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Abstract

The problem of determining causal relations between two or more time series is a fun-
damental and frequently occurring challenge. It is relevant for a variety of problems
ranging from determining chains of events leading to failures in industrial environ-
ments to identifying in�uencing relations between socioeconomic variables. Existing
solutions to this problem usually require the involved time series to be available for
a prolonged period of time, having a large sample count. This might be an accept-
able requirement in industrial environments but not in case of problems from the
socioeconomic sector, where time series of monthly aggregates is a typical scenario.

If two time series, A(t) and B(t), are connected in such a way that changes in
A(t) can cause changes in B(t), then there is said to be a causal relation between the
time series A→ B. Quantifying such a relation requires more than merely correlation
because of the directionality of the relation A → B due to the symmetric nature of
correlations.

We target causal inference scenarios where the sample count cannot be considered
big and we develop a framework that analyzes the time series and determines the
existence of causal relations while also identifying their direction.

This paper presents a hypothesis testing framework that, given some assumptions,
can be used to reject a null-hypothesis of no causal relation between two time series
in a sense that is explained later. The advantage of this new framework is that it is
designed to be used when relatively few samples are available in the given time series.
This makes the framework especially useful for national statistical agencies, for which
time series with more than a few hundred samples are very rare.
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This new framework can provide a powerful new tool in assessment of the e�ects
of government policies in a wide range of settings.

1.1 Problem Introduction

The generic problem of causal inference can be formulated as the problem of �nding
causal relations between a set of quantities. More formally we are given a set of K
quantities (Xk)Kk=1, these are sampled over some time interval resulting in n samples
(Xk(i))ni=1. The goal is to uncover causal relations of the type Xi → Xj where this
relation is interpreted as changing or in�uencing the values of Xi will result in changes
in Xj . A detailed introduction to causal inference can be found in Pearl (2009) and
references therein. We focus only on two series, that we denote by X and Y to ease
notation and eliminate the subscript.

A typical domain where such a problem arises is that of governmental decision
support. Policymakers decide on the goals that they want to achieve. In order to de-
vise policies leading to the desired results it is very important to properly understand
the causal relations of the socioeconomic landscape. As governments are trying to
gather a broader, more comprehensive, evidence base for their decisions and verifying
their results, the importance of causal inference methods capable of dealing with the
speci�c properties of such socioeconomic data is increased.

CBS (Statistics Netherlands) is the national statistical agency of the Netherlands,
responsible for all o�cial statistics of and about the country. In recent years, the
activity of Statistics Netherlands has expanded to provide more in-depth technical
analyses of all data that it collects and archives. The demand for such technical
analyses has increased because all government ministries are focusing more on the
evidence base for policy decisions, as well as on measurements and evaluations of the
e�ects such decisions have had in terms of societal changes.

A speci�c case study, for which we determine the causal relationship between data
sets, is the e�ect of government decisions on the prevalence of non-tectonic earth-
quakes in the Dutch province of Groningen. In 1959 the largest natural gas �eld in
Europe and current tenth-largest natural gas �eld in the world was discovered in the
Dutch province of Groningen (Whaley (2009)). For some decades earthquakes of mod-
est magnitudes have occurred in the Groningen gas �eld. It is recognized that these
events are induced by the extraction of gas from the �eld. The earthquakes, together
with the ground subsidence, have caused damage to housing and other infrastructure
over much of the region of north-east Groningen. Following an M = 3.6 event near
Huizinge in 2012, the 6th earthquake with M ≥ 3.0 in the province since 2003, and
motivated by the public concern raised by these events, an extensive study program
was started into the understanding of the hazard and risk due to gas production-
induced earthquakes, cf. BV (2016).

The Dutch government is supporting �nancial compensation schemes for inhabi-
tants of the Groningen gas �eld region who have su�ered from the damages caused.
It also has reduced the upper limit of the amount of gas that the operator NAM is al-
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lowed to extract from the reservoir on several occasions. To enable informed decisions
about the level of �nancial compensation, Statistics Netherlands carries out research
on the housing market and reports time series of various relevant indicators Posthu-
mus et al. (2017). However, there is still some uncertainty regarding the mechanisms
by which the gas production a�ects the generation rate of earthquakes in the region.
For this reason, Statistics Netherlands works with the inspector Staatstoezicht op de
Mijnen, State Supervision of Mines, to assess whether apparent changes/variations in
earthquake rates are statistically signi�cant Pijpers (2014a,b) and publishes semian-
nual updates, the most recent of which are Pijpers (2017); Pijpers and van Straalen
(2017). In addition research is pursued to assess the role that the production changes
have had in these variations Pijpers (2015, 2016, 2018).

Central in the statistical problem is the question whether or not the production
changes imposed by the Dutch government have in fact been causal in reducing earth-
quake rates. This is a particular example of the more general type of questions posed
increasingly often by ministries: to what extent has changing government policy been
causal in the registered (un)desired behavior of the policy target. Part of assessments
of government policy is the question of causality. It can be argued that, while it is
possible to demonstrate that one event or phenomenon cannot be (or have been) the
cause of another event or phenomenon, the opposite is impossible. Even the former
task is often hampered by the fact that in a complex system a structural change can
be quite subtle compared to larger stochastic variations.

In this report we focus on determining relationships between data sets, and in
particular on determining causal relationships between data sets. Determining causal
relationships between data sets allows one to quantify the e�ect of policy decisions
on real world observable quantities, such as GDP or corporate investment spending.
We are aware that causality is a highly sensitive topic due to the many connotations
associated with and the di�erent de�nitions of causality in various di�erent �elds in
the scienti�c community. To discriminate between these di�erent notions of causality,
we provide a precise de�nition of causality that can be operationally tested for.

Relevant concepts of interest and of potential use in o�cial statistics are `infor-
mation �ow' and `information dissipation', for which we refer to Liang (2014b,a);
Daniu�sis et al. (2010). The data presumed available are time series of measurements
of phenomena that may be related. The concept of `information �ow' provides a
means to measure the amount of information that can �ow from time series X to Y
and vice versa. While a positive information �ow from X to Y does not automati-
cally imply causality, an information �ow equal to 0 implies that there is no transfer
mechanism for X to cause Y . The concept of `information dissipation' may help to
measure the extent to which an intervention at a single node in a complex network
can a�ect the entire network or only a small part of it.

