Chapter 4
Boosting Ship Simulations at Marin

David Kol{], Vivi Rottschifer?], David van Keulen®|, George A.K. van Voorr[},
Manu KaliaP], Bas van’t Hof?], L. Gerard van Willigenburg]]

Abstract:

Two approaches to significantly reduce ship model simulation times at MARIN are pre-
sented. Combining them is shown to provide a most interesting and general perspective
for improvement. One approach makes use of a highly simplified ship model that can be
partly solved analytically. The other applies proper orthogonal decomposition (POD) to
reduce the ship model currently used at MARIN. POD is demonstrated using a model
that is more convenient for presentation and implementation than the M ARIN ship model.
Arguments are provided why POD is expected to also work for MARIN ship simulations.

KEYWORDS: Singular Value Decomposition, Proper Orthogonal Decomposition, Model
Order Reduction, Method of Averaging, Asymptotic approximation

'Mathematical Institute Leiden, The Netherlands
2Leiden University, The Netherlands

3Fontys Hogeschool, The Netherlands
4Wageningen University, The Netherlands
5Twente University, The Netherlands

67



Proceedings of the 148th European Study Group Mathematics with Industry

4.1 Introduction

Certain ship simulations performed at MARIN solve a detailed model containing Navier-
Stokes type dynamics using computational fluid dynamics (CFD). Currently, these are
computationally too expensive. This problem relates to the fact that ship speed is varying
very slowly compared to the rotation of the propeller and surrounding water, leading to
very different time-scales in the simulation. The challenge is to improve computational
efficiency. This will enable valuable ship simulations in regards to improving the design of
ships as well as the energy efficiency of steering ships. In studying this challenge we took
two approaches that in the end can be combined. For one approach, we developed a highly
simplified ship model that reveals the origin of the computational inefficiency. In the other
approach, we started from the current computational fluid dynamics computations and
searched for ways to improve their efficiency. One method that can be used is proper
orthogonal decomposition (POD) [6]. This will provide a way to reduce the model thereby
improving computational efficiency. In this paper we first present the highly simplified
model revealing the essence of the inefficiency of the ship simulations in Section In
Section POD is presented and applied, not directly to the ship models of MARIN,
but to a model that is more suitable for presentation and implementation. Arguments
are given why we expect this method to be applicable to the ship models of MARIN as
well. In the conclusions we argue that combining the outcomes of both approaches results
in recommendations for improving the computational efficiency that are most promising

and practical.

4.2 Highly simplified ship model

In this section we present a highly simplified model describing the speed of a ship, driven
by a high-frequency propeller in water, near cruising speed. This model provides a com-
putationally very cheap alternative to a full numerical solution of partial differential
equations (PDE’s) describing water, propeller and ship, while still preserving some of the

observed features of the long-term behaviour of the solution.

We model the dynamics of the ship by using Newton’s second law, which states that

the time derivative of the speed v is given by

dv 1 1

% - EFtotal - E(Fprop - Fwater) (41)

with Fi,. the total force acting on the ship. This force consists of two components, a

68



Boosting Ship Simulations at MARIN

Figure 4.1: Highly simplified model of ship movement.

frictional force Fyater €xerted on the ship by the surrounding water, and the driving force
Forop delivered by the propeller. We rescale and thereby set m = 1. For the friction force

we assume a simple expression consisting of a linear and a quadratic component

Fwater(v) = psv + pGUQ7 (42)

where p5 and pg are positive constants. We note that the propeller force depends on the
pressure of the water near the bow of the ship (averaged over the surface of the propeller).
When the ship speeds up, this pressure increases, allowing the propeller to deliver more
force. In general this means we model the net effect of the water pressure on the propeller
as p = p(v,t). Here it should be noted that we need the explicit time dependence of this
pressure term. It represents the fact that the ship generates water currents near the bow
which the propeller slices through, changing the total pressure across the blades as a
function of the angle of the blade.

