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Abstract:
In this paper we investigate a model for the removal of pollutants in surface water via
adsorption onto the surface of activated carbon (AC). Both micropollutants and organic
matter are present in surface water due to a variety of sources such as industrial waste,
agricultural runoff and household pharmaceuticals. The presence of these contaminants
makes surface water unsuitable for drinking and so they must be filtered out. One of the
final steps in the filtration process involves using AC as an adsorbate. Models used to
estimate the removal efficiency of activated carbon for different contaminants have value
in that optimal conditions for the process of water filtration can be found, and the removal
efficiency of new contaminants can be estimated. We examined multiple approaches to
improve the computational efficiency of the model used by KWR Water and conclude by
offering recommendations based on our results.
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3.1 Introduction

We consider a problem posed by KWR Water at SWI 2019. KWR Water is a water

research institute focused on the entirety of the water cycle, providing the water industry

with solutions and advice on their operations. One of the key steps in the water cycle is

the treatment of surface water, which comprises around 40% of the drinking water in the

Netherlands. In one of the latter stages of the purification process, micropollutants and

natural organic matter (NOM) are filtered out of the water via adsorption onto activated

carbon (AC).

Carbon filtering is a common type of water purification method, since activated carbon

is considered an ideal material for filtration due to its very high porosity. During the

process the contaminants that go inside the filter are adsorbed onto each carbon parti-

cle’s surface. Due to the porous structure of the carbon particles, the contaminants then

diffuse inside the pores. The process is illustrated in Figure 3.1. Once all pore space is

covered, the carbon gets worn–out and should be changed. Not changing the filter on

time will lead to the release of certain contaminants with the outflow from the carbon

filter. Therefore simulating the process until the carbon filter becomes saturated is very

useful in operation of the process. Frutehrmore, the efficiency of this process is generally

unknown for newly detected micropollutants, which leads KWR to developing a model

to simulate the filtration process.

Figure 3.1: Illustration of water filtration via an activated carbon filter.

The model used by KWR is based on ideal adsorbed solution theory (IAST) using

principles from thermodynamics. A key feature of IAST is that the rate of adsorption

of contaminants is dependent on the other contaminants present, if any. For a more
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in-depth treatment of IAST and the thermodynamics relevant to it, the interested reader

may consult reference [2].

In this report we will reformulate the mathematical model used by KWR water and will

further propose numerical methods, which can be used to solve two of the main problems

of the company—robustness of the omputational methods (at present, KWR water solver

does not always converge to a solution), large run-times for some numerical experiments.

Figure 3.2: Schematic of the adsorption process in water filtration from [1].

The organisation of the report is as follows. In section 3.2, the IAST model used by

KWR Water is examined and a reformulation in dimensionless quantities is presented.

Section 3.3 describes the approach of KWR water for finding the solution of the problem.

Section 3.4 presents the approaches we used to address the issues KWR Water had in their

approach and Section 3.5 contains results from numerical experiments for troublesome

values of the model parameters. We conclude in Section 3.6 by offering recommendations

on how to improve the simulations based on our results.

3.2 Mathematical model

The process of carbon filtration is modelled in [1] by a system of partial differential

equations. For each compound the concentration of micropollutant or natural organic

matter is described by a one-dimensional convection-adsorption equation. Diffusion is

assumed to be negligible in comparison to convection and the water flow rate is assumed

to be constant.

The equation for the concentration is coupled to an equation describing the load on

the carbon.

3.2.1 Original form of the model

Let ci(x, t) and qi(x, t) be the concentration and load of compound i inside the carbon at

time t at the point x.
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Let t ∈ [0, T ] and x ∈ [0, X], where x = X corresponds to the inlet of the carbon

filter.

Then carbon filtration is modelled by the following system of PDEs, following [1]:

∂ci
∂t

=
ν

ε

∂ci
∂x
− ρ1− ε

ε
γ (Qi − qi) ,

∂qi
∂t

= γ (Qi − qi) .
(3.1)

We close the PDE system by imposing the following initial and boundary conditions:

ci(x, 0) = 0, qi(x, 0) = 0, ci(X, t) = cin.

Let us consider the physical meaning of the terms in each equation:

• In the equation for the concentration ci, the term ν
ε
∂ci
∂x

is a convection term, where ν

is the constant velocity of the water flow and ε is the filter bed porosity. The term

ρ1−ε
ε
γ (Qi − qi) describes the adsorption, where Qi is the load of compound i on

the surface of the carbon and γ = 6·10·Ds

d2p
is the rate of transfer of a compound into

the pore [1]. Here, Ds is the intraparticle diffusion constant and dp is the particle

diameter. The parameter ρ is the density of the carbon, so that ρ1−ε
ε

is the mass

of carbon per volume unity.