The problem with these concepts of `information �ow' and `information dissipa-
tion' is that measuring the necessary quantities requires long time series with thou-
sands of samples and preferably higher orders of magnitude. In o�cial statistics such
long time series are rarely available. The highest cadence with which time series are
available is normally at 1 month intervals. Long time series are rare in this context
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as 1000 samples would cover more than 83 years and there are very few questions for
which this is the appropriate time horizon. It is already quite rare in o�cial statistics
to have a time series exceeding 10 years, i.e. 120 samples.

Most causal inference methods rely on asymptotic results, hence their need for
high sample count n→∞. In this report we devise an elaborate statistical test that
checks the correlation, the time delay in the correlation, and a speci�c functional
form between time series X and Y with any �nite sample size n. Moreover, the
test discriminates between the options `X causally a�ects Y ', `Y causally a�ects X',
`X and Y are correlated without a clear causal direction' and `X and Y have no
correlation'.

The paper is structured as follows. We present the problem formulation and
describe the proposed method in Section 1.2 then we illustrate the use of the method
on a hypothetical example in Section 1.3. We raise awareness to some important
issues that might be encountered when using such a framework in Section 1.4. The
last part of the paper describes application of the method to non-blind and blind
synthetic data in Section 1.5 and to the actual real world case of the Groningen gas
�eld earthquake data in Section 1.6.

This problem was proposed for the SWI by CBS. The presented work and its
conclusions are evaluated by F.P. Pijpers, the CBS representative. He discusses the
applicability of the devised statistical test and the results of the application to the
Groningen gas �eld earthquake case-study in Section 1.7.

1.2 Mathematical Details

This section describes the technical details of the proposed method. We start by
listing all assumptions required by the method in Section 1.2.1, where we also list the
user input needed to set up the problem. The exact de�nition of causality, as used
throughout the report, is given in Section 1.2.2. This is followed by the presentation
of the algorithm in Section 1.2.3.

1.2.1 Assumptions

In order to decide if there is a causal relation between two time series X and Y we
make some assumptions. These are listed and explained in this section for the causal
direction X → Y . The fundamental assumption is a presumed relation between X
and Y , stated by the model class assumption, Assumption 1.2.1. The model class has
to ful�ll some invertibility properties, that are formalized in Assumption 1.2.2. The
proposed model contains a random noise component E. This noise variable needs to
ful�ll two conditions that are formalized in Assumptions 1.2.3 and 1.2.4.

Assumption 1.2.1 (Model class). There is a known model class MX ,E→Y whose

elements can be written as a function fθ parameterized by a vector θ ∈ Rd, such that

there exists a nominal parameter vector θ0 for which

Y = fθ0(X,E), (1.1)
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where E is considered as random unmeasured disturbance.

The model class assumption states that we have full knowledge about how the driving
and responding time series are related to each other and how the unknown e�ects
in�uence the responding time series. It is always an option to choose the model class
MX ,E→Y as a universal model family (like polynomials or splines), but that comes at
a cost. Since the presented framework is statistical in nature and we focus on small
sample situations, it is easy to understand that reliable knowledge about the model
class would result in better statistical power compared to a universal model classes.
This is a point where expert knowledge can come very handy.

It should be highlighted what happens if we assumed a wrong model classMX ,E→Y ,
i.e. it does not contain the actual relation between driver, noise and responding se-
ries. Just as with any mathematical results, if the assumptions are violated then the
results might also be compromised. These two considerations should be kept in mind
when specifying the model class.

Just knowing the model class is not enough to employ the presented framework.
This chosen model class needs to ful�ll some conditions that are expressed by the
invertibility assumption, as follows.

Assumption 1.2.2 (Invertibility). The model classMX ,E→Y de�ned by the function

f·(·, ·) is called invertible if for every element of it, it can be inverted for both its inputs

∀θ, Y,X,E Y = fθ(X,E)⇒ X = f−Xθ (Y,E), E = f−Eθ (X,Y ). (1.2)

The functions f−X· and f−E· de�ne the model classes MY,E→X and MX ,Y→E the

same way as f· de�nesMX ,E→Y .

The invertibility assumption means that the model classes MX ,E→Y , MY,E→X and
MX ,Y→E are parameterized by the same parameters and the three models belonging
to the same parameter vector θ are coordinatewise inverses of each other.

The noise parameter E of the functional relation is considered as random noise in
the system. The remaining two assumptions are related to the statistical properties
of this noise term.

Assumption 1.2.3 (Noise causality). We assume that the noise series E is indepen-

dent ofMX ,E→Y and of θ0.

The noise causality assumption ensures that the noise distribution can be de�ned sep-
arately, irrespective of the parameterization of the model and the nominal parameter
vector θ0. In order to make statistical statements we need to make some assumptions
about the noise E. Since we focus on a scenario with small sample count we cannot
make very stringent assumptions about the distribution of the noise. Group invari-
ance, as given in Assumption 1.2.4 is a mild assumption about the joint distribution
of E.

Assumption 1.2.4 (Group invariance). Let the full noise E be de�ned over the

probability space (Ω,F , µ) as

∀A ∈ F Pr(E ∈ A) = µ(A) (1.3)
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for any measurable set A ∈ F . The measure is group invariant under a group (G, ·) if

∀G ∈ G,∀A ∈ F µ(A) = µ(GA), (1.4)

where G is a set of mappings from Ω into itself.

The de�nition of group invariance might seem very abstract, let us illustrate it with
an example. We can choose Ω = Rn and F be the usual σ-algebra of Borel sets over
Rn. Standard examples are symmetric noise, exchangeable noise or sum de�ned noise.

If the noise distribution is assumed to be symmetric around zero, then one choice
of G can be the set of n × n diagonal matrices with ±1 entries on the diagonal. In
case of exchangeable noise distributions (like independent and identically distributed
noise) G can be represented as the set of n × n permutation matrices. When the
distribution of E is only a function of

∑n
t=1E(t), then G can be the set of doubly

stochastic matrices.

