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Abstract

The Dutch government compensates health insurance companies when insuring
individuals who are estimated to have high health care costs. This is necessary
to avoid insurers not offering services to certain groups or not providing them
with a high quality of service. It is, however, unknown to what extent the
differences in health care expenses by different groups of people are truly due to
a poorer or better health status. We explore several statistical approaches that
facilitate explaining the cause of these differences.
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1 Introduction
Health care costs in the Netherlands are paid for by private insurance companies, who
receive their funds from two different sources. In the Netherlands each adult chooses
an insurance company and pays a fixed premium per month. Insurers are free to set
their premium, but it has to be the same for all insured adults. The first source of
income for insurance companies is this monthly premium paid by all their customers.

The second source is a subsidy from the government. This subsidy is different
for different insured individuals, based on a number of indicators that estimate the
general health of the insured. The goal of this differentiation is to equalize the risk
carried by insurers when insuring different people. Without such equalization, it
would be profitable for insurers to target certain groups they estimate will generate
larger health care costs and an incentive for insurers to offer good care and services to
those in need would be lacking. This report focuses on the second source of funding,
the risk equalization fund.

Determining the correct amount of funding for each insured individual is a chal-
lenging task and involves political considerations. This task is very important since
health care costs in the Netherlands are increasing significantly due to an ageing pop-
ulation, which is a threat to the affordability of the national health care system. The
particular problem we intend to address is that the current approach uses past health
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care expenses as the basis for the estimation of required health care costs. These past
expenses, however, are not necessarily a good indicator of the truly required health
care costs. Several factors may lead to inflated expenses, such as, but not limited to:
a propensity to ‘consume’ health care if it is readily available, the deliberate exaggera-
tion of diagnoses by care givers to increase turnover and profit and inefficiencies in the
execution of certain treatments. On the other hand, the real expenses do not see where
care was required, but not consumed due to financial incentives, such as the legally
imposed deductible of several hundred euros or the loss of income for self-employed
people. These two deficiencies both have grave consequences for the functioning of
the health care market. The first error, overestimating the truly required costs, re-
moves the incentive for health insurers to put pressure on care providers to make their
business more cost efficient. Furthermore, as there is a fixed total budget, an overes-
timated budget for one group directly harms another. The cases where the insured
persons would benefit from more care but are for some reason unable to obtain this
are now largely ignored by the system. This could be detrimental to their long term
health, and is certainly an ethically questionable situation.

2 The current model

In this section we will outline the current procedure used by the government to deter-
mine the funding for health insurance companies. We will particularly focus on how
the funding for risk equalization is computed. The risk equalization model is calcu-
lated for the total funding and then adjusted for a set premium by VWS. After the
real premium collection by insurers, an insurance company either gets money from
the risk equalization fund or contributes to the risk equalization fund based on the
outcome of the risk equalization model. The basis of the risk equalization is a linear
regression model that aims to predict the health care costs for each individual based
on a number of personal variables that are deemed a good indicator of their general
‘health status’. We will detail which variables are used — and to some extent why
— in Section 2.1. Due to the time required for processing all health care providers’
accounts of realized costs, there is a three year lag in the cost prediction. This implies
the risk equalization funds are determined for 2017 using a regression model based on
costs from 2014 and the characteristics (FKG/DKG) from 2013.

2.1 Model parameters

The variables used for risk equalization are intended to be variables that indicate how
healthy a person is likely to be. Originally, this included only the age and gender of
individuals, but the number of variables included in the model has vastly increased
since then.

