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Abstract

SciSports is a Dutch startup company specializing in football analytics. This paper
describes a joint research e�ort with SciSports, during the Study Group Mathematics
with Industry 2018 at Eindhoven, the Netherlands. The main challenge that we
addressed was to automatically process empirical football players' trajectories, in
order to extract useful information from them.

The data provided to us was two-dimensional positional data during entire matches.
We developed methods based on Newtonian mechanics and the Kalman �lter, Gen-
erative Adversarial Nets and Variational Autoencoders. In addition, we trained a
discriminator network to recognize and discern di�erent movement patterns of play-
ers.

The Kalman �lter approach yields an interpretable model, in which a small number
of player-dependent parameters can be �t; in theory this could be used to distinguish
among players.

The Generative-Adversarial-Nets approach appears promising in theory, and some
initial tests showed an improvement with respect to the baseline, but the limits in
time and computational power meant that we could not fully explore it. We also
trained a Discriminator network to distinguish between two players based on their
trajectories; after training, the network managed to distinguish between some pairs
of players, but not between others. After training, the Variational Autoencoders
generated trajectories that are di�cult to distinguish, visually, from the data.
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These experiments provide an indication that deep generative models can learn
the underlying structure and statistics of football players' trajectories. This can serve
as a starting point for determining player qualities based on such trajectory data.

Keywords: Football, Trajectory, Newtonian mechanics, Kalman filter,

Machine Learning, Generative Adversarial Nets, Variational Autoen-

coder, Discriminator

4.1 Introduction

SciSports (http://www.scisports.com/) is a Dutch sports analytics company taking
a data-driven approach to football. The company conducts scouting activities for
football clubs, gives advice to football players about which football club might suit
them best, and quanti�es the abilities of football players through various performance
metrics. So far, most of these activities have been supported by either coarse event
data, such as line-ups and outcomes of matches, or more �ne-grained event data such
as completed passes, distances covered by players, yellow cards received and goals
scored.

In the long term, SciSports aims to install specialized cameras and sensors across
football �elds to create a two- and three-dimensional virtual rendering of the matches,
by recording players' coordinate positions and gait data in millisecond time intervals.
From this massive amount of data, SciSports is interested in predicting future game
courses and extracting useful analytics. Insights gained from this learning process
can be used as preliminary steps towards determining the quality and playing style
of football players. In this project we based our work on a dataset containing the
recorded two-dimensional positions of all players and the ball during 14 standard
football matches at 0.1 second time intervals.

Football kinematics such as acceleration, maximal sprinting speed and distance
covered during a match can be extracted automatically from trajectory data. How-
ever, there are also important unobservable factors/features determining the soccer
game, e.g., a player can be of enormous value to a game without being anywhere
near the ball. These latent factors are key to understanding the drivers of motion and
their roles in predicting future game states. There are in general two basic approaches
to uncovering these factors: we can either postulate a model or structure for these
factors, based on physical laws and other domain knowledge (model-based), or we can
use machine learning techniques and let the algorithms discover these factors on their
own (data-driven).

Model-based approaches have been widely used to analyze football trajectories.
Examples in the literature include statistical models such as state space models ???
and physical models based on equations of motion and aerodynamics ?. These meth-
ods have the advantage of producing interpretable results and they can quickly give
reasonable predictions using relatively few past observations. In Section 4.3.1, we

http://www.scisports.com/
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Figure 4.1: A snapshot in time (≈ 2 minutes into the game) of the positional data
for all players (blue and red teams) and the ball (circle). Note that the goalkeepers
can be identi�ed as the players standing at the leftmost and rightmost positions on
the �eld.

build state space models based on principles of Newtonian mechanics to illustrate
these approaches.

The need to specify an explicit model is a drawback, however, since human players
probably follow complicated rules of behavior. To this end, data-driven approaches
embody the promise of taking advantage of having large amounts of data through
machine learning algorithms, without specifying the model; in a sense the model is
chosen by the algorithm as part of the training.

We implemented a Variational Autoencoder (VAE), as introduced by ?, and a
Generative Adversarial Net (GAN) as developed in ?.

The paper is organized as follows. In the next section, we describe the two-
dimensional positional data used for our analyses. We present the model-based state-
space approach in Section 4.3 and the data-driven methods based on GANs and VAEs
in Sections 4.4.1 and 4.4.2, respectively. We introduce the discriminator network to
di�erentiate movements in 4.4.3. We conclude in Section 4.5 and discuss future work.

The R and Python codes used to reproduce all our analyses can be found in https:

//bitbucket.org/AnatoliyBabic/swi-scisports-2018.

https://bitbucket.org/AnatoliyBabic/swi-scisports-2018
https://bitbucket.org/AnatoliyBabic/swi-scisports-2018
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4.2 The data

The data that we used for this project was provided by SciSports and is taken from 14
complete 90-minute football matches. For each player and ball (23 entities total) the
(x, y)-coordinates on the �eld have been recorded with a resolution of 10 cm and 10
frames per second; i.e., the trajectory of a player on a 10 seconds timespan corresponds
to a (2× 100)-vector of (x, y)-coordinates. The �eld measures 68 by 105 meters, and
the origin of the coordinate system is the center of the pitch. For all football �elds
illustrated in this report, the dimensions are given in centimeters, which means that
the �eld corresponds to the rectangle [−5250, 5250]× [−3400, 3400].

For illustration, Figure 4.1 shows a single-time snapshot of the positional data for
the ball and all players.