1.2.2 De�nition of Causality

Now we present the framework to detect a causal relation between signals X and Y .
This section de�nes precisely what we understand under causality and what needs to
be provided by the user of the method in order to obtain an answer. This description
is quite abstract, but a clear illustration will be given afterwards in Section 1.3. The
user needs to specify as input the following:

• Model classesMX→Y andMY→X along with their common parameterization
using a vectors θ ∈ Rd.

• Estimators for both model classes that can estimate the value of θ.

• Group of transformations (G, ·) under which the joint noise distribution is as-
sumed to be invariant.

• Statistical test for the noise causality given by Assumption 1.2.3 and a noise
causality con�dence threshold pnc. The test can provide a p-value that shows the
plausibility of a triplet (X,Y, θ). Due to the invertibility assumption this triplet
uniquely de�nes the value of E as well, so the test re�ects on the statistical
properties of E with respect to X and Y given some parameter θ. The user
needs to select a con�dence level pnc that speci�es the con�dence level used to
decide if the noise causality assumption is ful�lled or not in either of the possible
causal directions.

• Subset C ⊂ Rd of the parameter space that is considered as the causality domain.
Models corresponding to parameters θ ∈ C are considered to represent a relation
between X and Y that can be considered causal for the purposes of the user.

• Model causality con�dence threshold pC . The algorithm, outlined later in Sec-
tion 1.2.3, associates p-values to every parameter vector θ ∈ C. The user-
speci�ed threshold value pC is used to decide if there is at least one model in C
that is plausible enough to believe that causality is present.
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De�nition 1.2.5 (Causality). We say that there is a causal relationship X → Y
between X and Y under the model structuresMX→Y andMY→X with signi�cance
levels pnc and pC if and only if

1. the noise causality test performed on the noise values ÊX→Y belonging to the
estimate θ̂X→Y for the model structure MX→Y

X ,E→Y results in a p-value that is
greater than the user given threshold pnc and

2. there is at least one model θ in the causality set C such that the p-value of
the causality hypothesis test with null hypothesis H0 : θ = θ0 and alternative
hypothesis H1 : θ 6= θ0 is greater than the user given threshold pC and

3. at least one of the previous conditions does not hold for the direction Y → X.

1.2.3 Algorithm

This section describes the algorithm step-by-step that decides on the existence of a
causal relationship between X and Y in the sense of De�nition 1.2.5. The �owchart
representing the algorithm is give in Figure 1.1.

The procedure of determining the causal direction starts with specifying every
ingredient given in Section 1.2.2. This entails the model structures and properties of
the presumed noise in the data. Beside the theoretical assumptions the input contains
the causality domain C along with the con�dence thresholds pnc and pC .

The simplest model structures express relations between time series as a relation
between samples at corresponding time instances. For such model structures it can
be bene�cial to adjust the timing of the signals with respect to each other by an
estimated shift τ̂ . This is an optional step and time delay can also be incorporated
into the model classM as well.

In most cases when there exists a speci�c time delay between signals it can be
determined very accurately on its own. Thus, we decided to include it as a separate
step in the algorithm. In the examples presented later we determine the dominant
time delay τ̂ to be the delay that maximizes correlations between X(t+ τ) and Y (t).

In order to decide between the causal directions X → Y and Y → X we specify
two model structuresMX→Y andMY→X in such a way that they match each other
exactly if there is no noise but they are not coordinatewise inverses of each other with
respect to noise, as given in the following de�nitions.

De�nition 1.2.6 (Noiseless match). The two model structuresMX→Y andMY→X ,
de�ned by the functions f and g, match each other in the absence of noise if

Y = fθ(X, 0)⇔ X = gθ(Y, 0) ∀θ,X, Y. (1.5)

De�nition 1.2.7 (Coordinatewise inverse). The two model structures MX→Y and
MY→X , de�ned by the functions f and g, are coordinatewise inverses of each other
if

f−Eθ (X,Y ) = g−Eθ (Y,X) ∀θ,X, Y. (1.6)
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Signals X and Y

Model structuresMX→Y andMY→X

Symmetry group (G, .) of the noise distribution

C and thresholds pnc and pC

Determine delay τ̂ (Xt+τ̂ , Yt)

Decide based on the Table 1.1.

X → Y

Estimate θ̂X→Y

ÊX→Y = f−E
θ̂X→Y

(X,Y )

Check noise causality of ÊX→Y

pX→Y
nc

Assign p-values to

parameters in C

pX→YC = max
θ∈C

p(θ)

Y → X

Estimate θ̂Y→X

ÊY→X = g−E
θ̂Y→X

(X,Y )

Check noise causality of ÊY→X

pY→X
nc

Assign p-values to

parameters in C

pY→XC = max
θ∈C

p(θ)

Figure 1.1: Flowchart describing the steps of the algorithm
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The rationale behind choosing model classes for the two directions that match each
other in the noiseless case is that this choice makes comparison of the two directions
meaningful. It also allows a common parametrization of the models, thus the causality
domain C is also common for both directions.

If the model classes would be coordinatewise inverses of each other then the two
model classes would describe the same relation between signals, just from a di�erent
perspective, one from (X,E) to Y , while the other from (Y,E) to X. The requirement
of this di�erence is what allows discriminating between the causal directions based
on the assumed statistical properties of the noise E.

The model structure of both directions comes with an estimation procedure for
each direction. This allows estimation of the model parameters for both direction

θ̂X→Y = θ̂X→Y (X,Y ) θ̂Y→X = θ̂Y→X(Y,X), (1.7)

which in turn allows expressing the two noise series for the two causal directions

ÊX→Y = f−E
θ̂X→Y

(X,Y ) ÊY→X = g−E
θ̂X→Y

(Y,X). (1.8)

At this point we can execute the hypothesis test provided by the user to check the p-
value for the noise causality assumption. If we denote the two p-values corresponding
to the two directions as pX→Y

nc
and pY→X

nc
, then these are compared to user given

threshold pnc. If the p-value corresponding to a direction is smaller than the given
threshold, then we conclude that that direction is not feasible. This leaves three
options.

