
Chapter 5
Synopsys: Latency Prediction for
On-Chip Communication
Xingang Cao1 , Kristof Cools2 , Nhung Dang1 , Yingjun Deng1 , Tieme Goedendorp3 ,

Anastasiia Hraivoronska1 , Amir Parsa Sadr1 , Mikola Schlottke1 , Oliver Sheridan-Methven4 ,

Niels van der Wekken5 , Harshit Bansal1

Abstract:
Chip design is a complicated and multi-step process. After the functional description is
translated in a concrete semi-conductor network, the components comprising this network
need to be placed on the actual chip. The challenge not only lies in fitting a very large
amount of components in a relatively small area, but also in ensuring that the electrical
latency of components and links does not jeopardise the target clock frequency. In this
report, techniques for latency estimation are described that will allow the placement algo-
rithm to make well informed decisions as to where to place components, even before the
final links and routes have been decided on. The methods described here are combination
of classification of components based on their type and connectivity, and a data driven
approach for the identification of underlying patterns. The methods will be tested on real
life data and compared against the current state-of-the-art. The estimation accuracy in
the root-mean-square error shows promising results.

1Eindhoven University of Technology, The Netherlands
2Delft University of Technology, The Netherlands
3Fontys Hogeschool, The Netherlands
4Oxford University, UK
5VOR Tech, The Netherlands

83

Proceedings of the 148th European Study Group Mathematics with Industry

5.1 Introduction

5.1.1 Outline

The structure of this report is as follows:

• Description of background and problem statement: this summarises the problem at

hand. This part is the result of a shallow literature study, our internal discussions,

and most importantly the input and feedback we received from SynopSys.

• The Challenge: stripped down version of what we actually should achieve, and a

short outline of the various approaches we explored.

• Methodology: provides short descriptions for each strategy implemented. For each

strategy, the premise and assumptions are detailed, the implementation presented,

as the success (or lack thereof) reported on.

• Conclusion: summarise the advantages and disadvantages of each method, compare

to the state-of-the-art. Recommend for the future directions.

5.2 The Challenge

Synopsys is one of the main suppliers of Electronic Design Automation tools. It uses

complex software to design digital integrated circuits (ICs), also known as chips. There

are multiple steps involved to makes sure that these can operate at the desired clock

frequency.

Currently a multiple step simulation protocol is in-place, starting from a functional

description of the chip, and resulting in a concrete physical design, ready to be submitted

for fabrication.

Chips within a single generation are designed and built according to a certain micro-

architecture. The architecture prescribes the semi-conductors used, the manufacturing

capabilities and tolerances, etc.

A physical layout implementing the target functionality needs to be designed within

the restrictions imposed by the micro-architecture. The design process is subdivided in a

number of steps, each lowering the level of abstraction. These are in order of execution:

• Floorplanning

• Synthesis

• Placement

84

Synopsys: Latency Prediction for On-Chip Communication

• Electrical Optimisation

• Routing

• Mask preparation

The most optimal outcome to each of these steps depends on the other steps. This,

however, would lead to an untractable problem. In addition, the above workflow is the

part of the company and sector standard workflow and is shaped by the availability of

tools, the training of experts, etc.

5.2.1 The Placement Algorithm

In this project we will focus on the placement step. In this step, the semi-conductor

implementation of the logic gates, clocks, and other components are assigned placement

on the board. A number of restrictions apply:

• Routability: because routes can only be created on a finite number of levels, it is

possible that certain placements prohibit making the connections that are required.

This is a hard constraint and should be avoided at all cost

• Electrical proximity: because routes between elements have a certain capacity, they

can only respond so fast to any inputs applied to them. The longer the route, the

slower the response time. This leads to de facto delays in transmission and in turn

may affect the maximum clock frequency at which the device can run.

The placement algorithm can be further broken down into: (i) ensuring that the

components do not overlap in the 2D plane, (ii) making sure the routing does not exhaust

the number of levels in the substrate and the capacity of the via holes, (iii) minimizing

the total length of the wires between the components, and (iv) meeting the targeted clock

frequency. The placement step is an instance of a pretty large scale problem as the chips

are generally composed of more than 10 million components and connections.

The work addressed in this report will only focus on meeting (or minimising the

violation of) the targeted clock frequency. In order to achieve a specified clock frequency,

the on-chip delays need to be estimated as accurate and as fast as possible by effectively

utilizing the computational resources. On-chip delays could arise due to several reasons.

Few of them are: (i) there could be a delay between a change at an input and the

corresponding change at the output, (ii) there could be a delay due to the time taken by

the signal to propagate across the wire.

85

Proceedings of the 148th European Study Group Mathematics with Industry

The placement algorithm ensures routability, compatibility of placement with e.g.,

the size of components etc. In order to minimise delays, the algorithm needs more

information. In fact, it would need to know the outcome of the actual routing algorithm.

This in practice, is not a viable approach. Instead, a heuristic is required to predict

the final delay caused by routing the elements at their respective positions. Using this

information, a placement is arrived at that is compatible with the desired clock frequency.