4.3 Methods: model-based

In this section we describe a model-based approach to extract information from the
data. With this approach we have two goals: �rst, to extract velocities from the
position data in such a way that the impact of the noise in position measurements is
minimized, and secondly, to estimate acceleration pro�les of di�erent players.

4.3.1 Newtonian mechanics and the Kalman �lter

A single football player

We �rst consider the case of modeling the movement of one football player in the
�rst match. We assume that this player is not a goalkeeper, since we would like to
model movement ranges that span at least half the �eld. The data provides a player's
(x, y)-position at every �xed 100 milliseconds as long as he remains in the game. Let
∆t be the time di�erence between successive timesteps, and let us denote a player's
position in the (x, y) plane at timestep t as xt, with the velocity and acceleration as
vt and at; they are related by at = dvt/dt and vt = dxt/dt. By approximating these
derivatives by �nite di�erences we obtain

xt = xt−1 + ∆tvt−1 +
1

2
(∆t)2at,

vt = vt−1 + ∆tat. (4.1)

We now model the acceleration at. We assume that at each timestep t the ac-
celeration at is independently and normally distributed with mean 0 and unknown
covariance matrix Q (we write this as at ∼ N(0,Q)). Since acceleration is propor-
tional to force by Newton's second law of motion, this induces a normal distribution
on the corresponding force exerted by the player, and the exponential decay of its
tails translate to natural limits imposed on muscular work output.
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In view of (4.1), we take position and velocity (xt,vt) as our underlying state
vector, and we consider the following model:(

xt
vt

)
=

(
I2 ∆tI2

0 I2

)
︸ ︷︷ ︸

T t

(
xt−1

vt−1

)
+

(
1
2 (∆t)2I2

∆tI2

)
︸ ︷︷ ︸

Rt

at, (4.2)

ηt =

(
1 0 0 0
0 1 0 0

)
︸ ︷︷ ︸

W t

(
xt
vt

)
︸ ︷︷ ︸

zt

+ εt, (4.3)

In the state equation (4.2), the state vector zt := (xt,vt) propagates forward in time
according to the Newtonian dynamics of (4.1), driven by an acceleration at ∼ N(0,Q).
In the observation equation (4.3), the observed quantity ηt records the player's po-
sition and not his/her velocity, and we assume that these position data are recorded
with Gaussian measurement errors: εt ∼ N(0,Σ) with Σ = Diag(σ2

x, σ
2
y). We initial-

ize z1 ∼ N(0,P 1) and we assume that εt,at, and z1 are mutually independent, and
independent across di�erent times.

We use a Kalman �lter to integrate this model with the measurements; this should
lead to an estimate for the velocity that is less noisy than simply calculating �nite
di�erences. However, the Kalman �lter parameters depend on the noise levels as
characterized by the player's acceleration variance Q and the measurement error
parameters σx, σy, and these we do not know; therefore we combine the Kalman �lter
with parameter estimation.

In each Kalman-�lter timestep we assume that we have access to observations ηt,
and we compute the one-step state prediction Zt+1 = E(zt+1|ηt, . . . ,η1) and its error
δt = ηt −W tZt, in conjunction with their estimated covariance matrices P t+1 =
Var(zt+1|ηt, . . . ,η1) and F t = Var(δt) = W tP tW

T
t + Σ. The Kalman recursion

formulas for these calculations are given by (see Appendix A of ?)

Zt+1 = T t(Zt +KtF
−1
t δt) (4.4a)

P t+1 = T t(P t −KtF
−1
t K

T
t )T Tt +RtQR

T
t , (4.4b)

where Kt = P tW
T
t . For given values of Q and σx, σy this leads to time courses of

the state Zt, the covariance P t, and the derived quantities δt and F t.

We have a total of 6 unknown parameters in our state space model, i.e., the two
diagonal entries of Σ and all the 2× 2 entries of Q (we did not exploit the symmetry
of Q). Given the result of a calculation for given Q and σx, σy, the log-likelihood
function (?) is given by

ln = −np
2

log (2π)− 1

2

n∑
t=1

(
log detF t + δTt F

−1
t δt

)
, (4.5)
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where p is the dimension of ηt at a �xed t, which in our present case is 2. We then
compute the maximum likelihood estimator for the 6 covariance parameters using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm.

This setup leads to the following multilevel iteration.

1. We select the �rst 10 timesteps from the data; this means that we know the
values of η1 to η10.

2. At the outer level we maximize the log-likelihood function (4.5) with respect
to Q and σx, σy.

3. At the inner level, i.e. for each evaluation of the log-likelihood, we run the
Kalman �lter (4.4) for 10 steps, ending at time t = 11.

4. After completing the optimization over Q and σx, σy for this choice of 10
timesteps, we have both an estimate of Q and σx, σy during that period and a
prediction for zt = (xt,vt), for t = 1, . . . , 11. We then shift the 10-step window
by one timestep, to 2, . . . , 11, and go back to step 2.

At the end of this process, we have for each 10-step window of times a series of
estimates of xt, vt, P t, Q, and σx, σy.

Remark 1. Each of the 11-step runs of the Kalman �lter equations (4.4) needs
to be initialized. We initialize z1 randomly, drawn from N(0,P 1), as mentioned
above. Concerning the choice of P 1, a commonly used default is to set P 1 = 107I
as a di�use prior distribution. However, this is numerically unstable and prone to
cumulative roundo� errors. Instead, we use the exact di�use initialization method by
decomposing P 1 into its di�usive and non-di�usive parts; for more details see ?.