• If both hypothesis tests reject the noise causality assumption, then we conclude
that we chose a wrong model and noise structure, the whole process should be
restarted.

• If the noise causality assumption is rejected for one direction, but not in the
other, then the algorithm can continue on the prevailing branch.

• If both directions accept the noise causality assumption, then the algorithm
continues on both branches.

Based on the accepted noise causality and the group invariance properties, a p-
value can be associated to every parameter θ in the causality region C. This can
be done using data perturbation methods, as described in Kolumbán et al. (2015);
Kolumbán (2016). This is a particular choice for certifying the relevance of di�erent
models, but other methods can also be used.

• If there is at least one parameter in the causal region that is not rejected in
only one causal direction, then we conclude that causality is detected in that
direction.

• If there is at least one parameter in the causal region that is not rejected in both
causal directions, then we conclude that it seems there is a strong connection in
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both direction but we could not discriminate between them. This we translate
into a conclusion that there is a clear connection between the time series, but
no clear causality direction can be detected.

• If there are no accepted parameters in the causal domain in either of the direc-
tions, then we conclude that there is no causal relation between the two time
series.

The conclusion of the algorithm based on the di�erent parameters and calculated
values is given in Table 1.1.

no causal
link

Y → X
MY→X

rejected
no causal

link

X → Y correlation X → Y X → Y

MX→Y

rejected
Y → X

no causal
link

Y → X

noise
assumptions
rejected

p
X
→
Y

n
c

>
p
n
c

pY→X
nc

> pnc

p
X
→
Y

C
>
p
C

pY→XC > pC

Table 1.1: Decisions based on the values pX→Y
nc

, pY→X
nc

, pX→YC and pY→XC

1.2.4 Accurateness of functional relation

The framework outlined in the previous section relies on an appropriate choice for
the functional relationship of interest. One could think of several commonly used
statistical tests to verify this assumption. For illustration purposes, we present an
example under the assumption of additive noise. More speci�cally, we assume

Y (t) = fθ0(X(t)) + E(t), (1.9)

where E is a random noise term and fθ0(·) denotes the real relation between time
series X(t) and Y (t).

We can choose to estimate θ0 using standard methods, like non-linear least squares.
Let θ̂ denote this estimate. This results in the noise estimate

ÊX→Y = Y − f−1
θ̂

(Y ). (1.10)

To test the noise causality assumption, Assumption 1.2.3, the residuals Ê(t) are
binarized by comparison to the median of all Ê(t), in order to obtain ÊB(t). Next,
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we proceed by ordering ÊB(t) with respect to increasing order of X(t). To test for
independence between X and ÊB and within the new sequence ÊB we apply the
Wald-Wolfowitz runs test, for which we refer to Sheskin (2004)[Chapter 10]. If the
hypothesis of independence is rejected at a level of pnc, we will reject Assumption 1.2.3
and stop our procedure. If independence is not rejected, we proceed with the next
step of our outline.

If binarized values ordered according to the magnitude of X at the corresponding
time fail the Wald-Wolfowitz test it means that independence from X can be rejected,
rejecting Assumption 1.2.3.

1.2.5 I.I.D. and Exchangeable Noise

Once the noise causality assumption is not rejected, we proceed to checking the statis-
tical hypothesis that serves as foundation for certifying models in the causality region.
Our suggestion for using data-perturbation methods relies on the group invariance as-
sumption, Assumption 1.2.4. This section presents the hypothesis test corresponding
to the assumption of exchangeable noise, such as independent and identically dis-
tributed (i.i.d.) noise, where the group of permutations is the invariance group. One
possible choice for testing if a series of variables is an independent sequence is the
Wald-Wolfowitz test. In this context the test is used on the binarized version of
ÊX→Y directly to check if that is an independent sequence.

It is of great importance to note that, if X → Y is the true causal direction, then
assuming the causal relation in the wrong direction Y → X the hypothesis for both
Assumption 1.2.3 and Assumption 1.2.4 should be rejected in theory. The model class
for the direction Y → X is de�ned as X(t) = f−1θ0 (Y (t)) + Ẽ, with an independent

noise Ẽ. Using the relation of the direction X → Y , we can write

X(t) = f−1θ0 (Y (t)) + (X(t)− f−1θ0 (Y (t))) = f−1θ0 (Y (t)) + Ẽ,

so that Ẽ = X(t) − f−1θ0 (Y (t)) which is obviously not independent of neither Y , nor
θ0.

1.3 Illustrative Example

Since the de�nition of the framework was given in a rather abstract manner, we give
an hypothetical example in this section. This illustrates the general methodology of
�nding causal relations between two time series that are relatively short. We prove
an example for every building block of the method. This is done using an applied
example that is not used later on in the report.

To illustrate how to use our method to �nd causal relations in the sense described
above, we employ a situation that can arise in o�cial statistics: does there exist, and

if so describe, a causal relation between the yearly time series of cigarette prices and

the percentage of smokers in the population?
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Functional relation: A-priori it is unclear what the causal relation should be. Did
the price increase to keep revenue from dropping due to lower percentage of smokers?
Did the percentage of smokers drop due to the too high price of cigarettes for a part of
the population? Moreover, it is a-priori not clear what the functional relation should
be. Or was there a mutual feedback e�ect?

The problem imposes several natural constraints: the percentage must be between
0 and 100, the price must be positive, the addictive nature of smoking and the income
inequality of the population shows that percentage does not drop to 0 if prices tend
towards in�nity, a price of 0 for the cigarettes does not relate to a 100% share of
smokers in the population, and higher prices should give lower percentage of smokers
due to socioeconomic theories.

Let S denote the percentage of smokers and let P denote the price of a pack of
cigarettes. Then, an educated guess of the functional relationship is

S(t) = fθ0(P (t)) + E(t) = a0 +
b0

P (t− τ) + c0
+ E(t),

with a0, b0, c0, τ > 0 and t = 1, 2, . . . , 12 denotes the monthly aggregate time resolu-
tion. τ denotes the dominant time delay and the parameter vector is composed of
θ0 = [a0, b0, c0]T .

Noise Causality Assumption: We assume that the random noise E is indepen-
dent of P and is an i.i.d. sequence. We set the p-value for all hypothesis tests at 0.95
and start our method.

