
In Vitro or in Soil: Make Your Business Bloom

Mark J.H. van den Bergh1, Roel W. van den Broek2, Han

Hoogeveen]2

Abstract

Starting with a set of di�erent genotypes of a plant species, we would like to select
and multiply the best one of the genotypes. Selection is done through a series of tests,
while multiplication can either be done `in soil', which is cheap, or `in vitro', which is
fast. The question is: How should we schedule the tests and how should we multiply
the plants if we want to optimize the time taken and the costs made to produce a
new plant? In this paper, we explore three di�erent methods of solving the problem
and discuss the results of some computational experiments.

Keywords: decision process, decision tree, branch and bound, dynamic program-
ming, (integer) linear programming

3.1 Introduction

Dümmen Orange is a leading company in the world of �oriculture. Unifying many
smaller companies involved in the development and sales of �owers and plants under
a single brand, Dümmen Orange aims at providing a sustainable and stable backbone
for these companies. A recent addition to the portfolio is the company of Hobaho,
which serves as intermediary in the selling of �ower bulbs and plants, as well as being
involved in the breeding and testing of new plant varieties.

This paper is concerned with the latter: starting with a diversity of genotypes of
the same species of �ower bulbs, we would like to select one of these genotypes and
multiply it to some minimum number necessary to successfully introduce the new
species into the �ower market. We refer to Figure 3.1 for an example of the species
of interest.

1Leiden University
2Utrecht University

45



46 SWI 2018 Proceedings

Figure 3.1: Three products of interest: calla, tulips and hyacinths.

For the selection of the remaining genotype we can apply a number of tests, in
which properties like beauty and resistance to pests are considered. For each test we
know how many bulbs it requires, how long it takes before the results are known, and
which percentage of the candidates is expected to be eliminated.

For the multiplication process, we repeatedly have the choice between growing the
plants in soil and in vitro. Growing in soil is the natural way: we put bulbs in the
ground and get bulbs out, which is relatively cheap but may take long. Growing in
vitro is a modern variant that uses tissue culture techniques in the laboratory, which
is quicker but more costly. Simply speaking, a bulb is cut into pieces, which yields
several plantlets after a few weeks; if necessary, this process can be repeated, where
each time the number of obtained plantlets is doubled. Finally, the plantlets have to
be put in the ground to grow bulbs, which takes a �xed amount of time.

Our goal is to get the �nal genotype on the market as soon and as cheap as possible.
This leads to the following question: Given all the necessary data on growing times
and costs, what breeding and testing strategy is optimal? Since the two optimality
criteria involved, which are time and cost, are con�icting, this will result in a trade-
o� in which we are interested whether the gained time is worth the extra costs if we
pursue a faster strategy. Furthermore, we are interested in which parameters of the
model have the largest impact on the value of the solutions. In other words: in which
area of research should we invest to improve the outcome most e�ciently?

Hobaho posed these questions at the study group `Wiskunde met de Industrie'
SWI20183. Because of a lack of data, we decided to ignore the stochastic nature
of the yields in terms of number of bulbs; we consider the deterministic problem,
where we �ll in the expected value for each stochastic variable. We have developed
an algorithm that �nds a cost optimal solution given an upper bound on the total
time needed; by varying the upper bound, we can construct the Pareto frontier.
After the realization of a stochastic event we can recompute the solution and adjust
if necessary. Furthermore, our solutions and possible other scenarios can be tested
using simulation, if the underlying probability distributions become available.

This paper is organized as follows. We �rst formalize the model used in Section 3.2.
In the three subsequent sections, we explore three di�erent methods of computing op-

3see https://www.swi-wiskunde.nl/swi2018/



47

timal strategies: branch and bound, dynamic programming and linear programming.
In Section 3.6 we describe the data that we used in our experiments; in Section 3.7
we show some computational results obtained using linear programming. Finally, we
conclude with some summarizing remarks and recommendations.

