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Abstract

In this paper we study the DC-DC buck converter and its control problem. We solve
the ODE corresponding to this problem analytically and analyse when the full system
and its averaged model coincide. Finally, we suggest a new control function and show
that it behaves well.

2.1 Introduction

During the Study Group Mathematics with Industry held in Eindhoven, we worked
on a challenge formulated by DNV-GL about so-called buck-converters. The question
originates in energy production and the way energy is produced nowadays. It used
to be true that energy was produced in central plants, however in more recent years,
solar panels, wind mills etc have appeared, in publicly as well as privately owned.

A situation that can serve as an example to keep in the back of the mind is a self-
contained unit that produces its own energy and is not connected to the electricity
network. Think of a yacht or a house, see Figure 2.1. In the house, several appliances
are in use like a refrigerator, television and a washing machine. However, these
appliances are not constantly turned on, and hence, do not use electricity all of the
time. This fact can lead to a problem since the appliances all need an input voltage
of approximately 220-230 V (in Europe).

So, the aim is to keep the voltage in the network of the house constant. When one
of the appliances, for example the television, is turned on, the load in the network
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increases which leads to a voltage increase in the network�by using Ohms law and the
fact that the current in the network does not respond immediately. Since this increase
in voltage can damage the appliances, this jump is problematic and the voltage needs
to be restored to its original value as quickly as possible.

Figure 2.1: A house that is energy neutral, with solar panels and several appliances.

Another problem comes from the fact that solar panels do not produce energy
with the desired constant output voltage of 220-230 V. To overcome these problems,
so-called buck-converters are used. Such systems are designed to reduce the input
voltage from the solar panels to the desired value in the network. Moreover, they
aim to keep the voltage in the system constant when appliances are turned on and
o�. A basic example of such a system is given in Figure 2.2(top). The topology of
this electric circuit is simple, yet it contains almost all the di�culties associated with
the study of power electronic converters. On the left, the input voltage vin(t) and
the corresponding solar panels are located and on the right the load R(t) represents
the appliances such as the television. The network in the house is located within the
pink box in the �gure. A switch to control the voltage coming from the solar panels
is placed at the arrow, Figure 2.2(bottom). This switch can be turned on, leading to
an input of voltage into the system. When it is turned o� no voltage is delivered to
the system in pink. The output voltage in the network in the house is denoted by
v0(t). The aim is to keep v0(t) at a constant target value which we denote by v∗0 . In
diagram form, this is given by:
The corresponding electric circuit can be described by the following set of ODE's:

L
di

dt
= sw(t)vin(t)− vo;

C
dvo
dt

= −vo
R

+ i, (2.1)

where L (inductance) and C (conductance) are (positive) constants and sw(t) repre-
sents the switch and has either the value 0 or 1.

Once every time-interval of �xed length T , the decision can be made to �ip the
switch on or o�. This sequence of choices can be modelled by the function D(t), the
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Figure 2.2: The electric circuit with the switch.

so-called duty ratio signal of the converter which lies in [0, 1]. At the start of every
new time interval k of length T , the corresponding Dk is determined as Dk = D(kT ),
see Figure 2.3.

Figure 2.3: Sketch of the Dk.

2.1.1 Problem description

The goal of the converter is to keep its output voltage vo(t) constant at the desired
level v∗0 . The control is carried out by a feedback mechanism monitoring vo(t) and
adjusting the duty cycle ratio D(t). The challenge is to test whether vo(t) decays back
to v∗o in a �nice� way for functions D(vo(t), t), in the case that R(t) is a discontinu-
ous function with jumps. More speci�cally, DNV-GL would like answers to several
(related) questions:

1. Does vo(t) converge to v
∗
o?

2. Does vo(t) converge fast to v
∗
o?

3. Does vo(t) converge to v
∗
o without too many oscillations?

Moreover, they would like an algorithm that generates an optimal D(vo(t), t). In
our analysis, we made the following assumptions:
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• The input voltage vin is constant, although in practise this is a function of time;

• R(t) is a step function: it changes at t = 0 from Rold to Rnew.