We have summarized the used variables in Table 1 and noted a few remarkable
properties of the data below. The categories s_fkg, s_dkg and s_hkg all indicate
specific use of products and are therefore strongly linked to specific health issues.
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Table 1: A list of model parameters used in the government’s risk equalization scheme

Variable prefix Explanation
normbedrag_somatisch Gross compensation of health insurer for so-

matic costs in the postcode based on risk equal-
ization model

s_iedereen Total number of people in the postcode, given
in ‘insured years’ to account for people who are
insured for the full year

s_kost Total costs for various types of somatic care
s_totale_kosten Grand total of somatic costs
s_lgnw Age and gender categories
s_fkg Pharmaceutical cost groups
s_ape Postcode ‘region’
s_dkg Diagnosis cluster groups
s_mhk History of medical expenses (top percentiles

over past two or three years)
s_hkg Medical devices-based cost group
s_avi Source of income
s_ses Social economic status
s_FGG Physiotherapy use
s_VGG Nursing and caregiving (at home) costs
s_GGG Geriatric rehabilitation care
s_gsm Comorbidity

The (ten) postcode ‘regions’ indicated by the s_ape variables will be discussed in
greater detail in Section 2.2. Some of the categories (e.g. s_avi and s_ses or s_fkg
and sdkg) are strongly correlated, resulting in a strong multicollinearity, which we
will discuss in Section 4.3. It should also be noted that the category s_avi contains a
wealth of different types of income, such as benefit schemes and regular employment,
but also contains elements for students and the self-employed.

2.2 Linear regression procedure

The regression procedure used by the government consists of three steps. The first
step is a linear regression that fits the grand total cost (variable s_totale_kosten)
based on all the predictive variables (variables s_lngw–s_gsm) except for the postcode
regions (s_ape). This first regression is performed using two constraints: (i) those
coefficients associated to age and gender must result in a total that matches the
true total when ignoring the other variables, and (ii) the other groups of coefficients
must all result in a zero sum. These constraints result in an easier interpretation
of regression parameters and facilitate the comparison of the parameters obtained
from different models or different years, but in our view do not affect the result of
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the regression. An exeception are pharmaceutical costs, since each individual can
have more than one s_fkg, while for example the s_dkg of each individual can be
categorized in one group only.

After the first step, the model is further refined by looking at ‘regional’ varia-
tions. The residuals from the first step are aggregated to a postcode level, and the
postcodes are then clustered into ten ‘regions’ based on their aggregated residuals.
This clustering is performed by considering ten deciles of these residuals, and thus the
‘regions’ do not necessarily have any geographical cohesion. A final regression is then
performed using the postcode region (s_ape) for each individual, again constrained
to a zero-sum correction.

3 Our goal
We would like to immediately point out an important distinction between the pre-
diction and the explanation of health care costs. The current model is intended for
prediction to equalize the risk for healthcare insurers. The question(s) posed relate to
both explanation and prediction, to understand how the various parameters in play
affect the realized healthcare costs and to what extent these are down to the actual
health status of individuals. It is known in statistics that models that perform well
for prediction, may perform poorly for explanation. We combine these questions in a
single research question:

What are appropriate ways to find and explain geographical differences in
healthcare costs?

The answer to this question will be given by a number of different data analysis tools.
We exemplify – and to some extent justify – these methods by discussing the results
of their application to the aggregated data set that has been made available to us.

4 Results
The proposed models can be divided into three categories. First, we study ordinary
linear regression models similar to the model used by the government, but we focus on
the selection of the most significant variables. Secondly, we look at more sophisticated
linear regression models in order to obtain models that are good for either explanation
or prediction. Finally, we perform clustering of postcodes (or other aggregation levels)
to investigate analogies and differences. This approach is significantly different from
the other two and is aimed specifically at explanation rather than prediction.

We would like to stress that we are aiming solely at providing tools that may be
used in assessing the proper choice of model and variables. Any such choice impacts
the funding of health insurers and consequently their behaviour on both the healthcare
market (buying healthcare from providers) and the consumer market (selling insurance
to individuals). The choices made should be justifiable to the public or at least to
their elected representatives. It is our contention that after using tools that might
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seem opaque to assess the behaviour of certain models, it is possible to obtain better
models that balance transparency on the one side with predictor accuracy on the
other. Note, however, that an accurate predictor of realized costs might in fact be
predicting something different to the necessary costs of health care.

