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Abstract:
Bruil beton & mix is specialized in the production of concrete for all kinds of applications.
In the past years, Bruil has developed a new, exciting technique that has revolutionized
this sector: production of prefab elements using concrete 3D printing. This development
offers architects a completely new scala of design possibilities in form, colour, and struc-
ture. 3D printing starts with a digital 3d model of the object. From this 3D model a print
path is created, based on the required layer width and height. Code based on the created
print path, will steer the movements of the concrete printer. Using these movements to
deposit concrete at the right locations, the 3D printing process thus results in a printed
concrete object. There are several difficulties with 3d printing of concrete. One of them
is that concrete is a material of which the properties change during the drying process.
Furthermore, these properties quite strongly depend on external conditions. Therefore,
in practice there are many variables that influence the printing result and thus determine
whether a print will be successful: material properties, environmental conditions, rheol-
ogy, the shape of the growing object, print speed etc. Second, not all structures dreamt
up on the drawing table can be easily produced with 3D printing. During the printing
process the emerging structure could start to bend, collapse and/or deform, depending
on geometry and material properties. So, the drying process and the printing process
should be fine-tuned, to allow for efficient, fast, and reliable production of 3D objects.
In this report we first present some checks on printability that are easily implemented in
practice. Then, we dealt with the question whether the stress profile during the printing
process fulfils the condition that the developing structure does not collapse under its own
weight. To answer that question, we study a variety of different approaches to calculate
the stress profile. These approaches range from several approximating analytical methods
to numerical simulations. The conclusion is that for simple geometries, such as a tilted
wall, analytical, explicit formulae can be used to check stress conditions, but that for
general geometries a numerical approach, based on, e.g., a finite element method, is
indispensable.

Keywords: 3D-printing, concrete, stress conditions, perturbation method, finite ele-
ment method
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1.1 Introduction

3D printing of concrete is a recent breakthrough in the construction world. In the tradi-

tional approach of building with concrete, the fresh material is poured in a form work,

that has been designed according to the required final shape. After a drying period in

which the concrete hardens, the form work is taken away and a solid structure results. In

contrast, 3D printing is a completely different concept. The fresh material is extruded via

a nozzle in a continuous way. The extruded material forms a flexible thread of concrete

that is laid upon or against earlier layers. By steering the spray head along a well cho-

sen, predefined path, all kinds of shapes can be formed. The 3D printing technique has

revolutionized this sector, since it allows for many new applications of concrete. It offers

architects a completely new scala of design possibilities in form, colour, and structure.

See for example figure section 1.1.

Concrete companies like Bruil apply 3D printing already in practice, but are faced

with several challenges. One of the possible problems that may arise stems from the

fact that concrete changes its properties while hardening. For example, a layer that is

being extruded has other properties than the layer on top of which it is deposited. If the

differences are too large, it may happen that the neighboring layers do not neatly stick to

each other, with as result that the structure of the final object is not completely uniform.

Another complication may be that the bottom layers are not hardening fast enough to

bear the layers above them. In that case the bottom layers will start to flow side wards

and the whole construction will collapse. Still another source of problems may be that,

while under construction, the centre of gravity of the construction shifts every time a new

layer is added. This may cause the object to topple.

All these aspects force the constructor to carefully design the printing process: the

printing process should be fine-tuned such that it allows for efficient, fast, and still reliable

production. In this report we deal with a number of sensitive aspects of the printing

process. In section 2 we discuss the minimum requirements to be satisfied while printing.

The speed of the printing head when hovering over the object under construction and

the rate of deposition should be chosen not too low on the one hand, since otherwise the

concrete is already hardening too much in the printing head, but on the other hand not

too high since then the preceding layers are not yet hardened enough. In building up

a tilted object layer by layer, its centre of mass should remain positioned such that the

object will not topple. In section 3 we pay attention to structural analysis checks: does

the hardening process remain under control so that the construction does not collapse

under its own weight. We analyse the stress equations in several ways. First, they

are implemented in a Finite Element Package and evaluated on the computer. The
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advantage of this approach is that this allows the analysis of all kinds of shapes. On the

other hand, computer simulations may be costly and do not always converge. Second,

in a complementary endeavour, we follow a number of analytical approaches to solve

the stress model equations for special shapes in an approximating way. The results give

rise to new insights, that would not have been obtained if we had stuck to computer

simulations only. This is especially advantageous for the printing daily practice, since

in the procedure of designing the printing process one is often particularly interested in

rules of thumb.

We conclude this report with formulating a set of recommendations. These are partly

very practically oriented, but we also advocate to involve computer simulations of the

stress and strain profiles of the material into the preparation of the printing process,

since only such an analysis can yield definite answers if non standard shapes have to be

printed.

Figure 1.1: Example of 3D printed concrete object (copyright Bruil).
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1.2 Direct printability checks

In this section we formulate some printability checks that can easily be performed once

the path of the printing head and the concrete flow rates have been chosen for a specific

geometry.

1.2.1 Flows and rates

Fundamental printing path parameters, to be set by the user:

• ρ: Flow rate,

• hl: Layer height,

• wl: Layer width,

• ll: Layer path length.

In addition, we have

• ll: Layer path length,

which follows from the geometry under consideration.