Since the current does not respond immediately at t = 0, vo(t) does change to a new
value which gives (by Ohm's law) that vo(0) = v∗o

Rnew

Rold
and dvo

dt (0) = 0.

2.1.2 Approach

The problem can be separated into four di�erent cases: the averaged system with and
without feedback and the full system with and without feedback. Our approach for
each of these cases is summarised in table 2.1.2.

In Section 2.2, we will introduce and study an averaged model. Averaging is
the method which is used currently and the averaging method in a system without
feedback is completely known. Also the averaging method in a system with feedback
is already used, although not always exact. In table 2.1.2 a commonly used D is
shown. For this D = k1(v∗o − vo) +k2

dvo
dt +k3 we performed a stability analysis which

gives us for which choices of k1, k2 and k3 the system is stable. The problem with the
averaging method is that it is not always valid. By nondimensionalization we were
able to show when the averaging method breaks down. Namely, when

√
LC ∼ T .

Therefore we need to consider the full system, which we will do in Section 2.3.
Since the full system is a second order inhomogeneous di�erential equation we can
solve it analytically, which we will do in that section. We will also show that the
solution converges for a constant D. This analytical solution is valid in both systems:
with and without feedback. We implemented the analytical solution in MATLAB so
it can be used for di�erent functions D to determine whether the system converges
to v∗o .

A great advantage of using the analytical solution over numerical simulations is
that it requires less computation time. The results will be explained in more detail in
Section 2.4. In this section we also provide a new function D that makes the system
converge faster than the functions D that are currently used.

No Feedback: D(t) Feedback: D(vo, t)

Averaged
system

Known Stability analysis for D =
k1(v∗o − vo) + k2

dvo
dt + k3

Full Analytical solution Analytical solution +
system Convergence for constant D algorithm

2.2 Averaged model

In the case where the switching frequency is much higher than the natural frequency
of the L-C system, we can average the system (2.1) and hence obtain a form in which
we can analyse the stability of the system for various forms of the duty ratio, D.
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To do this with some rigour, we must �rst non-dimensionalise the system. We non-
dimensionalise in Section 2.2.1, then average in Section 2.2.2. This then allows us to
explore stability in a very simple case, in Section 2.2.3.

2.2.1 Non-dimensionalisation

We non-dimensionalise the system (2.1) as follows:

vo = v∗o v̂o; i =
v∗o
R
î;

t = t∗t̂; vin = v∗o v̂in,
(2.2)

where t∗ is a natural time-scale of the system to be determined. Note also that v̂∗o = 1.
With this change of variables, (2.1) becomes:

L/R

t∗
dî

dt̂
= sw(t∗t̂)v̂in(t∗t̂)− v̂o,

RC

t∗
dv̂o

dt̂
= −v̂o + î.

(2.3)

Equation (2.3) suggests choosing either t∗ = L/R or t∗ = RC as the natural time-
scale. Instead, we choose the geometric mean of these two options, t∗ =

√
LC. The

reason for this choice is that, by combining the equations in (2.3) to obtain a single
second-order ODE for vo,

√
LC

(t∗)2
d2v̂o

dt̂2
+
L/R

t∗
dv̂o

dt̂
+ v̂o = sw(t∗t̂)v̂in(t∗t̂),

the time-scale that appears in front of the highest derivative is t∗ =
√
LC. Further,√

LC is often quoted in the literature as the time-scale of an L-C circuit, for example
by Mohan and Undeland (2007).

Then, letting r =
√
L/C/R, (2.3) becomes

r
dî

dt̂
= sw(t∗t̂)v̂in(t∗t̂)− v̂o,

1

r

dv̂o

dt̂
= −v̂o + î. (2.4)

The variables v̂o, î and t̂ are all dimensionless, and usually O(1). Further, there are
only two dimensionless parameters in (2.4): r =

√
L/C/R, and ε = T/t∗ (the latter

being hidden inside sw(t∗t̂) � see Section 2.2.2). Ignoring ε for now, the fact that
we have grouped R, C and L together into a single dimensionless parameter means
that we can investigate the system while considering only one parameter; for example,
there will be no change to the fundamental behaviour of the system if we double both
L and C, since r will remain the same.
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2.2.2 Averaged system