Remark 2. In actual implementation, some technical modi�cations are needed to
speed up computations, particularly when ηt consists of high-dimensional observa-
tions at each time point (which happens when we estimate all 23 entities, as we do
below). To solve for this dimensionality issue and to avoid direct inversion of F t, the
state space model of (4.3) and (4.2) is recast into an equivalent univariate form and
the latent states are estimated using a univariate Kalman �lter (cf. ?).

The Kalman �lter algorithm and parameter estimation (including the univariate
formulation and di�use initialization) were performed using the KFAS package (see ?)
in the R software package.

Results for a single player

We modeled the movement of the player with number 3, who appears to hold the
position of left central mid�elder, and who was in the pitch for the entire game. As
described above, we use a sliding window of 10 training samples for predictions, such
that we �rst use 10 time points to predict the 11th point (one-step-ahead), then we
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Figure 4.2: Blue: One-step-ahead predicted position, Red: True recorded position.
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Figure 4.3: One-step-ahead predicted velocity vector �eld vt, arrow points to direction
of motion and vector length is speed.

shift the window one timestep ahead and use the next 10 time points to predict the
12th point and so on.
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Figure 4.2 shows one-step-ahead predicted positions of our mid�elder (blue dots)
for the �rst 2500 time points. We see that the state space model is able to make
accurate predictions (when compared to the red true positions), even if we have used
only the past 10 locations in our algorithm. Moreover, the model is able to trace out
complicated movements and sharp corners as is evident from the �gure.

As mentioned above, one reason for applying a Kalman �lter to the data is to
extract the velocity. Figure 4.3 illustrates the velocity vectors as arrows tangent to
the position curve. We also plot the scalar speeds ‖vt‖ against the 2500 time points
in Figure 4.4.

To see the correspondence between these three �gures, let us focus on a distin-
guishing stretch of movement made by our mid�elder, who starts at (0,−1000), then
sprints towards the goal post in the East, make two loops towards the North and again
moved back across the �eld to the West, thus making a somewhat elongated rectangle
on the �eld. We know that he is sprinting to the goal from Figure 4.3 due to the long
arrows pointing to the East, with exact magnitudes given by the peak slightly after
time 1000 in Figure 4.4. The mid�elder has relatively lower speeds when making the
double loop (from time 1200 to 1500 in Figure 4.4) and then he picks up the momen-
tum when moving towards the West, as is evident from the marked increase in speeds
after time 1500.
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Figure 4.4: One-step-ahead predicted speed ‖vt‖ (y-axis) against timesteps (x-axis).

Figure 4.5 shows the predictive performance of this model for longer time horizons;
in this case we are using 10 time points to predict 5 steps ahead. When compared
with the one-step-ahead case of Figure 4.2, we see that there is some deterioration in
this model's predictive capability, particularly for places where the player's trajectory
is curved. From this plot, we can deduce that positional uncertainties are the greatest
when the mid�elder is moving in loops or in circles.
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Figure 4.5: Blue dot: 5-step-ahead predicted position; blue square: 95%-prediction
rectangle; red dot: true recorded position. The horizontal and vertical lines are
artefacts of the algorithm.

Results for the ball and all 22 football players

Let us now consider the general case of modeling all 22 football players, including
goalkeepers, and the ball (collectively called `entities'). A snapshot of the positional
data at around 2 minutes into the game is shown in Figure 4.1. We choose the same
equations for all entities, giving for all k = 1, . . . , 23,

x
(k)
t = x

(k)
t−1 + ∆tv

(k)
t−1 +

1

2
(∆t)2a

(k)
t ,

v
(k)
t = v

(k)
t−1 + ∆ta

(k)
t . (4.6)

By stacking up 23 copies of the single player case (4.3) and (4.2), we convert the
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equations of motion above to the following state space model:
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Here the measurement error vector is (ε
(1)
t ε

(2)
t · · · ε

(23)
t ) ∼ N(0,Σ) with Σ =

Diag(σ2
x,1, σ

2
y,1, σ

2
x,2, σ

2
y,2, . . . , σ

2
x,23, σ

2
y,23) and the acceleration vector (a

(1)
t · · ·a

(23)
t ) ∼

N(0,Q).
It would be interesting to use this framework to model the interactions between

di�erent football players and the ball through the covariance matrix Q; obviously, in
a real match one expects a strong correlation between all entities. An unstructured Q
consists of 462 = 2116 parameters and adding the diagonal elements of Σ yields a total
of 2162 parameters. We found that this general case takes a prohibitively long time
to optimize, and we have to simplify the problem by imposing additional structure
on Q. To keep computations manageable, we disregard correlations between entities,
by assuming that Q is a block diagonal matrix given by Q = BlockDiag(Q1, . . . ,Q23)

where Qk = Var(a
(k)
t ) for k = 1, . . . , 23. In other words, each player's movement is

modeled using his/her own state space equations that are independent of the other
players.
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If the prediction horizon is short, e.g., one step ahead, we found that this choice
of Q gives reasonable predictive performance as shown in Figure 4.6. Here we have
used 5 past time points to predict one timestep ahead and we see that the one-step-
ahead predicted player's position (blue) closely follows the truth (red) over the span
of 206 time points. Moreover, the path of the ball is instantly recognizable as the zig-
zag dotted line (due to it being the fastest object) embedded among the network of
trajectories. If longer prediction horizons are sought, then this simplifying assumption
might not give good performance and cross-covariance terms between players and
ball are needed. To that end, one can consider low-rank approximations or imposing
sparsity constraints on Q. Alternatively, we can turn to machine-learning methods
by training a (deep) multi-level neural network to learn these complex interactions;
this is the subject of the next section.
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Figure 4.6: One-step-ahead predicted positions for the ball and all 22 players (blue)
with their true paths (red). The path of the ball is the zig-zag dotted line.