3.2 Model

In this section we describe the model that we use for the situation at hand at Hobaho,
and we indicate how this can be generalized. As mentioned before, we have a set of
genotypes to start with, from which we want to select one (or more) to bring to the
market. Since it does not matter for our model how many genotypes will remain
after the last test, we assume that we must end with one genotype. The process of
selection and multiplication should be completed at the end of the time horizon, which
we denote by T ; by varying T , we can �nd the Pareto frontier with respect to cost
and time, which will enable the management to take the �nal decision. Since there
are no constraints with respect to lab capacity or ground, we can assume that we can
treat all genotypes independently of each other in the same, optimal way. Hence, we
will minimize the expected cost of just one genotype.

The plant species of interest, shown in Figure 3.1, have two primary development
stages, namely �owering bulbs, and plantlets. Therefore, we limit ourselves to these
two stages, but this can easily be generalized. Initially, we compute the best solution
starting at time t = 0 with one bulb. Because we only know the expected yields and
do not have any data on the probability distributions, we use the expected yield in our
computations, but as soon as we know the realized yield of a stochastic event in our
solution, we recompute the optimal strategy given this new information. Therefore,
we assume that at time t = 0, we start with a given number of �owering bulbs and
plantlets. Since this number can di�er for the remaining genotypes, we may compute
di�erent optimal solutions for genotypes with a di�erent yield in an earlier stage.
Throughout our model, we make the assumption that time is discretized into steps,
e.g., months. We denote the number of �owering bulbs and the number of plantlets
at the start of period t by x1

t and x
2
t , respectively, where x

1
0 and x2

0 are given.

Several propagation methods, such as conventional in soil growth and modern in
vitro techniques are available to multiply the plants in both stages. A propagation
method j ∈ {1, . . . , P} takes as input a plant in a speci�c stage i and transforms the
plant in dj time into µj plants in some stage i′. The cost of propagating a single plant
with method j is cj . Here cj and dj are known, deterministic values.

At any time t for which x1
t > 0, we can decide for every bulb to do one of three

things. We can either keep it, leaving it unchanged, or we can apply one of the
two propagation techniques. The classical method (propagation method j = 1) is to
plant the bulb in the ground, which will yield X1 new bulbs after d1 time, where X1

is a random variable with expected value µ1. Alternatively, we can send it to the
laboratory (propagation method j = 2), where it is split into X2 plantlets, taking d2

time, with X2 again random and with expected value µ2.



48 SWI 2018 Proceedings

Let x2
t be the number of plantlets we have at time t in the laboratory. For every

plantlet, we again have three choices. We can keep it; we can multiply it in the
laboratory in vitro (propagation method j = 3), giving µ3 plantlets after d3 time; or
we can raise it to a �owering bulb (propagation method j = 4), which gives one bulb
per plantlet raised after d4 time.

Besides the choices sketched above for both the bulbs and the plantlets, we can
choose to do a test if we have enough bulbs to do so. In total, we need to perform K
tests (usually K = 3) to eliminate plant varieties that do not meet the standards of
Hobaho. Each test k ∈ {1, . . . ,K} consumes ρik plants in stage i, and takes δk time
to be completed. Currently, all tests require bulbs, but possibly in the future tests on
plantlets will become available, too. After test k only a fraction νk of genotypes have
survived and stay in the race of becoming a commercially successful plant variety;
the eliminated genotypes will be grown no longer. The plants of the genotypes that
survive all the tests have to be multiplied until we have at least ∆ bulbs (typically,
∆ = 100, 000) at time T , before they can be sold to the breeders.

3.3 Branch and bound

A straightforward method of implementing the model described in the previous section
is by using a decision tree4. We assume that we start with x1

0 bulbs and zero plantlets.
Central to this approach is the following assumption, which we will adhere to for the
remainder of this section:

Assumption 1. If x1
t > 1 or x2

t > 1 for some time t, we choose to execute one and
the same action for all bulbs or plantlets currently available.

As a consequence, all the plants we have at any time are always in the same stage:
we cannot have both bulbs and plantlets at the same time. This allows us to describe
the current state of the process using relatively few variables. We need only keep
track of the time t, the number of bulbs x1

t and plantlets x2
t we now have and K

Boolean variables bkt ∈ {True,False} which specify whether we have completed the
k-th test yet. For convenience, we keep track of the total costs Ct made so far, and
we introduce variables τkt for k = 1, . . . ,K, which, if τkt > 0, speci�es that test k is
currently being performed, and will take τkt more time to complete and yield results.

