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Abstract

The problem of helicopter landing on ships has been recently studied by MARIN
(MAritime Research Institute Netherlands) with the purpose of helping the naval
crew, and in particular the HLO (Helicopter Landing Officer), to take decisions
in a fast and reliable way. The basic issue consisted in the prediction of time
intervals, called quiescent periods (QPs), where the ship motion is sufficiently
moderate for the helicopter to be able to land in safe conditions. The ingredients
at our disposal were a set of wave data that were simulated by MARIN with
their proprietary software FREDYN. Our first goal, then, was to study the
statistics of QPs and to identify patterns. The second objective was to use the
same data to make predictions on the basis of a few deterministic and stochastic
models. The results show that these models are indeed able to capture several
features of the waves, such as repetitions of special patterns and memory effects,
and surely deserve further investigation and extension. The last approach was
purely analytical: first we focus on the question whether a given sum of n
harmonics will have QPs or not. After analyzing the cases n = 1, 2, 3 in full
detail we present a general criterion for the existence of QPs for the case of
arbitrary n. We also give estimates for the frequency and probability of QPs in
a signal composed of many random harmonics.
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1 Introduction

“–Well, you must understand, signore,
that the scirocco blows for three days if it starts on Tuesday.
Nine days if it starts on Friday.
But if it hasn’t blown itself out by the tenth day,
then it goes on for 21 days.”

from L. Visconti’s screen adaptation of Death in Venice
by Thomas Mann

Marine operations, both civilian and military, often require a helicopter to land
on a ship or other vessel. Safely landing a helicopter requires the landing pad to
be approximately stationary for a period of twenty or thirty seconds. Often, such
quiescent periods (QP) alternate with periods of stronger ship motion, in which land-
ing is impossible. In such cases a Helicopter Landing Officer (HLO) on the ship is
responsible for guiding in the helicopter and coordinating its descent.

The landing operation consists of two phases. In the first phase, the HLO assesses
the general state of the sea at that moment. This is done on the bridge or inside
a cabin, and in this phase the HLO observes the sea and has access to a variety
of instruments. When the HLO decides that the frequency of quiescent periods is
sufficiently high, he signals the helicopter to approach the ship and to start hovering
above the landing pad, and takes position outside, next to the landing pad, in view
of the helicopter.

In this second phase the HLO maintains eye contact and radio contact with the
helicopter pilot, and observes the ship motion through his legs and eyes. When the
HLO believes that a quiescent period is imminent, he signals the pilot to land on
the pad. During this operation the pilot has no view of the deck, and is completely
dependent on the HLO for guidance.

MARIN (MAritime Research Institute Netherlands) is a Dutch organization with
the broad goal of studying operations and decommissioning of ships and offshore plat-
forms, bulk and surface hydrodynamics, as well as nautical training and regulations.
Currently, they have an open project on helicopter landing on ships, with which they
decided to participate in the SWI 2017. The problem posed by MARIN consists of
two questions, each related to one of the two phases described above.

First, MARIN is interested in the distribution of quiescent periods in ship mo-
tion, given a certain sea state. This would help the HLO to judge whether the ship
motion allows for the helicopter landing to take place in the following minutes with a
reasonable accuracy.

Secondly, to make the final phase both more efficient and safe, MARIN would like
to give the HLO a further instrument to predict the initiation of quiescent periods
with a very short advance, in the order of few seconds. This is why, in our work, we
developed tools for predictions, given a history of signals of ship motion.
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This report is about the properties of certain signals. We will be considering two
types of signals:

• Synthetic signals, created by adding harmonics (sines and cosines, or complex
versions of these) with varying frequencies and amplitudes;

• Data signals, given to us by MARIN, which describe the movement of the ship
in response to certain “sea states”.

In reality MARIN generated the data signals by feeding certain well-chosen synthetic
signals as “wave input” to a ship simulator called FREDYN, which outputs the move-
ment of a specific ship in response to these waves. For the purposes of this report,
however, we consider these data as “externally given”.

The data are time series of the motion of a ship under a predefined wave spectrum.
As a ship, for our purposes, may be considered as rigid body, what really matters for
us is the set of the six coordinates that fully characterize the motion. In marine
jargon, these coordinates assume specific names, which are shown in Figure 1.

Figure 1: Nomenclature for the ship motion in the marine jargon.

In Sec. 3, we will give more details on this set of data: how it has been generated,
how we have used it and what we can say about it. Before doing that, in Sec. 2, we
will give a short review of the basic theory of signals that is needed in this report,
and in Sec. 4 we will study synthetic signals from an analytical viewpoint. In Sec. 5,
we will model the data signals by means of various techniques, with the common aim
of predicting quiescent periods.
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2 Some signal theory

2.1 Signals

For us, signals are functions defined on R (as for synthetic signals) or on a discrete
set (as for the data), with values that are real or complex. Given a signal f on R, the
Fourier transform F(f) or f̂ is the complex-valued function of frequency ω given by

f̂(ω) =
1√
2π

∫

R
f(t)e−iωt dt.

As it stands, this integral is only defined if f ∈ L1(R); however, a natural exten-
sion exists Stein and Weiss (1971) to the set of all tempered distributions S ′(R), by
exploiting Parseval’s theorem

∫

R
f̂(ω)ĝ(ω) dω =

∫

R
f(t)g(t) dt. (1)

We will use this extension without mentioning it.
In the discrete case, the signal is only sampled at a finite number of points in time

x0, x1, . . . , xn−1. Usually these points are multiples of a sampling interval ∆, i.e., the
t-th sample xt is observed at time t∆. The discrete Fourier transform is then

x̂(ν) =
1

n

n−1∑

t=0

xte
−2πiνt. (2)

Similar to the continuous Fourier transform, the harmonic functions implicit in Eq. 2
are orthogonal when the frequencies are restricted to the set of Fourier frequencies,
νj = j/n,

n−1∑

t=0

e2πiνjte−2πiνkt =

{
n if j ≡ k (mod n),
0 otherwise,

and this guarantees the existence of the inverse transform,

xt =
∑

j

x̂(νj)e
2πiνjt. (3)

The discretization leads to two phenomena: frequencies higher than the Nyquist
frequency 1/(2∆) have an alias in the interval 0 ≤ ν ≤ 1/(2∆), i.e., appear as an
artificial contribution to one of these frequencies. A second undesirable phenomenon
is leakage, i.e., the appearance of a contribution in the transform at a frequency ν
because of the presence of a signal at a different frequency ν0. This happens (only)
if the frequency ν0 is not a Fourier frequency. More details about this and other
practical aspects of Fourier analysis can be found in Bloomfield (2000).
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2.2 The harmonics
The harmonic functions are an important set of examples. If f(t) = cosω0t, then
f̂(ω) =

√
π/2(δω0

+ δ−ω0
)(ω), where δω0

is the Dirac delta function at ω0; if f(t) =

sinω0t, then f̂(ω) = −i
√
π/2(δω0 − δ−ω0)(ω); and if f(t) = eiω0t, then f̂(ω) =√

2πδω0
(ω). These examples illustrate the general fact that the function f is real-

valued if and only if f̂ is conjugated-even, i.e. f̂(ω) = f̂(−ω); similarly, f is purely
imaginary iff f̂ is conjugated-odd.

Consider the function f(t) = aeiω0t, where ω0 ∈ R and a ∈ C. The number ω0 is
called the angular frequency and is expressed in radians per second. It can be written
as

ω0 = 2πν0, (4)

where ν0 is the ordinary frequency expressed in hertz. The word “frequency” can
refer to both the angular frequency ω0 or the ordinary frequency ν0, depending on
the context. The complex number a is called the complex amplitude, and contains
both the usual amplitude information and information on the phase, since (writing
a = αeiϕ, for α,ϕ ∈ R),

aeiω0t = αei(ω0t+ϕ) = α
[
cos(ω0t+ ϕ) + i sin(ω0t+ ϕ)

]
.

2.3 Energy spectra and sea states
The energy spectrum of a signal f is the real-valued function ω 7→ |f̂(ω)|2. If ‘energy’
of a function f ∈ L2 is defined as the L2-norm

∫
|f |2, then the value |f̂(ω)|2 represents

the energy of the Fourier component of f with frequency ω, since from (1) we have
∫

R
|f(t)|2 dt =

∫

R
|f̂(ω)|2 dω.

An important type of signal is related to the sea state, which is a description of
the waves at a certain moment. For our purposes, a sea state is defined by an energy
spectrum of the waves, as a function of a two-dimensional frequency (ω1, ω2), although
in the rest of this report we will mostly disregard the two-dimensionality and consider
functions of one variable only: the sea state then describes the energy spectrum of a
function f of one variable, which describes the waves. In this interpretation f can be
interpreted either as giving the wave height at a fixed point in space as a function of
time t, or as giving the wave height at a fixed moment in time as a function of a spatial
variable x. We will usually consider the former. (Again there is a difficulty here: we
want to consider “waves” as elements of L∞(R), as in the case of the harmonics, but
such waves have infinite spectrum, since |δω|2 cannot be defined as a distribution. For
these cases the concept of energy spectrum can be made meaningful by considering
large intervals and taking a limit under appropriate rescaling. We omit the details.)

The energy spectrum of a function f alone does not uniquely characterize the
function f , since it does not contain any phase information. In addition, for simulation
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purposes the spectrum needs to be discretized. This leads to constructing sample
functions f , which are assumed to be representative of the waves, of the form

f(t) =
n∑

j=1

aje
iωjt, or the real part of this f ,

where the aj and ωj are chosen randomly from the energy spectrum, in such a way
as to make |f̂ |2 approximately equal to the assumed spectrum. It is natural in such a
setup to choose the distribution of arg aj , i.e. of the phases, to be uniform on [0, 2π),
reflecting the fact that the energy spectrum contains no information about the phases.

2.4 Narrow-bandedness and its consequences

We observed that the data provided to us by MARIN is narrow-banded : the frequen-
cies present in the signal are concentrated in a fairly narrow interval (see Figure 2).
This results in a signal with a fairly recognizable period, and an amplitude that varies
on a larger scale.
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Figure 2: A representative section from heave data from MARIN (see the next Section
for details). Left is the signal as function of time, right is the spectrum.

Because of this narrow-bandedness the time course resembles an amplitude mod-
ulation of a fixed-frequency oscillation, and in the rest of this report we use this way
of viewing the signals. This has a number of consequences:

1. The essential information in the data is already encoded in the local maxima
and minima; in the data processing that we do, we thus first extract the local
maxima and minima, and use the sequence of those data points.