4.4 Methods: data-driven

In this section we describe machine-learning techniques to model spatio-temporal tra-
jectories of players and the ball throughout the game, in order to acquire meaningful
insight on football kinematics. Our philosophy is that we aim to construct networks
that can generate trajectories that are statistically indistinguishable from the actual
data. Successfully trained networks of this type have a number of bene�ts. They allow
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one to quickly generate more data; the components of such networks can be re-used
(we show an example in Section 4.4.3); when they produce `latent spaces', then these
latent spaces may be interpreted by humans; and the structure of succesful networks
and the values of the trained parameters should, in theory, give information about
the trajectories themselves.

In Section 4.4.1, we use Generative Adversarial Networks, such that two networks
are pitted against each other to generate trajectories. Next, in Section 4.4.2, we
consider another class of networks called Variational Autoencoders, where we do data
compression and train the network to replicate trajectories by learning important
features. Finally, in Section 4.4.3 we investigate a method to discriminate between
walking patterns of two di�erent football players.

4.4.1 Generative Adversarial Network

Generative Adversarial Networks (GANs) are deep neural net architectures introduced
by ? which exploit the competition between two (adversarial) networks: a generative
network called the Generator and a discriminative network called the Discriminator.

Both the Generator and Discriminator are trained with a training set of real
observations, and against each other. The Discriminator is a classi�er; it has to learn
to di�erentiate between real and generated observations, labeling them as �realistic�
and �fake� respectively. The Generator, on the other hand, has to learn to reproduce
features of the real data and generate new observations which are good enough to fool
the Discriminator into labeling them as �realistic�.

2D positional data into images

GANs have been used with great success in image recognition, 3D-models reconstruc-
tion and photorealistic imaging; see e.g. ?. Because of the limited time available to
us, we decided to capitalize on existing codes for images; we use ?. By rescaling the
data accordingly we map the football �eld to the square [−1, 1]2 and interpret a 10
seconds trajectory as a 2× 100 gray-scale image: for each of the 100 time points, the
two degrees of freedom indicate the rescaled x- and y-positions. This �image" is what
we input into the neural network machinery.

Network setup

The algorithm we use is a repurposed version of the basic convolutional neural network
found at ?, which is meant to recognize and reproduce handwritten digits. There is
a structural di�erence between the two:

• the original algorithm works with the MNIST digit dataset, which consists of
28× 28 black-and-white images of 10 possible states (the digits 0-9);

• our algorithm works with 2× 100 gray-scale images, containing an aggregation
of 10 seconds of play.
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If we were to convert our gray-scale images to black-and-white, we would lose too
much information.

Another important di�erence is in the intrinsic asymmetry of the data:

• in the original version, both the Discriminator and the Generator look at 3× 3
or 5 × 5 spatial features of the images: useful information about the topology
of the shape can be obtained by looking at spatial neighborhoods of any given
pixel;

• in our case we want to look a the x and y coordinates independently, therefore
our Discriminator and Generator work with one-dimensional temporal features:
the information regarding the x- or y-trajectory in a temporal neighborhood of
each position, i.e., its recent past and future. The information about the recent
past and future of the trajectory should not be too small, otherwise the feature
only observes the position of a player. On the other hand, if the feature is
too large, it observes almost the entire 10-second trajectory, and the trajectory
only contains a few features. To balance this trade-o� we use 1× 5 and 1× 10
temporal features.

By making this tweak to the original algorithm we exploit the natural directionality
of the data and we avoid overlapping the spatial properties (i.e., the shade of gray)
and the temporal properties (i.e., the variation in shade). To have a sense of what
this means we visualize the correspondence between the (x, y)-coordinates and the
real trajectory of a player, see Figure 4.7.

The algorithm

We limit our training set to all random samplings of 20-second trajectories of any
single player (excluding goalkeepers and the ball) during a single �xed match. This
should give some extra structure for the network to work with while maintaining a
diverse enough data sample.

The initialization of the parameters is the same as in the original algorithm, the
Generator takes a standard Gaussian noise vector as input and then produces a new
image based on the updates made by the network. To have a glance of what an
untrained Generator is capable of, see Figure 4.8.

The Discriminator is then pre-trained with real and generated trajectories. After
this �rst training epoch, the Discriminator is able to correctly discriminate between
the real trajectories and the untrained noisy ones produced by the Generator. Here
an epoch consists of one full learning cycle on the training set. Then the main training
session begins. From the second epoch and above, the Discriminator is trained with
real and generated data and the Generator itself is trained against the Discriminator.
This produces a Generator-Discriminator feedback loop that forces both networks to
improve themselves with the objective to outperform the other. This is achieved by
implementing a loss function to measure three quantities:
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Figure 4.7: A non-trivial real trajectory and its twofold representation. The (x, y)-
coordinates as gray-scale image (top) and the real trajectory on the football �eld
(bottom).

• Discriminator loss vs real: it measures how far the Discriminator is from labeling
a real trajectory as �realistic�;

• Discriminator loss vs Generator: it measures how far the Discriminator is from
labeling a generated image as �fake�;

• Generator loss vs Discriminator: it measures how far the Discriminator is from
labeling a generated image as �realistic�.

