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Abstract:
Force plates are useful for examining kinetic movements of turkeys. They provide infor-
mation about the external forces when a turkey stands or walks on them. Such collected
time series data can be used to calculate the weight force and body mass of a turkey.
Obtaining data of a high quality and minimum error requires understanding a force plate,
good control of data collection, as well as accurate process of transferring data and anal-
ysis.
The aim of this article is to investigate how some mathematical and statistical models,
combined with machine learning procedures, can help to predict body weight of turkeys
based on electrical signals from a force plate. The authors also provide a discussion
about techniques for arranging force plates and a scientific method of data collection to
assist with a few practical examples of how force plates and mathematical models can
be used to reduce manual workload. This work was done jointly with Hendrix Genetics,
who in particular provided the data.
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2Université d’Évry Val D’Essonne, France
3University of Mondragon, Spain
4Wageningen University, The Netherlands
5University of Oxford, UK
6University of Bath, UK

29



Proceedings of the 148th European Study Group Mathematics with Industry

2.1 Introduction

The problem of predicting the body weight of turkeys by using a force plate was raised

by Hendrix Genetics. This introduction section will briefly explain the business interest

of the company and why solving the problem could be valuable for the sector and the

commercial values of Hendrix Genetics. The main focus of our report is to demonstrate

the potential use of statistical models and machine learning techniques to be applied to

the problem. However, we aim to present the report in a way that it is also accessible for

non-experts in the field.

2.1.1 Background

Hendrix Genetics is a Dutch multispecies animal breeding, genetics and technology com-

pany and one of the world’s leading breeders and distributors of turkeys and laying hens

(fig. 2.1).

Figure 2.1: Hendrix Genetics has breeding programs in turkeys, layers, traditional poul-
try, swine, salmon, trout and shrimp. They look for innovative, sustainable solutions,
together with the entire animal protein chain. At the start of the chain, through better
breeding, they have a big influence on the outcome at the consumer level.

The core business consists of the following four steps:

• data collection is carried out for one generation of one breeding species;
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• genetic evaluation methods are used for understanding the physical features of that

generation;

• animals’ selection strategies are outlined based on the genetic evaluation of the

generation;

• strategies are considered for breeding the future offspring of the considered gen-

eration. Selected individuals will become the new generation to be studied and

evaluated through the whole process again.

An important feature of turkeys is their body weight as it can be used to monitor

their development. The current practice for weighing these animals is by picking them

up and standing with them on a scale. As these animals can weigh up to 25 kilos, this is

a slow and labour intensive task which can potentially be stressful for the animals. As a

consequence, the animals are not weighed as often as people would want to.

One way of weighing the animals more often and at the same time improving animal

welfare is the use of an automated setup for weighing the turkeys. One way of automating

weight readings is to measure the turkeys when they walk across a force plate. This way,

measurements can be taken each time a turkey crosses the force plate while the animals

remain unhindered. A force plate gives of a set of varying electrical signals as long as

the animal walks on the force plate. The idea is that the signals are linked in some way

to the weight of the turkey. In this study, we will investigate if and how we can use

the electrical signals from the force plate to predict an animal’s body weight. For this

purpose we have a set of roughly 200 animals that have walked across a force plate and

also have their body weight manually determined. We will use different mathematical,

statistical and machine learning approaches to this end.

2.1.2 Outline

In our report, we will examine the problem in four main sections:

• In Section 2.2 we approach the problem by explaining how the problem at hand can

be linked and translated into mathematical language. We discuss in particular how

physical values of forces can be calculated from the output signals of force plates.

• In Section 2.3 we present the mathematical and machine learning models we used to

approach the problem. We introduce our four models: Bayesian hypothesis testing,

sparse Bayesian generalized linear model, Linear Regression and Random Forests.
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• The Results section presents and compares the results from all four models. Each

model has its advantages and disadvantages in dealing with different types of input.

At the same time, the outputs of the models presents insights of our problem of

determining the weight of turkeys from different perspectives.

• In the last section, limitations and applications of the models, practical advice on

improving data collection and modifying models with new data, are discussed.

