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Abstract:
The Study group participants for the Intelligent Traffic Light Control assignment were
tasked with investigating the use of autonomous traffic light controls for a network of road
intersections such as the road map of a city. Smart Traffic, the software used and de-
signed by our client Sweco, is designed to control a single intersection. Our task involved
optimising the traffic flow without the need for global (e.g. city wide) governance of all
traffic lights. This would both fit with the existing approach in Smart Traffic, avoids bad
experiences in the past, and mathematically avoids a huge explosion of the state space.
Unfortunately, the Smart Traffic software was not available for use and study, and this
somewhat limited the approaches we considered. Instead, the software was treated as
a black-box, for which we only knew an idealised version of the cost function that the
software tried to optimise. We therefore focused on finding a method to have multiple
instances of this control coupled to each other in a loose and comparatively simple way.
The methodology of Smart Traffic meant that each intersection would act in a ‘greedy’
fashion, working solely with local information and without any regard for neighbouring
intersections. We were advised to devise simple ways in which the software could be
adapted, such that each intersection would use only limited information about its neigh-
bours. In particular we should avoid direct communication of optimisation strategies
between neighbouring intersections. Indeed, this would be akin to using a global opti-
misation scheme for the entire network. The approach that we settled upon, was that
each intersection implements a (time-dependent) cost function like for the existing Smart
Traffic software, but modified to take into account the expected wait-time of downstream
traffic. This balances local wait-times with future expected wait-times at neighbouring
intersections as communicated by their nearest neighbours. It should result in intersec-
tions being less eager to release traffic in a direction where cars would, in the near future,
be waiting a long time, and would be sending cars at a reduced rate in the direction of
an already congested intersection. At the same time, each instance remains in control of
the traffic at a single intersection.

Keywords: Smart Traffic, Optimisation, Networks
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6.1 Introduction

6.1.1 Company Background

Sweco is a European engineering consultancy company. One of the products that it is

further developing is Smart Traffic: a real time traffic data driven software that can be

used for the efficient control of traffic lights. Using this information, Smart Traffic is able

to create detailed predictions for upcoming traffic conditions, and is able to control traffic

lights in order to optimise future traffic flow. The main sources of the traffic data used

by Smart Traffic are loop detectors, which are embedded in most roads of urban areas,

and data such as Floating Car Data, which details the location of moving vehicles in a

road network using GPS and cell based location-data from mobile phones carried by the

drivers.

A particular feature of Smart Traffic is that it balances the movement of individual

road users with the overall mean traffic flow, and avoids long waiting times of individual

cars, i.e. it weights individual car ”latency” with intersection ”throughput”, such that

mean square vehicle wait-times at four-way intersections can be reduced by up to 40%.

6.1.2 Problem Description

The implementation of Smart Traffic for a single intersection was introduced by Sweco

with great success. At the scale of a single intersection, traffic predictions can be made

such that total wait-time of cars can be greatly reduced. It is driven by minimising

a cost function that is essentially the sum of squares of the waiting times of all cars

at the intersection (see Section 6.2.2). In particular, the optimisation problem being

solved is purely local to the intersection. Unfortunately, local optimisations may result in

catastrophic consequences for traffic flow on the whole road network. In fact, the actual

deployed software needs to take ad hoc measures to avoid such (rare) situations. Indeed,

the group was told that a 2× 2 grid of four-way intersections, each controlled by Smart

Traffic, would generally tend to a state of gridlock. This was shown by van Hout in a

master student’s thesis at Eindhoven University of Technology that Sweco worked with

prior to SWI 2019 [3]. He investigated the general utility of Smart traffic, as well as the

use of Smart Traffic to control coupled intersections. His thesis was the primary source

for the group in understanding how traffic models were used in Smart Traffic, and what

type of cost function was optimised to provide efficient traffic flow.

Our problem was to find a method to couple multiple instances of the existing Smart

Traffic software, such that each intersection was optimised using full local information but

only using limited neighbouring information, without compromising the global behaviour
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of the network.

6.2 Mathematical Model

We first review the work presented in [3], outlining the main simplifying assumptions

before discussing the model itself.

6.2.1 Assumptions

The following simplifying assumptions are made for the single-intersection model. They

will be made for the multi-intersection model as well, unless specifically indicated, in

order to focus on the problem of coupling different intersections in a simpler idealised

context.