We consider 4 checks:

1. The flow rate should be such high that the concrete does not dry while still in the

hose. This can be simply expressed as

ρ ≥ ρmin. (1.1)

2. The hose has a maximum flow capacity. This can be simply expressed as

ρ ≤ ρmax. (1.2)

3. The concrete should form a homogeneous mass and should not exhibit stratification

(layering) which compromises structural integrity. The most natural expression of

this constraint is that the time between layers should be below a certain value tmax,

typically 2 minutes. During the printing, it is not possible to wait between layers,

as this produces geometrical artifacts not acceptable for design purposes. The time

per layer is therefore

time per layer =
volume per layer

flow rate
. (1.3)

This leads to the condition
hlwlll
ρ
≤ tmax. (1.4)
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4. The concrete should be solid enough to support the layers on top of it. This

questions can be considered very generally as a structural analysis problem, and

is treated as such in section 1.3. However, for simple geometries like a straight

column, a check can be formulated in terms of the 4 fundamental user settings used

above; see Perrot [2]. He proposes as criterion that the height rate at which the

structure grows, should be below a certain value H, typically 1.5 meters per hour.

The height rate can be related to the layer height and time per layer. This condition

can be written as:
ρ

wlll
≤ H, (1.5)

but we emphasize that this criterion will certainly not hold in general.

1.2.2 Centre of mass

Since the printed structure is not attached to the floor in any way, the centre of mass

must lie above the convex hull of the base. The centre of mass can be computed cheaply,

for every desired time (e.g., per layer) as shown below.

Assume a possibly time-dependent flow rate ρ(t), with the concrete being deposited

at a point (x(t), y(t), z(t)). Then the total volume V (t) is given by

V (t) =

∫ t

0

ρ(τ)dτ , (1.6)

and the x- and y-coordinates of the centre of mass are

x̄(t) =
1

V (t)

∫ t

0

ρ(τ)x(τ)dτ , ȳ(t) =
1

V (t)

∫ t

0

ρ(τ)y(τ)dτ . (1.7)

For a small time increment δt,

V (t+ δt) ≈ V (t) + ρ(t)δt

and

x̄(t+ δt) =
1

V (t+ δt)

∫ t+δt

0

ρ(τ)x(τ)dτ ≈ 1

V (t) + ρ(t)δt

(
V (t)x̄(t) + ρ(t)x(t)δt

)
.

Taking measuring time points t0, t1, . . ., and writing δtn = tn+1 − tn we may thus simply

follow the centre of mass coordinates in time by evaluating the update formulae

V (tn+1) ≈ V (tn) + ρ(tn)δtn ,

x̄(tn+1) ≈ V (tn)x̄(tn) + ρ(tn)x(tn)δtn
V (tn+1)

, ȳ(tn+1) ≈ V (tn)ȳ(tn) + ρ(tn)y(tn)δtn
V (tn+1)

.
(1.8)
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It would also be possible to obtain more accurate estimates using higher-order integration

methods such as Simpson’s rule, but taking δt small is probably enough to obtain good

accuracy.

As mentioned in the beginning of this section, the center-of-mass should be in the

convex hull of the support not to topple. However, when on the boundary of the convex

hull, one can expect all of the weight of the structure to be concentrated on a tiny portion

of the support, which makes a structural failure more likely. One could shrink the support

a certain amount to improve stability. A relationship between the height/mass of the

structure and how much to shrink the support can probably be derived.

The center-of-mass makes for a nice bridge to more fundamental structural analysis,

as center-of-mass is already a matter of balances of forces. We finally remark that one

could use the lateral force required to topple the structure and calculated in a stress

analysis, as another way to get some margin on the center-of-mass check.

1.3 Stress checks

In this section we discuss the printability restrictions that follow from the stresses in the

drying concrete. To calculate the stresses at equilibrium we have to solve the so-called

stress equations for the stress tensor σ with components:

σ =

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 . (1.9)

At equilibrium, the stress satisfies

∇ · σ = −f , (1.10)

where f is the force density in the body. Under gravity, f = ρ g ez. The acceleration of

gravity g has the value g ≈ 9.81ms−2. The boundary conditions for a free surface with

normal n are n · σ = 0.

The units of stress are Nm−2 ≡ kgm−1s−2.

The most important insight to be taken into account is that drying concrete has a

yield stress that depends on the drying history of the material and thus on time. Note

that in a pile of several concrete layers, each of which deposited at a different time, the
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yield stress varies per layer and in time. As long as the local stress remains below the

local yield stress, the concrete will stay at rest, not flow and thus not deform. When one

concrete layer has been deposited, the material will have a certain stress distribution.

In general the stress will be highest at the bottom and lowest (maybe vanishing) at the

top of the layer. In the next round of printing a new layer will be deposited on the first

one. This will change the stress distribution in the first layer. At that moment the stress

distributions in the first and the new layer have to be calculated and it should be checked

whether the maximum stress remains below the yield stress everywhere. If a third layer

is deposited, the stress check has to be repeated but now for three layers. And so on for

an arbitrary number of layers. If at some moment in time at some point in the material

the stress condition is not fulfilled, the printing procedure will not lead to a robust build

up of the desired geometry. These stress checks can be applied before printing starts,

through simulation of the stress distributions in space and time on the computer, together

with keeping track of the time and position dependent yield stress distribution. In the

subsections below we show how the required stress calculations can be done for a variety

of geometries. We first show results from numerical (computer) simulations. Thereafter

we also present results from analytical approaches.