2. For the analysis, one would like to concentrate on the properties of the “envelope”
that appears “obvious” to the human eye, since quiescent periods of more than
a fraction of the period of the underlying oscillation are one-to-one related to
periods in which the amplitude of this envelope is small.
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Figure 3: Graphical representation of the analytic signal : the red curve is the real
signal and the blue complex curve is the corresponding analytic signal.

We now explore this second aspect more in detail. A real-valued signal has a spectrum
that is symmetric with respect to frequency 0; “narrow-banded” for a real-valued signal
means that the spectrum is concentrated around ω0 and −ω0 for some ω0 6= 0.

From any complex signal f(t) one can easily construct a real-valued signal S(t)
by taking its real part,

S(t) = Re f(t). (5)

The inverse operation is not unique, however, since there obviously exist many
complex-valued signals with the same real part. We can use this freedom of con-
structing a well-chosen complex counterpart of a given real-valued signal to make the
spectrum appear only at positive frequencies. Given a real-valued signal S, its associ-
ated analytic signal f is defined by concentrating all of the Fourier transform on the
positive frequencies, i.e. we set

f̂(ω) :=





0 ω < 0

Ŝ(0) ω = 0

2Ŝ(ω) ω > 0.

After transforming f̂ back to f , the function f is now complex-valued, and can be
interpreted as a an “interpolated” version of the function S, in the sense that (5) holds;
and it is an interpolated version that “only rotates in one direction” in the complex
plane, as shown in Figure 3. The function f can also be represented as

f(t) = S(t) + iH[S](t), (6)

where H[S] is the Hilbert transform of S.
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The analytic signal now gives us an opportunity to make the concept of “envelope”
precise. In general, from each complex-valued function t 7→ f(t) one can define the
real-valued instantaneous amplitude and instantaneous phase by writing

f(t) = A(t)eiφ(t), for some A(t), φ(t) ∈ R. (7)

If the function f is continuous, then A and φ can also be taken continuous, and A
and φ are unique up to adding multiples of 2π to the phase.

The property that f is narrow-banded corresponds to the fact that φ′(t) is close
to ω0. If f is narrow-banded, then A varies slowly (we illustrate this in Section 4.2),
and as a result we can use the function A as a working concept for the intuitive idea
of the “envelope”.

3 Data signals and their quiescent periods

In the last decades several programs have been developed to study the motion of
ships under the forcing of sea waves. MARIN uses its own software, denominated
FREDYN, which studies the dynamic behavior of a steered ship subjected to waves
and wind. A description can be found in the website MARIN. As the software is
a proprietary one, MARIN provided us with several sets of data, varying for time
length, direction and spectrum of the waves.

The input of the program was a train of waves given by randomly sampling a
well-defined spectrum, typical of the North Sea. The output that was relevant for us
consisted of six time series of the six coordinates of ship motion, sampled at regular
time intervals.

In our analyses, we mostly focused on the heave coordinate at the landing pad,
since – together with the roll – it is the most important variable for helicopter landing.
Although operative conditions for helicopter landing on ships are not well defined by
any regulation, there exist such rules for landing on offshore platforms. According to
the latter, MARIN suggested the following requirements for a quiescent period:

• peak-to-trough amplitude of heave < 3 m;

• single roll amplitude < 3◦;

• time duration of at least 30 s.

These represent rather strict requirements, which might be relaxed, and are surely
too stringent for navy operations.

The first question that MARIN asked us concerns the distribution of quiescent
periods. In the present section, we will address this problem by looking at the data
signals that we received from MARIN. Some of the data sets were not representative
enough either in time duration, or wave spectra didn’t include non-quiescent periods.
Thus, we considered only a few representative data sets, collected in Table 1.
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Alias U µ Hs Tp T Motion sensor
D1 10 kn 180◦ 3m 8 s 18000 s HELI
D2 10 kn 180◦ 3m 8 s 7200 s HELI
D3 10 kn 180◦ 3m 8 s 1800 s HELI (wave spreading)
D4 10 kn 180◦ 5m 8 s 1800 s HELI

Table 1: Data sets generated by the computer program FREDYN. The meaning of
the simulation parameters is as follows: U - ship speed, µ - wave direction, Hs -
significant wave height, Tp - peak wave period, T - simulation time.

3.1 Distribution of Quiescent Periods

In this section, we will describe the procedure of data pre-processing and the idea
of finding QPs in the considered system. According to MARIN’s definition of QPs
explained above, only several data sets were suitable for this analysis as for some data
sets the system never went out of the quiescent state.

First of all, roll and heave are chosen as the most representative coordinates. Due
to the definition of the QPs, only extrema of the signals of these two coordinates are
taken into account as points lying between extrema don’t contribute to the analysis.
For purposes of convenience, we suggest to work with absolute values of signals. In
this case, the single amplitude is the height of the peak; the peak-to-trough amplitude
is the sum of heights of two neighboring peaks.

In Figure ?? one can see the absolute values of the signals for the roll and heave
coordinates from the data set D4 of Table 1. It appeared that in all data sets the
signal for the roll coordinate was not exceeding the threshold of 3◦. Thus we agreed
with MARIN to lower the threshold for single roll amplitude from 3◦ to 2◦ in order
to illustrate the whole QP search procedure. Green asterisks denote those peaks that
do not fall into the definition of the QP for the considered coordinate. Thus, the QPs
are those areas, which lie between green asterisks. In the plot we illustrate QPs with
an indicator function, which takes the value 1 if extrema are in a QP, and 0 otherwise:

1QP =

{
1, x ∈ QP
0, otherwise.

As we have separate QPs for roll and heave, we can determine QPs for the whole
system. For this purpose, we take an intersection of these areas for both signals.
According to the definition, we consider only those periods that last longer than 30
seconds.

Further, we would like to look at the distribution of the duration of QPs. From
Figure 5 we can see that the statistics of QPs is not good enough. Thus, we apply the
same search procedure on the data set from the longer simulation of 18000 seconds
(D1). On the upper plot in Figure 5 we can see how often QPs with different duration
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Figure 4: Example of quiescent periods found in a raw data set from the simulation
of 1800 seconds for roll (up) and heave (down) signals. QPs are illustrated with an
indicator function (red line), which takes the value 1 if absolute values of extrema are
in a QP, and 0 otherwise. Green asterisks indicate extrema which do not fall into the
definition of s QP for roll and heave respectively.

appear in the system. The lower plot in Figure 5 corresponds to the distribution of
the time intervals when the system is not in a QP.

From the plot in Figure 5 we notice that the distribution of the time intervals
for QPs reminds of the shape of the probability density function of the exponential
distribution, in which case one could model the occurrences of random events as a
Poisson process. This observation may be verified by statistical hypothesis testing,
which has not been done in the current work. Furthermore, the histogram of the
durations of QPs captures the information about the sea state in a specific time
interval. Thus, it could help the HLO to judge the behavior of the sea and estimate
how many QPs one might expect in the current situation.

3.1.1 Summary

The aim of this section was to examine the data signals generated by FREDYN from
a descriptive standpoint and gain an idea about the nature of the occurrences of QPs
in waves. Upon analyzing the histogram of the durations of QPs, one may assume
that the data follows an exponential distribution. However, to conclude this, we
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Figure 5: Distribution of the duration of quiescent (up) and non-quiescent (down)
periods in a data set D1. The upper plot shows the number of occurrences of QPs
with different time duration from the considered simulation. The lower plot depicts
how many non-QPs fall in the bins for different duration in the same simulation.

would need to analyze longer simulations with more variations in the wave profile and
perform a statistical hypothesis test. If the test confirms the exponential distribution,
one might consider to model the occurrences of QPs according to a Poisson process.

3.2 Qualitative patterns

An interesting way of studying qualitative patterns in the signal related to QPs is
the use of event-related analysis. After QPs have been defined and identified in the
signal, one cuts the time series into short segments around the beginning of each QP
and aligns these periods such that the QPs start at the same relative time (or lag).
An example is shown in Figure ?? for the extrema of the heave signal in the data set
D2. In fact, only the absolute values of the extrema were used in this analysis, as
otherwise QPs starting with negative or with positive extrema would be mixed and
the relevant information would be averaged out. The start of the QP, i.e., the event
used for the alignment of the signals, is marked with a vertical red line. The condition
imposed by the event is that the first extremum before the event has to lie above the
threshold (marked by the horizontal red line), and the first extremum inside the event
has to lie below it.
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Figure 6: Transition to quiescent period in the data set D2. Shown are subsequent
absolute values of extrema of the heave signal, conditional on the event that a qui-
escent period starts (marked by red vertical line). For simplicity, here the quiescent
period has been defined to be at least 30 seconds of heave signal below a threshold
value of 1.2 m. The mean and standard deviation of the individual time traces are
indicated (blue curves), as well as the overall mean and standard deviation of the
(absolute values of) extrema (black lines).

What is somewhat unexpected, and therefore interesting, is that the extrema seem
to have been higher than average already for about 5 waves (equal to 10 extrema)
before the event, on average. The length of this period corresponds to the average
length of the QP in this case, which is also about 5 waves – although this might be a
coincidence. After the QP, the statistical properties of the extrema quickly approach
the overall distribution indicated in the figure (i.e., the blue curves approach the black
lines), within about 4 extrema.

This and related figures (e.g. for different conditions imposed on the extrema)
can provide important hints for what patterns are present in the signals and how to
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exploit these. One example of a more quantitative analysis of these patterns will be
given in Sec. 5.4.2.

4 Distribution of QPs by analytic estimates
The motion of the ship is the net result of the mechanics of the ship and the forces
exerted on the ship by the waves. Exactly characterizing the forces on the ship that
result from the waves is non-trivial, and beyond our scope. Instead of focusing on the
ship, we have therefore focused on the waves.

More precisely, we have addressed the question

Given a signal on R with specified spectrum and random amplitudes and
phases, what is the distribution of quiescent periods?

Again, this requires specification, since a typical spectrum has a full support. Instead
we consider signals with discretized spectra, of the form

f(t) =
n∑

j=1

aje
iωjt, (8)

for some finite n, where aj are complex amplitudes chosen such that the spectrum of f
resembles a given spectrum, and such that the phases are uncorrelated. As discussed
in Section 2.4 this complex signal f can be 1-to-1 related to a real signal S, which is
simply obtained from f by taking its real part (see (5)),

S(t) =
n∑

j=1

αj cos(ωjt+ φj), (9)

where αj = |aj | and φj = arg aj . We emphasize that for any real-valued signal S of
the form (9) its associated complex signal f is uniquely defined and should be seen
as its analytic representation (see Section 2.4).

In the software FREDYN the ship model is driven by one or more of such signals,
representing wave trains from different directions. In this case n ≈ 100, but we will
also address the small-n case; it turns out that interesting insight can be gained from
n = 2 and n = 3, for instance.