We expect the behaviour of the ship to be sensitive to the precise interplay between the
water currents near the propeller and the movement of the ship itself. To account for
this interplay, we model the flow of the water with two components - one rotating along
with the propeller (the component generated by the propeller itself) and one stationary
(the time-averaged flow generated by the ship moving at cruising speed). In general we
expect the water flow profile, and the full long-term solution, to be periodic with a period
equal to that of the propeller. Therefore we will use a first-harmonic approximation of

the full interplay between water flow and propeller force. This is described by

Forop(v,t) = (1 + %pl cos (wt/e)) (p2 + p3v). (4.3)

Here € is a small parameter introduced to explicitly indicate the occurrence of two
timescales. The rotation frequency w/e is much higher than the typical timescale on
which we expect the speed of the ship to change. Furthermore ps represents the aver-

age water pressure and p3 the rate of change of water pressure with respect to velocity.

69



Proceedings of the 148th European Study Group Mathematics with Industry

Finally p; determines the relative contribution of the two types of water flow near the
propeller to the propulsion. All these constants are positive. The full model is then given
by

dv 1
pri (1 + §p1 cos (wt/e)) (p2 + p3v) — psv — Pev. (4.4)

4.3 Approximate analytical solutions

4.3.1 Ansatz

Based on numerical simulations of equation (4.4)) we expect the solution to consist of a
quick oscillation around a slowly varying average, where the amplitude of the oscillation
also varies slowly. Furthermore, the amplitude of this oscillation is small.

The standard argument of perturbation theory suggests that, for sufficiently small €, the
solution v(¢; €) of equation is analytic in € and can therefore be expressed as

v(tie) = > €"vn(t). (4.5)

n=0

We also expect the solutions of to converge to periodic solutions with the same
periodicity as the driving term. Restricting to periodic solutions implies that v(t+1T;¢€) =
v(t;e) for all t, e where T' = 3_75 = % is the period of the driving term. However, if this
holds for all €, then for fixed ¢ the power series expressions for v(¢; €) and v(t + T'; €) must
be identical. Therefore all functions v, (¢) in equation (4.5)) above are also periodic with

period T'. Introduction of a Fourier expansion allows us to write
oo k=oo

v(t;e) = Z Z €" vy 1 exp(kiwt /€). (4.6)

n=0 k=—o0

Numerical simulations show that at order €, i.e. leading order, the solution is not os-

cillating rapidly, so vg = 0 for k # 0. This leads to the following Ansatz/approximation
v(t) = a(t) + eb(t)E + eb(t)E + O(€%, eE?) + c.c. (4.7)

where we used the big-O notation and introduced E = exp(iwt/e) while c.c. denotes
complex conjugation. Substituting (4.7)) in equation (4.4)) gives

70



Boosting Ship Simulations at MARIN

dt ~ dt
—pg(a(t) + O(e))? + c.c.

= (52 paalt) = ) = pua(0) + (Jou(ps 4 paa(0)) 2

o _ da(tf) + (e%(t)E +z’wb(t)E) +O(e%, eE?) + c.c.

2
+ O(e) + c.c.

Collecting terms in orders of € and per frequency we find

da
O(E%) = py+ (p3s — ps)a — pea® = pm (4.8)
1

O(E"Y) : §p1(p2 + psa) = iwb (4.9)
where we have suppressed the explicit time dependence from our notation.
4.3.2 Asymptotic behaviour
The first-order ODE (4.8)), has an attracting fixed point

_ )2 1 4
- ps — ps + v/ (ps — ps)? + P2Ds (4.10)

2pg
There is also a second fixed point at a negative value of a, which is not only unphysical
but also repelling. The solution of converges to the positive fixed point. In the
t — oo limit we find from that

1
2 + im
bim = —1 2P1(P2 + Pyt (4.11)
w

Some additional remarks are in order:

e The limiting amplitude by, is purely imaginary, which represents that the movement
of the ship is a quarter period out of phase with the driving force. For the actual
amplitude of the oscillations around the average we can simply take the modulus.
Note that since our Ansatz adds the complex conjugate of the oscillating terms the

full solution is still real-valued.

e We have ignored all higher-order terms. So T(t) = a(t) + €b(t)E + c.c. is only an
approximation of the real solution. We expect this to be accurate only if € is small,

lLe. if T' = % is small.