Now, for every decision moment, we de�ne a node representing the current state
at the decision moment. For every possible choice in the current state, we spawn a
child re�ecting the next decision moment which will come after making that choice,
thus forming a tree. Any state with x1

t ≥ ∆ will be a leaf node.
Let yt be the number of surviving genotypes of our plant species remaining at

time t. If x1
t > 0, we can always choose to either grow the available bulbs in soil,

giving a child with t′ = t + d1, x
1
t′ = x1

tµ1 and Ct′ = Ct + ytc1x
1
t , or to bring the

bulbs to the laboratory, resulting in a state with t′ = t + d2, x
1
t′ = 0, x2

t′ = x1
tµ2

and Ct′ = Ct + ytc2x
1
t . Moreover, if bkt = False and x1

t > ρ1
k, we can choose to start

4See https://en.wikipedia.org/wiki/Decision_tree



49

performing test k, which produces a child with t′ = t, x1
t′ = x1

t − ρ1
k, b

k
t′ = True and

τkt′ = δk.

If x2
t > 0, we can either grow the plantlets in vitro, moving to the state t′ = t+d3,

x2
t′ = x2

tµ3 and Ct′ = Ct + ytc3x
2
t , or to grow the available plantlets to �owerable

bulbs, giving a child node with t′ = t+ d4, x
1
t′ = x2

t , x
2
t′ = 0 and Ct′ = Ct + ytc4x

2
t .

Finally, if τkt > 0 for some test k, we may also choose to wait and do nothing until
the test completes, in addition to the choices outlined above. This results in a child
state with t′ = t + τkt , yt′ = ytνk and τkt = 0. If we choose not to wait and to do
something else, resulting in a state at time t′, we need to update τkt′ = (τkt − (t′− t))+.

In Figure 3.2, the outline of the �rst few nodes of the tree generated by a process
starting with x1

0 = 1 and x2
0 = 0 is displayed. In this example, we do not consider the

possibility of tests and suppose for the sake of simplicity of the costs that y0 = 1.

t = 0, x1
0 = 1,

x2
0 = 0,
C0 = 0

t = d1,
x1
t = µ1,
x2
t = r1,
Ct = c1

t = 2d1,
x1
t = µ2

1,
x2
t = 0,

Ct = µ1c
2
1

�eld

t = d1 + d2,
x1
t = 0,

x2
t = µ1µ2,

Ct = c1+µ1c2

lab

�eld

t = d2,
x1
t = 0,

x2
t = µ2,
Ct = c2

t = d2 + d3,
x1
t = 0,

x2
t = µ2µ3,

Ct = c2+µ2c3

in vitro

t = d2 + d4,
x1
t = µ2,
x2
t = 0,

Ct = c2+µ2c4

grow

lab

Figure 3.2: Some sample top of the tree.

We can now perform a search through the tree to �nd a strategy that is optimal
with respect to some optimality criterion, e.g., to minimize the total costs made
subject to the constraint that the process may not take longer than, say, T time.
A fast method of performing this search is to use branch and bound5, which was
originally proposed by ?, and is explained in detail in, for example, ?.

With the aforementioned optimality criterion, branch and bound does a depth-

5see https://en.wikipedia.org/wiki/Branch_and_bound



50 SWI 2018 Proceedings

�rst search through the tree. If we encounter a state with time t > T , we abandon this
state and backtrack to the last moment that we could have made another decision.
Once we have reached a leaf node, this provides a solution with cost C, which serves
as an upper bound in the rest of the search: any state with Cs > C can now also be
discarded. To be able to eliminate nodes earlier in the search, we compute a lower
bound on the minimum cost required to reach our target quantity of bulbs, ∆, from
the current state of the node. This lower bound Cls is equal to the current cost of the
node plus the minimum cost incurred by propagating the current number of plants
to the required quantity with the cheapest method available. We discard a node
whenever its lower bound Cls surpasses the upper bound C. We continue the search
in this fashion, updating the bound C every time we �nd a better solution, until there
are no more states to visit.