4.1 Definition of quiescent periods
In the context of a general signal of the form (8), describing the behaviour of waves,
it does not make much sense to consider a quiescent period as defined by an absolute
criterion. Instead we consider quiescent periods as defined by a relative criterion,
characterized by two parameters and a choice of norm:

Definition 4.1. Let τ > 0 and θ > 0 be given. Given a signal of the form (8) a
quiescent period is defined by the property

‖f‖[t,t+τ ] ≤ θ ‘average’
(
‖f‖[t′,t′+τ ]

)
. (10)
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Here ‖f‖[t,t+τ ] can be any norm of f that is calculated over the time section
[t, t+ τ ]; we will consider two different norms below. The parameter θ is a threshold:
a quiescent period is a period in which the norm of f over that period is less than θ
times the average value of the norm. The ‘average’ can be interpreted in two ways –
either the average over times t′, or the expectation of the randomly chosen coefficients.
We will use both below.

4.2 The narrow bandwidth assumption

It is unclear to us how to characterize the rate of occurrence of quiescent periods in a
completely arbitrary signal. In order to make the question more amenable to analysis
we concentrate in all of Section 4 on the case of narrow bandwidth, as discussed in
Section 2.4: we assume that there exists a reference frequency ω > 0 and a bandwidth
ε ≥ 0 such that

|ωj − ω| ≤ ε� ω for all j = 1, 2, . . . , n. (11)

We refer to Figure 7 for a graphical illustration of this assumption.

Figure 7: All angular frequencies ωj are ε-close to the reference frequency ω.

Using the narrow-bandedness assumption, we rewrite the complex signal f(t) defined
in (8) as

f(t) = eiωtf0(t) (12)

so that the function f0 can be written in terms of the real-valued amplitudes αj > 0
and phases φj as

f0(t) =
n∑

j=1

αje
i[(ωj−ω)t+φj ]. (13)

Since f0(t) only differs by a factor eiωt from f(t), its polar form

f0(t) = A(t)eiφ0(t) (14)

has the same instantaneous amplitude A(t) as f(t), whereas the instantaneous phases
φ(t) and φ0(t) are related by

φ(t) = ωt+ φ0(t). (15)

This implies that the corresponding real signal S(t) = Re f(t) can be written as

S(t) = A(t) cosφ(t) = A(t) cos(ωt+ φ0(t)). (16)
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If the bandwidth ε is small, the value f0(t) moves slowly through the complex plane
since it follows from (11) and (13) that its velocity is bounded by

|f ′0(t)| ≤ ε
n∑

j=1

αj .

This allows us to bound the time derivatives of both the instantaneous amplitude
A = |f0| and the reduced phase φ0. Differentiating (14) we find

f ′0(t) = A′(t)eiφ0(t) + iφ0(t)A(t)eiφ0(t),

so that
A′(t) + iφ′0(t)A(t) = f ′0(t)e−iφ0(t).

Splitting the left-hand side into real and imaginary parts, we find that the instanta-
neous amplitude A(t) = |f0(t)| is slowly changing,

|A′(t)| ≤ |f ′0(t)| ≤ ε
n∑

j=1

αj ,

and also that the phase rate φ′0(t) of f0(t) is small,

|φ′0(t)| ≤ |f
′
0(t)|
A(t)

≤ ε
∑n
j=1 αj

A(t)
,

provided f0(t) stays away from the origin. In that case it follows from (15) that the
phase rate φ′(t) of f(t) is approximately equal to the reference frequency ω,

φ′(t) = ω + φ′0(t) ≈ ω. (17)

We conclude that the real signal S(t) = Re f(t) can be written in the form (16), where
the instantaneous amplitude A(t) is the modulus of the slowly varying complex-valued
function f0(t) defined in (13), and the instantaneous (angular) frequency ω(t) = φ′(t)
is approximately equal to the reference frequency ω (see (17)).

This remark allows us to refocus our attention. The reference time period associ-
ated with the reference frequency ω is given by

T =
2π

ω
. (18)

In practice, the minimal length τ of a quiescent period is significantly longer than T .
This implies that the real-valued signal S can only be small over a time τ if the
amplitude A also is small over that period (i.e., the smallness can not come from the
cosine in (16); it has to come from A). Therefore, in our quest for suitable quiescent
periods we can limit ourselves to time intervals where the instantaneous amplitude
A(t) is small; or equivalently, we can focus on f0 instead of f . Our aim therefore
becomes
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Find periods (or characterize the probability of periods) such that the
modulated signal f0 is small over a period τ .

In the following we will first take a “deterministic” approach, which is followed by
a “stochastic” approach. In the “deterministic” approach, we derive criteria for the
existence of quiescent periods for arbitrary real signals S of the form (9) (and their
complex counterpart f defined in (8)). In dedicated subsections we first consider
the cases n = 1, n = 2 and n = 3 in detail before we analyze the case of arbitrary
n. After completing the “deterministic” case we turn our attention to the stochastic
case, where the complex amplitudes aj of the complex signal f in (8) are stochastic
variables. In that case we will study quiescent periods of randomly sampled signals.

4.3 The deterministic case for n = 1

If n = 1, the real signal S(t) defined in (9) consists of a single cosine,

S(t) = α1 cos(ω1t+ φ1), α1 > 0, φ1 ∈ R. (19)

In this case the bandwidth is equal to ε = 0 and the reference frequency is equal to
ω = ω1. Quiescent periods longer than the reference value T defined in (18) only
occur if α1 is small enough, and in that case the quiescent period lasts forever.

For completeness we note that the associated complex signal f(t) defined in (8)
has instantaneous amplitude A(t) ≡ α1 and instantaneous phase φ(t) ≡ ω1t + φ1,
showing that f(t) moves on a circle with radius α1 centered around the origin with
uniform angular velocity ω1. In contrast, the complex signal f0(t) defined in (13)
is constant, and corresponds to a fixed point in the complex plane. In Figure 8 we
have displayed the signal S(t) and the (constant) instantaneous amplitude A(t) of its
associated complex signal for n = 1, α1 = 1, ω1 = 1, φ1 = 1.

Figure 8: For n = 1, α1 = 1, ω1 = 1, φ1 = 1 we have displayed the real signal S(t) and
the instantaneous amplitude A(t) of its associated complex signal for t ∈ [−100, 100].
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4.4 The deterministic case for n = 2

If n = 2 we assume without loss of generality that ω1 < ω2. We set ω = ω1 so that
the bandwidth equals ε = ω2 − ω1. The complex signal f0(t) defined in (13) is given
by

f0(t) = α1e
iφ1 + α2e

i(εt+φ2), α1, α2 > 0, φ1, φ2 ∈ R. (20)

Clearly f0(t) moves on a circle with center at α1e
iφ1 and radius α2 with a relatively

low constant velocity given by
|f ′0(t)| = α2ε. (21)

For the corresponding instantaneous amplitude A(t) = |f0(t)| we find

A(t) = |α1e
iφ1 + α2e

i(εt+φ2)| = |α1 + α2e
i(εt+∆φ)|

=
√
α2

1 + α2
2 + 2α1α2 cos(εt+ ∆φ),

where
∆φ = φ2 − φ1.

Clearly, A is a periodic function (with period 2πε−1) that varies between its minimum
|α1 − α2| and its maximum α1 + α2. Quiescent periods only occur if this minimum
is small enough. This is the case if α1 is sufficiently close to α2. In Figure 9 we have
displayed such an example with α1 ≈ α2, ε = 0.11 and ∆φ = −1.

Figure 9: A typical example of a real signal S(t) and the instantaneous amplitude
A(t) of its associated complex signal for t ∈ [−100, 100]. Here we have chosen n = 2,
α1 = 1, α2 = 1.1, ω1 = 1, ω2 = 1.11, φ1 = 1, φ2 = 0.

4.5 The deterministic case for n = 3

If n = 3 we assume without loss of generality that ω1 < ω2 < ω3. We define ε1 =
ω2 − ω1 and ε3 = ω3 − ω2 (see Figure 10).
Setting ω = ω2 the complex signal f0(t) defined in (13) is given by

f0(t) = α1e
i(−ε1t+φ1) +α2e

iφ2 +α3e
i(ε3t+φ3), α1, α2, α3 > 0, φ1, φ2, φ3 ∈ R. (22)
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Figure 10: For j = 1, 3 the distance |ωj − ω2| is denoted by εj .

This shows that the trajectory of f0(t) is the result of the superposition of two circular
motions with relatively low angular velocities (−ε1 and ε3). In Figure 11 we have
displayed two such trajectories.

Figure 11: The trajectory of the complex signal f0(t). In the left figure we have
chosen n = 3, α1 = 0.4, α2 = 1, α3 = 0.7, ω1 = 0.95, ω2 = 1, ω3 = 1.02, φ1 = 1,
φ2 = 2, φ3 = 3. In the right figure we have only slightly changed ω1 from 0.95 into
0.951.

In general we can distinguish the following two cases:

• The “rational” case: the ratio ε3/ε1 is a rational number

• The “irrational” case: the ratio ε3/ε1 is irrational

Both cases displayed in Figure 11 are ‘rational’ since the ratios ε3/ε1 are 2/5 and
20/49, respectively. In the general ‘rational’ case there exist two positive integers k
and ` such that

ε3

ε1
=
`

k
, (23)

where we may assume, without loss of generality, that k and ` are relatively prime.
One easily verifies that in this case the complex signal f0(t) has a periodic orbit with
period

∆t = 2πkε−1
1 = 2π`ε−1

3 . (24)

For the two cases displayed in Figure 11 the periods are ∆t = 200π and ∆t = 2000π,
respectively. For the graphs of the corresponding real signals S(t) we refer to Figures
12 and 13. In Figure 12 (which corresponds to the left trajectory in Figure 11) we
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see that the amplitude A(t) has indeed a period ∆t = 200π and that each period has
exactly one quiescent period. In Figure 13 (which corresponds to the right trajectory
in Figure 11) we have limited the time window to [−300, 2700], which is less than half
the period ∆t = 2000π of the amplitude A(t). Comparing the latter figure to Figure
12, we see that both graphs are very similar for times in the interval [−300, 500],
including the two quiescent periods marked with a black arrow. This is not surprising
since the only difference between both cases is a slightly different value of ω1. For
later times, the difference between both graphs becomes more pronounced, which also
illustrates the fact that the period of the amplitude A(t) in the second graph is 10
times as large as the amplitude of A(t) in the first graph.

Figure 12: For the case displayed in Figure 11 on the left, this is the graph of the real
signal S(t) (in red) and the instantaneous amplitude A(t) = |f0(t)| of its associated
complex signal (in blue) for t ∈ [−300, 500]. The period of the amplitude function A
is 200π, which is exactly the distance between two quiescent periods.