Assumption 1: Traffic is comprised of a single vehicle type.

We assume that all vehicles are behaving indistinguishably (or are statistically gov-

erned by a single simple law such as Poissonian behaviour), i.e., we assume that all

vehicles are of the same size, travel at the same speed, and have the same reaction times.

For simplicity and ease of reading we will often call a vehicle a car.

Assumption 2: Vehicles either travel at their desired speed, or are stationary.

Rather than model car acceleration, the time needed for cars to reach their desired

speed is instead attributed to a delay time, τ . Thus, velocities are treated as step func-

tions.

Assumption 3: Driver reaction time is zero.

Similar to the effect of acceleration, any effects due to the reaction of the car driver

are accounted for by the delay time, τ .

Assumption 4: Traffic outflow occurs at a maximum flow rate µ.

Cars can only leave an intersection, once the corresponding light is green, and the

delay time, τ , has passed. After this time, cars leave each open lane of an intersection at

a constant rate of µ cars per unit time.

Assumption 5: Traffic lights are either green or red, we ignore yellow.

When faced with a yellow light, drivers will either continue to drive through the

intersection (effectively extending the green light interval), or will stop early (effectively

extending the red light interval). Thus yellow could be treated as a (time dependent)

probabilistic mix of red and green but for simplicity we simply ignore it.

Assumption 6: Vehicles arriving at a red light ‘stack’ on already-present vehicles.
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This assumption allows us to forgo the need to keep track of specific positions of cars

in the model. Instead, any vehicles that are waiting together are treated as a ‘platoon’,

that will travel together to the next intersection. In larger networks this needs some

modification as cars divide themselves over the network.

Most of these assumptions are used to reduce the amount of book-keeping that would

be needed for a more involved model, i.e. a model that allowed for different vehicle

characteristics, or specific modelling of delay effects. However, from the results presented

in [3], the reduced model captures much of the behaviour of a complex one.

6.2.2 Model

The traffic model that we discuss is found in [3], with notation being taken from [5]. To

fix notation wedefine

λp Mean arrival rate for cars approaching lane i

np(t) Number of stationary cars in lane i at time t

`p Distance to lane i from the previous intersection/boundary

v Desired vehicle speed (assumed equal for all vehicles)

wp(t
∗,∆t) Total waiting time for vehicles in lane i during the interval [t∗, t∗ + ∆t]

Qarr
p (t) Number of cars arriving at lane i

Qdep
p (t) Number of cars departing from lane i

Let us consider the arrival times of cars on lane i, assuming that the cars are entering

the network from the boundary. They are determined by function Qp(t), that can be

modelled by a Poisson process with rate λp. We assume that we are able to observe

incoming traffic well ahead of its arrival, by sensors that are placed at a distance `p

ahead of the intersection. With the assumption that vehicles travel at a constant speed

v, it is clear that the approaching vehicle will reach the intersection Tp := `p/v seconds

after it is observed. Thus, we define the intersection arrival function

Qarr
p (t) := Qp(t− Tp). (6.1)

We note that in [3] it is assumed that traffic light schedules are fixed at least 30 seconds

ahead of time. This means that for each intersection Tp ≥ 30, otherwise it would not

be possible to incorporate vehicle arrival information into future schedules. The total

number of vehicles to have arrived at lane i by time t is given by

Narr
p (t) =

∫ t

−∞
Qarr
p (s)ds. (6.2)
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Similarly, the total number of vehicles to have departed lane i by time t is

Ndep
p (t) =

∫ t

−∞
Qdep
p (s)ds, (6.3)

where Qdep
p (t) is determined by the controls of Smart Traffic. The number of stationary

vehicles in lane i at time t is therefore np(t) = Narr
p (t)−Ndep

p (t) (see Fig. 6.1).

Figure 6.1: (Top) Process of vehicles arriving at an intersection. (Bottom) Cumulative
wait-time for vehicles in an intersection. [Image taken from [3]].