Note that Assumption 1 is necessary for the method to work. If this assumption
is dropped, we can choose for every available plant separately what to do with it
at every time step, which leads to a prohibitively large branching factor in our tree.
However, though we arrive at a practical solution within reasonable time, Assumption
1 does not always allow for a strictly optimal solution. In fact, even if we �rst �x the
order of decisions using the branch and bound method and then optimize the number
of bulbs or plantlets we need to use at every decision step, we still have no guarantee
of �nding an optimal solution.

For an example, consider the situation that we start with one genotype, of which
we have one �owering bulb and no plantlets. We need to multiply this to get 3 bulbs;
there are no tests involved and the time horizon is T =∞. We can choose between in
soil, which has a multiplication factor of 2 and costs 8 per bulb, and in vitro, which
has a multiplication factor of 3 and costs 17 per bulb. Two possible strategies are to
grow the bulbs in the �eld twice, yielding 4 bulbs with a total cost of 24, or to bring
the plants to the laboratory and multiply them once, giving 3 bulbs with a total cost
of 17. The branch and bound method will prefer the second strategy over the �rst
one. However, if we grow only one of the two available bulbs in the �eld in the second
iteration, we end up with 3 bulbs costing only 16, which is the optimum solution.

An alternative method which might still be considered is to try and optimize the
number of bulbs and plantlets used at each step every time we reach a leaf node. It
is of yet unclear whether this always results in a strictly optimal schedule, as well as
whether this method is computationally feasible.

3.4 Dynamic programming

In this section we describe another heuristic approach that is based on applyingidynamic
programming6, which technique was invented by ? and is described extensively by
?. The basic idea behind dynamic programming is to decompose the problem into
subproblems and solve these iteratively. Hereto, we split the problem with respect to
the state attained at the times that we start with conducting the tests. We de�ne the

6see https://en.wikipedia.org/wiki/Dynamic_programming



51

state at the start of test j as the number of �owering bulbs that we have available
then, which we denote by bj ; the ρj bulbs required for test j have not been subtracted
yet. If, for example, we start with one bulb of a given genotype and want to end with
say 100,000, while we perform three tests, then a solution consists of multiplying the
bulbs from 1 to b1, from b1−ρ1 to b2, from b2−ρ2 to b3, and from b3−ρ3 to 100,000.
Hence, we must solve the problem of multiplying the number of bulbs from x to y for
each combination (x, y), after which the Dynamic Programming algorithm �nds the
optimal combination of steps. Here we must keep track of both the cost and the time
required.

In the dynamic programming approach described above we only consider pure
strategies, in which the tests are not performed when there are bulbs still growing
in soil; such mixed strategies are allowed and will be considered in the linear pro-
gramming approach in the next section. Next to the assumption of considering pure
strategies only, we make the assumption that in between two tests we do not apply in
vitro after in soil; this is a reasonable assumption, since in vitro is quicker and more
costly than in soil. Hence, we end up with the following possible options in between
two tests:

1. Do nothing; e�ectively, this means that both tests are conducted at the same
moment in time.

2. Apply one or more steps of in vitro multiplication.

3. Apply one or more steps of in soil multiplication.

4. First apply one or more steps of in vitro multiplication followed by one or more
steps of in soil multiplication.

Since we work with expected yields, which are given, there is only one sensible
strategy to go from x to y bulbs if we use in vitro or in soil only. For example, we gain
µ1 − 1 bulbs per bulb that we put in the ground, and hence, if we want to go from x
to y bulbs using in soil only, then we know that we have to put (y−x)/(µ1−1) bulbs
in the ground, where in each round we put in the ground as many bulbs as possible
until this bound is reached to �nish as early as possible. After we have found these
solutions, we can combine these results to �nd the non-dominated solutions for the
option of applying in vitro followed by in soil: if we want to go from x to z bulbs,
then we combine going from x to y using in vitro with going from y to z using in soil
for some value y with x < y < z. Hence, we can �nd the non-dominated solutions by
patching together the solutions for both separate options for all possible y values.