Figure 13: For the case displayed in Figure 11 on the right, this is the graph of the real
signal S(t) (in red) and the instantaneous amplitude A(t) = |f0(t)| of its associated
complex signal (in blue) for t ∈ [−300, 2700].

We finally discuss the “irrational” case, where the number ε3/ε1 is not a rational
number. In this case, as opposed to the rational case, the trajectory of the complex
signal f0(t) is not periodic. One easily verifies directly from its definition in (22) that
the trajectory of f0(t) is contained in the complex annulus Ω given by

Ω = {z ∈ C : |α1 − α3| ≤ |z − α2e
iφ2 | ≤ α1 + α3}. (25)

With some imagination, such an annulus can already be recognized in Figure 11 on the
right. Indeed, if we change the value ω1 = 0.951 in the right example into an arbitrary
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irrational number close to 0.951, the corresponding trajectory would “densely” fill the
complete annulus Ω. This means that for each z ∈ Ω, T > 0, ε > 0 there exists a
time t > T with |f0(t)− z| < ε.

The existence of quiescent periods for the irrational case depends on the proximity
of the origin to the annulus Ω. If the distance d(0,Ω) is small (which is the case, for
example, if 0 ∈ Ω), there will exist infinitely many quiescent periods, but the spacing
of these periods will be chaotic (as opposed to the regular spacing in the rational
case). It easily follows from the definition of the annulus in (25) that the proximity
criterion for the existence of quiescent periods is given by

|α1 − α3| ≤ α2 ≤ α1 + α3, (26)

which is equivalent to the more symmetric condition that each of the numbers α1, α2,
α3 is less than or equal to the sum of the other two. The latter condition can further
be rewritten into the single condition

max(α1, α2, α3) . 1

2
(α1 + α2 + α3). (27)

4.6 The deterministic case for arbitrary n

We consider an arbitrary real signal S of the form (9) with angular frequencies ωj > 0,
real amplitudes αj > 0 and phase shifts φj ∈ R. By renumbering we can assume
without loss of generality that

α1 ≥ α2 ≥ ... ≥ αn. (28)

Setting ω = ω1 and εj = ωj − ω1 (j = 2, 3, ..., n), the complex signal f0(t) defined in
(13) is given by

f0(t) = α1e
iφ1 +

n∑

j=2

αje
i(εjt+φj). (29)

We make again a distinction between the “rational” and “irrational” case. In the
rational case the numbers ε2, ε3, ..., εn are rationally dependent, which means that
there exist integers k2, k3, ..., kn, not all zero, such that

k2ε2 + k3ε3 + ...+ knεn = 0. (30)

In the irrational case the numbers ε2, ε3, ..., εn are rationally independent, which
means that the only way for (30) to hold is that all integers k2, k3, ..., kn are zero.

We first deal with the irrational case. In that case it follows from Kronecker’s
theorem (Hardy and Wright, 1979, Theorem 444) that the trajectory of f0(t) is con-
tained in and densely fills the set

Ω = {α1e
iφ1 +

n∑

j=2

αjzj : zj ∈ C, |zj | = 1}. (31)



Quiescent Periods during Helicopter Landings on Ships 71

One easily verifies (with induction) that the set Ω is a (closed) annulus in the complex
plane with center z = α1e

iφ1 and (external/internal) radii given by

rext = α2 + α3 + ...+ αn

rint = max(0, α2 − α3 − ...− αn).

It follows that the distance from the origin to the set Ω is equal to

d(0,Ω) = max(0, α1 − α2 − ...− αn). (32)

Since quiescent periods are periods in which A(t) = |f0(t)| ≈ 0, there exist quiescent
periods if and only if d(0,Ω) ≈ 0, which is equivalent to the condition

α1 − α2 − ...− αn . 0.

Hence we have shown that in the irrational case there exist quiescent periods if and
only if

max(α1, α2, ..., αn) . 1

2
(α1 + α2 + ...+ αn). (33)

In the rational case (which should be seen as exceptional) the situation is slightly
different. In that case the trajectory of f0(t) is still contained in the set Ω, but it
does not densely fill that set. Hence condition (33) is necessary but not sufficient for
the existence of quiescent periods.

4.7 Random sampling of signals for arbitrary n

We now turn to the case of an arbitrary number n of harmonics, still under the
narrow-bandwidth assumption. The case of arbitrary n arises when representing a
“general” signal with a certain given spectrum. In practice, e.g. for the simulation tool
FREDYN, frequencies ωj and complex amplitudes aj are drawn randomly from a dis-
tribution modeled on the spectrum. Since the spectrum does not contain information
about the phases, the phases are chosen following a uniform distribution.

We mimic this situation as follows. First we assume that a set of frequencies
ωj ∈ R, j = 1, . . . , n are given, once and for all. Next we assume that a1, . . . , an are
independent, centered, complex Gaussian random variables, i.e. aj ∼ CN (0, σjI2), for
some C > 0 and σj > 0, where I2 is the two-dimensional identity matrix. We then let
f0 be given by

f0(t) =
n∑

j=1

aje
i(ωj−ω)t. (34)

The above-mentioned slower time scale of f0(t) corresponds to the fact that |ωj−ω| ≤
ε� ω.

By choosing the coefficients to be random variables in C, the functions f and f0 be-
come random variables in L∞(R;C); the assumption that the coefficients are normal
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makes the functions f and f0 Gaussian processes.1 Because time translation corre-
sponds to multiplying the coefficients by unit-length complex numbers, and because
the coefficients are normally distributed with mean zero and isotropic covariance, the
process is stationary.

4.8 The level-crossing approach for arbitrary n

The study of extremes of a stochastic process has been a topic of great interest in
engineering. For stationary processes, the main tool has been Rice’s formula for the
expected number of level crossings Rice (1944) and its generalizations. The most
recent account of this theory has been given by Lindgren (2013). For a Gaussian
stationary process Xt with zero mean, as we’re considering here, the number of up-
crossings of the level u > 0 per unit time is given by

µ+(u) =
1

2π

√
λ2

λ0
e−u

2/(2λ0),

where λk =
∫∞
−∞ |ω|kS(ω) dk are the spectral moments of Xt; here, if we choose X = f

as in (8), then we have

λk =
n∑

j=1

|aj |2|ωj |k.

The up-crossings of the mean level define themean period T2 = 1/µ+(0) = 2π
√
λ0/λ2.

Using this approach, Cramér and Leadbetter (1967) have studied the following
problem: A process Xt is said to fade below a level u if the envelope Rt of Xt has a
downcrossing of the level u. The length of the fade is the time between a downcrossing
and the next upcrossing of the level u by Rt. This corresponds closely to our notion
of a quiescent period (for a single variable, e.g. the heave signal).

Let us quote Lindgren here (Lindgren, 2013, p.261): ‘One of the most intrigu-
ing problems in stationary process theory is that of the distribution of the length of
excursions above a critical fixed level. Even for Gaussian processes, no explicit solu-
tion is known, except in a few cases.’ However, Lindgren then goes on to present ‘a
method to numerically calculate the exact distributions of excursion length’, based on
the evaluation of an infinite dimensional expectation for the so-called Slepian model.
Unfortunately this is beyond the scope of this report, but could be very useful for the
first problem posed by MARIN. Some of the numerical calculations are available in
the WAFO Matlab toolbox The WAFO group (2011).

Generalizing the analysis to vector processes, Lindgren even mentions the phe-
nomenon of the seventh wave, i.e. “the observation that waves on a shore or on the
ocean seem to have a typical regularity of one big wave followed by six smaller ones”
(Lindgren, 2013, p.271). The expected number of u-upcrossings of the envelope R(t)

1A Gaussian process is a stochastic process whose finite marginals are distributed according to
multivariate normal distributions.
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per unit time interval is given by

µ+
R(u) =

√
λ2(1− ρ2)

2πλ0

u√
λ0

e−u
2/(2λ0),

=

√
λ0λ2 − λ2

1

2πλ3
0

ue−u
2/(2λ0),

where ρ2 = λ2
1/(λ0λ2) is the squared correlation between Hilbert transform and

derivative of the process. The inverse of this corresponds to the result given by
Cramér and Leadbetter (1967) for the mean length of a fade. And the average num-
ber of envelope u-upcrossings per mean period is

T2µ
+
R(u) =

√
2π(1− ρ2)

u√
λ0

e−u
2/(2λ0),

and this corresponds to the inverse of the average number of waves per envelope
upcrossing.

4.9 Alternative estimates for arbitrary n

In this report we also derive a different type of estimate. As remarked above,
the modulus |f(t)| equals the modulus |f0(t)| for all t. We exploit this by choos-
ing the norm ‖f‖[t,t+τ ] in Definition 4.1 to be the sup-norm of f on [t, t + τ ], i.e.
‖f‖L∞(t,t+τ) := sups∈[t,t+τ ] |f(s)|. Then, it follows that ‖f‖L∞(t,t+τ) = ‖f0‖L∞(t,t+τ);
also, since the process is stationary, the distribution of ‖f‖L∞(t,t+τ) is independent
of t, so that E(‖f‖L∞(t,t+τ)) is independent of t. In this context we interpret the
“average” mentioned in Definition 4.1 as this expectation.

Then the probability of a quiescent period of length τ at time t equals

P
(
‖f‖L∞(t,t+τ) ≤ θE(‖f‖L∞(t,t+τ))

)
= P

(
‖f0‖L∞(t,t+τ) < θE(‖f0‖L∞(t,t+τ))

)
,

(35)

and as we already mentioned this probability is independent of t.
As it is difficult to analyse ‖f0‖∞ directly, we first focus on the L2-norm ‖f0‖2L2(t,t+τ) :=

∫ t+τ
t
|f0(t′)|2 dt′ ≤ τ‖f0‖2L∞(t,t+τ). We prove the following theorem:

Theorem 4.2 (Estimate of the distribution of the L2-norm). Let f0 be the Gaussian
process that we construct above, and assume that ε� 2π/τ . Then

P
(
‖f‖2L2(t,t+τ) ≤ θ2E(‖f‖2L2(t,t+τ))

)
≈ 1− e−θ2 . (36)

Note that the condition ε � 2π/τ is stronger than the earlier narrow-bandedness
assumption ε � ω = 2π/T , whenever τ > T (see the discussion on page 65). Under
this assumption, over an interval (t, t + τ), the signal looks like a single harmonic
(whose amplitude and phase can be viewed both as random for fixed t, or alternatively
as t-dependent for each realization).
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Proof. The L2-norm of f0 is readily computed. We have

‖f0‖2L2(0,τ) =

∫ τ

0

f0(s)f0(s) ds =
∑

j,k=1,...,n

ajak

∫ τ

0

ei(ωj−ωk)s ds =
∑

j,k=1,...,n

Ajk ajak,

where

Ajk =

∫ τ

0

ei(ωj−ωk)s ds =

{
1

i(ωj−ωk)

(
ei(ωj−ωk)τ − 1

)
j 6= k

τ j = k.