2.2 Theoretical Background

2.2.1 Problem Description

We want to develop a model that can accurately predict turkey body weights using a

force plate, removing the need to manually weigh the birds on a scale. The challenge of

this project is to develop an innovative model to predict body weight and maybe other

features from the plate measurements. A model is considered accurate enough when the

mean average error is 50 grams.

A force plate is simply a metal plate with one or more sensors to produce an electrical

output proportional to the force on the plate. One of the applications of the force plate

is to measure the reaction force of the ground on each foot while walking. Since here we

are studying an animal, not a human being, and the fact that we can not tell an animal

to walk properly, it is better to replace ”walking” with ”motion”. So apart from walking,

the movement can include standing, running, jumping and whirling. Accordingly, the

time-series records that we have for the turkeys probably are related to a combination

of all types of movements. As a result, although this information shows some interesting

details of the motion process, it cannot be fully understood and analyzed. Now, in order

to estimate the body mass through the dynamic force measurements, it will definitely be

useful to study each type of movement separately.

Let’s start with the easiest one which is ”standing”. If a turkey stands on the force

plate, a force roughly equal to Mg is recorded. Here, because we are interested in

body weight, when we say ”force”, it means the vertical component of force (Fz). An

accurate Mg can be recorded, when the turkey is completely stable and maybe with

the center of mass on the vertical line passing through the turkey legs. Any imbalance

and consequently a change in the center of mass eliminates this accuracy and causes the

force to be greater/less than Mg. During walking, Fz initially rises from zero to the

maximum Mg, then goes below Mg and repeats a similar process and eventually arrives

at zero again at the end. This is definitely related to the 3D motion of the center of

the mass. Considering a 2D picture in the vertical axis and the direction of movement,
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the center of the mass follows a swinging curve path. The same analysis is expected to

be at least qualitatively valid for ”running”, since running can be seen as walking with

high speed. Let us stop here and assume that motion only involves standing, walking

and running, so it can be argued that the maximum Fz/g can be an acceptable, though

rough, estimate for mass. This conclusion is supported by our result shown in Fig. 2.2,

which compares actual weights with the max and mean values of Fz/g. However, this

argument is challenged if we add jumping to move. This is due to fact that by jumping a

force much greater than Mg will be recorded. The force generated by jumping is pretty

much the same as that of a bouncing ball. The last type of motion considered here,

whirling, is perhaps the most complex one. With that in mind, the only thing we can

easily understand is that the force will be lower than that of jumping. Further details on

the force plate, along with a comprehensive analysis of various types of motion, can be

found in the well-cited study of [2]. The complications mentioned are part of the reason

we prefer machine learning techniques to a model based on physics.

Figure 2.2: Actual weights of the turkeys, max and mean values of Fz/g. Individual
turkeys are indexed on the x-axis.

Kistler force plates are useful tools in many areas as clinical research, performance

diagnostics and motion analysis. Hendrix Genectics used this force plate to perform a

gait analysis in 200 turkeys. The force plate output voltages (eight channels) are used to

compute ground reaction forces, moments, center of pressure and coefficients of friction

as seen in Appendix 2.A.

We are interested to find a model that can accurately predict turkey body weights

using the force plate outputs. The turkeys walks over the force plate approximately for

15 seconds while voltages are measured per centisecond. This information results in time
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series of 1500 measurements for each turkey in each channel. This data together with the

computed forces, the blood line (identified as 1 or 2) and the actual weight of the turkey

constitutes the database we work with.

2.2.2 Theories

The authors of [4] measure the body weight with smart insoles. Their methodology is

based on Newton’s second law, which states that the net force is equated to the product

of the mass times the acceleration. When integrating all forces in the vertical direction

(plane-z) over time, it leads to the next equation:∫ HSR

HSL

(FZL + FZR +W )dt = m

∫ HSR

HSL

azdt, (2.1)

where FZL and FZR are the vertical forces from the left and right foot respectively.