The advantage of using our dynamic programming heuristic is that it scales well
with an increasing number of tests. The disadvantage is that we have to compute
the non-dominated solutions for a large number of pairs (x, y). But if we use clever,
case-dependent preprocessing, then we can reduce the number of pairs (x, y) that we
have to examine to a large extent. For example, if we want to end up with 100,000
bulbs and the multiplication factor of in soil is 4 (put one bulb in the ground and
get 4 bulbs out), then in the last step we may expect that we will put exactly 25.000



52 SWI 2018 Proceedings

bulbs in the ground in case of using in soil. Hence, we do not have to consider y
values in between 25.000 and 100,000. If the remaining DP is still too big to solve,
then we can apply a further speed up by �rst only considering a part of the possible
x and y values (for example consider only multiples of 5 for small x and y, and only
multiples of 100 for large x and y values); if a certain pair (x∗, y∗) appears in a good
solution, we can then zoom in and consider more pairs close to (x∗, y∗).

Since the linear programming approach described in the next section was able to
�nd an optimal solution in a reasonable time for the problems under consideration,
we did not pursue the dynamic programming approach any further.

3.5 Linear programming

Another approach is to model the problem as a time-indexed mathematical program
and formulate and solve it as an integer linear programming problem7; we refer to
? for an introduction into (integer) linear programming. For each of the discrete
time steps up to the time horizon T , we can create decision variables representing
the number of available plants in each stage, as well as multiplication and testing
actions taken at that time step. However, if both the multiplication strategy and
the testing strategy are modeled as decision variables in the mathematical program,
then the objective becomes non-linear, as the production cost at time t of the chosen
multiplication strategy is multiplied by the number of genotypes surviving the tests
�nished at time t′ ≤ t. The non-linearity of the mathematical program makes it
di�cult to �nd an optimal solution.

Now, suppose that we would �x the time steps at which the K tests are performed
to some 0 ≤ t1 ≤ · · · ≤ tK ≤ T . Then the problem is reduced to �nding the optimal
multiplication strategy for the �xed tests, which can be formulated as a Mixed Integer
Linear Program (MIP). In contrast to general mathematical programs, mixed integer
linear programs can often be solved e�ciently with modern solvers.

To model the optimization problem with �xed testing moments as a MIP, we use
two types of decision variables:

• ait is the number of plants in stage i available in our inventory at time step t.

• bjt is the number of plants that we will start propagating with method j at time
step t.

Since we have �xed the testing strategy, we know at each time t the number of
surviving genotypes σt and the number ρit of plants in stage i that are used at time t

7see https://en.wikipedia.org/wiki/Integer_programming



53

for testing. The mixed integer program is

min
∑
t

σt
∑
j

cjb
j
t (3.1)

ait = ait−1 +
∑
j∈Oi

µjb
j
t−dj −

∑
j∈Ii

bjt − ρit ∀i, t ≥ 1 (3.2)

xi0 = ai0 +
∑
j∈Ii

bj0 ∀i (3.3)

aiT ≥ xiT ∀i (3.4)

ait ≥ 0 ∀i, t (3.5)

bjt ∈ N0 ∀j, t (3.6)

where σt and ρ
i
t are the number of surviving genotypes and the number of plants in

stage i needed for testing at time t in the testing sequence (t1, . . . , tK), and Oi and Ii
are the sets of propagation methods that have plants in stage i as output and input,
respectively. Furthermore, xi0 is equal to the given number of available plants in stage
i that we start with, and xiT is equal to the minimum number of plants in stage i
required at time step T , i.e., we have x1

T = ∆ and x2
T = 0.

In this formulation, the objective in Equation (3.1) is the cost of the propagation
strategy multiplied by the number of surviving plant varieties at each time step. The
constraint in Equation (3.2) makes the number of plants in each time step equal
to what was left in the previous time step plus the result of earlier multiplications,
minus what is used for multiplication and testing in this time step. The number
of plants available at time t = 0 is constrained by Equation (3.3). Equation (3.4)
ensures that we have the required number of plants in each stage at the end of our
time horizon. The constraints in Equations (3.5) and (3.6) de�ne the domains of the
decision variables.