With the non-dimensionalisation of time-scale presented in (2.2), the switching func-
tion becomes

sw(t∗t̂) =

{
0 if kT < t∗t̂ ≤ (k +Dk+1)T,

1 if (k +Dk+1)T < t∗t̂ ≤ (k + 1)T

=

{
0 if k < t̂/ε ≤ (k +Dk+1),

1 if (k +Dk+1) < t̂/ε ≤ (k + 1)

= ŝw(t̂/ε),

where ε = T/t∗ = T/
√
LC is usually much less than one.

We now introduce the average

f̄(t̂) =
1

T

∫ t̂+T

t̂

f̂(s) ds.

Since v̂o and î (by the L-C equations) and v̂in (by assumption) vary on the slow
time-scale t̂,

v̄o ≈ v̂o, ī ≈ î, v̄in ≈ v̂in.

However, ŝw(t̂/ε) oscillates periodically on the fast time-scale t̂/ε, and so

sw(t̂/ε) = D(t̂).

Hence, averaging (2.4) and letting t̄ = t̂ for consistency of notation, we obtain

r
dī

dt̄
= Dv̄in − v̄o,

1

r

dv̄o
dt̄

= −v̄o + ī. (2.5)

Since we have only considered leading-order when averaging, the averaged form is
accurate to O(ε). Hence, to obtain an accuracy of 10%, we need ε < 0.1, i.e.

√
LC >

10T .
As shown by Yue et al. (2012), one could average more rigorously by transforming

to the fast-time scale t̂/ε and using alternative methods such as Krylov-Bogoliubov-
Mitropolsky or Multi-Frequency-Averaging. This would then allow to consider higher-
order terms, and increase the accuracy of the averaging. For example, if we include
�rst-order terms as well as leading-order terms, the averaging is accurate to O(ε2),
instead of just O(ε). Hence an accuracy of 10% can be achieved with ε ∼ 0.3 (so that
ε2 ∼ 0.1), where before we needed ε ∼ 0.1. Including progressively more higher-order
terms allows to maintain high accuracy for values of ε that are closer to one (i.e.
when

√
LC ∼ T ).
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2.2.3 Stability analysis

Assuming
√
LC � T , we now analyse the stability of the system in the leading-

order averaged case, (2.5). We consider the case without feedback, then explore how
introducing feedback can improve the stability of the system.

Without feedback. When D is independent of v̄o and ī, (2.5) can be written as
the linear system

dx̄

dt̄
= Ax̄ + b,

where

x̄ =

(
ī
v̄o

)
, A =

(
0 −1/r
r −r

)
, b =

(
Dv̄in/r

0

)
.

Note that this system has a steady state at ī = v̄o = Dv̄in, so we should choose
D = v̄∗0/v̄in = 1/v̄in.

The eigenvalues, λ, of the matrix A determine the stability of the system; here

λ =
−r ±

√
r2 − 4

2
.

Since r > 0, Re(λ) < 0 for all r, and the system is unconditionally stable. However,
if r2 < 4, the eigenvalues are complex and hence the solution is oscillatory, which is
not desired.

With feedback. We consider a simple PD-controller. In dimensional form, we have

D = k1(vo − v∗o) + k2
dvo
dt

+ k3

= k1(vo − v∗o) +
k2
C

(
i− vo

R

)
+ k3,

(2.6)

where k1, k2 and k3 are constants that we can choose to obtain fast convergence to
a stable solution. Non-dimensionalising by (2.2) and averaging as in Section 2.2.2,
(2.6) becomes

D = k1v
∗
o (v̄o − 1) +

k2v
∗
o

RC
(̄i− v̄o) + k3

=
1

v̄in

(
k̄1 (v̄o − 1) + k̄2 (̄i− v̄o) + k̄3

)
,

where we have de�ned the dimensionless constants

k̄1 = k1v
∗
o v̄in, k̄2 = k2v

∗
o v̄in/RC, k̄3 = k3v̄in.