The �rst loss function deals with the interaction between the Discriminator and the
real world, it makes sure that the network is adapting to recognize new real obser-
vations. The second and third loss functions on the other hand, work against each
other: one is trying to force the Discriminator to always label �fake� when presented
with a generated image, while the other is forcing the Generator to produce data
that mimics the Discriminator's perception of the real world. The loss function used
throughout the algorithm is the cross-entropy loss, for a discussion see ?.

Performance and limitations

Properly training a GAN requires a long time and much can go wrong in the process.
The Generator and Discriminator need to maintain a perfect balance, otherwise one
will outperform the other causing either the Discriminator to blindly reject any gener-
ated image, or the Generator to exploit blind spots the Discriminator may have. After
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Figure 4.8: A trajectory from the untrained Generator.

a training session of 15 hours our GAN managed to go from random noise trajectories
to smooth and structured ones, although not fully learning the underlying structure
of the data. While the generated movements look impressive when compared to the
untrained ones, they are still underperforming when confronted with the real world.
First and foremost, the acceleration pattern of the players make no physical sense, i.e.,
the algorithm is not able to �lter out local small noise, and the trajectories are not
smooth enough. The evolution of the network during training is shown in Figure 4.9.
In the end the GAN is not consistent enough when asked to generate large samples
of data: too many trajectories do not look realistic.

4.4.2 Variational Autoencoder

In parallel, we implemented a Variational Autoencoder (VAE) as introduced by ?.
Like a GAN, a VAE is an unsupervised machine-learning algorithm that gives rise to
a generative model.

We will apply the VAE algorithm on normalized trajectory data spanning 50
seconds. We call the set of all such trajectory data X. As the trajectories are sampled
at intervals of 0.1 seconds, this means that we can identify X with [0, 1]1000.

A VAE consists of two neural networks, an encoder and a decoder. The encoder
is a function (parametrized by a vector φ)

Encφ : X × E → Z

that maps from the product of the space X of input data and a space of noise variables
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Figure 4.9: Di�erent stages of GAN training (from left to right and from top to
bottom). The network goes from random noise to shape recovery, but it is not able
to �lter out local noise consistently.

E , to the so-called latent space Z. We identify the space Z with Rd (d = 10). The
decoder is a function (parametrized by a vector θ)

Decθ : Z × Ω→ X

which maps from the latent space Z and a second space of noise variables Ω back to
the data space X.

We choose the spaces of noise variables E and Ω to be Euclidean, with the same
dimension as Z and X respectively, and endow them with standard Gaussian mea-
sures.

The encoder and decoder have a special structure. We implemented (as neural
networks) functions

µZ,φ : X → Z and σZ,φ : X → Z

and chose

Encφ(x, ε) := µZ,φ(x) + diag(σZ,φ(x))ε.

Here, diag(σZ,φ(x)) is a diagonal matrix with σZ,φ(x) on the diagonal. Equivalently,
diag(σZ,φ(x))ε is just the elementwise product of σZ,φ(x) and ε.

Similarly, we implemented a function

µX,θ : Z → X

and selected a constant σX ∈ (0,∞) and chose

Decθ(z, ω) := µX,θ(z) + σXω.
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The decoder provides us with a generative model for the data: to generate a data point
we �rst sample z and ω independently according to standard normal distributions,
after which we apply the decoder to the pair (z, ω). Alternatively, we can generate
zero-noise samples by only sampling z and computing Decθ(z, 0).

The Variational Autoencoder VAEφ,θ : X × E × Ω→ X is the composition of the
encoder and decoder in the sense that

VAEφ,θ(x, ε, ω) = Decφ(Encθ(x, ε), ω).

The parameters φ and θ of the VAE are optimized simultaneously, so that when we
apply the VAE to a randomly selected triple of trajectory x, noise variable ε and noise
variable ω, the result is close to the original trajectory, at least on average.

To this end, we follow ? and minimize an average loss, for the loss function
Lφ,θ : X × E → R given by

1

σ2
X

Lφ,θ(x, ε) :=
1

σ2
X

∥∥x− µX,θ(Encφ(x, ε)
)∥∥2

+ ‖µZ,φ(x)‖2 − d

− tr
(

log(diag(σZ,φ(x))2
)

+ tr
(
diag(σZ,φ(x))2

)
. (4.7)

For a derivation of this loss function, we refer the reader to the Appendix.
We implemented the Autoencoder in the Keras library for Python (?). The library

comes with an example VAE which we took as a starting point. We introduced a
hidden layer HE in the encoder and HD in the decoder, which we both identi�ed with
R400, and implemented the functions µZ,φ and σZ,φ as

µZ,φ = mZ,φ ◦ hE,φ
σZ,φ = exp ◦ lZ,φ ◦ hE,φ

where hE,φ : X → HE is the composition of an a�ne map and ReLu activation
functions, the functions mZ,φ, lZ,φ : HE → Z are linear and exp : Z → Z is the
exponential function applied componentwise.

Similarly,
µX,θ = mX,θ ◦ hD,θ

where the function hD,θ : Z → HD is again a composition of an a�ne map and ReLu
activation functions and the function mX,θ : HD → X is a composition of an a�ne
map and sigmoid activation functions.

We trained the model, i.e. we adjusted the parameters φ and θ to minimize the
average loss, using the `rmsprop' optimizer in its default settings. Whether the model
trained successfully or not did seem to depend crucially on the version of the libraries
used. For the results presented below, we used Keras version 2.1.3 on top of Theano
version 1.0.1. We �rst set σX ≈ 0.15. After training for 1000 epochs, the average loss
was slightly below 2.