Beside model fitting, finding which elements in a data set are outliers with respect
to a given regression provides useful information on the quality of the regression. If
outliers share traits that are not captured by the regression model, it may be useful
to include a quantifier for these traits in the model. The outliers will also clearly
demonstrate the regional differences, potentially providing an even stronger motiva-
tion for our current exercise. We discuss the results of outlier detection (aggregated
at the level municipalities for privacy reasons) in Section 4.2.

We also perform recursive variable selection to get an understanding of which
variables in the model are most relevant. Subsequently ranking the different models
based on how well they model the variation in the data relative to the required number
of variables — quantified by Mallows’ Cp, see Mallows (1973) — provides valuable
insight into the optimal number of variables to include. Particularly, this will indicate
if the current model is over- or underfit. This is important because overfitting may
lead to spurious explanations of differences. Section 4.3 contains the results of this
part of the analysis.

To avoid issues arising due to the collinearity between many of the predictor
variables (in particular, the danger of important variables being erroneously declared
non-significant since significance is divided over several similar predictor variables), we
consider adding regularization to the regression. Such regularization can facilitate the
interpretation of different resulting parameters for the regression by removing some
ambiguity from the system. It does, however, introduce some new (meta)parameters
that need to be computed a priori. We discuss some preliminary results from this
approach in Section 4.4.

The final approach we elaborate upon does not involve a regression technique, but
instead attempts to find clusters of similar postcodes. Within these clusters, it may
be easier to identify individuals, postcodes or groups at a different level of aggregation
that are remarkably different from others in the cluster. A clustering based on data
at the postcode level, the finest at our disposal, is presented in Section 4.5.

Before detailing the results of these approaches, we briefly outline some of the
work that was done in preparing the data.

4.1 Data and preparation

Currently the government collects a large number of ‘health status’ variables on an in-
dividual person basis as input for their risk equalization calculations. These indicator
variables are, amongst others, information on location of residence, age, gender, social
economic status, source of income, healthcare costs in the previous three years and
the morbidity of the individual. The morbidity is split in somatic morbidity and men-
tal morbidity. For somatic morbidity the government includes 30 (classes of) diseases
each with its own list of specific medicine use and medical treatments (Zorginstituut
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Nederland, 2017). The use of these determines whether an individual is registered for
that specific disease in the government database. For mental morbidities a similar
approach is used, although with fewer diseases. The resulting dataset then contains a
total of 225 variables per individual of which 26 are mental health care costs specific
and 17 are used solely in the model for regional variation at the postcode level.

The original dataset held by the government is too confidential to work with as
it contains information on the health of individual citizens. Therefore, we only had
access to a data set aggregated at the four digit postcode level 1. This results in 3838
postcodes with the combined 225 health status variables of the people living in those
postcodes together with an extra variable depicting the total number of people in that
postcode.

Due to this aggregation a few peculiarities creep into the dataset. Firstly the
dataset contains several postcodes that consist solely or partially of PO boxes2. These
do in fact not correspond to a physical location in the Netherlands where people are
registered to live. Multiple scenarios exist why people can be registered under a PO
box, such as when someone does not have a fixed address or lives abroad. In that case
the health insurers will often register the costs of the insured person on the postcode
of the insurer, which can be a PO box. For the purpose of explaining geographical
differences in the Netherlands we exclude these particular set of postcodes as any
geographical information on the people in these groups is lacking3. However, when
making predictions for the health care costs for the next year the individuals in these
postcodes have to be included, since they do after all contribute to the total costs
and need to be included in the risk equalization calculations. This reiterates our
earlier point that there should be a difference between the explanation and prediction
approaches.

Aside from the PO box issue we now have the issue that postcodes can widely vary
in the number of residents registered. As a result we observe a vast range of different
scales of many of the indicator variables. We therefore normalise all the variables to
the number of registered residents. The indicator variables then represent the average
values for a registered insured person at the various postcodes.

1Dutch postcodes follow a four digits plus two letter format, e.g. 1234 AB. The aggregation puts
together all the residents of 1234 AB and 1234 CD into the same category 1234.