• The equation for the load describes the change of the load due to surface diffusion.

The load on the surface of the carbon, Qi, can be computed, based on empirical laws.

If we assume there is only one compound in the water then Qi can be determined by the

Freundlich isotherm

Qi = KF,ic
1
ni
i , (3.2)

where KF,i and ni are the so called Freundlich parameters of compound i. If there are

multiple compounds in the water, there is competition between the different compounds

and adsorption is limited. This competition can be modeled using Ideal Adsorbed Solu-

tion Theory (IAST) [1]. In this report, we will not go in further detail about IAST, since

for our computations we assumed for simplicity that there is only one compound in the

water.
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Table 3.1: Model parameters

parameter description order of magnitude
γ[1

s
] rate of transfer of a compound into a pore ∼ 10−6

ν[m
s

] velocity of the water flow ∼ 10−1

cin[mol
m3 ] initial concentration ∼ 10−2

ε[−] filter bed porosity ∼ 100

ρ[ g
m3 ] density of the carbon ∼ 106

KF [mol
g

(
m3

mol

)1/n

] mass based Freundlich constants ∼ 10−2

1/n[−] Freundlich exponent of compound ∼ 0

3.3 KWR’s current approach—basic idea and issues

KWR water uses the original form of the model (3.1) to model carbon filtration. To

solve the partial differential equations, KWR water discretises space to obtain a system

of ODEs. To solve the system of ODEs, KWR water uses a build-in Python solver.To

take the competition betweem micro-pollutants and natural organic matter into account

a Python built-in package for IAST is used. Figure 3.3 shows a sketch of the approach.

IAST +ODE 
solver

 

IAST +ODE 
solver

IAST +ODE 
solver

Figure 3.3: Sketch of the approach of KWR water for simulating carbon filtration.

As mentioned in Section 3.1, two main problems occur when using the Python solver—

for some parameter values the solution does not converge or takes too much time to

compute. Our goal was to localise the problem with the current approach and suggest

a numerical scheme that is more robust and more efficient. For simplicity we assumed

there is only one compound in the water. So we assume there is no competition, therefore

we can ignore IAST. The reason for this assumption is that we think the problem of the

current approach is due to using the Python built-in ODE solver and that the IAST

method does not cause any problems.

57



Proceedings of the 148th European Study Group Mathematics with Industry

In this respect, we note the following. To solve the system of ODEs the built-in Python

solver uses adaptive numerical methods with a high order of convergence. However, the

spatial discretization introduces a first-order approximation error and it is impractical to

use high order methods for integration over time.

Thus, in the following sections we construct several different numerical methods and

implement them in Mathematica and MATLAB for numerical experiments.

3.3.1 Dimensionless model formulation

Before setting up numerical schemes, we rewrite the system of equations (3.1) in dimen-

sionless quantiities in order to decrease the number of parameters in (3.1). Also, this

might reduce the problems in numerical schemes caused by different orders of magnitude

of parameters, see Table 3.1.

We perform the change of variables

t = γt, x =
γ

ν
x, ci =

ci
cin
, qi =

ρqi
cin

. (3.3)

Hence, the system of equations (3.1)-(3.2) now becomes

∂ci
∂t

=
1

ε

∂ci
∂x
− 1− ε

ε

(
Qi − qi

)
(3.4)

∂qi
∂t

= Qi − qi, (3.5)

Qi =
ρ

cin
KF,iMW

1
ni−1

i (cinci)
1
ni , (3.6)

where MW is the molar weight of the compound and Qi is a function of ci . Very

important effect due to rescaling of the variables is the change of the boundary conditions.

Namely,

c(x, 0) = 0, c(X, t) = 1, q(x, 0) = 0. (3.7)

Therefore, from now on, we always solve this reformulated model. Also, we omit the bars

above the c and q.

3.4 Numerical methods

The temporal domain is [0, T ] and the spatial domain is [0, X], for some parameters T

and X. We discretize the domain with the mesh (xk, tl), where xk and tl are defined as

follows
xk = k∆x, k = 0, . . . n, n = X/(∆x),

tl = l∆t, l = 0, . . .m, m = T/(∆t).
(3.8)
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We denote by clk and qlk approximations of c(xk, tl) and q(xk, tl). Taking initial conditions

into account, we define c0
k = 0, q0

k = 0 for k = 0, . . . , n.