We used the VAE to approximate trajectories. We sampled at random trajectories
xi from the data, and compared them to their approximations

x̂i := VAEφ,θ(xi, 0, 0).
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The average absolute deviation per coordinate per time-step (expressed as a ratio with
respect to the dimensions of the playing �eld) was approximately 0.02, the average
squared error per coordinate per time step was approximately 0.0008 and the average
maximum error per coordinate, taken over the whole trajectory, was less than 0.09.

3400

0

3400

5250 0 5250
3400

0

3400

5250 0 5250

Figure 4.10: A collection of sampled trajectories (orange) and an approximation cal-
culated by the VAE (black). In general, the approximating trajectories are much
smoother. We chose σX ≈ 0.15 in training the VAE.

In Figure 4.10 we show the result of sampling four random trajectories xi from the
data, and comparing them to their approximation by the VAE. The approximating
trajectories are much smoother than the original ones. Some qualitative features of
the original paths, such as turns and loops, are also present in the approximating
paths. Even though the average error in the distance per coordinate per time step is
relatively small, visually there is still quite some deviation between the true and the
approximating trajectories. We expect, however, that with a more extensive network,
consisting of more convolutional layers, we can greatly improve the approximation.

Next, we use the decoder of the VAE as a generative model. In particular, we
sample trajectories in X at random by �rst sampling z ∈ Z according to a standard
normal distributions, and computing the trajectory Decθ(z, 0). A collection of six
trajectories generated in this way is shown in Figure 4.11. At �rst sight, the gener-
ated trajectories look like they could have been real trajectories of football players.
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Figure 4.11: Six random trajectories generated by the generative model, i.e. by the
decoder part of the VAE.

However, they are in general smoother than the real trajectories. We could also have
generated trajectories by sampling both z and ω according to standard normal dis-
tributions and computing Decθ(z, ω). However, those trajectories would have been
much too noisy.

If we reduce the value of σX to approximately 0.008 and retrain the model, the
approximation of the trajectories becomes slightly better, and the �nal average loss
reduces to 0.67 after training for 600 epochs. The corresponding plots look similar to
Figure 4.10. However, if we now use the decoder to generate trajectories, most of the
trajectories end up close to the boundary of the playing �eld: the dynamics of the
generated trajectories is then clearly very di�erent from the original dynamics.

In Appendix .1, we explain this e�ect by investigating the di�erent parts of the
loss function given in (4.7). The upshot is that when σX is very small, the proportion
of latent variables z ∈ Z that are in the range of the encoder is very small (measured
with the Gaussian measure on Z). If one applies the decoder to a z ∈ Z which is in the
range of the encoder, one probably gets a realistic trajectory. But for latent variables
z not in the range of the encoder, there is no reason for the decoded trajectories to
look realistic at all.
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Figure 4.12: Two examples of the Discriminator loss function for both players as a
function of the number of training steps. The solid lines are the results for uncentered
data and the dashed lines contain the results for the centered data. The two examples
contain four di�erent players.

4.4.3 Discriminator

In the previous sections, we studied several methods to create generative models for
the movement trajectories of football players, with the aim of capturing the under-
lying dynamics and statistics. In this section, we study to what extent movement
trajectories of di�erent soccer players can be distinguished. To this end, we test the
Discriminator network of the GAN introduced in Section 4.4.1 on data of di�erent
soccer players. We train the Discriminator on the data of two soccer players, and then
test if the Discriminator is able to distinguish their motion patterns. The success rate
of the Discriminator to distinguish one player from the other then gives some insight
in how di�erent are the movement behaviors of two di�erent players.

The loss function for the Discriminator is the same as in Section 4.4.1. The
data we use as input for the Discriminator are (x, y)-coordinates of 10-second player
trajectories. We test the Discriminator on these unedited (x, y)-trajectories, and on
centered (x, y)-trajectories, where the coordinates of each trajectory are centered such
that the �rst coordinate always equals (0, 0). Thus, by using the uncentered data,
the Discriminator may distinguish two players by using their positions on the �eld,
whereas the Discriminator can only use movement patterns of particular players when
the centered data are used.

Figure 4.12 shows the Discriminator loss function for both players as a function
of the number of training steps for two di�erent sets of two players. We see that the
loss function declines more for the uncentered data than for the centered data. Thus,
the Discriminator distinguishes uncentered trajectories based on the location on the
�eld where the movement pattern happens. The two di�erent examples also show
that it is easier to distinguish some players than others. Table 4.1 shows the success
rate of correctly identifying the player corresponding to a given trajectory after the
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training period for the two sets of players of Figure 4.12. The success rate of the
Discriminator using the uncentered data is higher than for the centered data in both
examples. Using the centered data, the Discriminator has di�culties distinguishing
between players 1 and 2 in the �rst example. In the second example, the success
rate is much higher. Thus, some players display more similarities in their movement
patterns than other players.

Player 1 Player 2 Player 3 Player 4

example 1
non-centered 0.74 0.9

centered 0.2 0.96

example 2
non-centered 0.98 0.82

centered 0.54 0.95

Table 4.1: The success rate of the Discriminator after training on the two examples
of Figure 4.12. We use separate data sets for training and validation.

4.5 Conclusion and future work

We used several methods to learn the spatio-temporal structure of trajectories of
football players. With the state-space modeling approach we extracted velocity in-
formation from the trajectory data, and learned basic statistics on the motion of
individual players. With deep generative models, in particular Variational Autoen-
coders, we captured the approximate statistics of trajectories by encoding them into
a lower dimensional latent space. Due to limitations on time and computational
power, we did not manage to successfully train Generative Adversarial Nets on the
data. Nonetheless, we were able to use the Discrimator network to distinguish be-
tween di�erent football players based on their trajectory data. The algorithm was
more successful if we used non-centered rather than centered data, and was better at
distinguishing between some players than others.