2In major cities like Amsterdam and Rotterdam such postcodes are the ones ending at 00 or 01,
but this varies from city to city. E.g., PO boxes in Nijmegen are postcodes ending on 00, 01, 03, 04
and 31 (see e.g. http://postcodebijadres.nl/postbus+Nijmegen.

3There remain postcodes that are partially PO boxes and partially residential addresses and we
make the decision to omit these from the data used for the explanation as well whenever we can
locate these postcodes.
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4.2 Outlier identification

Summary
Goal Identify regions with exceptional costs or characteristics. These identified regions can then be
investigated more thoroughly to determine if the risk adjustment model is appropriate and sufficient
for these more extraordinary groups of insured. In addition exclusion of extreme values can improve
the estimation of the expected costs of a group of insured.
Method Studentized residual analysis after linear regression on a regional basis for the costs and
age/gender.
Main result There are a few regions with exceptional costs and characteristics. For example, Urk,
Lelystad, Pekela, Koggenland, Weesp and Oegstgeest have an extraodanary age/gender-profile. Vlist,
Onderbanken, Pekela, Vlieland, Menseradiel, Son en Breugel and Oud-Beijerland have exceptional
costs. Pekela seems extreme with low age and high costs.
Recommendation Further research of characteristics (next to age or gender) of inhabitants in the
extraordinary regions is recommended. This can lead to new characteristics that can be included
in the risk equalization model. Compare the current risk equalization model with a model where
extreme values are excluded to get a feeling how strongly the average results are biased by the
outliers.

As mentioned in Section 2, the current model used has three steps, of which the
first is a straightforward linear regression and the second and third steps aim to
correct for regional variation. In the interest of simplicity, we will only consider the
first step of the procedure. Due to restrictions on what we are allowed to publish,
the data is first aggregated to the level of municipalities before studying outliers. We
perform two linear regressions using a different subset of the available variables. The
first uses only the age and gender distribution of each municipality and the second
uses all predictive variables that are used in the government model.

Figure 1 displays the regression fit and the studentized residuals of that fit for
each municipality in the data set. The left panel shows the results using only age and
gender in the model, the right uses all predictive variables. The studentized residuals
represent a rescaling of the residuals (i.e, the differences between the observations and
the fitted values from the model) such that it is comparable to a standard normal
distribution under the assumption that the error of the linear regression is truly
Gaussian. In this way the residuals are scale free, i.e. their values are independent
of the unit used for the response variable, so that it is possible to have a universal
threshold to detect outliers. Red lines in Figure 1 indicate a threshold for outliers
chosen at 2.5 times the standard deviation from the zero mean. The factor 2.5 is a
rule-of-thumb to decide on suspect observations, based on the approximate standard
normal distribution of the scaled residuals.

When using only age and gender in the model, there are three outliers either side
of the 2.5 standard deviation threshold. This is not surprising in itself, but the very
low fit for the municipality of Urk is exemplary of a broader trend that ‘cheaper’
municipalities are underestimated. It should be noted that Urk is a fairly unique
location; it is a former island that still retains a somewhat isolated character. When
using all predictive variables, there is a marked skew in the outliers with many more
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Figure 1: The studentized residuals after linear regression on a municipal level, based
on only age and gender (left) or on all predictive variables (right). On the x-axis are
the predicted values of the models. These studentized residuals put deviations from
predictions on a universal scale. The usual threshold is 2.5. The municipalities that
are highlighted in red have total costs that are not predicted well by the respective
models

municipalities having a severe, positive residual. As a final note, we wish to point out
the municipality of Pekela retains a strong, positive residual when using all variables.