71



Proceedings of the 148th European Study Group Mathematics with Industry

TN !!!!!Hﬂﬂﬂiﬁﬁiiiiul|lllI!lll!l!IYIVl’l’l’l’l'l'l'l'l'l'l'l‘l‘l‘I’I’I’I’l’l’l’l’l’l'l'l'l'l'l‘l‘l‘l‘l‘l‘l’I’l’l’l’l’l‘l‘l’l’l‘l‘
i

Speed

—Numerical solution
- Numerical average
—Analytical limit band

L 1 L 1 L 1

Time

Figure 4.2: A simulation of equation (4.4]) in red with a short-time average in blue. The
upper and lower black lines denote ayy, £ by, respectively, with aj, plotted in between.
The simulation parameters are p1 = 1,ps = 1,p3 =0.5,T =0.1,p5 = 1 and pg = 0.1.

4.3.3 Comparing numerical results and analytical approxima-
tions

In this section we compare the approximations given above with direct numerical integra-
tion of equation (4.4]). To that end we use the MATLAB ode23s-solver (see the Appendiz
for the code) for a duration of 1007 In Fig. we compare the numerical results with

the constants aj, and ayy, + by, computed with the expressions given above

We also compute the analytical limit parameters and the numerical asymptotic be-
haviour for a range of values of p; fixing the values of ps,...,ps and find that the two
are in good agreement (see Table . In Table similar results are given but now for
various values of ps.

The tables confirm that Ansatz is quite good. This suggests that the method of
averaging might be an effective approach to simplify the full PDE model. This suggestion

is explored in the next section.

72



Boosting Ship Simulations at MARIN

P1 | Qim | numerical | by, | numerical
0.1]1.53 1.54 0.0028 | 0.0075
0.2 |1.53 1.55 0.0056 | 0.0069
0.3]1.53 1.55 0.0084 | 0.0095
0.4]1.53 1.54 0.011 0.012
0.5]1.53 1.55 0.014 0.004
0.6 | 1.53 1.54 0.017 0.018
0.7 ] 1.53 1.55 0.020 0.020
0.8 ]1.53 1.53 0.022 0.024
0.9]1.53 1.54 0.025 0.026
1.0 [ 1.53 1.54 0.028 0.028
1.1]1.53 1.54 0.031 0.031
1.2 1.53 1.56 0.034 0.034
1.3 [1.53 1.54 0.037 0.036
1.4]1.53 1.56 0.039 0.040
1.5 1.53 1.55 0.042 0.042

Table 4.1: Comparison of simulated and analytical limit (after 100T") behaviour of equa-
tion (4.4). The simulation parameters are p, = 1,p3 = 0.5,7 = 0.1,p;5 = 1 and pg = 0.1
where p, varies.

P2 | @iy | numerical | by, | numerical
0.1]0.19 0.20 0.003 0.003
0.2]0.37 0.38 0.006 0.006
0.3]0.54 0.54 0.009 0.009
0.41]0.70 0.70 0.012 0.012
0.5]0.85 0.86 0.015 0.015
0.6 | 1.00 1.01 0.018 0.018
0.7]1.14 1.15 0.020 0.020
0.8 | 1.27 1.29 0.023 0.023
09141 1.42 0.026 0.026
1.0 | 1.53 1.54 0.028 0.028

Table 4.2: Comparison of simulated and analytical limit (after 100T") behaviour of equa-
tion (4.4). The simulation parameters are p; = 1,p3 = 0.5,7 = 0.1,p5 = 1 and pg = 0.1
where py varies.

73



Proceedings of the 148th European Study Group Mathematics with Industry

4.4 The ‘Method of averaging’

Here we show that the results obtained above are identical to those that would be obtained

using the method of averaging [4]. This method can be applied to systems of the form
) (1.12)

where z € D C R for some domain D and f and % are continuous and bounded in
D x [0,00) . The function f must be T-periodic in ¢ and 7" independent of €. Then, upon

introducing the averaged system

dy

T
pri 6%/0 f(y, s)ds, (4.13)

the Averaging Theorem states that
z(t) —y(t) = O(e), (4.14)

on the time-scale % This averaging method can be applied to the toy model of Section
by introducing the timescale 7 = £. Then, equation (4.4)) transforms to

dv 1
= <(1 + b1 Cos(wT)) (p2 + p3v) — psv — p61)2> (4.15)
Now taking the average over one period of the right-hand-side with v fixed, we remove

the oscillating exponentials and this reduces the equation to

dv - -

i € (p2 + (p3 — p5)0 — p6122) ) (4.16)
Note that, to leading order, this is equal to (4.8). Since the method of averaging doesn’t
heavily rely on specifics of the dynamical system, and our analysis of the previous and
upcoming sections suggest that the results obtained from this method are accurate, it
is likely that we can apply this strategy to the full PDE model to obtain a simplified

time-averaged model.