Now (2.5) can be written as the linear system

dx̄f
dt̄

= Af x̄f + bf ,
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where

x̄f =

(
ī
v̄o

)
, Af =

(
k̄2/r (k̄1 − k̄2 − 1)/r
r −r

)
, bf =

((
−k̄1 + k̄3

)
/r

0

)
.

Choosing k̄3 = 1, then this system once again has a steady state at ī = v̄o = 1.
Now the eigenvalues of Af are

λf =
−(r − k̄2/r)±

√
(r − k̄2/r)2 + 4(k̄1 − 1)

2
.

We can now choose k̄1 and k̄2 in such a way that the system is stable and converges
as quickly as possible.

Firstly, we choose k̄2 < 0 and k1 < 1, so that Re(λf ) < 0 for all r and the system
is stable. Secondly, in order to converge as quickly as possible without oscillations,
both eigenvalues must be real, large and negative. Hence we aim to make (r − k̄2/r)
as large as possible, but also (r− k̄2/r)2 + 4(k̄1− 1) positive and close to zero so that
both eigenvalues are large and negative. Hence we choose k̄1 such that

1− 1

4

(
r − k̄2

r

)2

/ k̄1 < 1.

However, note that when choosing k̄1 and k̄2, we must be careful that D remains
between 0 and 1, and varies on the slow time-scale t̄ rather than the fast time-scale t̄/ε
(otherwise averaging is not possible). We show an example of improved convergence
using PD control in Section 2.4.

2.3 Analytic solution

In this section we explain how to �nd an analytical solution of the set of di�erential
equations given in Equation (2.1):

L
di

dt
= sw(t)vin − vo,

C
dvo
dt

= −vo
R

+ i,

with initial conditions vo(0) = v∗o
Rnew

Rold
=: vc and (vo)t(0) = 0. This system of equa-

tions can be written as a second order di�erential equation given by

LC
dvo
dt2

+
L

R

dvo
dt

+ vo = vin sw(t). (2.7)

Since Equation (2.7) is a linear inhomogeneous second order di�erential equation it
can be solved by using the method Variation of Parameters. Therefore, we �rst rewrite
Equation (2.7) into standard form,

dvo
dt2

+
1

RC

dvo
dt

+
1

LC
vo =

vin
LC

sw(t). (2.8)
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The �rst step is then to solve the corresponding homogeneous di�erential equation,
which has two solutions u±(t), given by:

u± = eλ±t,

λ± := − 1

2RC
± 1

2

√
ξ ξ :=

1

R2C2
− 4

LC

(2.9)

Then according to the method Variation of Parameters, the general solution of the
inhomogeneous Equation (2.7) is given by

vo(t) = (A(t) + a)u+(t) + (B(t) + b)u−(t), (2.10)

with A(t) and B(t) are given as:

A(t) = −
∫ t

0

1

W (x)
eλ+xvinsw(x) dx;

B(t) =

∫ t

0

1

W (x)
eλ−xvinsw(x) dx,

and W is the Wronskian given by

W (x) = u−(x)u̇+(x)− u̇−(x)u+(x) = (λ+ − λ−)e(λ++λ−)x

=
√
ξ e−

x
RC

Recall that sw(x), the switching function, is given by:

sw(t = kT + t′) =

{
1 if t′ ∈ [0, Dk+1T ]
0 if t′ ∈ [Dk+1T, T ]

By viewing the integrals in the expression of A(t) and B(t) as a sum of integrals with
integration domain between iT and (i + 1)T , where i = 0, 1, . . . and by using that
1
RC + λ± = −λ∓, and that sw(x) is often zero, we can rewrite the expressions to:

A(t = kT + t′) = − vin√
ξ

(∫ max(t′,Dk+1T )

kT

e−λ−x dx+

k∑
i=1

∫ (i−1)T+DiT

(i−1)T
e−λ−x dx

)
.