Furthermore az is the gravitational acceleration and W is the body weight. In their

experiment, participants start with their left foot and finish with the right one, therefore

the measurement starts from the first left heel strike HSL until the last right heel strike

HSR. They stated that mean vertical velocity is zero in level walking, thus
∫ HSR
HSL

azdt =

0. Assuming the body weight does not change over the short period of the test, it leads

to the following equation:

−W =

∫ HSR
HSL

(FZL + FZR)dt

tHSR − tHSL
(2.2)

The integral (2.2) will be used as a variable in some of our models, computed taking

the total force Fz exerted by the two foot. Figure 2.15 from [1] shows the typical form of

the curve of the vertical ground reaction force Fz over time when a person is in the stance

phase (foot in contact with the ground) of the gait cycle. The curve has two peaks that

surpass the body weight and in the middle of these two peaks, a minimum is attained.

The curve starts once the foot contacts the ground and finishes once the heel lifts away

from the ground.
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Figure 2.3: Vertical ground reaction force Fz.

2.3 Methodology

2.3.1 Bayesian Hypothesis Testing

One approach which suggests itself for tackling this problem would be Bayesian hypothesis

testing. To see this we note that before any turkey walked across the force plate, the

farmer/breeder of the turkeys will likely have an initial guess at what the weight should

be. After a measurement from the force plate has been recorded, the farmer would have

a better estimate of the turkey’s weight. However, given the measurements are noisy, the

farmer has an estimate for the turkey’s weight after the measurement, but with a degree of

uncertainty. Assuming the farmer could force the turkey to repeatedly walk over the force

plate, with more measurements, the farmer would hopefully become more certain about

the birds weight if the readings were consistent, and less certain if the readings were very

noisy or contradictory. The process of updating some initial estimate of the birds weight

as data becomes available is naturally modelled using a Bayesian updating scheme and

can be posed as a hypothesis testing problem. Furthermore, if a farmer wished to know a

turkey’s weight to a given confidence, this approach would predict when the farmer can

remove a turkey from the force plate, and when he requires more readings and longer

measurement periods. For a more detailed treatment of the mathematics underlying this

section we recommend the reader to Grindrod [3, Chapter 5].

To begin by establishing the mathematical framework, let us denote P(A) as the

probability of an event A happening, P(A ∩ B) as the probability of both A and B

happening, and P(A | B) as the probability of A happening given that event B has

happened (called a conditional probability). We can relate these three quantities using
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Bayes’ theorem [3, pages 219–223]

P(A | B) =
P(A ∩B)

P(B)
. (2.3)

We can denote the set of previously recorded/known observations as D, and a new

observation d. Before observing the data we may have a hypothesis H for what the

turkey’s weight is, and the alternative hypothesis Hc. Based on the newly observed data

we would like to update our belief that H is true or false. This can be achieved by trivially

manipulating eq. (2.3) into the Bayesian updating scheme

P(H | D, d)︸ ︷︷ ︸
Posterior

=
1

P(d)︸ ︷︷ ︸
Normalisation

P(d | H,D)︸ ︷︷ ︸
Model

P(H | D)︸ ︷︷ ︸
Prior

. (2.4)

The question is then, how can we apply Equation (2.4) to the problem of weighing a

turkey? This is easily done, where the first step is to realise that the weight of the turkeys

is a continuous property, and hence we must discretise the turkey’s weight into certain

levels. These could be very coarse discretisations, or arbitrarily fine discretisations, where

for mathematical and computational purposes the latter will be more convenient. Our

hypothesis then is that the weight w of a turkey is in a weight class Wi. In this case we

can write Equation (2.4) in the form

P(w ∈ Wi | D, d) ∝ P(d | w ∈ Wi, D)P(w ∈ Wi | D) (2.5)

where we have ignored the normalisation factor, (which is trivially implemented).

The next question is, what are the data which we observe? The observations ulti-

mately come from the force plate in the form of a force profile as in Figure 2.4. From this

we can extract various possible features to act as the new observation d and we show some

possibilities in Figure 2.5. For the sake of ease and simplicity to demonstrate the method

we will present the following results using the value of the maximal force difference as

our observed feature d, which is depicted in the bottom left of Figure 2.5, which we call

the variation in Fz.

The first and easiest part of implementing this scheme is coming up with a prior

estimate for a turkey’s weight. In the presence of prior knowledge, a good choice is to use

the empirically observed distribution of weights for the turkeys. This prior distribution

is shown in Figure 2.6. (An even better prior would be the last posterior distribution for

an individual turkey on a previous occasion, provided it is available and the turkey can

be identified).
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Figure 2.4: Characteristic force profile as a turkey walks over a force plate.