Estimating of parameters: We use the correlation function to estimate τ with τ̂
and we estimate the values of a, b and c with â, b̂ and ĉ using a least-squares method.

Residual Noise: Then, we determine Ê with

Ê(t) = S(t)− â− b̂

P (t− τ̂) + ĉ
.

Plausibility of the chosen function relation: Testing whether or not fθ̂ accu-

rately represents fθ0 can be done based on the residuals Ê. They should be indepen-

dent of P if θ̂ is an accurate representation of θ0. We can check this condition by
looking at the inner product between the centered versions of Ê and P . This check
e�ectively looks at how often the two sequences have deviation from their average
with the same or opposite sign. For an independent random process the sum of these
product values should be near 0, while correlated sequences will di�er signi�cantly
from 0. Correlation would mean that the noise is dependent on P and, hence, fθ̂ is
not an accurate representation of the true relation.
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If the hypothesis based on Assumption 1.2.3 is rejected, then a di�erent model
class should be chosen. If the hypothesis is accepted, then fθ̂ does accurately rep-
resent fθ0 and, thus, one can proceed with testing the hypothesis corresponding to
Assumption 1.2.4.

Testing the residual noise: To test Assumption 1.2.4, we have to check two
conditions: Ê(t) is random, and Ê is identically distributed. Tests for this were
suggested in previous sections based on the Wald-Wolfowitz test.

If the hypothesis of Assumption 1.2.4 is rejected, then either Ê is not random
or not identically distributed. This would indicate that a hidden behavior is not
taken into account in fθ. Therefore, a di�erent model class should be chosen. If
the hypothesis is accepted, then we can proceed to checking models in the causality
domain. A possible choice of the causality domain could be

C =
{
θ ∈ R3 : |θ(2)| > 0.1

}
. (1.11)

In this case, the model structureMX→Y
X ,E→Y is de�ned as

S(t) = a+
b

P (t− τ) + c
+ EX→Y (t), (1.12)

whileMX→Y
Y,E→X is de�ned as

P (t) =
b

S(t+ τ)− EX→Y (t+ τ)− a
+ c. (1.13)

This should be compared toMY→X
Y,E→X , de�ned as

P (t) =
b

S(t+ τ)− a
+ c+ EY→X(t). (1.14)

Let us assume that the noise estimates belonging to the two directions both passed
the statistical tests. Furthermore, there are parameters in C that cannot be rejected
with the speci�ed con�dence. In this case, we would conclude that there is a clear
relation between the two quantities but we cannot determine any directionality.

1.4 Incorrect Use or Interpretation

Our notion of causality refers to noise properties (the Noise Causality Assump-
tion 1.2.3), and to an educated guess for the functional relationship (Assumption 1.2.1).
The use of our method is, therefore, highly dependent on the user knowledge about
the problem.

In this section we treat problems that are speci�c to our method of detecting a
causal relation and are not necessarily part of the familiar statistical paradoxes. All
problems shown in this section come down to the following advice to any user of our
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method: without knowledge of your problem set-up, procedure of data gathering,
amount of noise in the data, interpretation of the results of our method could lead to
incorrect conclusions on which harmful policies can be based.

There are a few remarks that we would like to make about possible pitfalls. One
of these is that there are multiple hypothesis tests performed on the same dataset
before reaching a conclusion, even on one directional branch. These are by no means
independent of each other, so claiming an overall con�dence level would be a mistake.

It can easily happen that we are given two time series X and Y but in fact both of
these are in�uenced by a third unmeasured signal with di�erent delays. In such cases
it can happen that the algorithm indicates a causal direction that would go against
temporal order of events. This still �ts our de�nition of causality.

Another potential situation where the method would be prone to detecting causal
relations in the wrong direction is where the signal to noise ratio in X is much larger
than for Y . In such cases the algorithm is prone to not rejecting an invalid functional
relation in the direction X → Y because the modeling error with respect to the true
functional relation is not big enough to be statistically signi�cant. In such cases on the
X → Y direction prevails from the two possibilities. We note that, if the functional
relation is correct, then this issue is not present.

1.5 Synthetic Data Sets

When developing an algorithm, it is helpful to examine its e�cacy using synthetic
data. Since the desired results are known, a comparison of the actual and desired
results is possible and the e�cacy of the algorithm can be judged in a setting similar
to future use cases.

The synthetic data, in this case a few time series, can be prepared with particular
properties or complications that mimic real data. We used synthetic data to explore
particular issues that may stretch the capabilities of the algorithm, or even violate
some of its assumptions. If, in the latter case, the algorithm does indeed fail to
function as desired, this provides a powerful argument for the need to ensure that the
data or the problems, to which this algorithm is applied to, do satisfy such constraints.

To ensure that the algorithm is applied as objectively as possible to each prob-
lem, three tests are carried out `blind'. The CBS representative (the fourth author)
prepared several synthetic datasets to be employed in the algorithm tests, keeping in
mind the typical problems and issues that data of a national statistical agency (NSI)
will su�er from. The intended direct application, at least in the �rst instance, is by
NSIs. The other members of the research team (all authors) were given very little
information concerning the process by which the time series were constructed. The
results of these data set test-runs are explained in Section 1.5.2.
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(X → Y ) α̂X→Y = 3.93792 β̂X→Y = 2.01604

(Y → X) α̂Y→X = 4.00647 β̂Y→X = 2.09265
true value α = 4 β = 2

Table 1.2: Estimated parameters for the non-blind test
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Figure 1.2: Data of the non-blind test
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Figure 1.3: Correlation of X and Y

1.5.1 Non-blind synthetic data set

To get an idea about the power of our method we apply it to about a dozen synthetic
data sets ranging from combining multiple independent time series to more functional
relations between the time series. We explain one of these non-blind tests to show
the algorithm once more in detail.

Consider two time series X(t), Y (t) with 200 data points, e.g. t = 1, 2, . . . , 200, as
shown in Figure 1.2. The �rst step is to identify the possible time shift between the
times series, which we conjecture to maximize the shifted correlation:

corrX,Y (τ) =

min{T,T+τ}∑
t=max{0,τ}

X(t) · Y (t− τ). (1.15)

In our case this is the this case for 0, see Figure 1.3. As second step, we guess the
function form (correctly) to be

Y (t) = α+ βX(t)2 X(t) =
1√
β

√
|Y (t)− α|.