The target clock frequency is only jeopardised if one of the routes creates a delay

which is larger than the clock period. It is not necessarily a problem if the average delay

is quite high, as long as it is under the clock period. In fact, it is desirable to allow this,

as it provides the placement algorithm with more leeway. This will allow it to focus on

the other target specifications. In terms of the heuristic, it means that in first instance

it is more important to correctly guess the delay caused by connections that will likely

be very close to the critical delay that is the clock period. Sinks at the end of such a

connection are called critical sinks.

Because components are connected using routes that follow either vertical or hori-

zontal lanes on the chip’s substrate, it stands to reason that if a single distance measure

should be chosen as the starting point, it will be the l1(R2) norm |(x, y)|1 = |x|+ |y|. Be-

cause of it’s central role in what follows, it is given the more imaginitive name Manhattan

distance.

In pseudo-code, the placement algorithm looks like:

Algorithm 1:

1 decrease smoothness ;
2 adjust cost weighting factors ;
3 set the delay function (revisit) ;
4 for each conjugate gradient restart (∼ 5×): do
5 for each conjugate gradient iteration (∼ 50×): do
6 calculate gradients using the delay function ;
7 perform one CG step ;

8 endfor

9 endfor

We were given data sets from two different chip design technologies. Each data set

constituted a collection of electronic networks. Each network comprises a single driver

component and the sink components it is connected to.

Each component is specified as (x, y, r, f, s) signifying the position (x, y) of the com-

ponent, the rise/fall time (relative to a global clock) and the slack, s, which is the excess

86

Synopsys: Latency Prediction for On-Chip Communication

time a signal can take to reach a specified point in the flow path. The XML files provided

by Synopsis as training and verification data also contained a field called LIBCELL for

each component, which refers to its type, i.e. components with a different LIBCELL

are of a different nature. It is not unreasonable that such different types are treated

differently by the optimisation algorithms. This provided one of the starting points for

the various classification strategies in what follows.

This available information can be used to compute the delay for every connection

between a driver and a sink in a given network. It should be noted that the driver sink

connection can be part of a longer chain. This implies that not in all cases the delay

equals the clock period minus the difference between sink rise and driver rise.

The connection between a driver and a sink is dubbed critical if the slack is negative.

In this report, we aim to arrive at an accurate heuristic to predict delays along critical

paths. In practice this means that in our data-driven approaches non-critical connections

will simply be filtered out.

The information on rise/fall time, and the recorded slacks should be considered train-

ing data only. This leaves the collection of (x, y) coordinates of all components at a

given step of the placement algorithm as the input for our delay function generator. The

specifics of the placement algorithm require us to come up with a function:

tD(∆x,∆y) = tD(|xd − xs|, |yd − ys|), (5.1)

that gives an estimate for the delay d, given the difference along the x-axis and y-axis

of the positions of the driver-sink pair under consideration. This function is required to

be continuously differentiable in (∆x, ∆y) i.e., (belong to differentiability class, C1) and

needs to be strictly increasing. It is, however, allowed to use a new delay estimator in

each new iteration of the outer algorithm loop. This allows e.g., to account for component

density etc. (see density based approach in Section 5.6).

5.2.2 Methodology

Subsequent chapter will visit each methodoly we considered on the study group days:

• M1: A classification and regression approach: this approach is based on filtering

out non-critical components and then finding reasonable linear interpolants for each

components type (this info together with (x, y) coordinates is available at the outset

of the placement step. See Section 5.3.

• M2: Classification and quadratic regression. A quadratic regress could be more

successful based on the underlying circuit dynamics. The underlying physics of

87

Proceedings of the 148th European Study Group Mathematics with Industry

delay and responsiveness is briefly revisited. A cost functional is introduced and

the results are presented. See Section 5.4.

• M3: A statistical approach based on identifying the distribution of delays in the

training data. A distribution is fitted for each value of the Manhattan distance.

The resulting sequence of means is then interpolated. See Section 5.5.

• M4: It can be meaningful to include global information such as the local density of

components. A strategy for this has been included in this document. Because of

time constraints this approach has not been field tested. See Section 5.6.

• M5: A pure data-driven predictor based on Gradient-boosting regression. This

methodology achieves the best testing performance on Data-set-1 and Data-set-2

among our trials. See Section 5.7.

5.3 M1: Classification

The patterns and trends in a Manhattan-dist vs recorded delay graph are qualitative and

quantitatively different for different classes of driver-sink pairs. This provides the starting

point for the classification scheme introduced here. We will considering classification

according to LIBCELL, NUMSINKS, and PARITY (inclusion of invertors).

5.3.1 LIBCELL

Each driver has a LIBCELL, a field hinting towards the type of component, given in the

form Lnumber (e.g., L0 L1, L2,. . .). The meaning of these labels is that every driver

with the same LIBCELL is the same type of component. We were hoping that different

components show different behaviours. Among the critical sinks this leads to five classes

of components. The trends for those five classes do not seem to be very different and

indeed a classification and regression approach based on LIBCELL did not improve upon

the benchmark error for delay estimation. (Figure 5.1).

5.3.2 isink vs sink: Invertor parity

Every driver has a number (n ≥ 0) of sinks and isinks. An isink is a sink that is preceeded

by an odd number of inverters. Distinction between a sink and an isink is important for

deciding whether we have to compare rise with rise time and fall with fall time, or rise

with fall time and fall with rise time. Now if we look at the delay time plotted against

88

Synopsys: Latency Prediction for On-Chip Communication

Figure 5.1: Highlighting the libcell = L40 data.

the Manhattan distance for the sinks and isinks we can see that the isinks tend to have

an above average delay. See Figure 5.2.