6.2.2.1 Cost function

Smart Traffic is built on the concept of minimising the wait-time of traffic until the last

time the lights changed. The total wait-time for traffic in lane p over the time interval

[t∗, t∗ + ∆t] is given by

〈wp〉(t∗,∆t) =

∫ t∗+∆t

t∗
np(t)dt. (6.4)

However, Smart Traffic insists on not only minimising waiting times for the whole inter-

section but for individual vehicles, such that we want to minimise the combined cost of

the wait-time for all vehicles over all lanes of an intersection. More specifically, the goal is

to avoid having one lane waiting for a long time even if it would decrease the total waiting

time for the whole intersection. This can be implemented by minimising a strictly convex

cost function function that depends on the waiting times of individual cars, or less accu-

rate but with reduced book keeping, on the individual lanes, that penalises excessively
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long waiting times of a car or of a lane8. One can argue that the precise cost function

could take into account experimental psychology measuring the stress of drivers, but the

simplest approach is to minimise the square of the waiting times of cars in the lanes. This

still ensures that, as an extreme example, if one lane has a high traffic throughput, while

a crossing lane has only one car waiting, eventually the squared cost of the wait-time of

the single-car will outweigh the combined effect of multiple cars in the other lane. Hence

the algorithm will eventually allow the cars to travel through the intersection.

We consider a fixed lane p0 as a FIFO (First In, First Out) queue, and compute

the squared waiting time in terms of the occupation number n(t) (here as below we

will temporarily suppress the lane p0 from the notation). Assume we start at t = t0

with an empty lane and that cars arrive at t0 < t
(a)
1 < t

(a)
2 < . . . < t

(a)

N(a) and leave at

t
(d)
1 < t

(d)
2 , . . . t

(d)

N(d) < t∗. Car number i can not leave before it arrives so t
(a)
i ≤ t

(d)
i (i.e.

a lane is a FIFO queue). Moreover we cannot have more cars leaving then arriving so

N (a) ≥ N (d). The squared waiting time from t = t0 when there were no cars waiting, up

to time t∗, is given by

〈w2
i 〉(t0, t∗) =

N(d)∑
i=1

(t
(d)
i − t

(a)
i )2 +

N(a)∑
j=N(d)+1

(t∗ − t(a)
j )2 (6.5)

= 〈w2〉(t0, t(a)

N(d)) +

∫ t∗

t
(a)

N(d)
+ε

(t∗ − t)2dn(t) (6.6)

= 〈w2〉(t0, t(a)

N(d)) +

∫ t∗

t=t
(a)

N(d)
+ε

(t∗ − t)2d(n(t)− n(t
(a)

N(d) + ε)), (6.7)

where ε > 0 is so small, that t
(d)

N(d) + ε < t
(a)

N(d)+1
< t∗ (assuming such an arrival time

< t∗ after the last departure time < t∗ exists: the integral is zero for any ε such that

t
(d)

N(d) + ε < t∗ if N (a) = N (d) as it should) Technically, the integral is a Stieltjes integral,

but no harm is done pretending it is the limit of smooth approximations of the step

function n(t).

We can now do partial integration with the boundary terms vanishing because of the

8In computer science this is called balancing throughput and latency. It ensures e.g. that a video
stream which requires that IP packets get through with low latency does not stop when someone using
the same WIFI access point downloads a long file for which it is optimal that as many IP packets get
through at once as possible.
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rewrite in the last line. This gives

〈w2〉(t0, t∗)− 〈w2〉(t0, t(a)

N(d)) = −
∫ t∗

t
(a)

N(d)
+ε

(n(t)− n(t
(a)

N(d + ε)d(t∗ − t)2 (6.8)

= −
∫ t∗

t
(a)

N(d)

(n(t)− n(t
(a)

N(d)+)d(t∗ − t)2 (6.9)

= 2

∫ t∗

t
(a)

N(d)

(t∗ − t)(n(t)− n(t
(a)

N(d)+))dt, (6.10)

where n(t
(a)

N(d)+) is a shorthand for n(t
(a)

N(d) + ε) with ε as above (i.e. the number of cars in

the lane right after the last car that left before t∗). Thus, the additional square waiting

time absorbed in the interval [t∗, t∗ + ∆t) is

〈w2〉(t∗ + ∆t, t0)− w2〉(t∗, t0) = 2

∫ t∗+∆t

t∗
(t∗ − t)n(t)dt (6.11)

+ 2

∫ t∗+∆t

t
N(d)

(∆t)(n(t)− n(t
(a)

N(d))dt. (6.12)

Under the integral in the first term, −∆t < (t− t∗) < 0 , so is negligible (and negative)

for ∆t� (t∗ − t(a)

N(d)). Hence

〈w2〉(t∗ + ∆t, t0)− 〈w2〉(t∗, t0) = 2(t∗ − t)(n(t∗)− n(tN(d))∆t+O((∆t)2)

and the per unit time increase of square time is

d

dt∗
〈w2〉(t∗, t0) = 2(t∗ − tN(d)) (n(t∗)− n(tN(d))) .