4.4.1 Method of averaging for Marin’s ships

This section provides a rough sketch of how the method of averaging could be applied to
the Marin models.

The Marin model of ship and water consists of a model of the flow around the propeller,
coupled to a model of the flow around the ship, as shown in Figure The propeller-
model is a cylindrical, rotating domain, and the ship-flow model moves with the ship.

Apart from their moving domains both models have constant geometry.

74



Boosting Ship Simulations at MARIN

Figure 4.3: Decomposition of the Marin ship model into two coupled models having
very different time-scales: one of the ship and water and one of the propeller and its
surrounding water.

Sides:
normal derivative of velocity given

Right face:
pressure given

Figure 4.4: The propeller model can be solved for given boundary conditions along its
cylindrical domain.

Left face:
velocity given

Before applying the averaging-method, we replace the propeller-model by a forcing
term. To do this, a set of boundary conditions is chosen, as shown in Figure £.4 Each
of the chosen boundary conditions is constant in time in the ship-flow model, and is
therefore periodic in the (rotating) propeller model. Next, the flow equations are solved in
the propeller model until the solution is (almost) periodic. When the solution is (almost)
periodic, the solution is recorded at the boundary and time-averaged over a period. After
the chosen boundary conditions have been processed this way, and the results stored in a
table, interpolation is used to approximate the solution on the boundary of the propeller-
model for any given boundary condition. Now, the propeller model can be replaced by
the interpolation tables thus obtained, which is a time-averaged forcing without the small
time scale inherent to the full propeller model.

The interpolation tables obtained this way are very similar to the actuator disc used

75



Proceedings of the 148th European Study Group Mathematics with Industry

at Marin to obtain initial estimates of the water low around a ship. Like the interpolation
tables, the actuator disc is a forcing term without a short time scale, that provides the
thrust necessary to propel the ship. However, the approach roughly sketched in this
section produces a forcing term directly based on the model of the propeller used in
reality (including all the details of cavitions etcetera), and is expected to be much more

accurate than the actuator disc.

4.4.2 Introducing multiple time-steps in ship simulation

During full-scale simulations, MARIN noticed that the solution changes rapidly in only
approximately 30% of all the grid-points.

This observation suggests to not update all model states at the same rate. Instead,
the computational domain should be split in a ’fast changing’ part and a ’slowly varying’

part, so that a larger time step could be applied in the ’slowly varying’ part of the domain.

4.5 Model order reduction using POD

Since computational fluid dynamics (CFD), used by MARIN for ship simulation, is too
computationally expensive, in the last decade or so there is an increased interest in
producing Reduced Order Models (ROMS). These reduced models are intended to keep
the dominant flow dynamics while reducing the size and hence the computational costs
of fluid dynamics models, including RANS models and large Eddy simulations.

In this Section we discuss model order reduction based on the method of POD (Proper

Orthogonal Decomposition; [6]). Let the dynamics of the system be described by

i=f(r), v RV, (4.17)

where z is the vector with continuous state variables, f(-) are smooth functions, and
N =~ 10® in the case of the MARIN model. Numerical simulation of the full model is
costly, and therefore the simulations done so far only cover the small time period of
transient behaviour from initial conditions. From the transient behaviour stage of the

simulation snapshot data can be taken, put into the matrix

of dimensions N x M, where w; are the vectors containing the snapshot data, and M is
the number of snapshots. Keep in mind that each snapshot vector has the same length

as x (namely N) and hence represents several GB of data, while M < N.