Figure 5.2: Highlighting the isink drivers.

5.3.3 Number of sinks per driver

Each component is connect to one or more other components. This network layout comes

from the translation of a functional description of the chip into a set of interconnected

electronic components. The graph properties of this network can be considered fixed for

the problem at hand.

89

Proceedings of the 148th European Study Group Mathematics with Industry

Some drivers have to drive only a single sink. On the other hand, some drivers have

to drive ten sinks or more. Driving lots of sinks is a heavy load, and will often demand

the intervention of buffers. When looking at the critical (driver, sink) pairs where the

driver only has one sink, on average the delay is lower than for most (driver, sink) pairs.

For (driver, sink) pairs where the driver is driving 10 or more sinks the delay is higher

than on average. Improvement might be possible by further fine-tuning the exact groups,

but we settled for: n = 1, n = 2, n = 3, 4 ≤ n ≤ 6, 7 ≤ n ≤ 9, 10 ≤ n ≤ 99, and

100 ≤ n ≤ 999.

5.3.4 Clustering of points

In the centre of the chip there is a very dense cluster of sinks. These sinks appear in

the (driver, sink) pairs that have a short Manhattan distance but a relatively (very) high

delay time. Filtering out this specific group of (driver, sink) pairs might result in an

accurate estimate for this group, and less of an offset due to this group on the bulk data.

5.3.5 Results

Making a delay predictor function f using linear regression per category of (driver, sink)

pairs has been performed. The classes of pairs used are a combination of the classification

by sink vs isink and number of sinks per driver. So a total of 14 classes are defined, see

Table 5.1. See Figures 5.3 and 5.4 for a selection of regression lines through 4 different

categories of (driver, sink) pairs.

An interesting difference between dataset 1 and dataset 2 is that in dataset 1 both

the even and odd numbered categories show a somewhat single band of datapoints. This

suggests that selecting on either sink or isink neatly splits the dataset. For dataset 2

however the even numbered (sink) categories show two bands of data, where the gap in

the middle is somewhat filled by the next category (isink), this is seen better for the case

with a few sinks per driver. This suggests that where selecting on isink does give a single

group of (driver, sink) pairs that are similar, selecting the sink (driver, sink) pairs leaves

us with two distinct groups of datapoints. This could be because the lower band contains

(driver, sink) pairs with 0 inverters between them, while the upper band contains (driver,

sink) pairs with 2 inverters between them, resulting in an even number of inverters, and

thus the ‘sink’ label.

90

Synopsys: Latency Prediction for On-Chip Communication

Table 5.1: Classification used for the different linear regression categories.

Category 0 sink & 1 sink/driver
Category 1 isink & 1 sink/driver
Category 2 sink & 2 sinks/driver
Category 3 isink & 2 sinks/driver
Category 4 sink & 3 sinks/driver
Category 5 isink & 3 sinks/driver
Category 6 sink & 4 . . . 6 sinks/driver
Category 7 isink & 4 . . . 6 sinks/driver
Category 8 sink & 7 . . . 9 sinks/driver
Category 9 isink & 7 . . . 9 sinks/driver
Category 10 sink & 10 . . . 99 sinks/driver
Category 11 isink & 10 . . . 99 sinks/driver
Category 12 sink & 100 . . . 999 sinks/driver
Category 13 isink & 100 . . . 999 sinks/driver

5.3.5.1 RMS errors

The final result from using this method gives for the data sets, with training data the

place 150 set, and testing data the place 100 set a root mean square error of:
Input Error
Dataset-1 0.03881
Dataset-2 0.00844

91

Proceedings of the 148th European Study Group Mathematics with Industry

Figure 5.3: Linear regression trough subsets of dataset 1.

Figure 5.4: Linear regression trough subsets of dataset 2.

92

Synopsys: Latency Prediction for On-Chip Communication

5.4 M2: Regression based on underlying physics,

classification, and quadratic fitting

5.4.1 Physical insights of the delay between source and sinks

The latency of a signal is determined by the resistances and capacitances of the connec-

tions (or wires) and components (or cells). Both delay in cell and delay in wire usually

depend on placement, routing topology, etc. In this section, we are interested in the

delay in wire, which also depends on metal layer choices, neighbouring, etc. In fact, the

approximate delay in wire tD,wire is

tD,wire ≈ Rw ×
(
Cw
2

+ Cin

)
=
RuCu

2
× L2

w +RuCin × Lw, (5.2)

with Rw ≈ Lw×Ru, Cw = Lw×Cu, where Lw [meter], Ru [Ohm/meter] and Cu [Farad/me-

ter] represent the length of the connection from diver to sink/isink, conductance and

capacitance belonging to the connection, respectively, see Figure 5.5. Moreover, when

the connections are long (see Figure 5.5) or connections are from one to many points (see

Figure 5.6), repeaters (or buffers) are placed to boost the signal. In this case, tD,wire is

approximated by

tD,wire ≈ tD,buf + 2× Rw

2
×
(
Cw
4

+ Cin

)
= tD,buf +

RuCu
4
× L2

w +RuCin × Lw, (5.3)

where tD,buf is the delay of a repeater.