Observable features

Figure 2.5: Some possible observable features which can be extracted from Figure 2.4.
For much of our discussion we use the maximal force difference, which is the bottom left
feature.
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Prior

Figure 2.6: A prior model for the turkey’s weight.

Having a prior, we can construct a model. The easiest way to do this is to empirically

see if a feature is non-uniform across weight classes. This can be readily done by seeing

the empirical distribution of a feature and the corresponding weights. The model can be

constructed from this by a simple kernel density estimate (KDE), where for our purposes

we use a Gaussian KDE. An example of such a Gaussian KDE is shown in Figure 2.7.

Having constructed a model, we can evaluate the model update in Equation (2.5) for

a given weight class by using the value of the normalised margin for the given weight
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class (depicted by the horizontal region in Figure 2.7). For a different weight class we

update similarly, ensuring the marginals are normalised. After this update we only have

to normalise the posterior distribution is normalised.
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Gaussian KDE

Figure 2.7: The Gaussian KDE formed by considering the variation in Fz. On the right
we show two marginal cross sections for two different weight classes and a value for a new
observation.

Having outlined how we construct the Bayesian model and apply Equation (2.5), it

is informative to see how the prior changes for a given observation. A demonstration

showing the difference between the prior and posterior is shown in Figure 2.8.

16 18 20 22 24 26 28 30
Weight (kg)

Prior
Posterior

Figure 2.8: A posterior model of the turkey’s weight.

It is then a matter of discretion about how to measure the accuracy of such a scheme.

Should the predicted weight be the most likely weight, the expected weight, the median,

etc. Similarly, how should the error be measured? As we have a probability distribu-

tion we could now measure the classification performance using either the RMSE, or a

weighed RMSE, where we use the posteriors inverse variance as a weighting. There are

several possibilities that can be explored here, and this is left as an avenue for further
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Figure 2.9: The points represent for each considered individual its predicted weight from
a simple Bayesian hypothesis testing scheme.

investigation. If we take the most likely weight as our predicted weight, then we can

compare the effectiveness of such a classification scheme, as shown in Figure 2.9.

To see the improvement achieved from only using a single feature (recall that we

suggested several in Figure 2.5) we can compare the RMSE from using only the prior

to the posterior. Using just the maximal value of the prior the RMSE was 4.3 kg, and

using the mean of the prior gives a RMSE of 2.8 kg. Using just the maximal value of the

posterior gives an RMSE of 2.1 kg, and using the mean gave 2.0 kg, although this latter

improvement in going from the maximum likelihood estimate to the mean is likely not

statistically significant.

2.3.2 Sparse Bayesian Generalized Linear Model

The first step in this work was to clean up and visualize the data in aid of the analysis.

First, we removed duplicate data. Second, we inspected the time series of the 3D forces

per turkey. We classified the time series manually in terms of their shape and baseline

offset. Furthermore, we eliminated incomplete or dubious time series.

We extracted the main peaks from the time series to filter out the signals before

and after a turkey walked over it. We extracted the beginning and end-points from the

(vertical) z-force time series as they are the more consistent in shape than the x-, and

y- forces. We performed this selection with the help of two lines defined by the initial,

final, maximum and mean observations (Figure 2.10). The horizontal coordinate of the

maximum observation and the mean of the time series formed one point of both lines.

The initial and final points defined the second points of both lines. The beginning and

end of the measurements were defined by the maximum distance between these liness and

the time series. The reasonable location of the starting and end points were manually
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inspected for all turkeys. The baseline was defined as the line between the extracted

starting and end points and was corrected for. The baseline of the forces in the x-,

and y- directions were corrected for in a similar fashion, but the signals themselves were

transformed on absolute scale.

Figure 2.10: Extracting the measurement portion of the z-force (vertical) time series for
a turkey with Wing band number 10071. The vertical axis reflects the measured mass,
and the horizontal axis the time. The blue points are the measurements. The green
lines connect at the mean force during the entire measurement process at the horizontal
location of maximally measured force. They start at the beginning and end of the time
series. The maximum distance (d) below the light green lines and above the measurement
curve determines the start and end of the turkey measurement process as visualized by the
horizontal red lines. The purple line connects the start and end point of the measurement
process and marks the adjusted linear baseline.