Note that we allow fractional values for the inventory decision variables ait, whereas
the propagation decision variables bjt are required to be integer. The integrality con-
straints on the latter are in place to prevent unrealistic multiplication strategies that
cannot be implemented in practice. For example, if we start with a single bulb, we
cannot plant 1 − ε of the bulb in the �eld and send ε of that same bulb to the lab-
oratory for in vitro multiplication. While it seems natural to enforce integral values
for the inventory variables as well, the multiplication factors of the di�erent multipli-
cation strategies can be fractional, since these factors are the expected values of the
underlying stochastic process. Even if we would round the inventory variables down
to the nearest integer value, there are still cases that show unrealistic behavior. In
particular, when we start with one bulb and all multiplication factors are in the range
[1, 2), then we could never get more than our initial bulb due to the rounding.

To �nd the optimal solution to both the multiplication and the testing strategy,
we have to solve the mixed integer linear program for each combination of testing
moments. Although this approach scales badly with the number of tests, we only
have to schedule a few tests in our case. Furthermore, we do not have to solve the



54 SWI 2018 Proceedings

Test Duration Required Bulbs Survival Rate
1 12 3 0.1
2 12 20 0.1
3 12 100 0.1

Table 3.1: The tests used in the computational experiments. The duration of the
tests is listed in months.

full MIP for all testing combinations. Any feasible solution to the multiplication
and testing problem provides an upper bound on the cost of the optimal solution,
which we can use to eliminate bad testing strategies quickly. For example, if for a
particular combination of testing moments the lower bound obtained by solving the
LP-relaxation is worse than the upper bound, then the optimal integer solution to
the MIP will never improve the current best solution. We can exploit this by �rst
obtaining a decent upper bound using a heuristic, before solving the mixed integer
programs for all of the testing combinations. As a heuristic, we start by solving the
problem with the branch and bound approach described in Section 3.3, and then solve
the MIP with the testing strategy of the branch and bound solution.

3.6 Experiments

To evaluate the performance and computation time of the branch and bound heuristic
and the exact MIP approach with complete enumeration of the testing strategies, we
compare the two solution methods on two test cases, namely the Calla and the Tulip
cultivation process. For several time horizons T , we will investigate the strategies
proposed by the solution methods to develop 100, 000 bulbs of a single variety when
we start with 1000 genotypes with a single bulb per genotype.

The testing and propagation methods are the same for both plant species, but
the durations, costs and multiplication factors of the propagations di�er. The three
tests are listed in Table 3.1. Since the only di�erence is the number of bulbs required,
it is never advantageous to perform test 2 before test 1 and test 3 before test 2; it
is possible to perform some or all of the tests simultaneously. The properties of the
propagation methods of the Calla and Tulip species are shown in Tables 3.2 and 3.3,
respectively. Note that for the Tulip species we based the data on the hyacinth series,
since these propogation methods are still in development for the Tulip species8.

In addition to the branch and bound (B&B) and MIP methods, we will compute
the optimal propagation strategy using the MIP model for the testing strategy in
the branch and bound solution (MIP of B&B). The exact solution of this particular
testing strategy is used as an upper bound of the cost over all testing strategies
explored with the method proposed in Section 3.5. The experiments are conducted

8see https://www.nieuweoogst.nu/nieuws/2018/08/08/veredelingstijd-tulp-meer-dan-gehalveerd
(in Dutch)



55

Method From To Multiplier Cost Duration
In Soil Bulb Bulb 20 4.34 24
Split Bulb Plantlet 15 5.25 2

In Vitro Plantlet Plantlet 2 0.70 1
Grow Plantlet Bulb 1 0.00 36

Table 3.2: The propagation methods for the Calla plant species. The costs are per
plant, and the duration is in months.

Method From To Multiplier Cost Duration
In Soil Bulb Bulb 2.7 0.146 12
Split Bulb Plantlet 15 7.500 2

In Vitro Plantlet Plantlet 2 1.00 1
Grow Plantlet Bulb 1 0.00 60

Table 3.3: The propagation methods for the Tulip plant species based on current
hyacinth practices. The costs are per plant, and the duration is in months.

on a computer with a 2.8GHz CPU and 16GB RAM, and the MIP model is solved
with the commercial Gurobi 7.5 solver. A screen shot of the application developed
for Hobaho can be seen in Figure 3.3.