Figure 5.5: Connection from driver to sink (top) and long connection buffered by repeaters
(bottom). For each case, the delay tD,wire is determined by (5.2) and (5.3) respectively.

From (5.2) and (5.3) of tD,wire, we see that physically, the delay function should have

quadratic behaviour, and is of the form

f(xd, yd, xs, ys) = α2d
2
M + α1dM + α0, (5.4)

93

Proceedings of the 148th European Study Group Mathematics with Industry

Figure 5.6: Connections are not one to one but one driver to many sinks/isinks. In this
case components/cells may be sized and/or buffer may be needed.

where dM represents the Manhattan distance between two points, with dM = |xd− xs|+
|yd−ys|. When the distance is long and/or the connection is not point to point, a repeater

with delay α0 is needed. αi, i = {1, 2} are coefficients corresponding to resistances and/or

capacitances from (5.2) and (5.3). We need to determine αi, i = {0, 1, 2} to have the

general formula of delay function. To aim this, a regression model is built.

Note: we realise that the electrical optimisation has as a consequency that the piece-

wise quadratic form described above globally resembles a linear function. This implies

the approach pursued here cannot in general be successful and requires some information

about the circumstances under which electrical optimisation takes place.

5.4.2 Regression model

For simplicity let p = (α2, α1, α0). The piecewise function J minimizes the differences

between our predicted delay function fp(xd, yd, xs, ys) and delay computed after placement

(or reference delay) tD from the data. Denote N as the number of delays computed for

each pair of driver and sink/isink. A cost function can be defined as

J(p) =
1

N

N∑
i=1

(
fp(x

i
d, y

i
d, x

i
s, y

i
s)− tiD

)2

(5.5)

To minimize the J(p), we use the data extracted from file place_150 of data set 1. The

parameters p = (α2, α1, α0) of fp(xd, yd, xs, ys) are found for different types of extracted

data. Precisely, we find p for

• 1 driver, multiple sinks/isinks case

• 1 driver, critical sinks/isinks case

94

Synopsys: Latency Prediction for On-Chip Communication

Case p = (α2, α1, α0) Error E
1 p = (10−7, 4.8× 10−4, 3.5× 10−3) 0.18
2 p = (−2.87× 10−8, 3.54× 10−4,−5.21× 10−4) 0.19
3 p = (−3.26× 10−8, 3.81× 10−4, 2× 10−2) 0.36

Table 5.2: Computed values of p and error E

• 1 driver, critical sinks case

The value of computed p and E for each case are in Table 5.2. The total relative error

for each case is computed by

E =
N∑
i=1

|tiD − fp(xid, yid, xis, yis)|
tiD

.

Figure 5.7: Estimated delay for case 1: 1 driver, multiple sinks/isinks

For the first case, our delay function follows the dominated shape of the reference

delay tD in Figure 5.7 which is close to what we expected. The second and third cases

give results not as good as the first one since we deal with critical points (which is more

challenging). In fact, latency of signal also depends on topology of the circuit, physical

effects, etc., thus looking at only coordinates of driver and sink/isink would not give

enough information. Extra efforts would need in the future to overcome this challenge.

95

Proceedings of the 148th European Study Group Mathematics with Industry

5.5 M3: A Statistical Approach on Data Set 2

In data set 1, the relation between the Manhattan distance and the delay shows a clear

trend. However, the relation of these two physical quantities is not very clear for the data

set 2. This can be seen from Figure 5.8. Whatever the cause, the qualitative difference

suggests additional data is needed in order to develop an algorithm that is efficient on

multiple data sets, corresponding to different chips design and fabrication technologies.

Parameters that we expect are particularly relevant are number of layers in the substrate,

etching resolution, and choice of semi-conductor materials.

Figure 5.8: Scatter plot of place 25, place 50 and place 75 of data set 2.

To investigate the relation between the Manhattan distance and the delay, we attempt

to first find the distribution of the data and then use the statistics behind it to model

the relation between the Manhattan distance and the delay.

5.5.1 Distribution Fitting

To perform statistic analysis of the relation between the Manhattan distance and the

delay, we first divide the data into small subsets. Denote the Manhattan distance as

dM and the delay as tD. When Manhattan distance is less than 40, we divide the whole

data set into 8 subsets. Namely, in subset Si, i = 1, 2, . . . , 8, the Manhattan distance

satisfies dM ∈ [(i− 1) · 5, i · 5) and the delay tD are the corresponding delay data at those

96

Synopsys: Latency Prediction for On-Chip Communication

Manhattan distances. Then Si can be written as

Si := {(dM , tD)|dM ∈ [(i− 1) · 5, i · 5)}, if dM < 40, i = 1, 2, . . . , 8.

When dM ∈ [40, 80), to make sure there is enough data in each subset, this part of data

is divided into two subsets. Namely,

S9 := {(dM , tD)|dM ∈ [40, 60)},
S10 := {(dM , tD)|dM ∈ [60, 80)}.

The last data set contains the delay and the Manhattan distance data corresponding to

dM ∈ [80, 120), i.e.,

S11 := {(dM , tD)|dM ∈ [80, 120)}.