Since ε� ω, we replace Ajk by its limit τ , i.e. Ajk = τ for all j, k. Then

‖f0‖L2(0,τ) = τ

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

.

Next we determine the distribution of |∑n
j=1 aj |2. Note that the aj ’s are assumed

to be independent and centered complex Gaussian variables with variance matrices
σ2
j I2, and therefore we have:

n∑

j=1

aj ∼ CN (0, σ2I2),

where σ2 = Σnj=1σ
2
j . It follows that:

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

∼ σ2(Z2
1 + Z2

2 ) ∼ 2σ2Z,

where Z1, Z2 are independent, standard normal random variables and Z follows a
standard exponential distribution (the sum of the squares of two independent standard
normal random variables is exponentially distributed with mean 2). In other words,
the squared norm ‖f0‖2L2(t,t+τ) follows an exponential distribution with parameter
2τσ2.

Therefore, using the formula for the exponential cumulative distribution function
we obtain:

P
(
‖f‖2L2(0,τ) < θ2E‖f‖2L2(0,τ)

)
= P

(
‖f0‖2L2(0,τ) < θ2E‖f0‖2L2(0,τ)

)

≈ P
(
τ
∥∥∥

n∑

j=1

aj

∥∥∥
2
< 2θ2τσ2

)
= 1− e−θ2 .

If we prefer to have an estimate of the norm ‖f‖L∞(t,t+τ) = ‖f0‖L∞(t,t+τ), then we
can use the Gagliardo-Nirenberg interpolation inequality (Nirenberg, 2011) to derive
this from the previous estimate. This inequality gives an estimate of the supremum
norm in terms of the L2-norms of f0 and f ′0. Although there are various versions in
the literature, we prove our own because it gives us control over the constants:
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Lemma 4.3. For any f ∈ C1([0, τ ];C),

1

τ
‖f‖2L2(0,τ) ≤ ‖f‖2L∞(0,τ) ≤

2

τ
‖f‖2L2(0,τ) + τ‖f ′‖2L2(0,τ). (37)

Proof. The first inequality is immediate. For the second, we write for any s, t ∈ [0, τ ]

|f(t)|2 = |f(s)|2 + 2 Re

∫ t

s

f(σ)f ′(σ) dσ ≤ |f(s)|2 +
1

τ
‖f‖2L2(0,τ) + τ‖f ′‖2L2(0,τ).

Integrating left and right over s ∈ [0, τ ], and taking the supremum over t ∈ [0, τ ], we
find

τ‖f‖2L∞(0,τ) ≤
∫ τ

0

|f(s)|2 ds+‖f‖2L2(0,τ) +τ2‖f ′‖2L2(0,τ) = 2‖f‖2L2(0,τ) +τ2‖f ′‖2L2(0,τ).

This proves the result.

From this inequality we deduce the following theorem.

Theorem 4.4 (Estimates of the distribution of the infinity-norm). Assume the same
conditions as Theorem 4.2. Setting θ̃2 := θ2τ−1E(‖f‖2L2(t,t+τ)), we have

P
(
‖f0‖2L∞(t,t+τ) ≤ θ̃2

)
. 1− e−θ2

P
(
‖f0‖2L∞(t,t+τ) ≤ θ̃2

)
& 1− e−θ2/2.

Note the scaling of θ̃: since ‖ · ‖22 scales as τ , and ‖ · ‖∞ scales as 1, we rescale the
L2-norm by τ in the definition of θ̃ in order to make θ̃ τ -invariant.

Proof. Above we already calculated that

‖f0‖22 =
∑

j,k=1,...,n

Ajk ajak.

Similarly, we see that

‖f ′0‖22 =
∑

j,k=1,...,n

ajaki(ωj − ω)i(ωk − ω)

∫ τ

0

ei(ωj−ωk)s ds =
∑

j,k=1,...,n

Ãjk ajak,

where

Ãjk := (ωj − ω)(ωk − ω)Ajk.

Therefore, using Lemma 4.3,
∑

j,k=1,...,n

Ajk ajak ≤ τ‖f0‖2L∞(0,τ) ≤
∑

j,k=1,...,n

Bjk ajak,
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where B = 2A+ τ2Ã, i.e. Bjk = (2 + τ2(ωj − ω)(ωk − ω))Ajk.
As before we use the narrow-bandedness assumption that ε� 2π/τ , which implies

that Ajk ≈ τ and Bjk ≈ 2Ajk ≈ 2τ ; then the inequalities above reduce to

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

≤ ‖f0‖2L∞(0,τ) ≤ 2

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

.

In the proof of Theorem 4.2 we already observed that |∑n
j=1 aj |2 is exponentially

distributed with parameter 2σ2; therefore

P
(
‖f0‖2L∞(t,t+τ) ≤ θ̃2

)
≤ P

(∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

≤ θ̃2

)
≈ 1− e−θ̃2/2σ2

,

and

P
(
‖f0‖2L∞(t,t+τ) ≤ θ̃2

)
≥ P

(
2

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

≤ θ̃2

)
≈ 1− e−θ̃2/4σ2

.

The assertion of the theorem follows from remarking that θ̃2 = θ2τ−1E‖f0‖2L2(0,τ) =

θ2 2σ2.

4.10 Discussion

The various results mentioned above all give partial characterizations of the proba-
bility of the appearance of quiescent periods in a narrow-banded signal.

For the “deterministic” case, the small-n results illustrate how quiescent periods
may or may not recur in deterministically chosen sums of harmonics, and show how
a precise characterization quickly becomes complex as the number n of harmonics
increases. For the generic “irrational” case, however, we were able to derive a general
necessary and sufficient condition for the existence of QPs.

For the “stochastic” case with arbitrary n, by choosing random coefficients, with
uniformly distributed phases and normal amplitudes, we can leverage the property
that the signal is a Gaussian process to characterize rates of upcrossings; possibly
the Slepian-model can lead to a more precise characterization of the distribution of
quiescent periods.

We also derived some estimates of our own for the probability distribution of
quiescent periods defined by the L2 and the L∞ norm, under the assumption of
strong narrow-bandedness. Although each of these various results covers only part
of the picture, together they do give some insight into the occurrence of quiescent
periods in sums of harmonics.
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5 Deterministic and stochastic models for prediction
of QPs

As a second main step, MARIN would like to help the HLO to predict quiescent
periods with high confidence. We pursued several approaches to this problem, by both
deterministic and stochastic models, with different levels of success. The underlying
hope is that the signal in a finite time interval contains enough information to allow
for forecasts in the very near future. This means that certain patterns are repeating
in the ship motion.

5.1 Fourier continuation of the signal

The ship motion is assumed to be a second-order stationary stochastic process Xt that
can be described by a continuous spectrum S(f). In fact, as the sea surface elevation
can be considered a Gaussian process, and the ship dynamics can be assumed to be
linear, the resulting ship motion response is also a Gaussian process. In simulations,
e.g. the ones performed by MARIN, realizations of this process are generated in the
form of time series that share the same second-order statistical properties. The most
common method is superposition of a large number of frequency components with
randomized phases

f(t) =
∑

k

√
2S(ωk)∆ωk cos(ωkt+ δk), (38)

where δk are drawn from the uniform distribution on the interval [0, 2π]. This
method can be readily extended to the multivariate setting Shinozuka and Jan (1972).
Mathematically, there is thus a difference between the simulated signals and ship
motions that are measured in reality.

Nevertheless, in both cases the underlying structure of the signals suggests that
Fourier analysis might be a useful tool to understand – and possibly predict – the
signals in question. Naively, one would suspect that if one estimated the Fourier
decomposition of the signal, i.e. the frequencies, amplitudes and phase angles, one
could simply continue the signal and predict its future evolution. For example, in
Eq. 38 the randomness appears only in the phases. Each realization of this process,
however, is a deterministic function. Of course, for real-world data the situation is
more unclear, but let us focus on the simpler case of simulated data for now.

The main difficulty in practice is that such an analysis is based only on a finite
time series (x0, x1, . . . , xn−1), whereas the underlying signal is defined on all of R.
The discrete Fourier transform can be used to estimate the frequency components of
the signal, but it is essentially a Fourier series. Since Fourier series of a non-periodic
function are really the Fourier series of the periodic extension of the function, this as-
sumes that the past history of the ship motion (x0, . . . , xn−1) is repeated periodically.
In other words, prediction based on Fourier continuation of the signal consists of triv-
ially repeating the signal from the start of the analysis period. This is illustrated in
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Figure 14: Discrete Fourier transform of ship heave signal. Prediction is based on
periodic continuation of the signal (see text).

Figure 14. The continuation therefore depends on the length of the past history that
is used. It is not clear how this can lead to a usable predictor of future ship motions.
One might average over different lengths of the past of the signal, but the resulting
variance in the prediction is too large to be useful.

5.2 Prediction in stationary processes
Prediction in stationary processes has been studied already by Kolmogorov. A very
accessible introduction is given by Fristedt et al. (2007). An extensive treatment was
given in Yaglom (1962), and the following is simply an application of his approach. Let
us consider here the extrapolation problem for a stationary random sequence (xi)t∈Z,
with the mean square extrapolation error as error criterion. This is the problem of
minimizing

σ2
m,n = E

[
|xt+m − g(x−1, x−2, . . . x−n)|2

]
(39)

over all extrapolation functions g. We restrict ourselves here to the class of linear
extrapolation functions

g(x−1, x−2, . . . , x−n) = α1x−1 + α2x−2 + · · ·+ αnx−n.
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If the sequence xi is a Gaussian process (which can be assumed here) this is no
restriction: it can be shown that in this case the best linear extrapolation formula
coincides with the best possible extrapolation formula (Yaglom, 1962, ch.20).

Let us assume that we know the the correlation function

C(j, i) = E[xjxi]

of the sequence xi. Because of stationarity, this does not depend on time i, but only
on the lag k = j − i, such that

C(k) = E[xi+kxi]

for any i ∈ Z.
The normal equations corresponding to the minimization problem in Eq. 39 are

∂σ2
m,n

∂αk

∣∣∣∣∣
α1=a1,...,αn=an

= −C(m+ k) +

n∑

i=1

aiC(k − i) = 0 (k = 1, 2, . . . , n). (40)

This is simply a linear system of n equations in n unknowns, which under the
conditions assumed here always has a unique solution. The best linear extrapolation
formula is then

x̂t+m = a1xt−1 + a2xt−2 + · · ·+ anxt−n

and the corresponding mean square error is given by

σ2
m,n = C(0)−

n∑

k=1

αkC(m+ k).