4.3 Variable selection

Summary
Goal In the current risk equalization model there is a risk of over-fitting due to the large number of
included variables. There are also some problems with multicollinearity that make results difficult to
interpret. In this part of the study we identify the variables with the highest impact on the results
and which variables can be left out with little impact on the result.
Method We use a stepwise forward model selection and a stepwise backward model selection pro-
cedure to find the variables with highest and lowest impact.
Main result The forward and backward selection procedure both lead to the conclusion that vari-
ables need to be excluded in order to avoid overfitting. The two methods have partially overlapping
results concerning variables that can be excluded. However, it is difficult to determine which variables
should be left out due to multicollinearity.
Recommendation Use this method to determine which variables potentially can be deleted. For
the variables with multicollinearity problems, determine politically which variables should be left
out. Estimate the regression model without these variables to determine the impact on the regular
descriptives of the model. Use a measure for multicollinearity in addition to the current descriptives
to judge the performance and validity of the model.

There are several different ways to study which variables are important so that they
should be included in a regression model. Note that this is not the same as ranking
the variables in a model according to their importance (see Grömping (2007) for an
excellent discussion of relative importance in regression analysis). In this section, we
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focus on forward and backward regression, which are elementary, heuristic ways for
iterative model selection.

Stepwise forward model selection starts with a (trivial) linear regression model
with no variables and then at each the variable that results in the lowest R2 error term
is added to the regression. As such, an increasingly complex regression is constructed.
Backward model selection starts using all model variables and then iteratively removes
those variables that have the smallest impact on the error. Both methods result in
a hierarchy of models and a list of variables for each model. The models are then
ranked by a score that balances the complexity of the model with the accuracy of the
fit. This is intended to counter the overfitting that would occur if only the R2 error
is used as a norm – in that case the more variables the better, which may lead to
overfitting. By studying which variables are used most, or at least used by the best
models, provides useful information on which (categories of) variables have the most
predictive power.
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Figure 2: Ranking of models based on Mallows’ Cp. Each row of either chart repre-
sents a linear regression using different variables, indicated by the dark cells in that
row. The left-hand panel uses forward selection, the right hand panel uses backward
selection. Note that the vertical axes are ranked, but correspond to slightly different
Mallows’ Cp values (the lower the better), both ranging from 136 up to roughly 4900.

Figure 2 demonstrates the results of forward (left panel) and backward (right)
model selection. The models are ordered vertically by Mallows’ Cp (see Mallows
(1973) and Gilmour (1996), an alternative to R2 that penalizes for having too many
variables), a lower score indicates a better model. Note that there is no linear scale on
the axis. It is well-known in the statistical literature that R2 is not a model selection
criterion (see e.g. Kvålseth (1985)). Dark pixels indicate variables included in the
model, the darkness of the colour scales linearly with Mallows’ Cp. The individual
variables have not been labelled on the abscissa, since this would be too dense to read
(but they can be easily read off a tabular output). Instead the different categories
have been indicated.

Variables that are included in the top rows in the diagrams provide the most useful
information in predicting health care costs. We observe in both forward and backward
selection that the best scoring models are those with roughly half the number of
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variables included. Models that include more variables rank low, indicating that using
all these variables is overfitting the data. This conclusion is particularly apparent from
the forward selection, but also holds in the backward case.

The difference in the variables selected by the forward and backward procedures is
minimal. We therefore first focus on aspects that are visible in both, a few differences
will be pointed out later. The most striking feature is the ubiquitous inclusion of the
history of health care expenditure (s_mhk) the list of variables. These categories reflect
top quantile health care use in previous years, and probably is particularly useful in
predicting the high costs for chronic patients. Similarly, a history of high costs for
nursing and caregiving is also a strong indicator of realized health costs. Comorbidity
(s_gsm, far right) is also included in all models with a high rank. However, this is
likely to cause multicollinearity in models that also include s_fkg, s_mhk and s_hkg.
The diagnostic cluster groups are mostly good indicators, with the notable exception
of cluster groups 1, 3, 5 and 10. As we have no information on the meaning of these
clusters, we can draw no further conclusions from this.

The forward selection selects substantially fewer variables from the age and gender
(s_lgnw and ‘source of income’ (s_avi) categories. It appears that this is compen-
sated for by the inclusion of more socio-economic status (s_ses) variables. This is
possible in part due to the multicollinearity embedded into the variables by making
an explicit division by age in the variables from the socio-economic status and source
of income categories. Besides this deliberate multicollinearity, we suspect there is a
strong correlation between source of income and socio-economic status, leading to
ambiguity in the choice of variables.