1.3.1 Numerical approach

The holy grail for this problem would be a simulation that takes the 3D printing model

as input and a True value as output if the structure is printable and a False value as

output if the structure is not printable. This section is proposing a way to simulate the

printing part with the 3D printing model as input.

For large scale production, with structures that are not the same, every structure needs

to undergo these checks. Importantly, a calculation time longer than ten minutes is not

desirable.

For the FEM simulations, we used the MATLAB PDE toolbox.

Modeling approach

When concrete is stiffening, a change in the elasticity modulus is expected. The concrete

comes out of the nozzle already stiffened up, but still wet enough to merge with the

neighbouring layers as described in section 1.2.1.

We do not know what the elasticity modulus is over time, so a couple of checks have

been made. For three types of structures the simulations have been run with different

Young’s Modulus. As seen in fig. 1.2, the Young’s modulus has no effect for these struc-
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(a) Z-Stresses for a straight beam. (b) Z-Stresses for a tilted beam.

(c) Z-Stresses for a hollow cone.

Figure 1.2: Comparison of the Z-stresses for different Young’s Moduli for various struc-
tures.

tures. Whether the Young’s modulus is down or up a factor of two, the results are the

same.

This makes the problem time invariant and only height variant. To simulate layering,

we varied the z-coordinates before meshing. This required making a new mesh every iter-

ation and this is very computationally expensive since calculation time per iterations will

increase exponentially with mesh size. A possible solution will be proposed in section 1.4,

but for the present simulations we didn’t apply this idea yet.

The boundary condition applied at the bottom of the object deserves special atten-

tion. The concrete object does not stick to the table. A realistic boundary condition

for the contact between the table and the concrete would be hard contact, which allows

pushing (positive normal stress) but not pulling (negative normal stress). Such a bound-

ary condition is very challenging computationally, as the problem is no longer linear.
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Moreover, the MATLAB PDEtoolbox does not have this feature. More specialized FEM

packages like ANSYS allow for such boundary conditions by modelling both the support

and the contact. If such a boundary condition is used, toppling of a structure (like in the

center-of-mass checks) can also be derived from the structural analysis. In the ANSYS

best practices manual, this is referred to as ‘lift-off’. When the center-of-mass is outside

of its support, there is no feasible distribution of stresses that does not have a normal

stress at the table/concrete interface.

Another aspect is the shear stress at the bottom. Since there is friction between table

and object, few shear stress will not cause the object to shift. Much shear stress, however,

will lead to a shifting object. It is not clear what the critical shear stress is for drying

concrete, so we could not specify it. In our calculations we assumed the object to be

rigidly fixed to the table:

u(x, y, 0) = 0 , (1.11)

where u(x, y, z) is the displacement of the object. This boundary condition was easy to

implement within the MATLAB PDE toolbox.

Numerical solution via the finite element method(FEM)

The results of the FEM simulation are given in fig. 1.3, where the final, steady state stress

distributions are shown. The computational times are given in table 1.1. These results

can be checked via comparison with results from analytical approaches in the subsections

below.

Structure Computing time

Straight Beam 31 seconds
Tilted Beam 32 seconds
Hollow Cone No layering simulation has been done

Table 1.1: Computing time for different structures. The computing time is the time it
took to simulate the layering using MATLAB.

1.3.2 Analytical approaches

As solving stresses from a full Finite Element model is computationally rather expensive,

in this section we explore analytical approaches to approximate stresses throughout the
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(a) FEM result for a straight beam. (b) FEM result for a tilted beam.

(c) FEM result for a hollow cone.

Figure 1.3: FEM steady state results for different kinds of structures.

geometry. Here, we derive analytical formulae for simple geometries. We emphasize that

the present lines of thought are by far not yet complete, in view of the limited time that

spanned the SWI 2019, but are meant to inspire further research. The results can be

used to check the numerical results, but the insights may also be used to find rules of

thumb for general geometries. We start with the simplest geometry, a straight wall, and

incrementally move to more general geometries.

Buckling check

Three basic cases of straight wall structures were considered in a recent paper of A. Suiker

[5]. We elaborate on the results of this paper concerned with elastic buckling by relating

them to some basic results of catastrophe theory and outlining hypothetical analogous re-

sults on elastic buckling of wall structures of a slightly more general type described below.

To this end we rely on the rigorous analysis of buckling of thin rods (Euler buckling) and

thin elastic membranes given in the fundamental monograph of T.Poston and I.Stuart [6].

Consider the model of 3D printing of a rectangular wall used in the paper of A. Suiker.

