankle and the knee. In the previous
experiments (Section 3.4) the sensors were placed on the ankles and
the lower back, which does not provide the necessary data for the knee.
Thus, we performed our experiments where we used one more sensor
attached just above the knee (Section 3.4.1). To extract the required
angular orientations one has to map the data to the global coordinate
system as it is described in Section 3.2.2.

To perform a simple numerical experiment we consider the angu-
lar velocities around the z-axis in the data from gyroscope in IMU.
We used the data from our walking experiments (Section 3.4.1). Fig-
ure 3.14 shows the angles obtained by discrete-time integration of the
angular velocities (left) and the periodogram for the series of angles
(right). Figure 3.14 gives us two useful insights. Firstly, we notice a
drift downwards which is a known problem with the gyroscope measure-
ments. Our second observation is that the data has a simple periodic
pattern and shows much less noise than the accelerometer data. In
the periodogram we see two main frequencies for the ankle (≈ 0.7 Hz
and ≈ 1.6 Hz) and one main frequency for the knee (≈ 0.7 Hz). Low
frequencies (< 0.5 Hz) are related to the drift and should be �ltered
out.

Meaning of the parameters

By �tting the parameters k and c to �t the numerical solution, we
noticed that the damping coe�cient c determines the global dynamics
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Figure 3.14: Time series for angular orientations around the z-axis of
the ankle and knee and corresponding periodogram.

of the model. For example, as seen in the Figure ?? on the left, if the
parameter c is small enough, the qualitative behaviour of the model �ts
to the data. However, if the parameter c is greater than some critical
value, than the amplitude of the model's solution is increasing.

Proposed experiment

We propose an experiment in which the patient walks for ten metres
with accelerometers attached to each ankle and just above a knee.
Then, a similar data analysis, as described in the subsections before,
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Figure 3.15: Fitting the data for θ2 from the sensor attached on Rico's
knee to the numerical solution

should be performed in order to �t the parameters k and c. One can
�nd the parameters k and c by running the simulation with various
choices of parameters until the di�erence between the numerical solu-
tion and the data is small enough. However, a better approach would
be to use optimization algorithms to �nd the optimal values of the pa-
rameters which would �t best into the data. It would be interesting
to compare the values of these parameters for healthy patients and for
the patients su�ering from knee osteoarthritis.

3.4 Experiments

Gerbrands kindly o�ered us to use his sensors. This enabled us to
perform several experiments and analyse our own data. Firstly, we let
di�erent people walk with sensors on the ankle, just above the knee,
and on the lower back. Secondly, since the human body is complex
we attempted to do a more controlled experiment by using wood and
foam.

3.4.1 Walking experiments

We let two di�erent people walk over a distance of approximately ten
meters. The IMU sensors were attached with tape to the ankle, just
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above the knee and to lower back. We let people walk on bare feet
such that we have no noise in the data caused by the type of footwear.
Figure 3.16 shows pictures of the positions of the sensors and one person
walking.

Figure 3.16: On the left we show a picture of Mara Smeele walking.
The position of the sensors on the ankle and just above the knee is
visible. The picture on the right shows the position of the sensor on
the lower back.

In order to obtain a better feeling of the e�ects on the data of
di�erent people walking di�erently, we repeated on a small scale the
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experiment that Gerbrands does in his lab. We attached sensors to
the ankle and the hip of two di�erent people walking and compared
the results. Figure 3.17 shows the acceleration over time measured
by the IMU sensors for two di�erent people walking. The blue line is
the acceleration along the longitudinal axis, which is the axis aligned
with the leg, and the orange line is the acceleration in the transverse
direction. Figure 3.2 in the introduction shows the direction of the axes.
In Figure 3.17 the upper graphs are of the �rst person walking and the
lower graphs of the second person walking. The graphs on the left are
data from the sensors on the ankle and the graphs on the right are
data from the sensors on the lower back. Both persons show a regular
walking pattern, but the patterns di�er a lot. When we compare the
data we see that the acceleration of the �rst person is much bigger than
the acceleration of the second person. From this data we can see that
di�erent people walk very di�erently. This observation from our small
sample implies that it might be very hard to draw any conclusions on
the state of the cartilage from the data of the sensors on the ankle and
the lower back.