In [3], the optimisation performed by Smart Traffic is not explicitly given. We there-

fore take as the cost function of lane p at time t∗, the additional squared waiting time

in the linear approximation in ∆t derived above9 , up to the irrelevant factor 2 (we keep

the factor ∆t for clarity) .

Cp(t
∗, t∗ + ∆t) =

(
t∗ − t(a)

p,N
(d)
p

)(
n(t∗)− n(t

(a)

p,N
(d)
p

)
)

∆t. (6.13)

The total cost for a particular light setting of all lanes of an intersection X with lanes

p
/−→ X that get red is then

CX
/(t∗, t∗ + ∆t) :=

∑
p
/−→X

Cp(t
∗) =

∑
p
/−→X

(
t∗ − t(a)

p,N
(d)
p

)(
n(t∗)− n(t

(a)

p,N
(d)
p

)
)

∆t. (6.14)

9This is equivalent to considering a cost per unit time
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For a traffic light schedule to be updated at time t, Smart Traffic will compute the

configuration with minimal cost C for the interval [t∗, t∗ + ∆t], where t∗ = t + 30, and

∆t� 30. Such that Smart Traffic appends an interval of ∆t onto the existing schedule,

and updates it predictions on the number of cars arriving and leaving in the interval

[t, t∗] based on the new information available at the sensor loops. Under our simplifying

assumptions, however, cars behave predictable given a choice of traffic light settings.

6.2.3 Model Extension

To extend the utility of Smart Traffic to a network, we take the situation at other intersec-

tions into account. This necessarily implies some communication between neighbouring

intersections. It was discussed with Sweco what type of information could be shared

between intersections. They strongly advised against a global control mechanism for all

lights in the city network, i.e. that all intersections are controlled by a single big server

that takes into account the situation in the whole city, or alternatively, that each smaller

server for an intersection has to take into account the algorithmic ”decisions” of the

smaller servers for all the other intersections. It was decided, however, that intersections,

could, share information regarding the expected wait-times for cars that it will receive,

to upstream neighbours. The simplest kind of information passed to a neighbouring in-

tersection would be the running average of observed wait-times for a car approaching

from the intersection’s direction, or only slightly more difficult some Karman filter type

extrapolation and noise filtering.

For example, if an intersection has only one car waiting then uncoupled Smart Traffic

would generally let it leave immediately. However, if the downstream intersection is able

to communicate that wait-times for traffic will be high by the time the car arrives, it may

be more beneficial for the first intersection to keep the car waiting for a little longer until

downstream traffic is alleviated.

Note that there is a subtlety here: when a car leaves an intersection it is unknown

which lanes a car will choose at the next intersection, i.e. in which direction a car will

continue its trip. Moreover, the street network of the city may allow cars to turn up at

different intersections. One can, however, estimate the probability for a car departing at

time t1 at intersection X on lane p, to arrive at intersection Y at lane q on time t2 from

previous behaviour10.

Thus, if, at time t∗, each intersection X has expected wait-times for downstream

traffic, we want to balance the cost between keeping cars waiting now against them

perhaps waiting longer further downstream. To implement this we want define a new

10Aggregated gps data from car drivers would be particularly useful here
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cost function CX of a particular lights setting of the intersection X that also takes into

account some future waiting time cost for the lanes p
,−→ X that get a green.

CX(t∗, t∗ + ∆t) = CX
/(t∗,∆t) + CX

,(t∗, t∗ + ∆t). (6.15)

The cost function for the green lanes should take into account the chance to arrive at a

lane of a different intersection, the additional squared waiting times at that downstream

lane, some discounting for events the farther away they are in the future, and for good

measure some fudge factors that allows for tuning the importance of waiting at different

intersections allows for a bit of tuning. This gives

CX
,(t∗, t∗ + ∆t) = (∆t)

∑
p
,−→X

nXp (t∗)
∑
Y 6=X

aYX,p

∫ ∞
t∗

dtD(t, t∗)
∑
q→Y

p(Y, q; t|X, p; t∗)W Y
q (t),

(6.16)

where the sum is over all lanes of the intersection X and each intersection Y 6= X in

the network, each given a weight aXY , over all lanes q of that intersection. The integral∫ t1
t0
p(Y, q; t|X, p; t∗)dt is the chance that a car leaving from lane p of intersection X at time

t∗ will arrive at lane q of intersection Y , between t0 and t1, and W Y
q (t) is the estimated

waiting time for lane q. This sum is very general but a little unwieldy, so we can make

some simplifying assumptions.