Therefore, we �nd that:

A(t = kT + t′) = vin√
ξλ−

(
e−λ−t − e−λ−kT +

∑k
i=1 e

−λ−(i−1)T
(
e−λ−DiT − 1

))
if t′ ∈ [0, Dk+1T ];

vin√
ξλ−

∑k+1
i=1 e

−λ−(i−1)T
(
e−λ−DiT − 1

)
if t′ ∈ [Dk+1T, T ];

B(t = kT + t′) = − vin√
ξλ+

(
e−λ+t − e−λ+kT +

∑k
i=1 e

−λ+(i−1)T (e−λ+DiT − 1
))

if t′ ∈ [0, Dk+1T ];

− vin√
ξλ+

∑k+1
i=1 e

−λ+(i−1)T (e−λ+DiT − 1
)

if t′ ∈ [Dk+1T, T ].
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Using Equation (2.10), we �nd that the initial conditions are vo(0) = vc and
(dvo/dt)(0) = 0, we are able to determine that a and b have to satisfy a+ b = vc and
aλ− + bλ+ = 0. Where a and b are the integration constants in the general solution
Equation (2.10). It follows that:

a = − vcλ+
λ− − λ+

=
vcλ+√
ξ
, b =

vcλ−
λ− − λ+

= −vcλ−√
ξ
,

where λ± and ξ are as before. Combining these results and simplifying the expressions
gives the general solution of the di�erential equation 2.7, given by:

For t ∈ [(k +Dk+1)T, (k + 1)T ]:

vo(t) =
λ+√
ξ

(
vc + LCvin

k+1∑
i=1

e−λ−(i−1)T
(
e−λ−DiT − 1

))
eλ−t

− λ−√
ξ

(
vc + LCvin

k+1∑
i=1

e−λ+(i−1)T (e−λ+DiT − 1
))

eλ+t

For t ∈ [kT, (k +Dk+1)T ]:

vo(t) =
λ+√
ξ

(
vc + LCvin

k∑
i=1

e−λ−(i−1)T
(
e−λ−DiT − 1

))
eλ−t

− λ−√
ξ

(
vc + LCvin

k∑
i=1

e−λ+(i−1)T (e−λ+DiT − 1
))

eλ+t

− λ+vin√
ξ
eλ−(t−kT ) +

λ−vin√
ξ
eλ+(t−kT ) + vin

Note that the general solution still depends on the constants {Dk}k. When applying
this general solution one should determine a new Dk+1 with the graph of the solution
vo until time kT . The choice of Dk+1 then gives the graph and solution of vo until
time (k + 1)T .

2.3.1 Convergence for constant D

Like mentioned before, a priori we do not know the constants {Dk}k when we do
have a feedback in our system. An example of a no feedback loop, where we do know
the constants, is when all the Dk's are constant and equal to some D ∈ [0, 1]. This
assumption simpli�es the general solution and in this section we will show that the
general solution converges to v∗o for t→∞.

In the limit t → ∞, we �rst note that vo(t) converges to a constant function if
and only if the sequence {vk := vo(kT )}k∈N converges to a constant. This allows us
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to simplify our computations. Note that:

vk =
λ+√
ξ

(
vce

λ−kT + LCvin(e−λ−DT − 1)eλ−kT
k∑
i=1

e−λ−(i−1)T

)

− λ−√
ξ

(
vce

λ+kT + LCvin(e−λ+DT − 1)eλ+kT
k∑
i=1

e−λ+(i−1)T

)

=
λ+√
ξ

(
vce

λ−kT + LCvin(e−λ−DT − 1)
eλ−kT − 1

1− e−λ−T

)
− λ−√

ξ

(
vce

λ+kT + LCvin(e−λ+DT − 1)
eλ+kT − 1

1− e−λ+T

)
Since e−x → 0 if x→∞ and

√
ξ < 1

RC shows that λ± < 0, we see that:

lim
k→∞

vk = − λ+LCvin√
ξ(1− e−λ−T )

(e−λ−DT − 1) +
λ−LCvin√
ξ(1− e−λ+T )

(e−λ+DT − 1).

Therefore, vk converges for k → ∞ and hence so does vo(t) if t → ∞. Finally,
note that one can choose D to be such that limt→∞ vo(t) = v∗o by solving the above
equation.