In the introduction we explained that Gerbrands did not put any
sensors just above the knee because of the possible in�uence of the
soft tissue. However, for the two-segment leg model we needed data
about the angular orientation of the knee. Therefore, we decided to do
experiments with sensors just above the knee. Fortunately, there was
not too much noise from the soft tissue and we use this in Section 3.3.3
which gives some interesting results.

3.4.2 Wood and foam

One of the questions posed by Gerbrands was whether material proper-
ties of the cartilage in the knee can be inferred from IMU sensor data.
Although this is a question about the knee, it is confounded by other
issues:

� The human body is a large and complicated object, with many
parts of di�erent physical properties, and therefore any signal
from the cartilage is perturbed by signals from the rest of the
body;
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� The human gait is in itself a complicated movement, with many
joints and muscles working together.

In an attempt to separate the issues, we therefore posed the question
whether material properties of cartilage can be inferred from sensor
data in a `perfect' situation without these confounding factors.

Setup. To assess this we performed experiments on a model system
consisting of wooden rods connected by a foam damper. The rods were
laid on a table in contact with each other, with some foam squeezed
between the two. One rod was held down by hand and struck by a
hammer. After the impact, the �rst rod quickly moved a short distance
(≈ 1 cm) while being held down by hand, while the second rod was free
to slide over the table. Figures 3.18 and 3.19 show the setup.

We performed a number of di�erent experiments, but here we only
report on two: one experiment with a thick padding of foam between
the two rods, and one without any foam; in this latter experiment
the two rods touched wood-on-wood. Figure 3.20 shows a number of
measurements.

Observations. The blue lines show the acceleration of the �rst rod�
the rod that is struck by the hammer. All graphs show a remarkable
negative acceleration peak (i.e., a deceleration peak) in the �rst rod, but
practically no positive acceleration in the �rst rod. Since this negative
acceleration has to have been preceded by positive acceleration, we
interpret this as indicating that the positive acceleration in the �rst
rod as result of the hammer strike happens in such a short time that
the IMU is unable to capture it.

In the top two graphs, with foam padding, the deceleration peak in
the �rst rod is matched by an acceleration peak in the second rod. We
interpret this as an indication that the padding acts as a soft spring,
leading to a relatively slow increase and then decrease in force between
the two rods as the foam �rst compresses and then decompresses. By
Newton's third law this leads to two equal and opposite peaks in the
diagram.

On the other hand, without foam, the acceleration peak of the sec-
ond rod also is hardly visible; we interpret this as an indication that
the wood�on�wood contact causes very rapid acceleration in both rods,
and therefore both acceleration peaks are too rapid for the IMU.
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In all graphs, after the initial peaks a weak deceleration is visible in
the second rod; this deceleration remains approximately constant over
a period of roughly half a second (this period is indicated in the top-left
graph, but the same period is visible in the three other graphs as well).
We interpret this constant-level deceleration as an instance of Coulomb
friction: the force remains constant while there is motion, and abruptly
drops to zero upon stand-still.

Conclusions from these experiments. Based on the observations and
interpretations above, we draw the following conclusions.

1. Holding down the �rst rod served the purpose of preventing the
rods from �ying around, but it interferes with the dynamics; in a
new experiment we should avoid this.

2. The question whether we can infer the properties of the padding
from IMU measurements remains open. It is true that the top
and bottom rows in Figure 3.20 are signi�cantly di�erent; but for
a large part this is due to the applied acceleration being too fast
for the IMU to measure.

If these experiments were to be done again (and better), then we
would advise to set them up as follows:

1. The aim of the experiment would remain the same: determine
whether these speci�c sensors are capable of characterizing the
material properties of the `cartilage' in the `knee', in what is oth-
erwise the best possible setup.