Investigating the histogram of the delay tD, one can see that the distribution to the delay

in each subset can be approximated by a Beta distribution, which has the probability

density function defined as

Beta(α, β, x) :=
xα−1(1− x)β−1

B(α, β)
, (5.6)

where

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
,

and Γ(z) is the Gamma function. Many definitions of the Gamma function exist. For

example, if z ∈ C+, i.e., a complex number with positive real part, then the Gamma

function on z is defined via the following improper integral

Γ(z) =

∫ ∞
0

xz−1e−xdx.

If z ∈ Z+, i.e., a positive integer, the Gamma function is simply the factorial of z − 1,

Γ(z) = (z − 1)!.

For a more detailed explanation, we refer to the Wikipedia page of the Gamma function

([1]).

The parameters α and β in Beta distribution are used to control the shape of the

function. Figure 5.9 shows how the shape of the probability density function varies

according to different values of α and β. Hence, suitable choices of the parameter α

and β may lead to a satisfactory fitting of the histogram of the delay data tD in the

distribution sense. Furthermore, we only consider the data points which are critical,

97

Proceedings of the 148th European Study Group Mathematics with Industry

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5
Beta distribution probability density function

Figure 5.9: Probability density function of Beta distribution for different parameters.

the connections without “isink” and the connections which have less than 1000 sinks.

Namely, the green dots in Figure 5.8. Some fits seem to be not very accurate. This is an

indication that there might be a more appropriate family of distributions to describe the

statistics of the data. To make sure the data set is rich enough, we combine data sets

place 25, place 50 and place 75 of the data set 2. We call this data set training data.

The histogram and the resulted fitting curves are depicted in Figure 5.10. The parameter

values of α and β are shown in Table 5.3.

Table 5.3: Values of α and β for the training data.

Manhattan distance dM ∈ [0, 5) dM ∈ [5, 10) dM ∈ [10, 15) dM ∈ [15, 20)
α 6.2233 5.0182 4.9405 5.2435
β 397.9271 228.9191 188.9371 176.3081

Manhattan distance dM ∈ [20, 25) dM ∈ [25, 30) dM ∈ [30, 35) dM ∈ [35, 40)
α 5.3851 5.2903 5.7696 5.5687
β 164.3603 148.3772 147.8672 134.2422

Manhattan distance dM ∈ [40, 60) dM ∈ [60, 8) dM ∈ [80, 120)
α 5.9534 5.9899 5.9899
β 130.6464 112.7353 112.7353

To test whether the obtained probability density function can be used to approximate

the distribution of the remaining data in data set 2, i.e., the data in place 100 and

place 150, we plot the histogram of the data in place 100 and place 150 and the

98

Synopsys: Latency Prediction for On-Chip Communication

Figure 5.10: Histogram and fitted probability density function curves for place 25,
place 50 and place 75 in data set 2.

probability density function curves. The results are shown in Figure 5.11. It can be

Figure 5.11: Histogram of the delay data in place 100 and 150 and the probability density
function curves derived from the training set.

seen that the probability density function curves can still fit the histogram of the data

in place 100 and place 150 very well when the Manhattan distance is less than 60.

When the Manhattan distance is between 60 and 120, the differences are much larger.

99

Proceedings of the 148th European Study Group Mathematics with Industry

This is most probably caused by the lack of data point when dM ∈ [60, 120). Hence, the

statistical analysis approach requires to have enough data.

When the probability density functions are approximated, we still need to find a

relation between the Manhattan distance and the delay. One possibility is to simply

use the mean and variance calculated from the Beta distribution and then connect the

mean to make a piece-wise linear function to approximate this relation. However, due

to the time constraints, we could not further pursue this direction. In the following, we

investigate the mean-bound method (introduced in the next subsection), which has the

same reasoning.

For a more complicated model, which may provide a better approximation of the

relation between the Manhattan distance and the delay, Gaussian process regression (see,

e.g., [3]) can be a potential future research direction.

5.5.2 The AM-method

In this section, we explain how to obtain a candidate for the delay function by taking

either averages or medians of the data points. The abbreviation “AM” refers to average

and median. First, we illustrate the method by starting from the data set as represented

in Figure 5.8, where as explained in Section 5.5.1, we only consider the connections

without ’isink’. Secondly, we motivate the reasoning behind the AM-method.

The algorithm basically follows three steps:

1. First, divide the domain of Manhattan distances of Figure 5.8 into subintervals Ii,

i = 1, . . . , N . The length of each subinterval Ii and the number of subintervals N

are parameters that have to be chosen.

2. Secondly, for each subinterval Ii, determine the average delay time tiav from the

data points contained in Ii × [0,∞). Alternatively, one can take the medians.

3. Thirdly, denoting by xi the left-point of the subinterval Ii, connect for each i =

1, . . . , N − 1 the data points (xi, t
i
av) and (xi+1, t

i+1
av) by a linear function.

Figure 5.12 shows the resulting delay function when following the above procedure. When

comparing the delay-functions from Figure 5.12 to the test data, we obtain a root-mean-

square error of 0.01215 for the “average”-delay-function, and a root-mean-square error

of 0.01208 for the “median”-delay-function. Both of them outperform the state-of-

the-art method used by Synopsys.