2.4 Results

In this section, speci�c examples are given to demonstrate the theoretical work in
this report. We will show that the analytical solution coincides with a numerical
approximation of the system of ODEs. Then, we will present a buck converter where
the characteristic timescale τ =

√
LC is comparable to the switching period T . In

this case, one expects to see a signi�cant di�erence between a solution of the real
system and a solution of the averaged system. We will show that a PD controller
designed for the averaged system is not able to stabilize the full system. To stabilize
the system, we will use a (new) nonlinear feedback function. After tuning its control
parameters, the system stabilizes within 10 switching periods.

Consider a buck converter with L = 1.3mH, C = 81µF and T = 0.2ms � so a
switching frequency of f = 5kHz. The input voltage is assumed to be vin = 1000V
constantly, with a reference output voltage of v∗o = 500V. Hence, in a stabilized state
the switching duty ratio D should be at 0.5. In our examples we suppose the following
scenario. At some point in time the output voltage is stabilized at the reference 500V
with a load resistance of R = 5 Ohm, thus with a steady state current of 100A.
Suddenly the load resistance drops to 2 Ohm, e.g. after a new device is plugged into
the power network. The current cannot change immediately, due to the inductor, and
so the output voltage drops to 100A ×2Ohm = 200V. We take this as the starting
point of our calculations, that is, we solve the system with the initial conditions
vo(0) = 200, v̇o(0) = 0.
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In Figure 2.4 the analytical solution and a numerical approximation of the system
are given. Here a �xed duty ratio of D = 0.5 is used. From the �gure it is clear
that the solutions coincide, numerically con�rming the theory. Also, we see that the
output voltage vo slowly stabilizes around 500V.

0 1 2 3 4 5 6
Time (sec) 10-3

200

250

300

350

400

450

500

Response of the open-loop system

analytic sol
numerical sol

Figure 2.4: Comparison of the analytic solution (blue solid line) and the numerical
solution (red dashed line) for the open-loop system.

In the given example, we have
√
LC = 0.3245ms which is comparable to T = 0.2ms.

So according to the theory, the averaged system is an incorrect simpli�cation of the
full system. We will illustrate this by using a standard feedback function. For the
averaged system, a standard PD controller is given by

D(t) = k1(vo(t)− v∗o) + k2v
′
o(t) + kc.

The parameters k1, k2, kc need to be chosen, where kc is given by the steady state
duty ratio, so equal to 0.5 in this case. The standard PD tuning method employs
the Nyquist stability criterion and the Bode plots. If one wants to utilize the time-
domain performance to tune those parameters, experiences and some trials and errors
are needed. Figure 2.5 shows solutions of the averaged system, one solution is found
without using any control � so a constant D �, and for the other solution a PD
controller is applied. The PD controlled system has faster convergence, as desired.

Figure 2.6 shows the solution of the full system using the same PD controller.
Inspecting the output voltage vo, it appears as if the system is stabilized with a
steady state within 5% of the reference output. However, the duty ratio is switching
between 0 and 1 rather than converging to the constant ratio 0.5. This switching
behaviour is not desirable for real-life systems, and consequently, this standard PD
controller is not acceptable.

From theoretical point of view, we already knew that the averaged system is a
poor model for the full system if

√
LC ∼ T . To solve the issue, we propose using the
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Figure 2.5: Open (blue solid line) and closed-loop (red dashed line) responses for the
averaged system.
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Figure 2.6: Short time simulation of the closed-loop system with the PD controller.

following nonlinear feedback function

D(t) = k1(v∗o − vo(t))3 + k2
v′o(t)

cosh(k3(v∗o − vo(t)))
+ kc. (2.11)

This function is not bounded between 0 and 1 in general, but we use a �bang-bang�
strategy5 to constrain it. The parameters ki depend on the problem at hand. In
general, a large deviation of vo from v∗o will `activate' the �rst term in this expression,

5In general, the formula D(t) can exceed the constraint D(t) ∈ [0, 1]. To prevent such a scenario,

a �bang-bang� strategy is used. Basically, when D(t) > 1, we make it D(t) = 1 and when D(t) < 0,
we make it D(t) = 0.
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and k1 can be used to shorten the response time. The second term in (2.11) should
activate when vo is near its reference value v∗o with a large derivative v′o(t), this
scenario will imply that vo(t) is going to overshoot. The parameter k2 can be used
to adjust the weight of this term, whereas k4 determines the `range of activation', i.e.
the width of the 1/ cosh function. Finally, the third term kc should be the duty ratio
in steady state, e.g. kc = 0.5 in our case.