The wall is given by a rectangular, heterogeneous plate of length L, width b and thickness

h subjected to in-plane forces acting in the mid-plane of the plate. It is assumed that
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this wall is produced by a 3D printing process, with linear curing function, applied in

the direction of length L (i.e., L should be considered as the height of wall) which is

characterized by the following parameters:

• constant wall growth velocity in vertical direction l∗ = Q/(hvhTl),

• the initial bending stiffness D = (Eh3)/(12(1− γ2)),

• dimensionless parameter µ = ρg(h/D)(l∗/φ),

where Q is the material volume delivered by the nozzle per unit time, vh is the horizontal

velocity of the nozzle, Tl is the time needed for printing one layer, ρ is the volumetric

mass density, g = 9.81m/s2 is the gravitational acceleration, γ is the Poisson modulus of

material considered, E is the initial stiffness modulus, φ is the curing speed of the linear

curing process. More detailed descriptions of the above quantities are given in [5].

As was shown in [5], both elastic buckling and plastic collapse can happen in this

process and a criterion of the possible failure mechanism can be expressed in terms of

geometrical, material and printing process data. Using the aforementioned data one

can algorithmically calculate dimensionless quantities Lc, Lp and Λ and formulate the

following criteria:

• elastic buckling happens if Lc/Lp < Λ,

• plastic collapse happens if Lc/Lp > Λ.

Here Λ = (h/D)1/3|σ|(ρg)−2/3, where σ is the yield strength of material. The explicit

formulae and computational algorithms for Lc and Lp are given in Eqs. (75), (91), (92),

(94) of [5] .

Our first observation is that these criteria agree with the classical results on buckling

of thin rods and elastic membranes given in Chapter 13 of the monograph [6]. To this

end notice that, for small values of thickness h, the plate (wall) under consideration can

be approximated by an elastic rectangular membrane of length L and width b so that

membrane can be considered as a limit as h → 0. Analogously, if both h and b tend to

zero in a commensurable way, then the limiting object can be identified with an elastic

thin rod of length (height) L. Then it is easy to verify that the above criteria agree with

the classical criterion of Euler buckling described in [6].
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Our second observation is aimed at obtaining similar results for vertical walls over

more complicated horizontal bases. To this end consider a vertical wall W (X,L, h) of

height L and thickness h obtained as a tube of radius h/2 around a vertical plate of

height L over a circular arc X of length b and curvature K in the horizontal plane. Such

an object gives a natural generalization of the rectangular wall discussed above.

For such a circular wall, repeating the analysis given in [5] is easy. It yields that the

condition for plastic collapse remains the same as for the rectangular wall considered

above. The situation with elastic collapse is more interesting. For some models of 3D

printing process, there exists numerical evidence that the curvature influences the critical

height for elastic buckling by making it bigger than in the flat case. We are unable to

give a rigorous proof of this fact and to give a hypothetical formula for the increase of

critical height in terms of the curvature K. Elaborating on the influence of curvature of

wall profile is an interesting mathematical challenge and, moreover, may appear useful for

analysis of mechanical performance of 3D printing processes for walls over more general

planar profiles.

Analytical approach: tilted wall with linear vertical normal stress variation

We consider a tilted wall of width w, angle θ with the vertical, and total height h, and

try to approximate the stresses at any intermediate height. We make the following two

assumptions:

1. Only σzz is non-zero. All other stresses are zero.

2. σzz varies linearly across the width at a certain height: σzz(x, z) = a(z)x+ b(z)

Note that both assumptions hold for the non-tilted wall. A rationale for the second

approximation comes from the fact that the thickness of the printed wall will be small

compared to the other dimensions (length and height of the wall). Inspiration was drawn

from somehttps://www.overleaf.com/project/5c63d9969a586b5c02a038ad figures in [1].

To derive approximate values for the vertical normal stress throughout the tilted wall,

we consider a cross-section at a certain height, as in figure 1.4. h is the height of the part

of the wall above this cross-section. According to the assumptions, the vertical normal

stress varies linearly. The entire profile across the cross-section is therefore described

completely by the two variables fL and fR. We now require that the block of material

above the intersection should be in static equilibrium: both the balance of forces and the

balance of moments should be zero. This leads to two equations that are linear in fL and

fR. This system with 2 unknowns and 2 equations can be easily solved for fL and fR.
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Figure 1.4: Approximate model diagram for the tilted wall.

The balance of forces reads ∫ xR

xL

f(x) dx = mg , (1.12)

with xR−xL = w. The forces at the interface need to counteract the gravity on the mass

above the interface. Note that this mass is z-dependent: m = ρw(h − z). f(x) ≡ σzz is

the force at any point across the thickness:

f(x) = fL +
fR − fL

w
(x− xL). (1.13)

The balance of forces can be formulated about any point. We choose xL:∫ xR

xL

f(x)x dx = mg · xCoM , (1.14)

with xCoM the x-coordinate of the center-of-mass of the upper section. This leads to

xCoM =
w

2
+ (h− z) · tan(θ). (1.15)

Rewriting the integrals in equations (1.12) and (1.14) in terms of fL and fR yields the

linear 2× 2 system:

fL + fR = 2
mg

w
= 2ρg(h− z), (1.16)

fL + 2fR = 6
mg · xCoM

w2
. (1.17)
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Solving for fL and fR yields:

fL = ρg(h− z)

(
1− 3

h− z
w
· tan(θ),

)
(1.18)

fR = ρg(h− z)

(
1 + 3

h− z
w
· tan(θ).