• We assume that all lanes of an intersection have equal weight as far as costs are

concerned and is non zero only if a lane directs to a neighbouring intersection Y 11

i.e.

aYX,p =

{
a if p→ X → Y

0 otherwise
(6.17)

• We assume that the discount function has a finite time window and/or a fairly steep

descent with respect to planning period (30 seconds) so waiting time estimates are

not too critical far in the future, e.g. D(t, t∗) = exp((t− t∗)/θ) with θ 1min.

• the probability to arrive at a lane only depends on the time difference t− t∗ and the

distance d(X, Y ) between two (directly neighbouring) intersections provided lane p

on X directs to lane q on Y . More over each lane q of an intersection Y reachable

from lane p (through X) is equally probable. Hence

p(Y, q; t|X, p; t∗)dt =

{
1

(#p→q→Y )
pd(X,Y )(t− t∗)dt if p→ X → q → Y,

0,
(6.18)

11These time independent parameters may be good candidates for using machine learning for the most
satisfying results
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where pd(X,Y )(t− t∗)dt is some 1 parameter family of probability distributions over

time. In fact simplifying even further we can make the assumption of cars moving in

platoon at speed v after a delay τ and use the degenerate delta function probability

distribution

pd(X,Y )(t− t∗)dt = δ(t− t∗ − d(X, Y )/v − τ)dt. (6.19)

With these assumptions the cost function simplifies to

CX
,(t∗, t∗ + ∆t) (6.20)

= a∆t
∑
p
,−→X

nXp (t∗)
∑

p→q→Y

∫ ∞
t∗

dte−(t−t∗)/θW Y
q (t)

pd(X,Y )(t− t∗)
(#p→ q → Y )

,

or simplifying even further using the degenerate distribution over time

CX
,(t∗, t∗ + ∆t) = a∆t

∑
p
,−→X

nXp (t∗)
∑

p→q→Y

e−(d(X,Y )/v+τ)/θ
W Y
q (t∗ + d(X, Y )/v + τ)

(#p→ q → Y )

(6.21)

Finally to make a decision on a plan for traffic lights for the next T = 30 seconds and

take into account account the rules for changing the lights. Toy rules would be

• lights stay green for at least 1 second,

• lights stay red for at least 3 seconds,

• an intersection must block an opposite lane for at least 10 seconds before a crossng

lane can get green

Under these rules we have to minimise total squared waiting time12

CX(t, T ) =

T/(∆t)−1∑
n=0

C(t+ n∆t, t+ (n+ 1)∆t). (6.22)

Where ∆t = 0.1 second should be amply good enough resolution.

6.2.3.1 Matlab Implementation

For a four-way intersection, with each road having three lanes (see Fig. 6.2) there are

many light configurations that conflict with one another; for example, in the figure shown

Lanes 2 and 7 cannot both be relieved at the same time.
12This is essentially a poor numerical integration and using Simpson’s or the trapezoidal rule and

subtracting half the boundary values might be appropriate
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Figure 6.2: Four-way intersection with twelve lanes.

There are roughly 100 light configurations that do not cause conflict, which can be

described by a binary vector of length 12, with green lights corresponding to a 1, and red

lights corresponding to a 0. For a single intersection, we define the optimisation space to

be

S := {v ∈ B12 : v causes no conflicts}, (6.23)

where B is shorthand for the Booleans Z2. Given that each intersection will be governed

by separate instances of Smart Traffic, the optimisation space for the entire network will

therefore be a product of S, which, for a network of M intersections, we will define as

SM := {v ∈ B12M : v causes no conflicts}. (6.24)

Describing the action space of the coupled network in this way allows us to build a

model using simple linear algebra. We define A to be the adjacency graph of the network,

I to be the identity matrix (the same size as A), and n(t) to be the vector holding the

number vehicles in each lane at time t. Note that the multiplication An describes the

instantaneous travelling of all vehicles to their desired destination, while In describes the

event that all vehicles remain stationary.