The motivation behind the AM-method is similar to the one given in Section 5.5.1.

The basic assumption is that the distribution of delay depending on the Manhattan

100

Synopsys: Latency Prediction for On-Chip Communication

Figure 5.12: The delay functions obtained by the AM-method. The delay function in
red is obtained when taking averages, the one in green when taking medians. The black
curves give an idea of the standard deviations of the distributions in the corresponding
category.

distance is meaningful. If that is the case, then a statistical analysis of these distributions

might improve the estimate of the delay function. The difference of the AM-method to the

distribution-fitting method of Section 5.5.1 is that the averages or medians are computed

directly from the data, rather than being derived from distributions.

5.6 M4: Incorporate the connection structure

It seems that in several of the approaches proposed we are not utilising the network/graph

structure. We know that there are several connections, regions of the IC are dense, and

other areas are sparse, and this is not being incorporated in the predictions.

5.6.1 Speed of signal propagation

For convenience let’s assume that the signal delay is approximately proportional to the

distance between the driver and the sink. (This is in contrast to the theoretical/physical

101

Proceedings of the 148th European Study Group Mathematics with Industry

analysis based on a wire’s capacitance which predicts quadratic dependence, but the data

seems to show approximately linear behaviour). In a manner similar to most introductions

to variational calculus, we can consider there as being some speed profile (field) for

signals propagating across the IC. If we suppose that the speed of signal propagation is

homogeneous and isotropic, then the quickest path is a straight line between any two

points. (There is the constraint that wires are confined to Manhattan paths along the

circuit, but if most connections are locally small then a straight line path is likely not an

awful approximation). We are interested in the related problem, which appears to be the

reverse of this, namely, that if we are forced to travel in an approximately straight line,

can we predict the signal’s travel time. The key ingredient here is then the construction

of the signal’s speed profile, which is an area where we suspect the network structure of

the connections can be exploited (hopefully intelligently).

5.6.1.1 Incorporating the network structure

Consider the following example dynamics, which is that when several drivers are closely

packed together in a dense region, that the area appears quite congested. Perhaps such

a scenario would suggest that there is a large amount of signal traffic in this area, and

hence that small perturbations of a driver/sink in this region will drastically influence

the signal delay.

Perhaps the converse might be true, and that a high density of drivers/sinks in a

region is indicative that the area is a popular and fast flowing region, and that signals

travel fast in this area. Hence perturbations here only produce small changes in the delay

time.

Another possibility is that if we were to draw in all the paths the signals travel along,

there are regions where these overlap extensively, and then sparser regions. In this case

it is the degree of overlap that a connecting path would need to travel through which

would determine the signal delay.

5.6.1.2 Constructing a speed profile

For the sake of convenience, let’s suppose that the density/clustering of drivers in a region

determines the signal’s travel time. There are a few means by which we can define some

form of density profile. One which comes to mind is to construct a kernel density estimate

(KDE), where the neighbourhood on the IC which a driver congests is reflected in the

choice of bandwidth. An example of one such KDE is shown in Figure 5.13.

One of the pitfalls of a KDE is that it is expensive to evaluate. However, if speed is

102

Synopsys: Latency Prediction for On-Chip Communication

Figure 5.13: An example of a kernel density estimate constructed for a selection of drivers.
We highlight two example connections, where one passes through the most dense region,
and another along a less dense region.

very critical then perhaps this can be approximated by some sufficient order 2-dimensional

polynomial. The advantage of this is that then the integrated travel time is trivially eval-

uated computationally (requiring no computationally intensive approximate integration

techniques). A second pitfall is that the KDE’s range is [0,∞), where in reality we would

want some baseline speed. This can be achieved by some transformation of the form

speed = α + β × density, (5.7)

where α is strictly positive. The exact form of these coefficients, and also the mapping

could be explored during a calibration/training stage.

Overall, once some speed profile v(r) has been constructed, and two points A and B

have been found, then we approximate the delay tD as

tD ≈
∫ rB

rA

v(r) dr , (5.8)

where the integral is trivially evaluated if polynomial approximations (or splines, Cheby-

103

Proceedings of the 148th European Study Group Mathematics with Industry

shev functions, etc.) are used. Furthermore, this is trivially differentiated or evaluated

under small perturbations.

5.6.2 Other network/graph features

So far this has used a very geometric interpretation of the network. However, it is not

too complicated to also pull out prediction features, such as degree of connectedness, the

number of vertices forming a cliques, etc., then these can also be used as features (pos-

sibly). Other simpler degrees of how crowded a region is would be its nearest neighbour

distance, or the number of neighbours within some region ε around a node. Other ideas

from graph theory might be to try and classify regions that might form a small world

network, and see if the delays of connections within these regions show a structure/cor-

relation different to large world networks.

5.7 M5: Data-based Prediction via Gradient-boosting

regression

5.7.1 Problem Setup

In this section, a pure data-based delay predictor will be presented based on gradient-

boosting regression (GBR). Generally the available data for prediction are associated to

the driver and the sink, respectively. The name and label of each data is not clearly

related to the delay, which can be ignored in later discussions. Other data regarding the

driver and sink (isink) are described as follows.