The bodyweights Y of turkeys i were modelled according to eqs. Equation (2.6)-

Equation (2.10), where Normal and Cauchy+ indicate normal and positive Cauchy dis-

tributions; µi is the expected weight of turkey i; σ is the scale (standard deviation) of

the measurement noise; α is the average weight of turkeys from line 1; Line2i is a logical

variable that indicates if turkey i belongs to line 2; β is the difference between the aver-

age bodyweights of turkeys from lines 2 and 1; γj,k indicates the effect of a force curve

quantile k for the j force (mx, my, or mz); Xj,k indicates the quantiles k for the force j

at 1% intervals (i.e. 0% , 1% , 2% , ..., 100% ) for each turkey i ; τ is the global scale

parameter of a horseshoe prior, whereas λs are the local scale parameters; p0 are the

expected number of non-zero parameters in the model, out of all D parameters; n is the

total number of observations (turkeys); and τ 0 is the scale of the parameters. The normal

distribution is used to capture the measurement noise of turkey weight estimation. We
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estimated the average bodyweight per genetic line of turkeys and refined the estimation

per turkey with the help of the x-,y-, and z-force quantiles. It should be noted that the

quantiles of the x-, and y- forces were taken from their absolute measurements. In addi-

tion, the quantile predictors were standardized by subtracting the mean and dividing by

the standard deviation. The effects of the quantiles were modelled with a horseshoe prior.

The horseshoe prior induces sparsity (i.e. near zero effects) if the effects of the predictors

were too small to be distinguished from the measurement noise. It models the effects

as normal distributions with Cauchy distributed scales. The global scale parameter τ is

related to the scale of the measurement noise σ and determines the effects (parameters)

that are large enough to be explained by the measurement noise alone.

Yi = normal (µi, σ) (2.6)

µi = α + β · Line2i +

nforces∑
j=1

nquantiles∑
k=1

γj,k ·Xj,k (2.7)

γj,k ∼ Normal (0, τ · λj,k) (2.8)

λj,k ∼ Cauchy (0, 1)+ (2.9)

τ =
p0

D − p0

· σ√
n
· τ0 (2.10)

In the spirit of Bayesian statistics, we provided prior information for the parameters.

We assigned a standard normal prior to the measurement error since the force plates are

expected to provide accurate measurements within 1 kg accuracy. Furthermore, we put a

normal prior with mean of 20 kg and standard deviation of 2.5 kg since the average weight

of adult turkeys is expected to be in the range of 15-25 kg on the basis of the information

provided in the presentation from Hendriks Genetics. The scale of the difference between

lines should be the same as the scale of the average turkey weight. Also, the standardized

quantiles are expected to improve the accuracy of turkey estimates beyond the turkey

line average by no more than the scale of the average turkey weight. Thus, the global

scale of the parameters was set to 2.5 kg.

Lastly, we estimated the leave-one-out root-mean-square-error (LOO-RMSE) by pareto

smoothed importance sampling (PSIS). This is a fast approximation to the LOO-RMSE

obtained from leave-one-out cross validation.
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Table 2.1: Prior distributions for the parameters in the model.

Parameter Designation Prior
σ Scale of measurement

error
Normal(0,1)

α Average weight of
turkeys from line 1

Normal(20,2.5)

po Expected non-zero pa-
rameters in the model

10.5 out of 21
(i.e. 50% )

τ o Scale of parameters Cauchy+(0,2.5)

All analyses were carried out with the program R, and the packages gdata, lattice,

ggplot, rstan, rstanarm, loo, brms, plyr, dplyr, and quantmod.

2.3.3 Appliance of Machine Learning algorithms

In this approach, the aim was to discover the capacity of the regressor models to predict

the target value, based on the attributes that complement it. For this, tests have been

carried out with Machine Learning regression algorithms: Random Forests (RF) and

Multiple Linear Regression (MLR). In the same way, we wanted to know its performance

using all the attributes (a.k.a. variables), or using only those that were more correlated

with the target variable.