The third step is to �t the model to the data. The �tted values are given in Table 1.2.

Using these �tted models we compute the implied/residual noise

ÊX→Y (t) = Ŷ (t)− α̂Y + β̂YX(t)2, ÊY→X(t) = X(t)− 1√
β̂X

√
|Y (t)− α̂X |.



16 SWI 2018 Proceedings

1.6 1.8 2.0 2.2

0.2

0.4

0.6

0.8

1.0

Figure 1.4: Region of trust, X → Y
for parameter β.

Figure 1.5: Region of trust, Y → X
for parameters α and β.

Using the Wald-Wolfowitz test for both residual noises, we see that is very plausible
that both are random. To �nally make a statement about the causal relation, and
even the direction of this relations we check whether the noise ÊY is independent of
X and whether ÊX is independent of Y . Using Spearman's rank test and obtain:

(ÊX→Y , X) p− value = 0.965 independence very plausible

(ÊX→Y , Y ) p− value = 0.0292 independence unlikely

Thus, we have concluded that most likely X is causing/driving the signal Y , which is
the case as the data was generated using

Y (t) = 4 + 2X(t)2 + 2Uy,t X(t) =

∣∣∣∣sin(6π
t

200

)
+ 0.2Ux,t

∣∣∣∣ ,
where Uy,t, Ux,t are i.i.d real-valued random variable chosen uniformly form the inter-
val [−1, 1].

The last step is to assign p-values to parameters in the causality domain. These
values can be calculated by relying on the assumption that the noise is an i.i.d.
sequence. Figure 1.4 shows these p-values for the β parameter in theX → Y direction.
If, for example, the causality domain C is de�ned as {|β| > 0.1} then the algorithm
would conclude that indeed there is a causal relation X → Y . We note that the α
dimension of this �gure is not shown because the additive constant can be considered
as part of the i.i.d. noise as a shift in the expectation.

For completeness we also test the conjectured function form in the Y → X direc-
tion. These p-values are presented in Figure 1.5. We see no clear structure here, but
this is irrelevant, as these p-values are calculated based on the i.i.d. noise assumption
which was already rejected for this direction.

For this setting our method worked beautifully. After further testing we found
that this method remains useful until the signal consist of around 50% noise (we used
around 20%), then the perturbation became so large that the result of the Spearman's
rank test were not conclusive anymore.
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Figure 1.6: Part of the �rst data set
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Figure 1.7: Correlation of Y and Y

1.5.2 Blind synthetic data set

The team was given three sets of time series by the CBS representative (the fourth
author) to carry out `blind' test and demonstrate the power of the proposed method.
The aim is as asses whether a particular expectation for the direction of causality can
be veri�ed/falsi�ed from their data. For NSIs this is a realistic setting, as it is not
unusual that a third party wishes to assess whether a particular expectation for the
direction of causality can be veri�ed/falsi�ed from the data.

First data set The �rst data set consisted of two alternating signals, as displayed
in Figure 1.6, we compute the shifted correlation (1.15) to �nd the most plausible
shifts, see Figure 1.7. The periodicity of the correlation suggests some periodicity in
the signals as well. We chose the shift that was minimal and with the highest absolute
value τ̂ = −1.

Examining the shifted time series, a linear �t seamed reasonable. We �tted the
models accordingly and computed the residual noise. The Spearman rank test yields
that both directions are plausible, with p-values 0.6735 and 0.38656 also indicating a
possible dominant direction, namely Y = α+ βX + E.

We go forward with assigning p-values to di�erent parameters values. As already
mentioned earlier, an additive parameter α is irrelevant in case of an additive i.i.d.
noise model. The p-values for parameter β are given on Figure 1.8. Based on these
�gures we cannot distinguish between the two directions so the algorithm would con-
clude that there is a strong relation between the signals but no directionality can be
determined. This is due to the simultaneous presence of two characteristics of the
model for the direction Y → X, that is X = 1

βY −
1
β (α + E). On the one hand the

functional form matches the tested one. On the other hand the noise − 1
β (α + E)

is also an i.i.d. sequence. This illustrates the importance of nonlinear relations for
detecting causal relations.

Second data set In practice one might want to analyze relations between multiple
properties. Our method can be extended to more than two time series, to which we
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Figure 1.8: Reliability of the linear description as function of β.
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Figure 1.9: Part of the second data set.
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Figure 1.10: Correlation functions.

only restricted for representational purposes. The second data consists of three time
series, denote by A, B and C, see Figure 1.9.

First, we computed the pairwise correlation to identify the time shift, see Fig-
ure 1.10. Comparing the shifted time series we conjecture a functional form to be:

C(t) = αCA(t− 1) + βCB(t− 2) + EA,B→C , (1.16)

or other combinations of this:

A(t) = βAB(t− 1) + γAC(t+ 1) + EB,C→A,

B(t) = αBA(t+ 1) + γBC(t+ 2) + EA,C→B .

For each combination, we �tted the parameters and compute the residual noises.
Then, we use the Spearman rank test to conclude whether the residual noise is in-
dependent of the drivers. As can be see in Table 1.3 the function form stated in
(1.16) is the only plausible from (assuming a linear dependence). Figure 1.11 shows
the p-values assigned to di�erent parameter values using a data perturbation method
given in Kolumbán (2016). If the region with elevated p-values is considered to be
part of the causality region, then we can conclude a found causal relation.



19

A B C
EA,B→C 0.760615 0.907167 -
EB,C→A - 1.494 ∗ 10−17 0.703413
EA,C→B 1.367 ∗ 10−12 - 0.989447

Table 1.3: p-value of the test for independence of the two signals.

Figure 1.11: Likely region in which the parameter of the functional form (1.16).