76



Boosting Ship Simulations at MARIN

The matrix W will now be used for singular value decomposition (SVD) as a basis

for linearisation. The most accurate approximation would be to use the SVD

W =UsV*, (4.19)

where U is a unitary N x N matrix, V* is the conjugate transpose of a unitary M x M
matrix, and ¥ is a diagonal N x M matrix containing non-negative real numbers, the so-
called singular values. In practice there will be, say, 600 snapshots, conveniently chosen
at equidistant time intervals to cover a time span with information-rich model dynamics.
This leads to a matrix of about 4000 GB. As a result, the matrices U and ¥ would be

large also. The singular values can also be obtained as the eigenvalues of the matrix

R=WTW, (4.20)

which has dimensions M x M, and hence is much less costly to handle, at the price of
losing some accuracy. There are standard packages available for extracting the eigenvalues
A; of matrix R, where 1 =0,1,..., M. In SVD the singular values are ordered from large
to small. For POD we select only the top-ranking singular values, indicated by index
j, where 7 = 0,1,..., P, with P < M. The cut-off will be determined by the orders
of magnitude the eigenvalues differ. Below we will demonstrate for a test case that the
cut-off can potentially be very low, resulting in a reduction where P <& M <& N. For
instance, [5] reduced a Navier-Stokes model for driven cavity flows with high Reynolds
number using POD, and found reasonable approximations using the first 20 singular
values. For the MARIN model, it remains to be seen what an acceptable P could be.

The Galerkin projection of the full model does not yet include the nonlinear terms,
and the approximation of the nonlinear terms still depends on N though. To complete
the model order reduction, the nonlinear terms need to be approximated as well. Several
techniques are discussed in the literature to estimate the nonlinear terms. Among them,
precomputing techniques and empirical interpolation methods. See for instance [2] for a
modern treatment of POD.

In general, the scheme for model order reduction is as follows:

e Convert the non-linear PDE to a full, discretized system based on ODEs with
dimension N, and solve this system to produce snapshots (this step has already
been performed by MARIN);

e Take snapshots from the simulation data;

e Determine the POD basis using SVD;

7



Proceedings of the 148th European Study Group Mathematics with Industry

e Use Galerkin projection to produce the reduced discretized system consisting of
ODEs, with linear terms of dimension M < N but non-linear terms still of dimen-

sion N. This saves memory and enhances the accuracy;

e Use a method like pre-computing to approximate the non-linearities and produce a
reduced discretized system of ODEs with linear terms of dimension M < N and

non-linear terms of dimension ) < N. This improves efficiency, i.e., it saves time.

4.6 Numerical experiment using the Lorenz 96 model

We use the Lorenz 967 model (see [3]) as a test model to evaluate the plausibility and
feasibility of the approach. The model is given as

Xi = _XZ‘_QXZ‘_l + Xi—lXi+1 - Xz + F ) (421)

where ¢ = {1,2,3... N} for arbitrary N and F is some forcing. For the testing, we
assume N = 999. We know that for F' = 1.2, the system exhibits a stable periodic orbit,
which we plot in A. Using POD, we construct a reduced order model (ROM)
of dimension k£ = 10 < N to reconstruct this periodic solution. In [Figure 4.5 B, we show
the periodic solution exhibited by the ROM, which is qualitatively very similar to that of
the original system. In C, we plot the 2-norm of the state variables for every
time step. We see that the reconstructed solution stabilizes quickly to a periodic regime
with constant 2-norm, as exhibited by the original Lorenz-96 system.

This experiment demonstrates that the POD approach significantly reduces model
order when we reconstruct periodic solutions. As general polynomial systems can be
reduced to quadratic systems using lifting transformations (see [1]), we expect similar

behaviour in other smooth non-linear systems as well.

6Note that the model was never published by Lorenz in 1996, but was finally presented at the ECMWF
2006 meeting on predictability.

78



Boosting Ship Simulations at MARIN

A Lorenz 96: 999-dimensional B ROM: 10-dimensional
1.5
1.0%
0.5
1.5
1,
0.5 K0 05 &
C —— Lorenz-96 (999-dim)
351 —— ROM (10-dim)
~ 344
x
— 334
321

0 250 500 750 1000
t

Figure 4.5: Demonstration of POD-based model order reduction applied to the Lorenz-96
model. The parameter F' = 1.2 for these simulations. In A, we see the stable periodic so-
lution corresponding to the Lorenz-96 system with N = 999. In B, we plot the projection
of the 10-dimensional ROM on the original coordinates. Thus we see a reconstruction of
the periodic solution via a reduced order model. In C, we plot the 2-norm of the state
variables at each time step.