MLR has been used because it is the most basic regression algorithm. With this, it

was intended to demonstrate the usefulness of the attributes and their selection to solve

the problem. On the other hand, RF has been used to check if with a more sophisticated

regression algorithm the results can vary.

First the data has been pre-processed. As can be seen in Figure 9, there are entries

in which the peaks are not clearly defined. In some cases there is more than one peak

for the same entry (5), and in others the capture of the signal has not been completed

(7). Therefore, we decided to eliminate those data that contain incomplete or duplicate

entries. For the rest of the cases, the signal has been cut to work only with the part in

which the peak is represented. Once the signal relative to the peak has been cut, the

equivalent cut-off signal is obtained for the rest of the signals.

All these analyses were carried out with the programming language Python, and the

libraries matplotlib, pandas, scikit-learn and numpy.
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2.4 Results

2.4.1 Sparse Bayesian Generalized Linear Model

Characteristic measurement time series can be seen in Fig. 2. The typical time series

(Figure 2.11.1) constitutes of two peaks in the vertical z-force that likely reflect the two

steps of a turkey. However, the second peak is always lower than the first. What is more,

the baseline does not return to 0 after a bird steps of the force plate but goes to negative

values. The direction, number of peaks, and shape of the x- and y- force time series are

highly variable and unpredictable. Many turkeys have been measured before the z-force

measurement returned to the null baseline (Figure 2.11.2). In some time series it looks

like that if a turkey walked fast and that the two steps appear as 1 (Figure 2.11.3),

whereas others seem to show a turkey making many slow steps (Figure 2.11.4). Unfortu-

nately, there are time series with two distinct signals (Figure 2.11.5), though sometimes

it is possible to filter out the likely walk of the turkey from the (smaller) sensor distur-

bance (Figure 2.11.6). Finally, there are incomplete time series that suggest that the

measurement process started too late (Figure 2.11.7). Turkey measurements of the later

type were removed from further analysis.

We extracted the portion of the time series of all forces when the turkey walked

by filtering the time series of the z- force (Figure 2.12.1). We then adjusted for the

dynamically sinking or raising baseline of all forces (Figure 2.12.2-3). This step did not

seem to fix the consistently higher z-force(vertical) peak of the first turkey step, but it did

centre the time series around the null baseline. The algorithm that we employed seemed

to work on manual inspection of the time series of all turkeys (not shown). It should be

noted that the estimated baseline for the x-, and y- forces can be positive because the

signal can be positive or negative depending on which leg the turkeys make the first step

with.

Fitting the model on the full dataset yielded a measurement error with a scale (stan-

dard deviation) of 0.75 kg with a standard error of 0.05 kg. This implies that for 95

(%) power, the same turkey needs to be measured ca. 5848 times to estimate its weight

with the desired within 0.05 kg accuracy. This method is comparable to the others as

the correlation between the fitted values and the data is 0.93 (Figure 2.13.1), and cross

validation of the model resulted in an LOO-RMSE of 0.85 (Figure 2.13.2). The residuals

appear homogeneous, although there are a number of outliers.
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Figure 2.11: Typical time series of the 3D forces in the x-, y, and z- directions, or noted
as mx (blue), my (red), and mz (green). The vertical axis reflects the measured mass,
and the horizontal axis the time. 1) Typical time series with peaks for 2 steps, 2) Time
series with offset, 3) Time series with unified 2 steps, 4) Time series with multiple steps,
5) Time series with 2 possible measurements, 6) time series with disturbances after the
measurement, 7) incomplete time series.
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Figure 2.12: A sample force time series (blue) with corrected baseline (green), and ad-
justed measurements (red). The subplots indicate the 3D forces (mz, my, and mx) with
suffices indicating the baseline corrected ( c) time series, and the baseline (-b).
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Figure 2.13: Quality of the predictions. 1) Fitted vs measured values, 2) residuals.
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2.4.2 Learning Curves with Different Features

In this subsection we demonstrate the influence of the selected features for the prediction.

We essentially demonstrate that most information is already captured by the integral of

Fz (see also other sections) and the bloodline. First we describe the different types of

features we test.