2. One could take two pieces of wood or other material to match the
mass of the thigh bone and the shin bone; the elastic properties
do not seem to matter much, as long as the material is su�ciently
sti� (see the discussion above). The IMU sensors would be rigidly
�xed to the `bones'.

3. The cartilage would again be modelled by di�erent types and
thicknesses of foam; the challenge would be to recover the prop-
erties of the foam from the IMU measurements.
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4. The impact should be repeatable; if a specialized device is not
available, then for instance a weight hitting the wood by falling
would probably su�ce.

5. The impact needs to be carefully chosen: it has to be short in
order to resemble an instantaneous impact for the foam, but slow
enough for the IMU sensors to be able to capture it through
the movement of the wood. In fact, satisfying these competing
requirements may be the main challenge. In order to vary the
speed of impact the wood can be padded, at the impacted end,
by di�erent amounts of padding.

3.5 Conclusion and recommendations

In our study, we took several approaches: we analysed the provided
data, we performed our own experiments, studied literature and we
formulated two models. Here, we provide a summary of our recom-
mendations.

First, some observations from the data and our analysis of that.
In the data analysis that was performed by Gerbrands, only the ac-
celeration data was used while the IMU also contains a gyroscope that
generates rotational velocity data. Moreover, the data that is measured
is in the frame of reference of the leg: the orientations of the sensors
are chosen such that these measure the longitudinal and transversal
components of acceleration as shown in Figure 3.2. It turns out this is
not a convenient frame to work in since it changes when people walk.
Finally, we observed that the data was provided to us in 148 Hz while
the IMUs can generate data of 470 Hz. This leads to the following
recommendations:

1. Use data of the full 470 Hz of the IMU sensors can generate.

2. Transform the data to a global coordinate system.

3. Combine the acceleration data with the gyroscope data, this will
result in less noise.
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In the frequency domain analysis in Section 3.2.3 we suggest to use
the coherence for examining the relation between the signals from the
ankle and the lower back. However, we did not have enough data to
work with, hence, we recommend

4. Apply coherence analysis to large amount of measurements from
people with healthy and damaged cartilage.

In the study of the vibration plate in Section 3.2.4 we found that
the natural frequency of the body is around 7 Hz however this is also
used as the frequency of the vibration plate. This will lead to resonance
and therefore we recommend

5. In case you want to use the vibration plate set the plate to fre-
quencies higher than 7 Hz.

Then, in Section 3.3, we formulate two models and we think it would
be worthwhile to study these models in more detail. In Section 3.3.2
and we formulated a model for a straight leg and in Section 3.3.3 a
model for a leg in motion (gait) including the bending of the knee. In
both cases we formulated speci�c experiments that can be done and
from these the condition of the knee can be inferred. So we recommend
to

6. Analyse the models in Sections 3.3.2 and 3.3.3 in more detail.

7. Perform the experiments formulated in Section 3.3.2 and Section
3.3.3, this will lead to conclusions about the condition of the knee
cartilage.

This gives a �rst answer to Question 2 posed in Section 3.1.3.

Then, in Section 3.4 we performed our own experiments where in
Section 3.4.2 we used wood and foam instead of people. From that we
conclude

8. In case you want to do experiments with simple materials with
known properties such as wood and foam, we give a whole list of
recommendations for that at the end of Section 3.4.2.

Finally, we think that the question posed was very interesting and
it would be worthwhile to continue the collaboration.
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3.A Numerical method for 1D straight-leg

model

To provide a numerical solution of the 1D straight-leg model (Sec-
tion 3.3.2), we use the method of lines. We �rst discretize the spatial
dimension using the �nite-element method as described in Baaijens
(1994). We then convert the resulting system of second-order time-
dependent ordinary di�erential equations (ODEs) into a system of �rst-
order ODEs and use MATLAB's inbuilt ODE solver: ODE45. The
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system of linear equations is given by:

L∫
0

ΦxA(x)E(x)ΦT
x dx︸ ︷︷ ︸

K

U+

L∫
0

ΦxA(x)η(x)ΦT
x dx︸ ︷︷ ︸

B

U̇+

L∫
0

Φ(x)ρ(x)A(x)Φ(x)T dx

︸ ︷︷ ︸
M

Ü =

L∫
0

Φ(x)f(x, t)dx

︸ ︷︷ ︸
F(t)

KU+BU̇+MÜ = F(t) (3.8)

where L is the total length of the one-dimensional domain, Φ(x) is a
column containing n shape functions φi(x), Φx is the column of deriva-
tives of the shape functions with respect to the axial coordinate x, U
is the column containing the nodal displacements, U̇ is a column con-
taining the nodal velocities and Ü is a column containing the nodal
accelerations. F (x, t) is the applied force per unit length, and when
assembled to vector F(t), nodal forces can be set to the corresponding
entries. K,M and F will be assembled from their element matrices,

K =

nel

A
e=1

Ke,M =

nel

A
e=1

Me and F =

nel

A
e=1

Fe.

Finally the system of equations can be phrased as an initial value prob-
lem.

Ü = M−1(F−KU−BU̇) (3.9)

from which the nodal displacement column U can be obtained. Af-
ter solving U(x) the element stresses can be obtained from equation
(3.3b).
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Parameter Units Description Value
LLL m Length of bone in lower leg 0.5
LK m Length of cartilage in knee 6× 10−3

LUL m Length of bone in upper leg 0.5
LUB m Length of upper body 0.5
ρLL kg m−3 Density of bone in lower leg 1900
ρK kg m−3 Density of cartilage in knee 1000
ρUL kg m−3 Density of bone in upper leg 1900
ρUB kg m−3 Average upper body density 1900
ALL m2 Cross-sectional area of bone in

lower leg
0.027

AK m2 Cross-sectional area of cartilage
in knee

0.019

AUL m2 Cross-sectional area of bone in
upper leg

0.027

AUB m2 Average cross-sectional area of
conducting material in upper
body

0.027

ELL kg m−1 s−2 Young's Modulus of bone in
lower leg

17× 109

EK kg m−1 s−2 Young's Modulus of cartilage in
knee

12× 106

EUL kg m−1 s−2 Young's Modulus of bone in up-
per leg

17× 109

EUB kg m−1 s−2 Average Young's Modulus of con-
ducting materials in upper body

17× 109

ηLL kg m−1 s−1 Viscosity of bone in lower leg 2× 109

ηK kg m−1 s−1 Viscosity of cartilage in knee 102

ηUL kg m−1 s−1 Viscosity of bone in upper leg 2× 109

ηUB kg m−1 s−1 Averaged viscosity conducting
materials in upper body

2× 109

Table 3.1: Estimated parameter values for the 1D Leg Model.
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Parameter Units Desciption Proposed value
l1 m Length of lower-leg seg-

ment
1

l2 m Length of upper-leg seg-
ment

1

m1 kg mass of lower-leg segment 1
m2 kg mass of upper-leg segment 1
I1 kgm2 intertia of lower-leg seg-

ment
0.5

I2 kgm2 intertia of upper-leg seg-
ment

0.5

k kgm2s−2 spring coe�cient 12.7
c kgm2s−1 damping coe�cient 0.05
θref rad resting angle 2/3π
Thip m2kgs−2 hip torque 0.7

Table 3.2: Parameters in the two-segment leg model
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Figure 3.17: Graphs of the acceleration over time from two people
walking. The blue line is the acceleration in the longitudinal direction
and the orange line is the acceleration in the transverse direction. The
upper graphs are of the �rst person and the lower graphs of the second
person. The graphs on the left display the acceleration measured by the
sensor on the ankle and the graphs on the right display the acceleration
measured by the sensor on the lower back.
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Figure 3.18: Schematic setup of the wood�and�foam experiment.

Figure 3.19: A single experiment, before and after the impact.
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Figure 3.20: Two sets of experiments. Top row: wood-on-wood; bottom
row: foam padding.