• driver: position (Xd, Yd), rise rd, fall fd, sink driving number Nd.

• sink/isink: position (Xs, Ys), rise rs, fall fs, slack Sk.

From explanations from the company engineers, the delay can be described as the rise

difference rs − rd between driver and sink.

From the current experience in Synopsis, the delay is influenced by the distance be-

tween drivers and sinks, and not related to respective positions, leading to the initial need

to find a mapping from the distance to the delay (which is described in the competition

description).

However during our discussions and from the analysis in Section 5.3, the sink driving

number Nd is found to have a great influence for the delay. This leads to our predictor

design to accept input of distance and the driving number simultaneously in the following.

104

Synopsys: Latency Prediction for On-Chip Communication

More specifically, the delay prediction task is set to find a mapping from three inputs

(X-distance,Y-distance,driving number) to the delay estimate of rs − rd , say Pd,

ϕ : (|Xd −Xs|, |Yd − Ys|, Nd)→ Pd. (5.9)

We have tried different prediction models to fit current historical data where the gradient-

boosting regression (GBR) model outperforms in our limited tests. Hence the following

discussion contributes to introduce GBR models and its empirical performance on the

training data provided during the SWI workshop.

5.7.2 Gradient-boosting Regression

Gradient-boosting (see [2]) is a powerful algorithm widely used in data-driven machine

learning tasks like regression, classification and ranking. It belongs to a general ensemble

learning algorithm called boosting methods, where base estimators are built sequentially

such that combined estimators’ bias can be reduced. The target of GBR is to learn a

strong model from the combination of several weak models.

The basic idea of boosting starts from following setup:

• A loss function, say L(y, f(x)) for the true y and the prediction f(x).

• Weak learners, say hi, i = 1,

• An additive model to add weak learners to minimise the loss function, say F (x) =∑M
i=1 γihi(x) for pending coefficients γi.

Specifically in the Scikit-learn package, the weak learners are chosen as decision trees.

From the official help document of GBR model, ”Gradient Tree Boosting uses decision

trees of fixed size as weak learners. Decision trees have a number of abilities that make

them valuable for boosting, namely the ability to handle data of mixed type and the

ability to model complex functions.”

Moreover with the tree learners, the additive model itself can be formed as follows to

fit the sequential learning,

Fi(x) = Fi−1(x) + γihi(x), (5.10)

where the weak learner hi may come from the following optimisation problem:

hi = arg min
h

n∑
j=1

L(yj, Fi−1(xj) + h(xj)). (5.11)

Here {xj}nj=1 denote the train data samples.

105

Proceedings of the 148th European Study Group Mathematics with Industry

To solve the above optimisation problem is not facile, and an insightful understanding

of gradient-boosting is to introduce the gradient-descent algorithm in the above boosting

setup. Hence a GBR model is finally described as an updating algorithm as follows,

Fi(x) = Fi−1(x)− γi
n∑
j=1

∇FL(yj, Fi−1(xj)), (5.12)

where γi can be chosen by linear search with a constant γ > 0,

γi = arg min
γ

n∑
j=1

L(yj, Fi−1(xj)− γ
∂L(yj, Fi−1(xj))

∂Fi−1(xj)
) (5.13)

5.7.3 Empirical Results

To design the predictor, we will use the gradient-boosting regression models in Scikit-learn

package directly and our experiments are done in a laptop workstation with i7-7700HQ

CPU.

GBR model is setup with 100 estimators and maximal search depth of 7, which is

trained and tested in data-set-1 and data-set-2 respectively. Following the general setting

in the group discussion, we use the place-150 data as train data, and the place-100 data

as test data in both data-sets. The test results measured by RMSE is illustrated in Table

5.4, which achieves the best test results in all of our current trials (M1-M5). Also the

testing performance is illustrated in Fig. 5.14 and 5.15 respectively.

The accuracy of GBR has a higher time-cost. From our experiments, the GBR model

is about 70 times slower than the linear regression model (0.02961s v.s. 0.000475s) based

on the testing time over 12081 samples for data-set-1; about 200 times slower than the

linear regression model (0.5184s v.s. 0.002507s) based on the testing time over 191440

samples for data-set-2.

Metric Data-set-1:place-100(sink) Data-set-2:place-100(sink)
RMSE 0.03845777 0.00663324

Table 5.4: Test results on chosen data-sets. Models are trained from the place-150 data
in data-set-1 and data-set-2 respectively.

106

Synopsys: Latency Prediction for On-Chip Communication

Figure 5.14: Test on Data-set-1:place-100 Figure 5.15: Test on Data-set-2:place-100

5.8 Recommendations

From our experiments the most performing and robust method turned out to be M3:

Statistical method. At this point we recommend the implementation of this method.

It is possible that upon further fine-tuning of the optimiser and classifier other method-

ologies turn out to be superior. Regardless the method chosen, benefits can be gained

from a classification before the data is fed to the optimiser. In this regards, we can

formulate the following recommendations :

• do not use the libcell label for classification. This does not lead to a meaningful

subdivision of the data in the sense that each resulting subset exhibits trends not

already present in the complete set.