Bloodline As there are two bloodlines of turkeys, the bloodline takes either the value

1 or 2. More information on that is in earlier sections.

Integral Fz This is indeed the integral of the force Fz, so the force in the z-direction,

from the cropped signal. So essentially the value calculated in Equation (2.1).

Summary With summary we captured a summary of the raw cropped signal from each

of the 8 channels. For that we divided each cropped channel in 5 intervals and stored the

mean value of each interval. This leads to 40 features per Turkey.

To compare the different features we show corresponding learning curves in Figure

2.14 as well as the leave-one-out error on the full dataset as shown in Table 2.2. For

all curves we used a simple linear ridge regression scheme with regularization set to 0.1.

The bloodline alone gives already a very good baseline with a leave-one-out root-mean-

sqaured-error (LOO-RMSE) of 1.25, while the integral alone only achieves a LOO-RMSE

of 2. Nevertheless, there is still valuable information in the integral, as when we add it

to the bloodline we achieve a LOO-RMSE of 1.14. Although it does not seem much of an

improvement, it is still significant with a p-value of 0.0082.7 Through the learning curves

we see that more data will not help when using those simple features, at least when using

a simple linear regression scheme.

The summary features are able to outperform the integral feature alone, which in-

dicates that there is more to learn from the channels than the force in the z-direction

alone. Unfortunately though, the summary features together with the bloodline cannot

outperform the simple integral and bloodline features.

For the summary feature we also observe that there is still a gap between the test and

train error in the learning curve, so more data could help in this case. We note, however,

that even in this case we expect a LOO-RMSE around 1 as this is the value that the

7The significance test was done with a paired two-tailed t-test.
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training error approaches. So in case we have more data and we would use the summary

feature we need a model that is more flexible than a simple linear regressor.

Features Summary Summary+Bloodline Bloodline Integral Integral+Bloodline
RMSE 1.59 1.45 1.25 2 1.14

Table 2.2: The RMSE based on leave-one-out on the complete dataset.

2.4.3 Application of Machine Learning algorithms

There are three different tests to compare the performance of the regressors: (i) All: using

all variables (the raw signals offered by the company and the calculated weights); (ii) Only

Weights: using the weights calculated from the original variables; (iii) Correlated: using

only the initial and transformed variables that were most correlated with the target label.

The results are reflected in table 2.3. The data are relative to the Root Mean Squared

Error (RMSE):

Table 2.3: Results obtained by the application of Machine Learning algorithms.

Algorithm Only
Weights

All Correlated

Multiple Linear Re-
gression

1.167 1.125 1.034

Random Forests 1.142 1.058 0.706

Two conclusions can be obtained from these results: (i) applying the Random Forests

algorithm with a configuration of 10 trees for the training, a lower RMSE is obtained

than in the case of the Multiple Linear Regression in any case. (ii) Significantly better

results are obtained using only the correlated features than all at the same time.

This leads to the consideration that the weight of the turkey is actually correlated

with specific attributes, and that there are signals that are not relevant when generating

the prediction. On the other hand, another of the main conclusions is that there have

not been large amounts of data. This is due to the fact that a quantity of the captured

data was incomplete or noisy, and it has been decided to eliminate from the historical

data for the learning process. Possibly, if more clean and valid data were available, the

prediction would be better through Machine Learning algorithms like those shown.
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Figure 2.14: The five different learning curves when using different sets of features. We
always use ridge regression with a linear Kernel and the regularization parameter set to
0.1. On the top of each plot we indicate which features we used, while we plot the root
mean squared error (RMSE) vs the training set size. We show the RMSE as measured
on the training set as well on the test set.
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2.5 Conclusion, Discussion and Further Research

2.5.1 Conclusion

Our Bayesian hypothesis testing model requires more than one step from the turkeys.

With every step from the same bird, the model can calculate and update the prior knowl-

edge and produce much accurate results. The current model first give a guess that the

body mass of a turkey is equal to the sample mean value.This guess produces initial

RMSE of more than 4 kg. By taking one update of one step from the turkey, the pos-

terior reduces the RMSE to around 2 kg. Therefore, the advantage of the first model is

accuracy when there are more walking steps from the turkeys. From theoretical calcula-

tion, the accuracy could be good with information of 5 to 10 steps. Whereas, with the

current limited data, this model gives the highest error.