For a particular action v ∈ SM , we create the diagonal matrix V := diag(v), such

that AV defines an augmented adjacency matrix corresponding only to those lanes which

allow traffic through. Similarly, the matrix Ṽ := V − I defines all lanes which are not

opened. Therefore, defining the matrix B = AV + Ṽ, the multiplication Bn describes

the instantaneous state transition for all vehicles in the model.
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For implementation purposes, as we have assumed that vehicle data is perfectly ac-

curate, we only need to look at discrete events that occur in the model, i.e. new vehicles

entering the model from the boundary, and cars arriving at or leaving an intersection.

Given that we assume that all vehicles travel at a fixed speed, and all road lengths are

known, we can therefore predict all future events.

By using an event-based model, we therefore need to keep track of vehicles that are

stationary at any point, and vehicles that are moving between intersections. This is done

in such a way that a car released from an intersection can be described by a Heaviside

function for arrival at the downstream intersection. This means that rather than using

A to describe the instantaneous travel of a vehicle to its destination, we can instead

make it a time-dependent Heaviside matrix Ã(t) which keeps track of when vehicles will

be arriving downstream, such that we can compute wait-time effects from cars arriving

between successive schedules.

Let us assume that the model has some configuration of stationary and moving vehi-

cles, as well as knowledge of vehicles approaching from the network boundary. Every ∆t

seconds, Smart Traffic will amend the network schedule by optimising traffic flow over

the interval [t∗, t∗ + ∆t]. As we have previously described, the total wait-time for traffic

at a single lane during this interval is merely the integral given by Eq. 6.4. In vector

form, we have

w(t∗,∆t) :=

∫ t∗+∆t

t∗
n(t)dt, (6.25)

=

∫ t∗+∆t

t∗
Ṽn(t∗) + Ã(t)1dt (6.26)

=∆tṼn(t∗) +

∫ t∗+∆t

t∗
Ã(t)1dt. (6.27)

Therefore, for each entry in the vector w, the wait-time is comprised of all cars that are

not released at time t∗, plus all cars that arrive before t∗ + ∆t. Given that we want to

minimise the squared wait-times, this is equivalent to minimising the 2-norm of w.

In the extended model, we also want to balance the cost of sending cars downstream,

assuming that we have knowledge of expected future wait-times, which we hold in a

diagonal expectation matrix E(t∗). Therefore, the expected cost of releasing vehicles due

to an action v is merely

e(t∗) := E(t∗)AVn(t∗). (6.28)

Thus, every ∆t seconds we must solve the following optimisation problem:

min
v∈SM

{‖w(t∗,∆t)‖2 + ‖e(t∗)‖1}. (6.29)
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Due to the fact that we do not explicitly couple the intersections together, the above

problem is equal to n instances of the smaller problem

min
vj∈S
{‖wj(t

∗,∆t)‖2 + ‖ej(t∗)‖1}, (6.30)

where the subscript j = 1, . . . ,M corresponds to each particular intersection.

The benefit of framing the problem in this way is that we are able to explicitly model

all events in the coupled model, yet the optimisation scheme is completely separable.

Thus, the computational complexity grows linearly with M . While the implementation

seems very simple, it was not possible to get a working version of the model in Matlab in

only three days. While Matlab is built for matrix operations, the utility of a Heaviside

matrix was problematic, and made computation times extremely high for even simple

integrals like those in Eq. 6.27. Therefore, we were not able to implement an optimisation

scheme that had any chance of terminating in a reasonable time. Given that we need to

optimise every ∆t seconds, this meant that no useful results could be obtained, as the

model that was implemented was not efficient enough to replicate the workings of Smart

Traffic.

6.3 Other Approaches

6.3.1 Markov Decision Process

In some interpretation of the Smart Traffic model of Sweco, it seems that the mathemat-

ical framework of Markov decision processes fits the problem well. In general, a Markov

decision process, or MDP for short, consists of the following. We start with a countable

state space S. Time is discrete, indexed, say, by N . In time step t, the process is in some

state s ∈ S. In every state, there is a set of actions A(s) to choose from. If some action

a ∈ A(s) is chosen, there is an immediate reward of rts(a) and the process transitions to

state j with probability ptsj(a). The reward may be negative, indicating a cost instead. If

the reward and transition probabilities are independent of the time t, the model is called

stationary. For a more detailed description of the model, as well as an explanation of some

optimization methods in this framework, see the lecture notes on MDPs by Kallenberg

[4] or the book on reinforcement learning by Barto and Sutton [6].