4.7 Conclusions and recommendations

A highly simplified one-state model describing ship velocity has been developed. This
model still captures the major features, being fast rotation of the ship propeller and
surrounding water on the one hand, versus slow changes of ship speed on the other.
Approximate analytic solutions of this model were verified numerically and show that
‘the method of averaging’ may be applied. When applied to computational fluid dynam-
ics this method recommends to not update all model states at the same rate. Instead,
fast states associated with the propeller and surrounding water should be updated at
a high rate, whereas updating the other states should be performed at a much slower
rate. In this manner computational effort is seriously reduced since the fast states make

up approximately 30% of all the states according to MARIN. Alternatively a 'time av-

79



Proceedings of the 148th European Study Group Mathematics with Industry

eraged propeller model’ might be developed, that is updated at the same slow rate as
the remaining part of the model. Model reduction of the full-state model by means of
proper orthogonal decomposition (POD) was also investigated and applied to the Lorenz
96 model that is quite suitable for presentation and implementation. POD is expected to
work well since it essentially reduces the model by also averaging fast states appearing
in the model. Successful application of this method does require an empirical interpo-
lation method to approximate non-linear terms in the model. As to POD we therefore

recommend to further investigate this promising approach.

Bibliography

[1] Kramer and Willcox, Nonlinear Model Order Reduction via Lifting Transformation
and Proper Orthogonal Decomposition, arXiv:1808.0208v2[cs.NA], 2019

[2] Brenner, P., Cohen, A., Ohlberger, M., and Willcox, K., Model reduction and approx-
imation — Theory and algorithms, SIAM Computational Science and Engineering,
2017

[3] Lorenz, E.N., Predictability — A problem partly solved, Editors: Palmer, T., Hage-
dorn, R., Cambridge University Press, 2006

[4] Verhulst, F., Methods and applications of singular perturbations: Boundary layers

and multiple timescale dynamics, Springer Science & Business Media, 2005

[5] Cazemier, W., Verstappen, R.W.C.P., Veldman, A., Proper orthogonal decomposition

and low-dimensional models for driven cavity flows, Physics of Fluids, 1998

[6] Lumley, J.L., The structure of inhomogeneous turbulence. Atmospheric turbulence

and wave propagation. Editors: Yaglom, A.M., Tatarski, V.I., 1967

80



Boosting Ship Simulations at MARIN

Appendix

4.A Matlab code to simulate highly simplified Marin
ship model

1 % simship: simulations highly simplified MARIN ship model
> %

3 % Programmer: GvW @ SWI2019-MARIN

4+ clear; close all; clc; tb=[];

5 % Generate table from ship simulations with different p2 values
6 for p2=0.1:0.1:1

7 T=0.1; p=zeros(6,1); p=[1;p2;0.5;1/T;1;0.1];

8 if isinf(T); T=0.1; end

9 ta=0:0.1*T:100%T; % Time axis

10 x0=[0.15%p (1) /p(3);0.15%xp(1)/p(3)]; % Initial state

11 % Numerical integration

12 [t,x]=o0de23s(@(t,x)dnship(t,x,p),ta,x0);

13 lx=size(x,1); lxm=round(1lx/10); % 10% of respomnse

14 % Terminal & limiting values

15 mblim=0.5%(max (x(end-1lxm:end,l))-min(x(end-1lxm:end,l)));
16 malim=sum(x(end-1lxm:end,l))/lxm;

v alim=(p(3)-p(5)+sqrt ((p(3)-p(5)) 2+4xp(2)*p(6)))/(2xp(6));
18 blim=p (1) *(p(2)+p(3)*alim)*T/(2xpi);

19 dmblim=mblim-blim;

20 % Plot two velocity responses

21 figure(1l); plot(t,x(:,1),'-",t,x(:,2),".");

22 hold on;

23 % Plot model terminal value a(tf)

24 line([ta(l) ,ta(end)|,[alim,alim]);

25 %Plot model max(v)

26 line ([ta(l) ,ta(end) ] ,[x(end,1)+blim,x(end,1)+blim]) ;
27 %Plot model min(v)

28 line ([ta(l) ,ta(end) ] ,[x(end,1)-blim,x(end,1)-blim]) ;

29 hold off;

30 % Display alim,model alim,blim,model blim

31 disp( ' alim model alim blim model mblim ")
32 disp([alim,malim,blim,mblim])

33 % Extend table

34 tb=[tb; p2,alim,malim,100*(malim-alim)/alim,blim,mblim,...