)
(1.19)

These equations correctly reduce to the straight wall conditions for which θ = 0. With

θ > 0, fR now increases non-linearly with h − z, which has been also observed in the

numerical FEM results. While fR will be strictly positive for θ > 0, we see how fL can

switch sign, indicating tensile stresses (inward/upward normal stress) in the material.

Due to the tilt, one side of the wall experiences a downward ’pushing’ force, whereas the

other side experiences an upward ‘pulling’ force to compensate. Moreover, we observe

that the non-linear term also has a dependency of 1
w

, which can also be understood intu-

itively: thin walls have a stronger push-pull action.

We compare the analytical results from this approximate model with the numerical

results obtained earlier in figure 1.5. The stresses of the FEM mesh are plotted as a

scatter plot. The stresses at the left and right faces are extreme (for a given height),

so the modeled fR and fL should match the upper and lower envelopes. We observe

the correct qualitative results, but quantitatively there is a definite mismatch. Through

experimentation, we have observed that

fL,corr = fL − ρg
(h− z)2

w
tan(θ) = ρg(h− z)

(
1− 4

h− z
w
· tan(θ)

)
, (1.20)

fR,corr = fR − ρg
(h− z)2

w
tan(θ) = ρg(h− z)

(
1 + 2

h− z
w
· tan(θ)

)
. (1.21)

match the numerical FEM results (for the upper section of the wall) almost perfectly.

This correction can be seen as changing the multiplier of the non-linear terms in both

equations; this correction is taken the same for both stresses. This means that in terms

of the 2 × 2 balance of forces and moments equations, both the weight carried and the

moments would need to be modified. It is not yet fully understood how and why this

correction works. A possible explanation could be the model assumption that all stresses

except σzz are 0. The FEM results show that this is not exactly true. If we compare the

von Mises stress, which are given by

σvm =
1√
2

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6σ2

xy + 6σ2
yz + 6σ2

zx, (1.22)
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Figure 1.5: Comparison of FEM model with approximate model. Top: Comparing σzz.
Middle: With correction added to the approximate model. Bottom: Comparing von
Mises stresses.
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then the original model already performs better.

Finally, we remark that the predicted quadratic behavior with (h− z)2 is a good approx-

imation in the upper section of the geometry, but near the bottom this description is

clearly poor. Unfortunately, the bottom part is just the section we are most interested

in, as stresses are highest and failure is most likely in that region. We observed earlier

that the stresses at the bottom are quite sensitive to the boundary conditions chosen

there. The present result again emphasizes that this boundary condition needs extra

investigation.

Disregarding the accuracy of the approximation, this model has enabled us to derive

local criteria on stability which look like fR(h − z, θ, w) < σmax which captures physics

more realistically than the currently used θ < θmax criterion.

1.3.3 Analytical approach: separation of variables

We now consider an alternative approach to solve the stress equations for a number of

geometries.

Vertical wall

Consider a vertical a wall of width w and height h. Omit the y-coordinate. Then the

equilibrium equations become

∂xσxx + ∂zσxz = 0,

∂xσxz + ∂zσzz = −ρg.
(1.23)

The boundary conditions at the sides are

σxx = σxz = 0 when x = 0 and x = w. (1.24)

The boundary conditions at the top are

σxz = σzz = 0 when z = h. (1.25)

An obvious solution of these equations is

σxx = σxz = 0; σzz(x, z) = ρg(h− z).

However, there are other solutions. Since the stress equations and boundary conditions

are linear, any solution is the sum of a solution of the homogeneous equations (with r.h.s.
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equal to zero) and a particular solution of the full, nonlinear equations. We show that

the solutions of the homogeneous equations are not unique:

∂xσ
h
xx + ∂zσ

h
xz = 0,

∂xσ
h
xz + ∂zσ

h
zz = 0.

(1.26)

The homogeneous equations have d a class of solutions of the following, separable form:

σhxx = fx(x)f ′′z (z), σhxz = −f ′x(x)f ′z(z), σhzz = f ′′x (x)fz(z). (1.27)

Suppose fx satisfies fx(0) = fx(w) = f ′x(0) = f ′x(w). Then any fz satisfies the side

boundary conditions. Similarly, if fz(h) = f ′z(h) = 0, then any fx satisfies the top

boundary conditions. We can also consider homogeneous boundary conditions for the

lower surface, σxz(x, 0) = σzz(x, 0) = 0.

We therefore have nontrivial solutions of the homogeneous equations, the simplest of

which read as

fx(x) = x2(h− x)2, fz(z) = z2(h− z)2,

yielding
σhxx = x2(w − x)2 × 2(h2 − 6hz + 6z2),

σhxz = − 2x(w − x)(w − 2x)× 2z(h− z)(h− 2z),

σhzz = 2(w2 − 6wx+ 6x2)× z2(h− z)2,

and

σzz(x, z) = 2(w2 − 6wx+ 6x2)× z2(h− z)2 + ρg(h− z).

We can even set the horizontal stress at the bottom surface to zeros, σxx(x, 0) = 0,

requiring f ′′z (0) = 0, and take fz(z) = z3(h − z)2. This makes clear that there is an

infinite-dimensional space of solutions to the homogeneous equations.