3.4.1 Explicit scheme

First we set up an explicit scheme for solving the problem (3.4)-(3.7). The main idea

behind any explicit scheme is to calculate the value of an approximation at a later time

from the value of an approximation at the current time. Hence, replacing the derivatives

by corresponding finite-difference representations, we obtain following system of algebraic

equations

cl+1
k − clk

∆t
=

1

ε

clk+1 − clk
∆x

− 1− ε
ε

(
Q(clk)− qlk

)
(3.9)

ql+1
k − qlk

∆t
= Q(clk)− qlk, (3.10)

for l = 0, . . .m − 1 and k = 0, . . . n − 1. For k = n we have boundary condition cln = 1

from which we compute ql+1
n using formula (3.10). This scheme is straightforward to

implement due to the fact that we calculate the solution in the time step l + 1 explicitly

using the information we obtained in the step l. Hence, we get the following algorithm.

For l = 0, . . . ,m− 1:

For k = 0, . . . , n− 1:

cl+1
k =

1

ε

∆t

∆x
clk+1 +

(
1− 1

ε

∆t

∆x

)
clk −

1− ε
ε

∆t(Q(clk)− qlk),

ql+1
k = (1−∆t)qlk + ∆tQ(clk),

For k = n:

cl+1
n = 1, ql+1

n = (1−∆t)qln + ∆tQ(cln).

The function Q is defined as Q(c) = ρ
cin
KFMW

1
n−1

i (cinc)
1
n . Now we describe disad-

vantages of this method. Recall that we want cl+1
k ≥ 0, since c represents concentration.

In order to achieve this, we rewrite the equation (3.9) as

cl+1
k =

1

ε

∆t

∆x
clk+1 + clk

(
1− 1

ε

∆t

∆x
− (1− ε)

ε
∆tKFMW

1
n−1 clk

1
n
−1
)

+
1− ε
ε

qlk. (3.11)
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Therefore, in order to ensure that cl+1
k stays non-negative, we derive condition on ∆t:

∆t ≤ 1
1

∆xε
+

1− ε
ε

KFMW
1

n−1 (clk)
1/n−1

(3.12)

Notice that cki � 1 and 1/n−1 < 0. Therefore, ∆t must be very small in order to ensure

cl+1
k ≥ 0, which represents a numerical obstacle that is hard to overcome. Therefore, we

turn our attention to the implementation of implicit and semi-implicit methods which do

not have such a strict requirement on the smallness of ∆t.

3.4.2 Implicit scheme

In contrast to the explicit scheme, an implicit method finds a solution by solving an

equation involving both the current state of the system and the next one. Replacing the

right-hand-sides in the system (3.1) with the corresponding finite-difference approxima-

tions, we get the following scheme:

cl+1
k − clk

∆t
=

1

ε

cl+1
k+1 − c

l+1
k

∆x
− 1− ε

ε

(
Q(cl+1

k )− ql+1
k

)
(3.13)

ql+1
k − qlk

∆t
= Q(cl+1

k )− ql+1
k , (3.14)

for l = 0, . . .m − 1 and k = 0, . . . n − 1. If we denote with cl and ql the vectors

cl = (cl1, . . . , c
l
n−1, 1) and ql = (ql1, . . . , q

l
n), we get the following algorithm.

For l = 0, . . .m− 1:

cl+1 − ∆t

ε
F (cl+1) + ∆t

1− ε
ε

G(cl+1,ql+1) = cl, (3.15)

ql+1 −∆tG(cl+1) = ql (3.16)

(3.17)

where vector functions F and G are defined as

F (cl+1) =

[
cl+1
k+1 − c

l+1
k

∆x

]
(3.18)

G(cl+1,ql+1) =
[
Q(cl+1

k )− ql+1
k

]
(3.19)

Notice that cl+1 and ql+1 are vectors of dimension n. Therefore, in each time step the

numerical solver has to find roots of the system of 2n− 1 coupled equations.
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After implementing the method in MATLAB, the task of finding roots (cl+1,ql+1) of

nonlinear equations (3.15) and (3.16) seemed to be too difficult, especially for values of

1/n close to 0. MATLAB function fsolve often resulted with the message that step size

became too small and it could make no more progress. Hence, we turned our attention

to developing and implementing a semi-implicit scheme.

3.4.3 Semi-implicit scheme

Semi-implicit schemes are a compromise between explicit and implicit numerical meth-

ods, which both suffer from its standard drawbacks. The explicit method requires very

small time step in order to converge while an implicit method brings difficulties in the

form of finding roots of highly nonlinear multivariable functions. One possible approach

to tackle both problems is to treat some terms explicitly and the others implicitly. Since

the requirement in explicit scheme on smallness of ∆t comes from the nonlinear adsorp-

tion term Q, we have decided to treat that term implicitly in the calculations of the

concentrations ck. Hence, we get the following finite-difference approximation of (3.1).

ql+1
k − qlk

∆t
=
Q(clk)− qlk

∆x
cl+1
k − clk

∆t
=

1

ε

clk+1 − clk
∆x

− 1− ε
ε

(
Q(cl+1

k )− ql+1
k

)
,

(3.20)

for l = 0, . . .m− 1 and k = 1, . . . n− 1. Therefore, we propose the following algorithm.