35 100%(mblim-blim)/blim];

36 pause

37 end

3s tb % Show table

39

81




Proceedings of the 148th European Study Group Mathematics with Industry

10 function [f]|=dnship(t,x,p)
11 % State-space representation highly simplified MARIN ship model
2 % [f]=dnship(t,x,p)

43 %

1 % t,x,p : time, state & parameter vector
s % f : state derivatives

46 %

a7 % Programmer: GvW @ SWI2019-MARIN

18 Fpl=(14+p(1)*cos(2*xpixp(4)*t))*(p(2)+p(3)*x(2)); % Propeller force
19 Fp2=(p(2)4+p(3)*x(2)); % Average propeller force

50 Fu=p(5)*x(2)4+p(6)*x(2)*x(2); % Water force

51 f=[Fpl-Fw; Fp2-Fw]; % State & averaged state derivative

82




	Preface
	Prediction of print success for concrete 3D printing
	Introduction
	Direct printability checks
	Stress checks
	Recommendations

	Body Weight Prediction of Turkeys: From Walk to Mass
	Introduction
	Background
	Outline

	Theoretical Background
	Problem Description
	Theories

	Methodology
	Bayesian Hypothesis Testing
	Sparse Bayesian Generalized Linear Model
	Appliance of Machine Learning algorithms

	Results
	Sparse Bayesian Generalized Linear Model
	Learning Curves with Different Features
	Bloodline
	Integral Fz
	Summary


	Application of Machine Learning algorithms

	Conclusion, Discussion and Further Research
	Conclusion
	Discussion
	Further Research

	Force plate formulae

	Predicting the Removal Performance of Activated Carbon Filters in Water Treatments
	Introduction
	Mathematical model
	Original form of the model

	KWR's current approach—basic idea and issues
	Dimensionless model formulation

	Numerical methods
	Explicit scheme
	Implicit scheme
	Semi-implicit scheme

	Numerical experiments
	Conclusion and recommendations

	Boosting Ship Simulations at Marin
	Introduction
	Highly simplified ship model
	Approximate analytical solutions
	Ansatz
	Asymptotic behaviour
	Comparing numerical results and analytical approximations

	The `Method of averaging'
	Method of averaging for Marin's ships
	Introducing multiple time-steps in ship simulation

	Model order reduction using POD
	Numerical experiment using the Lorenz 96 model
	Conclusions and recommendations
	Matlab code to simulate highly simplified Marin ship model

	Synopsys: Latency Prediction for On-Chip Communication
	Introduction
	Outline

	The Challenge
	The Placement Algorithm
	Methodology

	M1: Classification
	LIBCELL
	isink vs sink: Invertor parity
	Number of sinks per driver
	Clustering of points
	Results
	RMS errors


	M2: Regression based on underlying physics, classification, and quadratic fitting
	Physical insights of the delay between source and sinks
	Regression model

	M3: A Statistical Approach on Data Set 2
	Distribution Fitting
	The AM-method

	M4: Incorporate the connection structure
	Speed of signal propagation
	Incorporating the network structure
	Constructing a speed profile

	Other network/graph features

	M5: Data-based Prediction via Gradient-boosting regression
	Problem Setup
	Gradient-boosting Regression
	Empirical Results

	Recommendations
	Conclusion

	Smart Traffic: Intelligent Traffic Light Control
	Introduction
	Company Background
	Problem Description

	Mathematical Model
	Assumptions
	Model
	Cost function

	Model Extension
	Matlab Implementation


	Other Approaches
	Markov Decision Process
	Model Predictive Control
	Predicting behaviour of neighbouring intersections
	Neural networks


	Conclusions and Recommendations