While this variable selection procedure is of limited sophistication, it does point
to two suggestions. First, the current model appears to be overfitting the data, as
suggested by the improved Mallows’ Cp for models with fewer variables. Second, the
multicollinearity embedded (in part deliberately) into the model stands in the way of
interpreting the individual significance of certain variables.

4.4 Advanced regression techniques

Summary
Goal Solving the problem of multicollinearity with other regression techniques.
Method Alternative regression techniques: LASSO regression, Ridge regression and Elastic Net.
Main result The Elastic Net outperforms both the Ridge regression and LASSO regression by
achieving a much lower Mean Squared Error, while controlling the number of variables.
Recommendation Explore the impact of the new methods on the regression model (on individual
level). Compare the current descriptives and compare the coefficients of the regression. Describe
these models for non-mathematicians in order to let them comprehend these models and interpret
the results.

The standard linear regression approach fails to find good explanatory models
when the data contains strong multicollinearity. It is evident from Section 4.3 that
the dataset has many collinear variables, so that one may miss significant explanatory
variables. To avoid this issue, we propose the elastic-net approach from Zou and Hastie
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(2005). This approach can be thought of as a combination of the established ridge
(Hoerl and Kennard (1970)) and the modern LASSO (Least Absolute Shrinkage and
Selection Operator, see Tibshirani (1996)) regression techniques. These approaches
have in common that they add L1 regularizations to the L2 (= least squares) criterion
in the regression procedure, and thereby handle the multicollinearity in the data. We
refer to Hesterberg et al. (2008) for an accessible review where these methods are put
in perspective, while extensive treatments can be found in the monographs Efron and
Hastie (2016) and Hastie et al. (2015). However, ridge regression has the disadvantage
that it does not lead a parsimonious model (it does shrink unimportant variables, but
they do not shrink to zero). The LASSO does shrink unimportant variables to zero,
but the LASSO selects at most n variables, where n is the number of observations.
It also tends to select only one variable from a group of correlated variables, ignoring
the others. To overcome these limitations, the elastic net adds a quadratic part
to the penalty (‖β‖22), where ‖x‖2 =

√∑
i x

2
i denotes the 2-norm of a vector x.

Mathematically, the regression problem is now written as

β̂ = argmin
β

{
‖Y −Xβ‖22 + λ

(
(1− α)‖β‖22 + α‖β‖1

)}
, (1)

where Y are the actual costs, β is a vector of weights for variables, X represents the
values of these variables for various postcodes, and α ∈ [0, 1]. The ‖x‖1 =

∑
i |xi|

denotes the 1-norm. In this way the elastic net combines the advantages of these
methods while minimising their disadvantages. Sometimes a factor 1/2 is put in front
of the ‖β‖2 term for mathematical convenience. Note that the elastic net includes
ridge regression and the LASSO as special cases through the choices α = 0 and α = 1,
respectively.

The main drawback of the elastic net is that it requires to select appropriate values
for the regularisation parameter λ and the elastic net parameterα. In principle, one
can use cross validation techniques or a grid search to find optimal values for these
parameters. For correct values of λ and α, we get a vector β̂, which highlights the
most important variables in the regression.

To test the elastic net approach, we fit our model on two thirds of the data and
test on the remaining data. We consider 11 different values for α from 0 to 1. In
Formula (1), Y represents the total Somatic costs, while X represents the various
variables corresponding to somatic costs except the postcode clusters, that is, all
variables from Table 1 except s_ape.
Table 2 presented the mean squared error (MSE) for a few different tested values of
the parameter α. The extreme values α = 0 and α = 1 correspond to ridge regression
and LASSO, respectively. The minimal value is found for the parameter α = 0.7
To present a little more insight into the behaviour of the regression techniques corre-
sponding to different values of α we illustrate the regression result with Figures 3–5.
Figure 3 shows, for the ridge regression (α = 0), the coefficients β̂ against λ on the
left and the mean squared error (MSE), measured as ‖Y −Xβ‖22, on the right-hand
side. Similarly, Figures 3 and 4 show the variation for elastic net (with the optimal
α = 0.7, see Table 2) and LASSO (α = 1) respectively.
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α MSE

0 (Ridge) 42960.8

0.2 41876.1

0.5 39314.6

0.7 37012.1

0.9 40353.4

1.0 (LASSO) 44236.1

Table 2: Mean-squared error for various values of the elastic net parameter α (on test
data). Smaller values indicate better fit.