For l = 0, . . . ,m− 1:

For k = 0, . . . , n− 1:

ql+1
k = (1−∆t)qlk + ∆tQ(clk), (3.21)

cl+1
k + ∆t

1− ε
ε

Q(cl+1
k ) =

(
1− ∆t

ε∆x

)
clk +

1− ε
ε

ql+1
k (3.22)

For k = n:

cl+1
n = 1, ql+1

n = (1−∆t)qln + ∆tQ(cln).

Notice that we have reversed the order of equations. First we calculate ql+1
k using an

explicit forward finite-difference formula. Then we find the value cl+1
k as a root of a

nonlinear equation (3.22).
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3.5 Numerical experiments

In this section, we shall present results from numerical simulations, corresponding to pa-

rameter values shown in table 3.1, that led to difficulties in the current version of KWR’s

software. The numerical results are based on an implementation of the semi-implicit

scheme (3.20) that we derived in the previous section. The numerical domain in non-

dimensional units is defined by x ∈ [0, 1], t ∈ [0, 150000]. The latter corresponds to a

simulation of more than one year in the physical time domain. The space-discretization

step is chosen to be h = 0.1 and the time-discretization step is ∆t = 1. For all of the

simulations we consider the following values of the model parameters, proposed by KWR

water: γ = 2.45× 10−12, ε = 0.4, ρ = 440000 and ν = 0.144.

We shall present results for two different compounds—natural organic matter (NOM) and

a micropollutant, namely Furosemide. We believe that the difficulties in the numerical so-

lution, if they exist, should be clearly visible even in the case of a single compound. Thus,

we present results for this simple case. It can be further generalized by implementing

IAST for multiple compounds.

Example 1. We choose parameter values Kf = 0.018 and 1/n = 0.9, corresponding to

NOM. Results for c(t) and q(t) are depicted in Fig.3.4 and in Fig.3.5, respectively. The

rightmost edge (i.e., x = 1) corresponds to the top of the filter, where the inlet boundary

condition is imposed, and x = 0 corresponds to the bottom.

As can be seen from the pictures, the qualitative behaviour of the numerical solution

seems to be physically plausible, given the time the filter gets ”exhausted”, starting from

the top and progressing to the bottom. Following this, the concentration of the contam-

inant in the water gets also gradually increased, until at the bottom the concentration

gets equal to 1, thus, the filter is completely exhausted.

Example 2. In this second example, we use parameter values Kf = 0.34608 and 1/n =

0.0574, corresponding to the micropollutant Furosemide. The corresponding results are

presented in Fig.3.6 and Fig.3.7.

As can be seen, for the micropollutant it takes more time for the filter to get exhausted,

which can also be expected.

Further experiments were conducted with various model parameters, provided by

KWR water, corresponding to compounds that KWR water’s software was not able to

simulate. All the experiments ran successfully and showed similar qualitative behaviour.

Thus, we omit them here in order not to make the presentation unnecessarily complicated.
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Figure 3.4: Results for the concentration c in log–scale, natural organic matter, for
T = 4000, T = 10000, T = 100000 and T = 150000.

Figure 3.5: Results for the load q in log–scale, natural organic matter, for T = 4000,
T = 10000, T = 100000 and T = 150000.
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Figure 3.6: Results for the concentration c in log–scale, micropollutant, for T = 4000,
T = 10000, T = 100000 and T = 150000.

Figure 3.7: Results for the load q in log–scale, micropollutant, , for T = 4000, T = 10000,
T = 100000 and T = 150000.

Concerning computational times, when ran on a PC in Wolfram Mathematica, the
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simulations take about 15 min. Of course, the computations are expected to be much

quicker, when the algorithm is implemented in a compiled programming language.

3.6 Conclusion and recommendations

In the present work, we have considered a well-known mathematical model, describing

the process of filtering water by carbon filters. We have pointed out numerical difficulties

that the company KWR water was facing, when trying to solve the corresponding system

of PDEs. Thus, we have conducted the following steps that seem to give very good results

towards solving the problem:

• We have rewritten the mathematical model in dimensionless quantities and hence,

reduced the number of parameters;

• We have constructed a semi-implicit finite-difference scheme that seems to be solv-

ing the numerical stability problems in the present algorithms. Furthermore, we

believe that the correct way to attack this problem is by implementing such an

semi-implicit scheme. Many built-in ODE solvers, especially those using adaptive

time steps, do not seem to be appropriate for this problem.

Due to the lack of time, we have carried out experiments that include only one compound

in water. We suggest that the next step should be to include multiple compounds, using

IAST. The generalization should be realtively easy. Further numerical experiments and

comparison to empirical observations are needed, in order to validate the applicability of

the proposed approach.
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