Our second model - Sparse Bayesian generalized linear model - take the offset of

signals into account. It applied Bayesian theory on learning the information from the

time series. This method produces the best result by far and the RMSE is 1.14 kg. This

is relatively good, but the the speed of increasing the accuracy is relatively slow compare

to our first model. However, when more data are available, the model can be updated

and produce more accurate results.

Our last two models uses basic machine learning: linear regression and random forest.

These two are the simplest models but produces the best results regardless of the simplic-

ity. The RMSE from Linear Regression is 1.034 kg and the RMSE from Random Forest

is 0.706 kg. The input training data used the original noisy data without any baseline

offset nor correction. The advantage of these two models are that they are really easy to

build and gives really good results even with strong influence of noise. Disadvantage is

that the improvement of these models heavily relies on the cleaning of noise. When we

have clean data, the potential of increasing of accuracy will be quite limited.

Regarding the feature selection process we come to the following conclusion. Section

2.14 shows the integral feature (as defined in that section) together with the bloodline

captures the most interesting features from the dataset. The summary feature suggests,

however, that if we have more data available we could extract more information from the

channels, possibly with more flexible regression schemes than linear regression.

2.5.2 Discussion

A few things need to be discussed before arguing how good our models are. The goal

of this project is to explore the possibility of making prediction of turkeys’ body mass

within the error of 0.05 kg. However the trouble to verify the accuracy of our models
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is caused by the missing knowledge of the force plate. For example, if the equipment

itself could cause errors of more than 0.5 kg, then such measurement mistakes can only

damage the accuracy of our models which directly relays on the accuracy of measured

data. Such systematical errors could be only reduced from the measurement side not

from the modeling.

Another question is the reliability of 0.05 kg as an accuracy indicator, because body

weight of either human or fowls has a range of values to move within a day. Especially

after meals or drinking water, body mass measured could easily have a increase or de-

crease of roughly 0.5 kg. Therefore, in order to scientifically justify the comparison, the

measurements should all be collected within a specially chosen time period, e.g. before

meal time.

A third thing that caused our attention is the noise in the given data. Most of the

noise could be avoided if certain methods being considered when recording those data.

Here we suggest a few practical methods for helping to collect data:

1) One way to take the most of our Bayesian Hypothesis model is by collecting more

steps. This can be achieved by placing three more plates along the current one.

So each plate can collect one to two steps and four together can give a really good

number of step information for our first model to get well updated.

2) To improve the overall accuracy, we need to reduce the noise of collected data,

especially the problem of negative baselines. This can be avoided by allowing a

short break between turkeys walking on the plate. This will allow the voltage

signal to come back to the zero value.

3) We need to carry out a few simple tests to help to understand the force plate. Staff

can step on or walk over the plate with different break between them. This could

show the accuracy and performance of the equipment between measurements. Peo-

ple who will develop further models based on our study should have some knowledge

of those force plates. A discussion with the company who build the plates can be

helpful.

4) In general research experiment, force plates are mainly used in labs. The surface

of plates are clean and directly touched or connected to the experimented subjects.

However in order to make sure the turkeys are behaving in a natural way, the force

plate used here is covered with mud and feathers. How this coverage is influencing

the plate should be understood as well.
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2.5.3 Further Research

Our models presented in this report are relatively basic due to time limitations. We have

achieved good results but more sophisticated models should be developed based on our

conclusions and results.

When clean data are available, we strongly suggest to run the models on the new data

to see the accuracy level. Then, based on the improvement suggestions, new data should

be collected and models can use those information to update themselves.

The time limit during the project also prevented us develop other models to make

the whole process automatic. We went through the plots of time series of each turkey

manually, which is not the most ideal and efficient method. Advanced machine learning

models can be developed for pattern recognition - automatic working to speed up the

data process for the company. Another direction to improve our machine learning model

is to develop deep learning algorithms to understand the data and situation further.
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Appendix

2.A Force plate formulae

Figure 2.15: Force plate formulae.
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