Third data set This data set consists of two time series, shown in Figure 1.12.
We compute the possible shift between the time series. Looking at the quite involved
shape of the data it was hard to come up with a suitable functional form. In practice
we would have asked a domain expert for a reasonable guess of the functional. As this
was not an option we used a small family of standard functions (low order polynomials,
exponential, logarithm) and have chosen the most suitable form that used only two
parameters

Y (t) =α+ βX(t− 1) + log(1 +X(t− 1)) + Et. (1.17)

Assuming zero noise, Et = 0, and remembering that the Lambert W-function is
de�ned by the relation z = W (z)eW (z) we can express X(t) as

X(t) = −1 +
1

β
W (βeY (t+1)−α+β). (1.18)

Then, we employed our method: We �t the parameters and computed the residual
noise and tested for independence of the noise to the corresponding into, which re-
sulted in the p-values 0.079 and 0.055, respectively. Using our favorite threshold of
5%, we could accept both direction, even if we see that it might be unlikely. In the
hope of gaining more insight and maybe even a clear indication as in Figures 1.4,1.5,
we compute the region of trust, but could not extract any additional information.
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Figure 1.12: The third data set.

0.5

1

τ

corrX,Y (τ)

Figure 1.13: Correlation of X and Y

Comment of the fourth author on this data set: A violation of one of the
assumptions of the model is introduced in setting up the synthetic dataset: corre-
lated errors between driving and responding time series. In addition, the functional
relation between the two time series was not obvious. The rest of the team was not
informed of this issue, and therefore the expectation was that either no inference can
be made concerning information �ow, or even that an erroneous conclusion is reached.
While in normal business practice every e�ort is made to avoid such issues concerning
error correlations, there may be cases where such an issue nevertheless occurs. It is
important for CBS to have an explicit example of the risks and consequences of such
problems, to prevent the inexpert use of the algorithm as a black box.

1.6 Groningen Earthquake Case-study

Time series data on the gas production 4 and the induced tremor catalog5 in the
North of the Netherlands can be found online. Nowadays, there is no doubt whether
the number of induced earthquakes and the amount of gas produced are correlated,
see e.g. Sijacic et al. (2017). In addition, causal relations between the cumulative
production and cumulative number of earthquakes have been proposed. Bourne and
Oates made use of some geomechanical expert knowledge to propose a nonlinear ex-
ponential relation between the total compaction and total number of events Bourne
and Oates (2015). A more empirical approach, directly linking the cumulative pro-
duction since 1991 to the cumulative number of events since 1991, has been proposed
by Hagoort Hagoort (2017). Since compaction data is not publicly available, we will
subject Hagoort's proposed relation to our new developed machinery. In this model,
X(t) represents the cumulative production in Nm3, scaled by the factor 10−15, t the
months after 1st of January, 1991, and Y (t) the cumulative number of induced earth-
quakes (with magnitude ≥ 1.5) up until that time. Hagoort proposed the functional
relation

Y (t) = a ·X(t)2 + b ·X(t). (1.19)

4https://www.nam.nl/feiten-en-cijfers/gaswinning.html
5https://www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus

https://www.nam.nl/feiten-en-cijfers/gaswinning.html
https://www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus
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We investigate whether it seems reasonable to assume the causal relation

Y (t) = f(X(t), E) = a ·X(t)2 + b ·X(t) + E(t).

Firstly, the most appropriate time-delay is derived according to the maximizer of the
time series correlation. Indeed, a time-delay of 0 months seems most appropriate
according to the data, see Figure 1.14.
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τ
corrX,Y (τ)

Figure 1.14: Correlation of X and Y

The NLS �t f̂(X(t)) is attained at â = 0.027 and b̂ = −0.275. A comparison

between f̂(X(t)) and Y (t) is presented in Figure 1.15.
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Figure 1.15: Accumulated quake count Y (t) and its hypothesized model f̂(X(t))

Subsequently, the residuals Ê(t) are sorted in increasing order of X(t). The be-
havior of Ê(t) versus X(t) can be found in Figure 1.16.
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Figure 1.16: Ê(t) versus X(t)

These residuals are binarized by comparing them to the median of

{Ê(t), 1 ≤ t ≤ 325}.

The p−value based on the Wald-Wolfowitz test equals 3.51806 · 10−59, from which
we clearly reject randomness of this sequence. As a result we reject hypothesis 1 and
reject that the relation proposed by Hagoort is reasonable.

We conclude that geomechanical experts should think about an appropriate model
classM relating the gas production, or derived quantities such as compaction, before
our method can be of use in practice. If one would like to apply our machinery, more
speci�cally, if one would like to use the model with i.i.d. noise, then it seems more
appropriate to model the monthly number of earthquakes instead of the cumulative
number of earthquakes.

1.7 Conclusion

In this paper a new method is described to assess in which direction, if any, information
is �owing between two or more time series. Previous work in this area assumed that
time series would be available with large numbers of samples. For the purposes of
National Statistical Institutes (NSIs), this would be a nearly insuperable obstacle,
since obtaining long uniform time series for o�cial statistics is very di�cult indeed:
a cadence of measurements of more than once a month is not feasible, and in most
cases such time series are available for 10 to 20 years at best. The statistical test
presented here does not quantify an amount of information transferred, but instead
tests whether a hypothesis of zero or non-zero information transfer can be rejected.
This allows meaningful conclusions to be drawn with far shorter time series than the
previous methods.

A convenient shorthand term for the technique is that an assessment is made of
causality. In writing such shorthand it is important to emphasize that this term here
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is intended to be used with a speci�c technical meaning. If this method accepts ('does
not reject') the hypothesis that `variations in time series A' cause `variations in time
series B' this does not imply exclusivity: no statement is made as to whether an
(unobserved) variable C caused variations in both A and B, rather than A directly
a�ecting B. Also, even if variations in A cause some of the variations in B, there could
nevertheless still be variables C, D etc. that also a�ect B in some way. In other words
`A causes B' is not the same statement as `only A causes B'.