Remark 1.1. This shows that the equilibrium equations are underdetermined; in prin-
ciple we need information about the stress-strain relationship to obtain a unique solution
for the stress tensor. This likely means that to solve for the stresses, we in principle need
to consider the dynamic processes involved as the concrete flows and sets while forming
the object. In the following we take the simplest solution of the stress equations as the
preferred one.

Tilted wall

In section 1.3.3 we sketch a vertical cross section of a tilted wall, of width w, height h, and

inclination angle θ to the vertical. Let α = tan θ, and ξ = x−αz. Omit the y-coordinate.
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Figure 1.6: Vertical cross section along the x - axis of a tilted wall, of width w, height
h, and angle of inclination θ. The wall is tilted in the (x, z) plane, but becomes vertical
after application of the coordinate transformation (x, z)→ (ξ, z).

Then the equilibrium equations become

∂xσxx + ∂zσxz = 0,

∂xσxz + ∂zσzz = −ρg.
(1.28)

The boundary conditions at the sides are

σxx − ασxz = 0

σxz − ασzz = 0

}
when x = αz, andx = αz + w. (1.29)

The boundary conditions at the top are

σxz = σzz = 0 when z = h. (1.30)

For a frictionless supporting bottom surface the boundary condition would read as

σxz = 0 when z = 0. (1.31)

A simple particular solution σp of the full equations can be borrowed from the vertical

wall, dealt with in the previous section:

σpxx = σpxz = 0; σpzz(x, z) = ρg(h− z). (1.32)

The full solution can be written as σ = σh+σp, where σp solves the homogeneous interior

equations
∂xσ

h
xx + ∂zσ

h
xz = 0,

∂xσ
h
xz + ∂zσ

h
zz = 0.

(1.33)
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Then the boundary equations for σh become

σhxx − ασhxz = 0

σhxz − ασhzz = αρg(h− z)

}
when x = αz, andx = αz + w (1.34)

σhxz = σhzz = 0 when z = h. (1.35)

As above, we may try homogeneous solutions in separable form, and find a basis of

solutions which satisfy:

σhxx = fx(x)f ′′z (z), σhxz = −f ′x(x)f ′z(z), σhzz = f ′′x (x)fz(z). (1.36)

We can also attempt to find homogeneous solutions of involving a function fξ(ξ). The

interior equations yield

σhxx = fξ(x− αz)f ′′z (z)− 2αf ′ξ(x− αz)f ′z(z) + α2f ′′ξ (x− αz)fz(z),

σhxz = −f ′ξ(x− αz)f ′z(z) + αf ′′ξ (x− αz)fz(z), σhzz = f ′′ξ (x− αz)fz(z).
(1.37)

The side boundary conditions at ξ∗ = 0, w then become

fξ(ξ∗)f
′′
z (z)− 2αf ′ξ(ξ∗)f

′
z(z) + α2f ′′ξ (ξ∗)fz(z)− α

(
−f ′ξ(ξ∗)f ′z(z) + αf ′′ξ (ξ∗)fz(z)

)
= 0,

−f ′ξ(ξ∗)f ′z(z) + αf ′′ξ (ξ∗)fz(z)− α
(
f ′′ξ (ξ∗)fz(z)

)
= αρg(h− z).

which simplifies to
fξ(0/w)f ′′z (z)− αf ′ξ(0/w)f ′z(z) = 0

−f ′ξ(0/w)f ′z(z) = αρg(h− z).
(1.38)

The top boundary conditions are then

−f ′ξ(ξ)f ′z(h) + αf ′′ξ (ξ)fz(h) = 0, f ′′ξ (ξ)fz(h) = 0. (1.39)

Alternatively, we can formulate equations in terms of ξ and z. Taking τξξ(ξ, t) =

σxx(x− αz, z)− ασxz(x− αz, z), τξz(ξ, t) = σxz(x− αz, z)− ασzz(x− αz, z), τzz(ξ, z) =

σzz(x− αz, z) yields

∂ξτξξ + ∂zτξz + α∂zτzz = 0

∂ξτξz + ∂zτzz = αρg(h− z)

τhξξ = 0

τhξz = αρg(h− z)

}
when ξ = 0, w.

(1.40)

We then aim to find solutions of the homogeneous equations satisfying the boundary

conditions
σhxx − ασhxz = 0

σhxz − ασhzz = αφ(z)

}
when x = αz, x = αz + w. (1.41)

As in the case of the vertical wall, the equilibrium stress equations are underdeter-

mined, and a full solution requires knowledge of the stress-strain relationship.
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Decorative wall

Consider a decorative wall where the x-coordinate depends on the height: φ(z) ≤ x ≤
φ(z) + w. Let ξ = x− φ(z). We look for solutions of the homogeneous equations with

σzz = f ′′ξ (x− φ(z))fz(z). (1.42)

Then

∂xσxz − φ′(z)f ′′′ξ (x− φ(z))fz(z) + f ′′ξ (x− φ(z))f ′z(z) = 0,

so we can take

σxz = φ′(z)f ′′ξ (x− φ(z))fz(z)− f ′ξ(x− φ(z))f ′z(z). (1.43)