3.7 Results

The computational results of the test case of the Calla plant species are shown in
Table 3.4. The branch and bound method quickly constructs a testing and propaga-
tion strategy, exploring on average only 40000 nodes in the decision tree. However,
solving the MIP model with the testing strategy of the branch and bound solution
shows that we can improve the solution quality signi�cantly within reasonable com-
putation time. For the 10 year time horizon, the MIP approach halves the cost of the
solution. The solution cost can be further reduced by evaluating all testing strategies
with the MIP model, and selecting the optimal solution. With a time horizon of 9
years, the branch and bound solution, which is shown in Figure 3.4a, is more than
twice as expensive as the optimal strategy. By studying the latter strategy, which is
illustrated in Figure 3.4b, we can see that the main advantage of the MIP model is the
ability to propagate exactly the number of plants needed for a test, whilst delaying
the propagation of the remaining plants until the number of candidates is reduced
by other tests, whereas the branch and bound method propagates all available plants
at once. Remark that this solution cannot be found with the dynamic programming
heuristic either, because of the assumption that we do not perform tests when there
are still plants in the ground. Evaluating all testing strategies with the MIP model is
still computationally feasible, as a computation time less than a minute is insigni�cant
in comparison to the planning horizon of the strategies constructed.



56 SWI 2018 Proceedings

Figure 3.3: The application developed for Hobaho to analyze the Pareto frontier of
strategy cost versus duration.

Cost Computation Time (s)
8 years 9 years 10 years 8 years 9 years 10 years

B&B 431049 113921 84483 0.05 0.09 0.05
MIP of B&B 392770 99588 39277 0.15 0.11 0.87
MIP 190464 52948 39277 58.85 45.18 48.74

Table 3.4: The computational results of the Calla test case with a time horizon of 8,
9 and 10 years.



57

Soil (1) Soil (20)
Test
1

Test
2

Test
3

Soil (277) Soil (4972)

0 Time in years 9

(a) Branch and bound solution.

Soil (1)

Soil (2)

Test
1

Soil (15)

Test
2

Soil (2)

Soil (250)

Test
3

Soil (5000)

0 Time in years 9

(b) MIP solution.

Figure 3.4: Testing and Propagation strategies constructed with the branch and
bound and MIP approaches for the 9-year Calla test case. The number of plants
multiplied by each propagation methods is shown in parentheses.



58 SWI 2018 Proceedings

Cost Computation Time (s)
11 years 12 years 13 years 11 years 12 years 13 years

B&B 1082917 26972 12980 0.17 0.50 0.37
MIP of B&B 925684 26972 12946 0.30 1.02 0.90
MIP 833693 26972 12657 288.15 156.97 117.26

Table 3.5: The computational results of the Tulip test case with a time horizon of 11,
12 and 13 years.

Regarding the two main propagation methods available to Hobaho, almost all
strategies solely use the classical in soil approach, and only with the time horizon of
8 years the modern in vitro technique is applied in the strategies. Although in vitro
propagation allows for rapid multiplication of the number of plants, the high cost
per plant and the slow growth of the plantlets result in expensive strategies that are
economically infeasible.

From the computational results for the Tulip test case, listed in Table 3.5, the
branch and bound approach appears to produce far better results, with (nearly) iden-
tical strategies for the 12 and 13 year time horizons. The computation time of the
three solution methods is slightly longer, but it is still within an acceptable range.
This increase can be attributed to the longer time horizon, and, in the case of the
MIP approach, to the fractional multiplier of the in soil propagation method of tulips,
which causes the exact integer solution to deviate signi�cantly from the fractional so-
lution of the LP relaxation of the MIP model.

In soil propagation is again the preferred method, as it is much cheaper than in
vitro multiplication. However, the main disadvantage of the in vitro technique is
the time it takes to grow a plantlet into a �owerable bulb. Due to the slow growth,
we cannot delay in vitro propagation until a few plantlets develop into bulbs and
are tested without exceeding the time horizon, which means that we are not able to
reduce the number of candidate varieties early on. If advances in the plantlet growth
technique could reduce the growth duration from 5 to 3 years, then we can reduce the
cost for the 11 year time horizon to 59130 (see Figure 3.5b), which is fourteen times
less than the cost of the current optimal strategy shown in Figure 3.5.