Yaglom remarks that this approach is impractical since the solution of Eq. 40
is tedious for n > 10 and continues to develop a spectral theory of the solution,
applicable whenever the correlation function or spectral density is a known rational
function, as well as the theory for the case of continuous time. However, this was
written at a time when mainframe computers had only 10 KB of memory. For our
purposes, the above approach seems the most direct and useful.

Testing this approach with the time series consisting of the extrema of the heave
signal, we start by looking at the autocorrelation function in Figure 15. The alter-
nating nature of the extrema process hides the relevant information, and it becomes
more natural to consider the absolute extrema. It can be seen that after about 4 val-
ues the absolute extrema are not correlated anymore, within the estimated statistical
uncertainty. Note that we removed the mean of the signals before the analysis, so
subsequent results are for zero-mean processes.

Setting up the linear prediction for the absolute extrema process is straightfor-
ward. Figure 16 shows the one-step ahead prediction (top) and the three-step ahead
prediction (bottom). As expected for this linear method, the n-step ahead prediction
approaches the mean value (of zero) for increasing n, and the prediction becomes less
reliable.
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Figure 15: Autocorrelation of extrema process and absolute extrema process.
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Figure 16: Linear prediction of absolute extrema process. An example for two different
values of the step ahead m are shown. In both cases a long history (n = 400) was
used. Root mean square error estimates are shown in addition.
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Figure 17: Accuracy of linear prediction for different lengths n of past history. Root
mean square error (RMSE) against number of prediction steps.

Figure 17 gives an indication of the accuracy of prediction that can be achieved
with this method, in terms of root mean square error between prediction and known
signal. It can again be seen that prediction beyond 4 steps ahead (amounting to about
two waves) is not really possible.

5.3 Statistical modeling of ship movements
In this section we consider the approach of fitting a stochastic model to the data on
ship movements that can be used to predict or test for the occurrence of a quiescent
period. In practice, the HLO appears to base his decision as to when to call the
helicopter in for a landing attempt on the ship movements that occurred during the
recent past. This suggests that it ought to be possible to predict the occurrence of a
quiescent period based on past observations. In this section we concentrate on linear
models, and outline some preliminary ideas on which models may be useful. We focus
on the modeling of the wave envelope by considering observations of the ship motion
of the recent past.

In Section 5.3.1 we consider autoregressive moving average (ARMA) models, which
are commonly used to model economic time series but have widespread applications
in other areas (Brockwell and Davis, 2009). We also provide a preliminary example in
which we fit an ARMA model to the sequence of extrema of the heave data set pro-
vided by MARIN. In Section 5.3.3 we explain how one can use sequential hypothesis
testing as an aid to decide whether or not a quiescent period has commenced, given
a fitted ARMA model. In Section 5.3.2 we propose a variant of a logistic regression
model as a possible improvement to the ARMA model for the problem at hand. We
provide a brief summary in Section 5.3.4.
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5.3.1 Autoregressive Moving-Average model

The basic ARMA model is defined as follows. We assume time is slotted into time
epochs of equal length that we index by t ∈ N. Let (Zt) ∈ Rd denote a sequence of
Gaussian independent and identically distributed (i.i.d.) random variables with zero
mean and variance σ2. Such a sequence is often referred to as white noise process.
Suppose the data sequence of interest is a realization of a stochastic process (Xt) ∈ Rd.
Then the process is referred to as ARMA(p,q) process if it satisfies the recursion

Xt = c+

p∑

i=1

AiXt−i +

q∑

j=0

BjZt−j , (41)

where c ∈ R, and Ai and Bj are coefficient matrices of suitable dimensions. For
background on ARMA modeling see, for example, Brockwell and Davis (2009).

It is a virtue of the ARMA model that forecasting based on this model is partic-
ularly easy. Given the observations up to time t, we can predict the next vector of
data points by

X̂t = c+

p∑

i=1

Aixt−i +

q∑

j=1

Bjzt−j ,

where we have replaced Zt by its expected value zero. Thus, the model can be used
to predict the magnitude of the ship movements in the near future.

We now provide a small example where we fitted a univariate ARMA model to
the series of heave data. We focussed on this data series because the magnitude
of consecutive heave movements seems to be particularly important for the decision
of the HLO to initiate a landing attempt. We expect, however, that the predictive
capability of the model can be improved by including other relevant time series.

First, we recall that the relevant information for predicting a quiescent period is
included in the envelope. We therefore extract the sequence of local extrema of the
heave data series. We then take the absolute value of the extrema and center the
resulting time series by subtracting the mean value: indeed, the amplitude is what
affects the helicopter landing.

To estimate the model parameters, we used the package “forecast” in the statisti-
cal computing language R. We fitted the model to a training set of 200 data points,
resulting in an ARMA(2,0). With this model specification and the estimated coeffi-
cients, we ran diagnostic tests on the residuals to verify that the latter are Gaussian
white noise. We then used the model to predict the subsequent 10 data points, see
Figure 18.

We remark that the accuracy of the prediction did not improve with a larger
training set; seemingly, the series can be modeled as ARMA only locally. Further
testing with multivariate ARMA is needed to optimize the data to be included in the
model: we included only the extrema of the heave data series, but other data such as
roll and pitch motion may be significant as well. It is also possible to attempt to model
the amplitude of the wave heaves rather than the absolute value of each extreme point
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Forecasts from ARIMA(2,0,0) with non−zero mean
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Figure 18: Example of a forecast for heave extrema based on an ARMA(2,0). The
shaded area indicates the 90% (dark grey) and 95% (light grey) confidence intervals.

as we did in this preliminary experiment. It may also be that predicting the actual
value of the time series based on simple linear models is not possible with sufficient
accuracy. In the next section therefore we suggest a logistic regression model that
can be used to decide whether or not a quiescent period has commenced or is about
to commence.

5.3.2 Logistic regression

In the preliminary experiment we presented in Section 5.3.1, the forecasts we obtained
with the ARMA model corresponded to rather large confidence intervals. We sug-
gested a number of steps that may help to remedy this issue. Note, however, that
our objective is to decide whether or not to expect a quiescent period; predicting
the actual value of the time series is not strictly necessary for this purpose. As an
alternative to the ARMA model we therefore propose the following logistic regression
model.

Let Y denote a discrete random variable taking values in {0, 1}, where the re-
alization 1 indicates that the current time period is quiescent. Let π denote the
probability that Y = 1. We now seek to explain the realization of π by current and
past observations. For example, consider

log

(
π

1− π

)
=

p∑

j=1

k∑

i=0

βi,jXi,t−j , (42)

where βi,j denote the coefficients. Here, Xi,t−j denotes the random variable corre-
sponding to an observation obtained at time t−j of a particular type of ship movement
labelled by i.
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A simple logistic regression model can be estimated using maximum likelihood
techniques that are readily available in any standard statistical programming lan-
guage; see (Kabacoff, 2015, Section 13.2) for an example using R. Note, however,
that the sequence (Xi,t−j)j is not independent; therefore care has to be taken that
the correlation between included variables is not too strong. If variables are nearly
perfectly correlated, the matrix of coefficients is nearly singular, which can lead to
problems with standard estimation procedures (this is known as multicollinearity).

In order to estimate a model for explaining Y , we need to label each data point of
the training set by 1 or 0 depending on whether or not it lies within a quiescent period.
We remark that for a period to qualify as quiescent, it must be of sufficient length,
say T = 5. Thus, if we collect measurements every ∆ time units, where ∆ < T , then,
we must observe nearly perfect positive correlation between values of Yt: If Yt = 1
then we must have that neighbouring points also have realization 1. Furthermore,
Yt is not necessarily measurable at time t: We only know whether or not we should
label Yt as quiescent after we observed a period of length T , during which the waves
were quiet. Suppose, for example, that ∆ = 1/T and consider the first observation we
collect (at time ∆, that is), which we denote by Y∆. Then we need to observe T − 1
more data points before we can determine whether Y∆ is part of a quiescent period.
Therefore, we cannot use Y∆ to predict the value of Y2∆, say. This explains why we
did not include past observations Yt as explanatory variables on the right-hand side
of Eq. 42.

A possible alternative is to group data into sliding windows such that for each
new observation arriving the oldest observation is discarded. If the size of the win-
dows coincides with the minimum length of a quiescent period, then windows are
not perfectly correlated, and we can determine whether or not the previous window
was quiescent, namely, if all observations in the previous window corresponded to a
quiescent period. This alternative framework leads to a model of the form

log

(
π

1− π

)
=

p∑

j=1

k∑

i=0

βi,jXi,t−j +

q∑

k=1

γkY
w
t−k, (43)

where Y wt denotes the random variable describing whether or not the collection of
data points belonging to the window that ends at time t.

To gain more certainty as to whether or not a quiescent period has commenced,
the predicted future values of the relevant time series may be supplemented by the
outcome of a statistical hypothesis test. We briefly discuss such a procedure in the
next section for the ARMA model example.

5.3.3 Change point detection

In this section we explain how change point detection procedures can be applied to
test a stationary ARMA time series for a change in the mean value. Specifically, we
focus on the popular CUSUM method that was originally suggested by Page (1954).
Similar procedures have been considered in Basseville and Nikiforov (1993); Chen and
Gupta (2012); Robbins et al. (2011).
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First, note from Eq. 41 that setting the initial white noise terms equal to zero, the
sequence of residuals can be extracted from the sequence of observations as

Ẑt = xt − c−
p∑

i=1

AiXt−i −
q∑

j=1

Ẑt−j .

A shift in the mean value of size µ in the sequence of observations therefore results
in a shift in the mean value of the innovations Ẑt. Apart from the jump in the mean
value, this sequence is i.i.d. Gaussian, so that we can focus on the easier problem of
testing a sequence of independent Gaussian random variables. For further details on
this and a comparison to the approach of testing the sequence of observations directly,
see Basseville and Nikiforov (1993); Kuhn et al. (2014); Robbins et al. (2011).

The CUSUM method is essentially a sequential application of a log-likelihood ratio
test. Consider testing the data in sliding windows of fixed size n. We wish to test
whether at any time within the window the mean value of the sequence (Zt) has
changed from θ0 to θ1, say. Denote the hypothesis that such a change in mean has
occurred at time k by H1(k). Thus, under H1(k) we have E[Zt] = θ0 for t < k and
E[Zt] = θ1 otherwise. Instead, under the null hypothesis H0 we have E[Zt] = θ0 for
all t ∈ {1, . . . , n}.