Similarly

∂xσxx − φ′(z)2f ′′′ξ (x− φ(z))fz(z) + φ′′(z)f ′′ξ (x− φ(z))fz(z)

+ 2φ′(z)f ′′ξ (x− φ(z))f ′(z)− f ′ξ(x− φ(z))f ′′z (z) = 0,

so we can take

σxx = φ′(z)2f ′′ξ (x− φ(z))fz(z)− φ′′(z)f ′ξ(x− φ(z))fz(z)

− 2φ′(z)f ′ξ(x− φ(z))f ′(z) + fξ(x− φ(z))f ′′z (z). (1.44)

Substituting ξ = x− φ(z) yields solutions of the form

σzz = f ′′ξ (ξ)fz(z),

σxz = φ′(z)f ′′ξ (ξ)fz(z)− f ′ξ(ξ)f ′z(z),

σxx = φ′(z)2f ′′ξ (ξ)fz(z)− φ′′(z)f ′ξ(ξ)fz(z)− 2φ′(z)f ′ξ(ξ)f
′(z) + fξ(ξ)f

′′
z (z).

(1.45)

The inward normal to the boundary at the point (φ(z), z) is (1,−φ′(z)), so the bound-

ary conditions are
σxx(φ(z), z)− φ′(z)σxz(φ(z), z) = 0,

σxz(φ(z), z)− φ′(z)σzz(φ(z), z) = 0.
(1.46)

with identical conditions holding at (φ(z) + w, z).

We look for separable solutions to the homogeneous equations with fξ(ξ) = eiκξ =

exp(iκξ). Further, we want κ to yield a wavelength dividing w, so κ = κn = 2πn/w.

Then

fξ(ξ + w) = exp(iκξ + iκw) = exp(iκξ + 2πin/w × w)

= exp(iκξ + 2πin) = exp(iκξ) = fξ(ξ).
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Solving the homogeneous interior equations yields solutions in the following form:

σzz = −κ2fξ(ξ)fz(z),

σxz = −κ2fξ(ξ)φ
′(z)fz(z)− iκfξ(ξ)f ′z(z),

σxx = −κ2fξ(ξ)φ
′(z)2fz(z)− iκfξ(ξ)φ′′(z)fz(z)− 2iκfξ(ξ)φ

′(z)f ′(z) + fξ(ξ)f
′′
z (z).

(1.47)

At the left boundary value, ξ = φ(z). We aim to solve the boundary condition involving

σxx exactly, yielding the differential equations

−κ2φ′(z)2fz(z)−iκφ′′(z)fz(z)−2iκφ′(z)f ′(z)+f ′′z (z)−φ′(z)
(
−κ2φ′(z)fz(z)−iκf ′z(z)

)
= 0.

This simplifies to

−iκφ′′(z)fz(z)− iκφ′(z)f ′(z) + f ′′z (z) = 0.

The boundary term involving σzz becomes

−κ2fξ(ξ)φ
′(z)fz(z)− iκfξ(ξ)f ′z(z)− φ′(z)

(
−κ2fξ(ξ)fz(z)

)
,

which simplifies to

σxz(φ(z), z)− φ′(z)σzz(φ(z), z) = −iκ exp(iκφ(z)) f ′z(z).

Summing over such terms gives

σxz(φ(z), z)− φ′(z)σzz(φ(z), z) =
∞∑
n=0

−icnκn exp(iκnφ(z)) f ′z,n(z).

Conic wall

A natural next step in moving from simple to more complex geometries would be to

generalize the tilted wall to conic walls, as visualized in figure 1.2. While a tilted wall is

mainly parameterized by the height h, the width w and the slop θ, the conic wall has an

additional radius r. One approach we would like to propose is that criteria such as the

approximate ones derived for the tilted wall, like

fL,R(h− z, θ, w) < σmax (1.48)

should be generalized to criteria dependent on radius r, like

fL,R(h− z, θ, w, r) < σmax. (1.49)

One property one might expect/desire would be that

lim
r→∞

fL,R(h− z, θ, w, r) = fL,R(h− z, θ, w). (1.50)
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This expresses that the limit of the conic wall with a larger and larger radius is the

straight wall. A second property one would like to require is that this limit is approached

from below, as for a diverging cone, the curvature is expected to increase the stability

of the structure. Mathematically one could formulate this as fL,R(h − z, θ, w, r) being

strictly increasing in r (though a rigorous formulation would require some more attention.

1.3.4 Analytical model: perturbation approach

Here, we show still another approach to obtain analytical approximations for the stresses

in a tilted wall, sketched in section 1.3.3. The present method is based on expansion of

the stress expressions in the parameter α = tan(θ), under the assumption α << 1. In

the (x, z) plane the stress equations read as

∂xσxx + ∂zσxz = 0,

∂xσxz + ∂zσzz = −ρg.
(1.51)

As already argued above, it is advantageous to apply the transformation (x, z) → (ξ, z)

with ξ defined as ξ = x− αz, since then the boundary conditions become simpler. After

transformation the stress equations read as

∂ξσξξ − α∂ξσξz + ∂zσξz = 0,

∂ξσξz − α∂ξσzz + ∂zσzz = −ρg.
(1.52)

The boundary conditions at the sides are

σξξ − ασξz = 0

σξz − ασzz = 0

}
when ξ = 0 and ξ = w. (1.53)

The boundary conditions at the top are

σξz = σzz = 0 when z = h. (1.54)

The boundary conditions at the bottom, where z = 0, should be such that the shear

stress σξz may not exceed the frictional force between object and table. However, this

frictional force is proportional to the weight of the object with an unknown constant of

proportionality, so we cannot specify this condition in detail.