Additional cost reductions can be realized if we would be able to perform the �rst
test, in which we check the disease resistance of plants, already in the plantlet stage.
In that case, we can start testing much earlier, which results in a cost of 222385
for the 11 year time horizon, as can be seen in Figure 3.5c. Combining the plantlet
growth duration reduction with the plantlet resistance test would allow us to produce
a salable quantity of tulips in 11 years with a cost of just 41020.

3.8 Concluding remarks

The company Hobaho has a �ower breeding facility in which they develop new varieties
of plant species such as Calla and Tulip. In the breeding process, we start with a large



59

Soil
(1)

Soil
(2)

Soil
(6)

Soil
(16)

Soil
(20)

Test
1

Test
2

In Vitro (6 → 82988)

Soil
(48)

Soil
(130)

Soil
(351)

Soil
(947)

Soil
(2457)

Test
3

Soil
(6634)

0 Time in years 11

(a) Standard test case.

In Vitro (1 → 21)
Soil
(18)

Test
1

Soil
(48)

Soil
(10)

Test
2

Test
3

In Vitro (20 → 36899)

Soil
(7)

Soil
(19)

Soil
(51)

Soil
(37037)

0 Time in years 11

(b) Growth duration from plantlet to bulb reduced to 3 years.

In Vitro (1 → 20)

Test
1

In Vitro (2 → 1982)

Test
2

Test
3

Soil
(1882)

Soil
(5081)

Soil
(13717)

Soil
(37037)

0 Time in years 11

(c) Test 1 applicable to plantlets.

Figure 3.5: Testing and Propagation strategies constructed with the MIP approach for
the three variants 11-year Tulip. The number of plants multiplied by each propagation
method is shown in parentheses.



60 SWI 2018 Proceedings

set of bulbs, where each bulb is of a di�erent genotype. Through a series of tests, the
genotypes with undesirable properties are eliminated, and the surviving genotypes
have to be multiplied to a salable quantity. For the multiplication of the bulbs there
are several methods available with di�erent costs and durations. The objective is to
�nd a minimum-cost testing and multiplication strategy that performs all the tests
and produces the required number of bulbs within a �xed time horizon.

We proposed three methods to construct bulb testing and multiplication strategies:
a branch and bound heuristic that constructs a decision tree with the constraint
that all plants are either in the bulb or in the plantlet stage; a heuristic dynamic
programming algorithm that decomposes the problem into subproblems at the tests;
and an exact solution method that enumerates all testing strategies, and constructs
a propagation strategy by solving a time-indexed mixed integer linear programming
model for each testing strategy.

We have implemented the branch and bound approach and the MIP model, and
conducted computational experiments with these two methods on two test cases,
namely the Calla and the Tulip breeding process.

The results showed that the branch and bound technique constructs solutions
e�ciently, but the solution quality was signi�cantly worse than the optimum in some
cases. Since the exact method �nds an optimal solution within a few minutes, it
is therefore the preferred approach. However, it is expected that the exact method
scales poorly with the number of tests, as it relies on complete enumeration of the
possible moments at which the tests are applied. Therefore, in case of a large number
of tests we suggest to use one of the heuristics to �nd suitable times for the tests,
after which we can apply the linear programming approach to �nd the best solution
for these test strategies.



Bibliography

M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear Programming and Network Dlows.
Wiley, New York, fourth edition, 2009.

R. Bellman. The theory of dynamic programming. Bulletin of the American Mathe-
matical Society, 60(6):503�516, 1954.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, Cambridge, Massachusetts London, England, third edition, 2009.

A.H. Land and A.G. Doig. An automatic method of solving discrete programming
problems. Econometrica, 28(3):497�520, 1960.

A. Levitin. Introduction to The Design and Analysis of Algorithms. Pearson Educa-
tion, third edition, 2011.

61