For the traffic model, one could choose as time steps the intervals between the times

where the calculation of an optimal policy is started, e.g., ∆t. The state space, unfor-

tunately, is hard to define. Ideally, one would only have to keep track of the amount of

cars waiting at every traffic light, that is, np(t) for every lane p. However, cars that are

currently travelling between intersections also need to be taken care of. Theoretically, it
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is possible for every car to keep track of its exact location and speed. However, this would

cause the state space to explode in size. Therefore, one could propose to only count the

number of cars present in each lane of each intersection, and to count the number of cars

travelling between intersections, disregarding their exact whereabouts.

As action set in every state, we can take the set of all different configurations of green

lights for the intersection, or a choice between continuing the current green scheme or

changing it. The reward for every action is somehow dependent on the expected waiting

times of the cars in the system, being a summation of the wi(t,∆t) over the lanes i,

given the action chosen. One could choose, for example, the cost function described in

Section 6.2.2. Finally, the probability of transitioning from state s to state j given some

action a is largely deterministic, apart from cars that might enter the system with some

probability at the borders. Moreover, having discarded the exact location of the cars

travelling between intersections, their movement may also taken to be stochastic.

As we assume the computations always being done for a finite horizon, e.g., 30 sec-

onds, one might use recursive methods to solve for the optimal policy, such as dynamic

programming. Starting at the horizon, we move backwards in time, trying to find in

time step t − 1 an action which optimizes rs(a) +
∑

j psj(a)xtj, where xtj is the reward

we obtain when moving optimally from time step t up until the horizon. However, the

size of the state space may in practice be a complicating factor for computing an optimal

policy exactly. One might therefore resort to approximate methods, some of which are

also described in the referenced works.

6.3.2 Model Predictive Control

As an alternative to Markov Decision support we mention the framework of model pre-

dictive control (MPC) that utilizes Pontryagin’s Minimimum Principle as a guide to

optimality. Formulations are available for both discrete and continuous time models [2].

Given a traffic model in (continuous-time) state space format, i.e.

dx

dt
= f(x(t), u(t)), x(t0) = x0 (6.31)

with x(t) the state vector (e.g. traffic volumes) and u(t) the manipulated variables (e.g.

traffic light settings). Since traffic lights are switched on/off, one should include this in

the underlying equations and choose for a hybrid type of system description where both

continuous and discrete time variables are possible [1]. If the cost is now formulated as

in 6.4 for a time horizon ∆t, we can formulate the following Hamiltonian

H(x(t), u(t)) = np(t) + λT (t) · f(x(t), u(t)) (6.32)
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with np(t) the number of stationary cars at time t, and λ(t) the co-state or influence

function. Pontryagin’s minimum principle states that amongst all choices for u(t), the

one that minimizes the Hamiltonian H(x, u) is the optimal choice. It is only in rare

cases that this optimal strategy can be stated in terms of x(t) as a feed-back law. More

common is to solve the optimization problem as a two-point-boundary-value problem

(TPBV) with the state x(t) satisfying 6.31 at t = t0, and the co-state λ(t) satisfying

dλ

dt
= −∂H

∂x
, λ(tf ) = φx(tf ) (6.33)

where φ reflects the terminal cost at time t = tf , e.g. the number of cars that are

stationary at t = tf . Efficient software is available to solve the TPBV problem. Typically,

the first run of the software takes some time but once an optimal strategy has been found

it is computationally efficient to adapt such a strategy every 30 seconds or so, when new

data of the current traffic situation becomes available. Unfortunately, software of the

current traffic system applied by SWECO was not available and therefore the optimization

problem could not be encoded en solved in Matlab under the time-constraint of several

days (the duration of the SWI workshop)..