PD control tuning method is still valid for k1 and k2, because they are still used
to control the response time and the overshoot. However, since the transfer function
is not de�ned for the full system, they can only be tuned based on the time-domain
simulation. Hence, it requires more experiences and trial and errors.

Table 2.1 shows tuned parameter values for the standard PD controller and the
nonlinear feedback function (2.11). Performance of the nonlinear feedback is depicted
in Figure 2.7. Although the overshoot is around 20% of the reference output, the
system is stabilized within 10 switching periods (2ms). In addition, the steady state
error is within 1% of the reference output and the ripple frequency is 5kHz, which is
exactly the switching frequency.

Table 2.1: Control parameter values for standard PD and nonlinear PD controllers.

k1 k2 k3 kc
standard PD 0.0048 −1.3× 10−6 � 0.5
nonlinear PD 1.25× 10−6 2.5× 10−4 40 0.5
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Figure 2.7: Performance of the nonlinear feedback controller.

Consider a di�erent buck converter by decreasing the inductor from 1.3mH to 0.13mH.
After retuning k1, k2 and k4, the system can still be stabilized. The performance for
this buck converter is plotted in Figure 2.8 with k1 = 10−9, k2 = 2.5× 10−8, k4 = 40
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and kc = 0.5. The system stabilizes in 5 periods with an overshoot of around 700V
and a steady state error of about 13% from the reference value. More careful tuning
of the controller parameters could improve the performance.
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Figure 2.8: Performance of the nonlinear feedback controller for L = 0.13mH.

2.5 Conclusion and recommendations

High frequency DC-DC converters are widely used in power electronics for regulating
the voltage from a source to a desired load. For e�cient regulation, a DC-DC con-
verter is designed using a power switch, an inductor, a capacitor, and a diode as the
basic components. A feedback control system is used to maintain the output volt-
age constant at some reference voltage when the input voltage or the output current
changes. This report discusses a technique to solve the ODE system associated to a
buck-converter feedback control system.

An approach for analyzing the full ODE system is to consider the simpli�ed aver-
aged ODE system. In this work we provide criteria when this simpli�cation provides
an accurate description of the full system. Using the timescale τ =

√
LC, we show

that the averaged system remains consistent when τ >> T , but becomes invalid if
τ ∼ T .

Instead of looking at the averaged ODE system, we suggest solving the actual
ODE system. A common approach for solving complicated ODE systems is to make
use of numerical approximation methods. However, such techniques do not always
guarantee accuracy, and often require a lot of computational time. Especially sti�
ODEs are tough for numerical methods, since such systems often require very small
time steps to achieve reasonable accuracy. In this report we have derived an analytical
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solution of the buck-converter feedback ODE system, which eliminates the need for
approximation methods.

The key ingredient in a buck-converter feedback system is to determine duty ratios
such that the output voltage converges to the reference output. Conventionally, a
feedback function is de�ned as a linear function of output voltage. Unfortunately,
the analysis of this linear feedback function is based on the averaged model and
breaks down when applied to the full system. We have proposed a nonlinear feedback
function, which appears to be working in cases where the classical feedback function
breaks down.

A future suggestion is to use, whenever possible, analytical methods to solve sim-
ilar ODE system. It not only helps in achieving accurate solutions and faster compu-
tational time, but also in the ease of implementation. Another possible extension is to
use the analytical solution to �nd the optimal sequence of duty ratios. That is, using
the principles and techniques of control theory, one can determine what sequence of
duty ratios provides the fastest convergence towards the reference output voltage with
the smallest overshoot.
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