Denoting by pθ a normal density with mean θ, the log-likelihood ratio test statistic
for testing the first window is

Sk :=
n∑

t=k

Yt :=
n∑

t=k

log

(
pθ1(Ẑt)

pθ0(Ẑt)

)

(note that Yt = 0 for t < k since for such t the distribution of Zt is equal under H0

and H1(k)). Obviously, the ratio of likelihoods pθ1(Ẑt)
/
pθ1(Ẑt) is large if pθ1(Ẑt) >

pθ1(Ẑt), that is, if it is more likely to observe Ẑt assuming that H1(k) is true. We
would thus decide in favor of H1(k) if the test statistic Sk is large in some sense.

In order to decide whether a change point has occurred at some point k within
the current window, we therefore need to check whether there is a k ∈ {1, . . . , n}
such that Sk exceeds a certain critical value, b, say. As a result, the statistic for the
composite test (that is, H0 versus

⋃k
i=1H1(k)) is

tm := max
k∈{m−n+1,...,m}

Sk(m), (44)

where m is the label of the current window, and Sk(m) denotes the test statistic
corresponding to the innovations in the m-th window. Then, for a given threshold
b > 0, the CUSUM method raises an alarm (indicating that a change has occurred)
at time ta, with

ta := inf [m : tm ≥ b] . (45)

The name of the test is explained by noting that the test statistic tm can be rewritten
in terms of the cumulative sums Tk :=

∑k
t=1 log pθ1(Ẑt)/pθ0(Ẑt) as follows,

tm = Tm − min
k∈{m−n+2,...,m}

Tk−1.



86 SWI 2017 Proceedings

This is convenient with respect to computational efficiency since Tm equals Tm−1 +
Ym, and computing mink∈{m−n+2,...,m} Tk−1 only involves comparing the minimum
computed at time m − 1 with Tm−1. The choice of the threshold b can be based on
simulation, or using approximations to the false alarm probability (see Kuhn et al.
(2016)). For an example with multivariate data sequences see Kuhn et al. (2014).

5.3.4 Summary

The methods suggested in this section require more extensive testing. In particular,
for the ARMA modelling approach other variables should be included besides the ex-
trema of the heave movements. The logistic regression approach may be more suitable
given that the objective is to discern between quiescent and non-quiescent periods,
and should also be investigated based on numerical experiments. As suggested, one
may use a change-point-detection procedure as a further indicator as to whether a
quiescent period has commenced. Assuming that the HLO is risk averse, we would
recommend that a quiescent period is then only announced if both the test and the
predicted values indicate that such a period has started.

5.4 Short-term forecasting
In this section we will investigate a possibility of short-term forecasts of quiescent
periods by solely analysing the ship motion data. That is to say we regard the motion
data as a discrete-time stochastic process with memory. In this process, the states at
time points ti, i ≥ 0 are correlated with the previous states at ti−1, ti−2, . . . , ti−k, 0 <
k < i. Since the original motion data is not supplied in a form of discrete states but
as samples of a continuous-time function, one needs to convert the sampled signal
into a discrete time series first. All in all, three questions crystallise as central to this
analysis:
1) How to define patterns in data?
2) What correlation between the patterns is observable?
3) How good are the forecasts that can be made on the basis of observed patterns?
Let f(t) ∈ C2[0,∞) represent one component of the measured signal. Without loss of

generality we assume the signal f(t) has zero mean value,
∞∫
0

f(t) dt = 0. Furthermore,

for the sake of simplicity we restrict our attention to local extrema of f(t), that are
in view of the smoothness class isolated points,

F =

{
f(t) :

d
dξ
|f(ξ)|ξ=t = 0 and

d2

d2ξ
|f(ξ)|ξ=t < 0

}
.

Occurrence times t naturally induce a strict order on F which allows us to speak of a
sequence Fi, i = 1, 2, . . . In this way, each peak is characterised by a couple (Fi, Ti) ∈
(0,∞)2, and the whole signal by a sequence of peaks: S = ((F1, T1), (F2, T2), . . . ),
where Fi denotes the peak height and Ti = ti+1−ti−1

2 the duration. Furthermore, a
configuration for d consecutive peaks, that is a d-tuple s = ((F1, t1), . . . , (Fd, td)), is a
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point in Ω = (0,∞)2d. We will now consider the probability space (Ω,F , µF ), F = 2Ω,
containing the d-tuples as outcomes. For given p ∈ F , the probability measure µF p
tells us how often the elements of p occur in the signal,

µF p := lim
n→∞

1

n− d
n∑

i=d

1p(Si−d:i),

where Si−d:i denotes a fragment of the signal S, and 1p is the indicator function for
event p. Some events from F can be represented as a union tensors products. Let,

P d =





m⋃

i=1

pi : pi ∈
d⊗

j=1

[aj , bj ], 0 < aj < bj



 ⊂ F .

We refer to events p = p0 × p1, p0 ∈ P d1 , p1 ∈ P d2 , d1 + d2 = d as patterns. For
each pattern p there is a signal F such that µF p > 0, which is not generally the
case for events that are not patterns. For a given pattern p, we will now quantify its
suitability for forecasting. Suppose one finds a d0-tuple representing p0 in the data. Is
the expectation that a d1-tuple from p1 will follow immediately after a good forecast?
Formally, the answer to this question unfolds into three distinct statistical estimates:
a) probability to find p0, is simply given by P0(p) = µF p0;
b) probability that p0 is followed by p1, P1(p) = µF p

µF p0
;

c) probability that p1 is preceded by p0, P2(p) = µF p
µF p1

.
The estimate P0 tells us how often we can perform the forecast based on this pattern.
The estimate P1 tells us how reliable this forecast will be, and the estimate P2 tells us
what fraction of all p1 in the signal is predictable via the pattern. For example, it may
happen that p0 is always followed by p1 which makes this combination of patterns
a reliable prediction (P1 = 1). If in the same time, p1 is preceded by many other
patterns, then (p0×p1) is reliable but not very efficient combination (P2 ≈ 0). Finally,
if besides the above-stated, p0 alone is not frequently observed then the prediction
is reliable but practically useless, as one has to wait long, before the opportunity to
assert a forecast comes (P0 ≈ 0). And so the problem of good forecasting given a
sample of the signal shapes as a search for such p ∈ F that scores high on all three
estimates P0, P1, P2. Below, we will consider a few semi-heuristic choices on how such
a search can be performed.

5.4.1 Markov model

Let WF = {[bi−1, bi], i = 1, . . . , n : bi > bi−1, bi ∈ (0,∞)}, WT = (0,∞) and d = 2.
We search for patterns from p ∈ (WF × WT )d ⊂ F . We are discretising the peak
height into n bins and ignore the duration of the peaks completely.

This way, the prediction scheme with d = 2 becomes identical to a Markov chain.
To do this, we classify the wave heights in a number of bins and then count how often
transitions between bins occur. We can also include a finite history, by classifying
wave heights of two successive extrema and counting transitions between pairs of
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n 1 2 3 4 5
Bin 0-0.198 0.198-0.323 0.323-0.448 0.448-0.607 0.607-1.47

Number of extrema 1041 1042 1043 1042 1043

Table 2: Numbers of peaks in each bin from the chosen system of 5 bins

extrema or by counting for how many successive extrema the waves are above a
certain threshold before a quiescent period is entered. An optimised combination of
bin widths, number of bins and history depth will be needed for the best possible
prediction, but a full exploration of all these algorithmic choices is beyond our scope
here.

We consider the wave heights for a run of 5 hours. In these 5 hours there are 5212
extrema in the data, with the largest deviation from the mean equal to 1.47 meters.
We choose to use 5 bins, with the limits on the bins such that each of the 5 intervals
specified by the bins has equal numbers of extrema. This is summarized in Table 2.
The slight variation in numbers of extrema is due to rounding on the bin widths. We
now simply count the transitions between bins and use this to construct a matrix M̂2

that, at index (n,m), counts how often a wave of height n evolves into height m:

M̂2 =




620 294 104 24 0
291 353 252 122 24
99 266 344 261 73
26 105 273 399 238
5 24 70 236 708



. (46)

It is clear that there is some structure in the wave pattern, namely that waves of a
certain height are likely to be followed by waves of comparable height.

The question whether it is sufficient to only consider a history depth of one ex-
tremum may be raised. This assumption underlying the analysis leading to M̂2 may
simply be tested using the data. To do this we first normalise the columns of M̂2 to 1,
which makes it into a probability transition matrix M2. The normalisation is chosen
such that if we are in a state and multiply it from the left with M2, we always go to
some other state and the total probability of being in any state is conserved. We can
then compute M2

2 , which models the process of taking two steps with our Markov
model M2, and compare it to the transition matrix that skips over one extremum,
Ms

2 . Then, if the assumption that only the current state matters for forecasting holds,
we should have that M2

2 = Ms
2 . These two matrices are shown in below:

M2
2 =




0.44 0.29 0.17 0.08 0.02
0.29 0.27 0.22 0.16 0.07
0.17 0.22 0.25 0.23 0.13
0.08 0.15 0.23 0.28 0.26
0.02 0.06 0.13 0.26 0.52



, Ms

2 =




0.31 0.29 0.22 0.13 0.05
0.30 0.25 0.18 0.17 0.11
0.20 0.21 0.22 0.22 0.15
0.14 0.15 0.22 0.25 0.24
0.05 0.10 0.16 0.23 0.46



.

(47)
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It can be seen from Eq. 47 that M2
2 and Ms

2 are not identical. The question is
then if this is just because we do not have enough data, or because our modelling
choice of having the bins in Table 2 and considering a state space of only the current
extremum is not good enough. To test this properly, we need a way of comparing these
matrices while taking into account that due to statistical fluctuations we expect the
estimation of transition probabilities of rare events to be worse than the estimation
for common events. Furthermore, we would like to be able to compare matrices of
different sizes, because changing the number of bins or history depth changes the size
of the state space and hence the dimensions of the matrices. Let n = 5212 be the
number of extrema, M̂s

2 the unnormalised version of Ms
2 , × the element-wise product

of matrices, and ||.||F the Frobenius norm and define

e(M̂s,Ms,M, n) := ||M̂s × (Ms −M)× (Ms −M)||F /n. (48)

Then e(M̂s
2 ,M

s
2 ,M2, 5212) = 0.0021. To interpret this number we shall compare it to

the Markov model for the state space with the same bins, but with a history of two
extrema. The corresponding 25 × 25 transition probability matrices are not shown
here, but inspection of their entries shows that after a sharp decline in extremum
height the likelihood of multiple low extrema is highest. The estimation quality is
given by e(M̂s

4 ,M
s
4 ,M4, 5212) = 0.00046. We conclude that the data are better

described by taking a longer history depth and that multiple low extrema are most
likely if a sharp decline in extremum height is found.