It is very likely that with deeper convolutional neural networks, we can train
VAEs that approximate the statistics of the player trajectories even better. Besides,
the approach can easily be extended to approximate trajectories of multiple players
and the ball, although we may need more data to get an accurate model.

A big challenge is to interpret the latent space of the VAE. Ideally, one would be
able to recognize qualities of the players as variables in the latent space. Although
this is a di�cult task in general, we expect that by adding additional structure in the
architecture of the VAE, we can at least extract some relevant performance variables
per player and recognize di�erences between players. Moreover, we could unify state-
space models with VAEs to increase the interpretability of the latent variables.

By continuing this line of work, we could conceivably �nd an appropriate state
space such that the football game can be �tted into a Reinforcement Learning frame-
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work. This framework may then be used to �nd optimal strategies, and to extract
individual qualities of football players.

.1 Derivation of loss function of VAE

In this appendix we will derive the loss function for the Variational Autoencoder. The
loss function is the same as the one used by ?, and more generally corresponds to
the usual loss function in variational inference, but our presentation here is slightly
nonstandard and is based on general measure theoretic probability.

Before we can discuss the loss function and its meanings, we need to introduce
notations for the various measures encountered in the problem. Both the encoder and
the decoder of the VAE will induce measures on the product space Z ×X, and the
optimization procedure will aim to bring these measures as close as possible to each
other. We will �rst describe the encoder and the decoder measures.

Encoder measure

Recall from Section 4.4.2 that we can identify Z and E with Rd. In addition, we let X
and Ω be subsets of Rk and we set k = 1000 and d = 10 in our own implementation.
Let us start by assuming that trajectories are obtained by sampling independently
according to a distribution QX , which we assume to be absolutely continuous with
respect to the k-fold product of Lebesgue measures Lk on X with density qX : X →
[0,∞). We denote the standard Gaussian measure on E by QE . The encoder induces
a measure QφZ×X×E on the space Z ×X × E by

QφZ×X×E := (Encφ × id)#(QX ⊗QE)

where id : X × E → X × E is the identity map, and g#Q is the pushforward measure
of Q induced by measurable function g such that (g#Q)(A) = Q(g−1(A)) for any
measurable set A. Equivalently, for every bounded and continuous function f : Z ×
X × E → R it holds that∫

Z×X×E
fdQφZ×X×E =

∫
X×E

f(Encφ(x, ε), x, ε)d(QX ⊗QE)(x, ε).

We observe that QX and QE are indeed the marginals of the measure QφZ×X×E ,
and similarly we will denote by QφZ×X the Z ×X-marginal of QφZ×X×E etc.. We will

occasionally refer to QφZ×X as the encoder measure or the recognition model.
Finally, we denote the conditional distribution on Z induced from the encoder

given x ∈ X by
QφZ|x := Encφ(x, ·)#QE .

We assume that its density with respect to PZ , the standard Gaussian measure on Z,
exists and we denote it by qφZ|x. The measure QφZ×X is then absolutely continuous
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with respect to PZ ⊗ Lk with density

qφZ×X(z, x) = qφZ|x(z)qX(x).

Decoder measure

Analogously, we denote by PZ and PΩ the standard Gaussian measures on Z and Ω
respectively. The decoder induces a measure PθZ×Ω×X on the space Z ×Ω×X, given
by

PθZ×Ω×X := (id× Decθ)#(PZ ⊗ PΩ).

Again, we observe that PZ and PΩ are the marginals of PθZ×Ω×X and we denote

by PθZ×X the marginal probability distribution on Z ×X. We refer to PθZ×X as the

decoder measure or the generative model. We will assume that PθZ×X is absolutely

continuous with respect to the product measure PZ ⊗Lk, and that its density pθZ×X :

Z ×X → (0,∞) is strictly positive. Since PZ is the marginal of PθZ×X it follows that
the marginal density pZ : Z → [0,∞) is de�ned by

pZ(z) :=

∫
X

pθZ×X(z, x)dLk(x)

and pZ(z) = 1 for every z ∈ Z. We also de�ne the conditional density

pθX|z(x) =
pθZ×X(z, x)

pZ(z)
.

We denote the corresponding conditional probability distribution on X by PθX|z and
note that it coincides with the law of the decoder conditioned on z ∈ Z,

PθX|z = Decθ(z, ·)#PΩ. (8)

In the particular context of the Variational Autoencoder explained in Section 4.4.2,
we �nd that

pθZ×X(z, x) = pθX|z(x)pZ(z) =
1

(2πσ2
X)k/2

exp

(
− 1

2σ2
X

‖x− µX,θ(z)‖2
)
.

Similarly, we de�ne the marginal density pθX : X → [0,∞) by

pθX(x) :=

∫
Z

pθZ×X(z, x)dPZ(z).

Note that pθX(x) > 0 for all x ∈ X. We denote the associated probability distribution
on X by PθX . We set

pθZ|x(z) :=
pθZ×X(z, x)

pθX(x)
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and denote by PθZ|x the associated conditional probability distribution that has density
pθZ|x with respect to PZ .