Most algorithms and proofs in mathematics and statistics make certain assump-
tions about the data or settings in which they can be applied, and this algorithm is
no exception. The details are set out in Section 1.2, but it is important to emphasize
that there is a crucial role for a plausible relationship between the time series, which
in addition must have a non-linear term or terms. This means that an expert in the
research �eld where this method is to be applied needs to be involved in order to
provide such a context-relevant, plausible model. Another important aspect of the
data is measurement noise. Perhaps paradoxically, methods that assess transfer of
information require the presence of noise, i.e. intrinsic stochasticity or measurement
noise. Without it, these tests cannot provide an answer. The noise must itself have
some known symmetry properties (for example be i.i.d.) in order for the test to be
able to provide a conclusive answer.

Using several practical examples on synthetic data, the importance of the assump-
tions is illustrated, by showing that a violation of the assumptions used to build the
method produces either inconclusive results, which is relatively benign, or conclusive
but erroneous results. Such examples provide valuable insight which can also serve as
guidance when this method is to be applied to a new problem at NSIs such as Statistics
Netherlands. In addition, this method is applied to one particular indicator of seismic
activity in Groningen. For a long time, doubts were cast on the causal relationship
between the production of natural gas from the Groningen gas reservoir and seismic
events in the region. While this point of view has now changed, it is nevertheless use-
ful to assess the value of an indicator such as the time series of cumulative numbers
seismic events above a threshold magnitude. The test was applied to see whether a
quadratic relationship with cumulative production appears a valid causal model. The
tests demonstrate that such a model is rejected. The interpretation of this result is
that the path from gas extraction to earthquakes is not purely one of compaction
driving the generation of earthquakes. Furthermore, at a more technical/operational
level, it appears that using non-cumulative production and earthquake numbers, i.e.
rates per month or some other appropriate time interval, may work better as primary
data in the framework presented here.

Bibliography

SJ Bourne and SJ Oates. An activity rate model of induced seismicity within the
groningen �eld (part 1). nam report, 2015.

Nederlandse Aardolie Maatschappij BV. A technical addendum to the winningsplan



24 SWI 2018 Proceedings

Groningen 2016 production, subsidence, induced earthquakes and seismic hazard
and risk assessment in the Groningen �eld. Technical report, Nederlandse Aardolie
Maatschappij (NAM), 2016.

Povilas Daniu�sis, Dominik Janzing, Joris Mooij, Jakob Zscheischler, Bastian Steudel,
Kun Zhang, and Bernhard Schölkopf. Inferring deterministic causal relations. In
UAI'10 Proceedings of the Twenty-Sixth Conference on Uncertainty in Arti�cial

Intelligence, pages 143�150, 2010.

Jacques Hagoort. Empirical model for induced earthquakes in the groningen gas �eld.
Unpublished manuscript. Amsterdam, Newzealand, 2017.

Sándor Kolumbán. System Identi�cation in Highly Non-Informative Environment.
University Press, 2016. ISBN 978-9-4619739-8-6.

Sándor Kolumbán, István Vajk, and Johan Schoukens. Perturbed datasets meth-
ods for hypothesis testing and structure of corresponding con�dence sets. Au-

tomatica, 51(0):326 � 331, 2015. ISSN 0005-1098. doi: http://dx.doi.org/10.
1016/j.automatica.2014.10.083. URL http://www.sciencedirect.com/science/

article/pii/S0005109814004646.

X San Liang. Causality between time series. arXiv preprint arXiv:1403.6496, 2014a.

X San Liang. Unraveling the cause-e�ect relation between time series. Physical Review
E, 90(5):052150, 2014b.

Judea Pearl. Causal inference in statistics: An overview. Statist. Surv., 3:96�146,
2009. doi: 10.1214/09-SS057. URL https://doi.org/10.1214/09-SS057.

F. P. Pijpers. Phase 0 report 1 : signi�cance of trend changes in ground subsidence
in Groningen. Technical report, Statistics Netherlands, 2014a.

F. P. Pijpers. Phase 0 report 2 : signi�cance of trend changes in tremor rates in
Groningen. Technical report, Statistics Netherlands, 2014b.

F. P. Pijpers. A phenomenological relationship between gas production variations and
tremor rates in Groningen. Technical report, Statistics Netherlands, 2015.

F. P. Pijpers. A phenomenological relationship between reservoir pressure and tremor
rates in Groningen. Technical report, Statistics Netherlands, 2016.

F. P. Pijpers. Supplementary material to CBS reports on earthquake frequencies.
Technical report, Statistics Netherlands, 2017.

F. P. Pijpers. Improved time resolution relationship between pressure and earthquake
rates in Groningen. Technical report, Statistics Netherlands, 2018.

F. P. Pijpers and V. van Straalen. Trend changes in tremor rates in Groningen :
update October 2017. Technical report, Statistics Netherlands, 2017.

http://www.sciencedirect.com/science/article/pii/S0005109814004646
http://www.sciencedirect.com/science/article/pii/S0005109814004646
https://doi.org/10.1214/09-SS057


25

H. Posthumus, M. Joosten, and B. Peeters. Woningmarktontwikkelingen rondom het
groningenveld, 1e kwartaal 1995 t/m 2e kwartaal 2017. Technical report, Centraal
Bureau voor de Statistiek, 2017.

David Sheskin. Handbook of parametric and nonparametric statistical procedures.
Boca Raton: Chapman & Hall Crc., 2004.

Danijela Sijacic, Frank Pijpers, Manuel Nepveu, and Karin van Thienen-Visser. Statis-
tical evidence on the e�ect of production changes on induced seismicity. Netherlands
Journal of Geosciences, 96(5):s27�s38, 2017.

Jane Whaley. The groningen gas �eld, 2009.


	Preface
	Causal effects of government decisions on earthquakes in Groningen
	Problem Introduction
	Mathematical Details
	Assumptions
	Definition of Causality
	Algorithm
	Accurateness of functional relation
	I.I.D. and Exchangeable Noise

	Illustrative Example
	Incorrect Use or Interpretation
	Synthetic Data Sets
	Non-blind synthetic data set
	Blind synthetic data set

	Groningen Earthquake Case-study
	Conclusion

	A Novel Non-linear PD Control Design for the DC-DC Buck Converter
	Introduction
	Problem description
	Approach

	Averaged model
	Non-dimensionalisation
	Averaged system
	Stability analysis

	Analytic solution
	Convergence for constant D

	Results
	Conclusion and recommendations