5.4.2 Counting waves

An obvious way to account for longer history is to simply increase the pattern length
d in the previous approach. Such decision will quickly lead us to a big number of
patterns each with a very low frequency of occurrence and hence poorly represented
in finite samples of the signal. We will instead construct a heuristic system of patterns
that covers a big part of the whole configurational space and is a formalization of the
already observed strategy described by the HLO: counting peaks.

A pattern for a single peak with a height below a quiescent threshold, bq, is given
by

pq = (0, bq]× [0,∞).

If a peak belongs to this pattern, its height Fi ∈ (0, bq] and the duration is arbitrary
Ti ∈ (0,∞). In a similar fashion we define a pattern with non-zero number of peaks
having all the heights below bq and the total duration exceeding tq.

pQ =
∞⋃

k=1

⋃
∑
qi≥tq

k⊗

i=1

(0, bq]× [qi,∞).

If – on a signal fragment S – µS pQ > 0, then µS pq > 0. Consider now a sequence of
k+ 2 peaks that consists of: a peak below the quiescence threshold bq, k peaks above
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Figure 19: A sample of the signal from dataset D1 together with a matched system
of patterns.

the threshold bs, and again a peak below the threshold bq. The corresponding pattern
is given by

pk = pq × ([bs,∞)× (0,∞))
k × pq.

Now the idea is to investigate the occurrence of patterns pk × pQ for k = 1, . . . This
idea has a very simple practical interpretation.
Suppose one is counting all peaks above the threshold bs. Every time a peak with
amplitude below bq < bs comes, one resets the counter to zero. We would like to know
whether the count number at the resetting helps in predicting long quiescent periods.

An example of matching patterns from this system to the data is given in Figure 19.
As before, we investigate the efficiency of the forecasting according to three measures:
P0, P1, P2. Figure 20 presents results for dataset D1 (see Table 1). The figure rates
patterns pk according to measure P1 (top panel) and T/P0 (bottom panel), where
T is the average distance between peaks. There are a few empirical observations to
make here. Firstly, not all patterns are equally good in the prediction. Secondly, the
longer a pattern is, the less frequently it is represented in the signal. Thirdly, we
see an artefact caused by the finite size of the signal sample: pattern p9 predicts the
quiescence period with probability one precisely because it occurred only once in the
sample. On another hand, p6 leads to very certain predictions, yet its average waiting
time, approximately 30 min, is longer than practical limitations. In principle, one can
combine p6 with a pattern that occurs more frequently but has a lower prediction rate,
say p1, to compromise on predictability and reduce the waiting time. Additionally,
the partition into patterns is based on parameters bq, bs, tq. While bq and tq define
the quiescent period and cannot be adjusted, bs is a free parameter that may influence
the quality of the predictions. This motivates the following optimization procedure.
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Figure 20: Efficiency of forecasts due to patterns pk, as measured according to forecast
certainty P1 and waiting the time 1/P0. The values for method parameters are: bs =
1.72.

Let ωk = P0(pk)
∞∑

k=1

P0(pk)
are relative frequencies for pattern k, then the cost function

c(k1, k2, . . . ) =

∞∑
i=1

ωkiP1(Pki)

∞∑
i=1

ωki

gives the average prediction rate for a union of patterns pki , where ki form a subset in
N. The task is to choose such a subset of indexes that the union of the corresponding
patterns has best expected prediction rate. These requirements are crystallized as the
following optimization problem,

c(k1, k2, . . . )→ min,

{k1, k2 . . . } ⊂ N,

wt
(⊗

i

pki

)
≤ wmax

bs ∈ [bq,∞),

where wt(p) denotes the waiting time for a pattern p, and wmax is the upper constrain
on the waiting time, in this report wmax = 2 min unless stated otherwise.

Figure 21 features the prediction rates and waiting times for patterns after such
an optimisation has been carried out for dataset D1 (see Table 1). The resulting
optimal subset of indexes is So = {1, 2, 4, 5, 6, 7, 9, 10} and the optimal value for
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Figure 21: Efficiency of forecasts due to patterns pk, as measured according to forecast
certainty P1 and waiting the time 1/P0. The values for method parameters are: bs =
1.545.

bs = 1.5750. The optimal set of parameters leads to the expected prediction rate 0.74;
the occurrences of the combined prediction pattern

⊗
k∈So

pk are separated by average

waiting time of 1.85 min. In total, 78% of all quiescent periods are predictable via
this combined pattern. This frequency of predictable events is limited by two factors:
the choice for the pattern, which is in part heuristic and thus can be improved; the
randomness of the signal that is a feature of data and cannot be manipulated.

All in all, we performed prediction tests/optimisation of the patterns on four
datasets, shortly referred to as D1, D2, D3, D4, as shown in Table 1.

Table 3 provides the quality measures for all combination of optimisation/prediction.
Data sets D1, D2 are two finite uncorrected samples produced for the same model
parameters. One notices that the prediction quality changes little if we optimise on
D1 and then predict on D2 or D3 (the first line of Table 3) as opposed to the scenario
when we optimise and predict on the same dataset (the diagonal of Table 3). This
may suggest that the optimised pattern grasps some universal property of the data.
The situation changes when we analyse datasets with distinct simulation parameters,
e.g. comparing dataset D1 to D4, that features larger wave height. In this case, when
trained on D1, the prediction certainty on D4 is much smaller. When trained on D4
and then predicting on D1 the prediction certainty is relatively high but the waiting
time is a magnitude larger. This scenario demonstrates that the optimised pattern
does depend on the software parameters (that, in turn, mimic the sea state).

Optimisation on D4 results in no solution unless we increase the upper constraint
on the waiting time. Such behaviour is connected to the fact that there are not many
quiescent periods in this dataset.
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Optimize

Predict

D1 D2 D3 D4

D1
χ = 0.804
t = 1.33
f = 0.30

χ = 0.68
t = 2.0
f = 0.79

χ = 0.53
t = 3.0
f = 0.55

χ = 0.12
t = 5.0
f = 0.75

D2
χ = 0.73
t = 1.73
f = 0.83

χ = 0.71
t = 1.87
f = 0.87

χ = 0.58
t = 2.30
f = 0.72

χ = 0.12
t = 7.5
f = 0.5

D3
χ = 0.74
t = 2.0
f = 0.7

χ = 0.71
t = 2.10
f = 0.78

χ = 0.74
t = 1.87
f = 0.89

χ = 0.09
t = 10
f = 0.37

D4∗
χ = 0.76
t = 17.60
f = 0.08

χ = 0.76
t = 15.0
f = 0.1

χ = 0
t = n/a
f = 0

χ = 0.67
t = 7.5
f = 0.5

Table 3: Prediction and pattern optimisation on various datasets. The prediction
quality is measured by certainty χ, pattern waiting time t (min) and fraction of
predictable events, f . ∗For optimisation on dataset D4 the upper constrain on average
waiting time was relaxed to wmax = 8 min.
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5.5 Summary

Instead of processing the full data from the motion sensor, we narrowed our attention
to the sequence of extrema values (the peaks). Patterns in such a sequence are defined
as a subsequence of peaks with heights that fall within specific bounds. From this
point of view a pattern is a manifold in the the peak configuration space. Given an
observed sequence, the frequency of pattern occurrence can be computed as number
of times such manifold was hit by samples from the data. Special interest present
those patterns that combine non-quiescent period followed by a quiescent one.

Software-simulated data were analyzed for occurrence of patterns. Similar patterns
were found in uncorrelated sample data that were produced with the same simulation
parameters specifying the sea state. The patterns differ when different sea-state
parameters are used. A somewhat naive choice for patterns as a tensor product
allows one to assert predictions on quiescent period with 80% certainty and acceptable
(from operation time point of view) frequency on some datasets. We expect that the
certainty can be improved by a cleverer choice for pattern manifolds.

6 Conclusions

Given several simulations of ship motion, we tried to identify the distribution and
initiation of quiescent periods (QPs) by various techniques with the common aim
of pattern recognition. Moreover, within reasonable assumptions on the response of
the ship to the forcing of the sea waves, we claimed that studying the more general
problem of finding QPs in a sum of (deterministic or random) harmonics is relevant
to make statements about the occurrence of QPs in ship motion.

The first thing we realized is that the essential information of the motion is con-
tained in the extrema of the waves, and that this is encoded in the Hilbert transform
of the signal. We then gave a statistical description of the distribution of QPs and a
qualitative picture of the typical ship motion around a QP. While the former suggests
modeling the occurrence of QPs by a Poisson process (even though this argument has
still to be statistically tested), the latter information constitutes the first tool that we
have for prediction of QPs.

Whenever ship motion is essentially coincident with the sea motion and its spec-
trum is narrow-banded, we gave analytical estimates of both probability and frequency
of quiescent periods in a sum of deterministic and random harmonics. We reviewed
the cases of one, two and three deterministic harmonics: the second one encodes the
phenomenon of beating and is the prototype to have a first understanding and defini-
tion of a quiescent period; the third case already contains a lot of the features of the
most general case, for which we derived a general criterion for the existence of QPs.

We then considered the case of arbitrarily many random harmonics. First, we
applied existing methods to characterize rates of upcrossing of a fixed threshold. Next,
we gave estimates for the distribution of QPs according to two different definitions of
a QP and in terms of both the hight and the length of a QP.
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The methods of fast prediction of quiescent periods are based on recognizing pat-
tern in the time series via Fourier continuation and a few stochastic models for sta-
tionary processes. While the former, at this level of analysis, doesn’t seem to be
useful, the latter look promising. Indeed, we were able to identify several structural
properties in the data.

The methods via the extrapolation problem perform well in the case of short-
term prediction, but deteriorate when prediction is sought for longer futures. The
autoregressive models are able to provide a reasonable forecast in some cases, but
with rather scarce statistical confidence. A logistic regression was proposed, too, but
it has still to be tested, together with a change-point-detection procedure. We remark
that the simulations we have performed are limited to the data series of the heave
coordinate. We feel that the inclusion of other variables may help the predictive power
of such models.

The final approach described in this report is looking at the data from the stand-
point of the theory of Markov processes. We were able to identify a few waves patterns,
interpret the data as a random sequence of patterns, investigate the “memory con-
tent” of that stochastic process, and implement prediction. Some patterns gave rise
to fairly good predictions, specifically when a series of particularly high waves are
followed by a QP. We expect that this could be improved further by a better choice
of the patterns themselves.
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