Note that by de�nition, the following version of Bayes' Theorem holds

pθZ|x(z)pθX(x) = pθZ×X(z, x) = pθX|z(x)pZ(z). (9)

Derivation of loss function

The loss function of the Variational Autoencoder is built around the relative en-
tropy, or more commonly known as the Kullback-Leibler (KL) divergence. If P and
Q are probability measures on a measure space Y , the Kullback-Leibler divergence
DKL(Q‖P) is de�ned to be +∞ if Q is not absolutely continuous with respect to P,
and otherwise

DKL(Q‖P) :=

∫
Y

log
dQ
dP

dQ,

where dQ
dP is the Radon-Nikodym derivative which we can take as the density of Q

with respect to P.
We aim to minimize over all θ and φ an approximation of

DKL(QφZ×X‖P
θ
Z×X).

This has the interpretation that we search for θ and φ so that it is hard to distinguish
the encoder distribution QφZ×X from the decoder distribution PθZ×X .

In view of Bayes' Theorem given by (9), we can write this KL divergence in
di�erent ways as follows

DKL(QφZ×X‖P
θ
Z×X) =

∫
Z×X

log
qφZ×X(z, x)

pθZ×X(z, x)
dQφZ×X(z, x)

=

∫
Z×X

log
qφZ|x(z)qX(x)

pθX|z(x)pZ(z)
dQφZ×X(z, x) (10)

=

∫
Z×X

log
qφZ|x(z)qX(x)

pθZ|x(z)pθX(x)
dQφZ×X(z, x).

The last of these expressions yields that

DKL(QφZ×X‖P
θ
Z×X) =

∫
X

log
qX(x)

pθX(x)
dQX(x) +

∫
X

∫
Z

log
qφZ|x(z)

pθZ|x(z)
dQφZ|x(z)dQX(x)

= DKL(QX‖PθX) +

∫
X

DKL(QφZ|x‖P
θ
Z|x)dQX(x).

The �rst term in this expression is small when the true distribution QX is hard to
distinguish from the distribution of X generated by the decoder PθX . The second term
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is small when, on average, the conditional distribution of the encoder on Z given x is
hard to distinguish from the conditional distribution of the decoder on Z given x.

As usual in variational inference (cf. ?), we subtract DKL(QX‖Lk) and minimize
instead

−DKL(QX‖Lk) +DKL(QX‖PθX) +

∫
X

DKL(QφZ|x‖P
θ
Z|x)dQX(x), (11)

=

∫
X

[
− log qX(x) + log

qX(x)

pθX(x)

]
dQX(x) +

∫
X

DKL(QφZ|x‖P
θ
Z|x)dQX(x)

= −
∫
X

log pθX(x) dQX(x) +

∫
X

DKL(QφZ|x‖P
θ
Z|x)dQX(x).

This expression can be recognized as being at the start of the derivation for the loss
function used in ?. (We assume DKL(QX‖Lk) < ∞ and in particular that QX is
absolutely continuous with respect to the Lebesgue measure Lk.)

However, the marginal density pθX is often inaccessible, i.e. it is often impossible
to compute and hard to approximate. Therefore, one rewrites the functional in a
di�erent way. By the representation given in (10) we �nd

DKL(QφZ×X‖P
θ
Z×X)−DKL(QX‖Lk)

=

∫
X

[∫
Z

log
qφZ|x(z)

pθX|z(x)pZ(z)
dQφZ|x(z)

]
dQX(x)

= −
∫
X

∫
Z

log pθX|z(x)dQφZ|x(z)dQX(x) +

∫
X

[∫
Z

log
qφZ|x(z)

pZ(z)
dQφZ|x(z)

]
dQX(x)

= −
∫
X

∫
E

log pθX|Encφ(x,ε)(x)dQE(ε)dQX(x) +

∫
X

∫
E
DKL(QφZ|x‖PZ)dQE(ε)dQX(x)

=

∫
X×E

[
− log pθX|Encφ(x,ε)(x) +DKL(QφZ|x‖PZ)

]
d(QX ⊗QE)(x, ε).

Our choice of loss function Lφ,θ : X × E → R is therefore

Lφ,θ(x, ε) := − log pθX|Encφ(x,ε)(x) +DKL(QφZ|x‖PZ) (12)

=
1

2σ2
X

∥∥x− µX,θ(Encφ(x, ε)
)∥∥2

+
k

2
log(2πσ2

X) (13)

+
1

2

[
‖µZ,φ(x)‖2 − d− tr

(
log(diag(σZ,φ(x))2

)
+ tr

(
diag(σZ,φ(x))2

)]
,

which up to scaling and a constant agrees with the loss function used in (4.7).

This derivation allows us to interpret the e�ects of the di�erent terms and con-
stants in this loss function. The �rst term in (12) can be interpreted as a (nega-
tive) log-likelihood, the probability of observing x conditioned on the property that
z = Encφ(x, ε). This term is written in detail on the line (13), where the Gaussian
structure of pθX|z translates into a squared distance weighted by the factor 1/2σ2

X .
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The second term in (12) measures the divergence between the conditional distri-

bution QφZ|x and the standard Gaussian.

For very small values of σX , the �rst term in (12) dominates the second. In
practice, this means that for the parameters φ and θ found by the optimization
procedure, there is no guarantee that the distribution QφZ|x is close to the standard

Gaussian measure PZ ; in general it will be far away. Heuristically, the e�ective range
of the encoder will have small PZ measure.

For values of z that are in the e�ective range of the encoder, the decoder will
produce realistic trajectories. However, for the values of z that are not in the range,
there is no reason for the decoder to produce realistic trajectories. In particular, the
generative model that �rst independently samples z ∈ Z and ω ∈ Ω according to PZ
and PΩ respectively and then computes Decφ(z, ω), will have very di�erent statistics
from the model that samples from QX if σX is very small.
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