6.3.3 Predicting behaviour of neighbouring intersections

In order to accurately predict the future state of the network, it is useful to predict the

behaviour of neighbouring intersections. This will give us a better idea of how much

traffic will be arriving at our intersection, and of how long cars we send to one direction

will have to wait down the road. Let S be the state space as in Section 6.3.1, and let Ai

denote the set of all possible actions of intersection Ii (here an action is a configuration of

traffic lights at intersection Ii, so Ai does not depend on the current state). For simplicity,

we restrict ourselves to two intersections, I1 and I2, that are connected by a road with

no intersection in between I1 and I2. For larger networks it is possible to apply the

described method on each neighbour separately. We will take the point of view where we

want to predict the future actions of I2 to plan the actions of I1. For each intersection,

Smart Traffic keeps track of and updates a planning Pi of actions that the intersections

will perform. This planning will be updated at times t0, t1, . . ., where ti = t0 + i∆t. At

time ti, the actions that will happen at times ti, . . . , ti+k have already been determined

for some fixed k, and the method has to decide which action to take at time ti+k+1. We

assume that the traffic light configuration will change at most once during each time step.

Different intersections do not have access to each other’s planning. This means that at

time ti we would like to predict all the actions the neighbouring intersections perform

between ti and ti+k+1. A general procedure to do this is given in Algorithm 2. One way
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Figure 6.3: A small neural network.

to predict each distribution of actions is by using a neural network, we will discuss this

method in the next section.

Algorithm 2:

input : State sti
output: Distributions of actions ãi, . . . , ãi+k+1

1 s̃ti ← sti ;
2 for j ∈ {i, i+ 1, . . . , i+ k + 1} do
3 Predict ãj given s̃tj ;
4 Compute expected state s̃tj+1

;

5 endfor

6.3.3.1 Neural networks

In this section we give the basic ideas behind neural networks, and how we can use

them for our problem. We will not go in-depth and often omit explicit formulas, so it

will probably be wise to do some more research on the subject before attempting to

write an implementation. Luckily, many resources are available, see for instance https:

//www.edx.org/course/deep-learning-explained-3. A neural network consists of a

large number of nodes, divided into different layers. Each node in one layer is connected to

every node in the neighbouring layers. See Figure 6.3 for an illustration. Each connection

has an associated weight. When we give each node in the input layer a value, we can use

the weights to compute values for the nodes in the next layer, and repeat this process until
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the values of the nodes in the output layer are computed. To apply a neural network

to our problem, we let the input nodes correspond to the network state s (e.g. have

a node for each lane that corresponds to the current waiting time in that node), and

each output node corresponds to an action a ∈ A2. The idea is to set the weights of the

connections in such a way that when the input is set according to some state s, the values

of likely action will be high and the values of unlikely actions will be low. The process

of adjusting the weights to achieve this goal is referred to as training the network. The

usual technique for doing this is called back-propagation. This method works as follows:

given some state s, we use the current neural network to get a value for each action. We

then observe which action a actually takes place. The output value corresponding to a

should have been high, and all the others should have been low. So the network can be

improved by increasing the weights of connections to the node of a that helped increase

the value corresponding the a, and lowering the weights of connections to the other nodes

that helped increase their values. Then we can compute what the values of the nodes

in the second to last layer should have been, and adjust the weights of the connections

between the third to last and the second to last layer based on that. Repeat this process

until every connection is updated. Note that this is a data driven approach, since in

order to apply backpropagation we need to know which action will be taken given the

state we use as input. It will be necessary to collect training data, both before the neural

network is implemented to train a initial version, and while the network is active such

that it can adapt to changing circumstances (such as changes to the systems that control

the neighbours).

6.4 Conclusions and Recommendations

We have suggested several routes to a solution to the complex problem of controlling

a network of intersections, given the strategy currently employed by Sweco. Much to

our regret we have not been able to thoroughly test our hypotheses and models because

of time-constraints and the limited availability of currently used software. Yet, some

good suggestions were made on how to tackle this problem from various angles. Most

important is to have the current strategy become less greedy in finding a solution for the

current situation by including an expected waiting time for the downstream intersection

into the problem. This could be implemented via, for example, model predictive control

in which the goal function is an essential part of the control strategy that is found on

the basis of Pontryagin’s Minimum Principle. For numerical solution a receding horizon

optimal control problem needs to be solved on-line with the expected waiting time of the

down-stream traffic included in the goal function. This is certainly within reach since
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advanced software packages are available (in Matlab) that are capable of solving these

kind of problems. Other solutions, such as Markov decision processes and neural networks

were also suggested as a means to find an optimal strategy.
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