• provide more detailed information about the component type. It is possible that

this will lead to a meaningful classification with predictive power as pertains delay

estimation. Examples of parameters we imagine could provide more insight are:

components size, component power, and number of ports.

• do use sink vs isink for classification. From our analysis it is clear that components

at the end of lines containing odd/even numbers of invertors exhibit significantly

different trends and statistics. We expect this not just to be a property of the

parity, but of the exact number of invertors. Having access to this datum likely

results in more accurate predictions.

• do use the number of sinks a driver powers for classification. This information is

partially available from the data files provided.

• do use the location of sinks, combined with the local sink density for classification.

In our tests this was not considered due to time restraints.

107

Proceedings of the 148th European Study Group Mathematics with Industry

5.9 Conclusion

An improvement over the state-of-the-art has been observed. It is however likely that

a stronger correlation, and thus a better delay estimator, can be created by first pre-

processing the data given. It is possible e.g., that distance to the boundary of the chip,

crowding and etc., significantly affect the final delay after routing.

A good place to start in our opinion for further improvement, would be to study the

routing algorithm and try to extract heuristics and patters from its outcome and inner

workings. This can help to direct the search for strong correlations in the placement vs

delay function.

It is unclear at this stage what the optimal accuracy of any delay estimator is. Obvi-

ously a perfect delay estimator requires the consolidation of placement and routing; this

is prohibitively costly and should not be aimed at.

Another question is how robust any solution is in transitioning from one generation of

micro-architecture to the next. Can the delay function be copied over? This is unlikely,

but it seems feasible that the type of considerations that lead to the delay function remain

valid across generations.

Finally we would like to thank SynopSys and its representatives for this opportunity.

It is interesting to see what wealth of technology and know-how lies behind a truly om-

nipresent technology. This introduction has at the same time an effect of demystification

and deep appreciation of the designers and design methodologies!

Acknowledgements

We would like to take the opportunity to explicitly thank the NWO for their support of

the SWI initiative and the delegates from Synopsys for their time and help during the

week. It was an enriching experience and a good showcase of how mathematics can play

an important role in the industrial design process. Also thanks to the reviewer to take

the time to go through this document and to help improve it.

Bibliography

[1] Gamma function Wiki Page

[2] Gradient Boosting Wiki Page

[3] Rasmussen, C.E. and Williams, C.K.I., Gaussian processes for machine learning, MIT

Press, 2006

108

https://en.wikipedia.org/w/index.php?title=Gamma_function&oldid=886560479
https://en.wikipedia.org/wiki/Gradient_boosting

	Preface
	Prediction of print success for concrete 3D printing
	Introduction
	Direct printability checks
	Stress checks
	Recommendations

	Body Weight Prediction of Turkeys: From Walk to Mass
	Introduction
	Background
	Outline

	Theoretical Background
	Problem Description
	Theories

	Methodology
	Bayesian Hypothesis Testing
	Sparse Bayesian Generalized Linear Model
	Appliance of Machine Learning algorithms

	Results
	Sparse Bayesian Generalized Linear Model
	Learning Curves with Different Features
	Bloodline
	Integral Fz
	Summary

	Application of Machine Learning algorithms

	Conclusion, Discussion and Further Research
	Conclusion
	Discussion
	Further Research

	Force plate formulae

	Predicting the Removal Performance of Activated Carbon Filters in Water Treatments
	Introduction
	Mathematical model
	Original form of the model

	KWR's current approach—basic idea and issues
	Dimensionless model formulation

	Numerical methods
	Explicit scheme
	Implicit scheme
	Semi-implicit scheme

	Numerical experiments
	Conclusion and recommendations

	Boosting Ship Simulations at Marin
	Introduction
	Highly simplified ship model
	Approximate analytical solutions
	Ansatz
	Asymptotic behaviour
	Comparing numerical results and analytical approximations

	The `Method of averaging'
	Method of averaging for Marin's ships
	Introducing multiple time-steps in ship simulation

	Model order reduction using POD
	Numerical experiment using the Lorenz 96 model
	Conclusions and recommendations
	Matlab code to simulate highly simplified Marin ship model

	Synopsys: Latency Prediction for On-Chip Communication
	Introduction
	Outline

	The Challenge
	The Placement Algorithm
	Methodology

	M1: Classification
	LIBCELL
	isink vs sink: Invertor parity
	Number of sinks per driver
	Clustering of points
	Results
	RMS errors

	M2: Regression based on underlying physics, classification, and quadratic fitting
	Physical insights of the delay between source and sinks
	Regression model

	M3: A Statistical Approach on Data Set 2
	Distribution Fitting
	The AM-method

	M4: Incorporate the connection structure
	Speed of signal propagation
	Incorporating the network structure
	Constructing a speed profile

	Other network/graph features

	M5: Data-based Prediction via Gradient-boosting regression
	Problem Setup
	Gradient-boosting Regression
	Empirical Results

	Recommendations
	Conclusion

	Smart Traffic: Intelligent Traffic Light Control
	Introduction
	Company Background
	Problem Description

	Mathematical Model
	Assumptions
	Model
	Cost function

	Model Extension
	Matlab Implementation

	Other Approaches
	Markov Decision Process
	Model Predictive Control
	Predicting behaviour of neighbouring intersections
	Neural networks

	Conclusions and Recommendations