For the vertical wall, i.e., when α = 0, we have σξξ = σξz = 0 and σzz = ρg(h − z).

With respect to this zero-order solution, We write the first order expansions of the stresses

in terms of α as
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σξ,ξ = αf1ξ, z,

σξ,z = αf2(ξ, z),

σz,z = ρg(h− z) + αf3(ξ, z).

(1.55)

Substituting these expressions in the stress equations, we obtain

∂ξf1 + ∂zf2 = 0,

∂ξf2 + ∂zf3 = 0.
(1.56)

with boundary conditions at the sides:

f1 = 0

f2 = ρg(h− z)

}
when ξ = 0, w. (1.57)

and boundary conditions at the top:

f2 = f3 = 0, when z = h. (1.58)

Further progress requires specification of the stress-strain properties of concrete. But also

without these details we may find a good approximation to the stress equations in the

following way. We assume that f2 is homogeneous in z and write f2 = ρg(h − z)f4(ξ)

for some function f4(ξ). In view of the boundary conditions we must require f4(0) =

f4(w) = 1. Substituting this in the stress equations we find

∂ξf1 = ρgf4(ξ), (1.59)

with boundary conditions

f1 = 0, when ξ = 0, and ξ = w. (1.60)

Its solution reads as

f1 = f1(ξ) = ρg

∫ ξ

0

f4(ξ′)dξ′. (1.61)

This expression fits the boundary condition f1(ξ = 0) = 0. To also fit the boundary

condition f1(ξ = w) = 0, we take for f4 the simplest possible form, i.e., the parabola

given by

f4(ξ) = 6(ξ − (w/2)2)/w2 − 1/2. (1.62)

and sketched in figure section 1.3.4. From the stress equations above we find that

∂zf3 = ∂ξf2 = −ρg(h− z)f4(ξ), (1.63)
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Figure 1.7: Sketch of the function f4(ξ) = 6(ξ − (w/2)2)/w2 − 1/2.

with boundary condition

f3(z = h) = 0. (1.64)

Its solution reads as

f3(ξ, z) = 6ρg(z − h)2(ξ − (w/2))/w2. (1.65)

Finally, we thus obtain for σzz the approximation

σzz(ξ, z) = ρg(h− z) + αf3(ξ, z) = ρg(h− z)[1 + 6α(h− z)(ξ − (w/2))/w2]. (1.66)

This expression provides us with a useful approximation for the stress at the bottom

of the tilted wall. Setting z = 0, we find that this stress is given by

σzz(ξ, 0) = σzz(x, 0) = ρgh[1 + 6αh(x− (w/2))/w2]. (1.67)

We observe that the extra stress due to the tilt of the wall varies linearly with the

horizontal direction x. This was an assumption made in section 3.2.2. The present

analysis confirms the correctness of this assumption for relatively small tilt of the wall.

The maximum of the extra stress due to tilt is found in the right lower corner with

coordinates (w, 0). The vertical stress in that point is given by

σzz(w, 0) = ρgh[1 + 3αh/w]. (1.68)

Since this is also the maximum stress in the whole wall, each stress check should focus

at this value and make sure that this maximum stress does not exceed the yield stress in

that corner point.
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1.4 Recommendations

Based on the analysis presented above, we summarize the following recommendations:

• Flow rate checks

– Concrete should not dry while in hose: Flow rate ≥ Fmin.

– Maximum hose capacity: Flow rate ≤ Fmax.

• Stratification checks

– Time per layer < 2 L / min.

– Time per layer = Volume per layer / flow rate.

– Volume per layer = layer height · layer width · path length of layer.

• Center-of-mass check

– Calculate in advance the position of the centre of mass, using the formulae in

section 1.2.2 for all times of the printing process and check whether the object

under construction runs the risk to topple.

• Stress Checks

– Every round a new layer has been deposited the stress distribution in the

object under construction changes. If locally the internal stress exceeds the

local yield stress that part of the object will start to flow or collapse. So, the

stress distribution has to be continuously calculated or estimated. With this

information it should be checked whether the local stress is everywhere below

the local yield stress. Note that the local yield stress depends on the local

history thus on the time elapsed since that part of the object was deposited.

– In the stress calculations the following issues deserve extra attention:

∗ The stress equations as such have no unique solution. They should be

coupled to the stress-strain relation of concrete.

∗ The boundary condition to be applied at the bottom, so where it is in

contact with the table, deserves extra attention. There is friction between

object and table, but this friction will depend on the local normal stress.

∗ To calculate the stress distribution, it is recommended to make use of

standard software based on the Finite Element Method (FEM).
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∗ Analytical approaches also provide useful insights that can be used to

check numerical outcomes and for deriving rules of thumb. E.g., for a wall

tilted to the right the maximum stress will be attained in the right, lower

corner and its value is given by equation (1.68)
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