Figure 3: Ridge Regression (α = 0). The number of coefficients (left) and the re-
spective mean square error (right) variation with regularization parameter λ. This
picture helps to find the right balance to a small number of coefficients (parsimony)
while at the same time controlling the mean squared error (measure for model fit).

From each of the left hand-panels, we observe that only relatively few variables
contribute strongly to the linear model. In the case of the LASSO, this is explained
by multicollinearity. In the right-hand panels, vertical dashed lines indicate the region
in which the MSE attains its minimal value.



Equalizing the Cost of Health Insurance 41

Figure 4: Elastic Net (for α = 0.7). The coefficients (left) and the respective mean
square error (right) variation with regularization parameter λ. This picture helps to
find the right balance to a small number of coefficients (parsimony) while at the same
time controlling the mean squared error (measure for model fit).

Figure 5: Lasso Regression (α = 1). The coefficients (left) and the respective mean
square error (right) variation with regularization parameter λ. This picture helps to
find the right balance to a small number of coefficients (parsimony) while at the same
time controlling the mean squared error (measure for model fit).
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4.5 Clustering approaches

Summary
Goal Cluster postcode entries based on similarity of features, which constitute a proxy for the
health profile. Within a cluster of postcode entries with similar feature values, a postcode entry with
exceptional costs might indicate inefficiency.
Method We used a k-mean clustering method using a standard distance metric (Euclidean distance)
on a transformed (e.g. splitting age and gender and collapsing age groups within AVI) features.
Main result There is a clear distinction between urban regions and suburbs, when clustered based
on age as well as based on AVI. For the age clustering, the suburban postcode entries more frequently
have low total health costs.
Recommendation This method can be extended by clustering based on different or larger sets
of features. Moreover, we suggest to use this method as a new approach to discover regions with
inefficient care, which is to search for outliers with high health care costs within clusters with the
similar feature values.

In this section we explore the possibilities and benefits of cluster analysis on the
provided dataset. We aim to use these techniques to find a natural structure present in
the postcode entries (instances) based on the similarity in the explanatory variables
(features). Our objective is twofold: we hope to gain intuition of the meaning of
different combinations of explanatory variables, and we may find unknown patterns
and relations unexplained by the regression models currently in use.

There exist many clustering techniques, but almost all of them follow similar steps:

1. Define a distance metric on the set of instances.

2. Formulate a decision rule that determines whether an instance belongs to a
cluster.

3. Iteratively separate or group instances until every one is classified.

Among commonly techniques are hierarchical clustering, distribution-based clus-
tering, and centroid-based clustering.

To provide some context: hierarchical clustering algorithms often evaluate the
’distance’ between two observations, i.e. some quantitative notion representation
of the difference between their properties. Nearby observations are linked to form
a cluster, and nearby clusters are merged to larger clusters. This is a convenient
strategy for exploratory clustering approaches, but expensive to apply to large data
sets and difficult to interpret for high-dimensional data.

Distribution-based clustering algorithms try to find a set of clusters by choosing
from a family of distributions that matches the observations.

While this collection of algorithms generally has no difficulty clustering all observa-
tions, these methods are prone to overfitting data. In addition, for many observation
properties (especially in our dataset) it is difficult to find an underlying family of
distributions.

Centroid-based clustering is based on the assumption that each cluster has a cen-
tral observation: a centroid. Observations are classified based on their distance to the
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nearest centroid. The benefits of this type of approach is that the created clusters
have an intuitive and well-defined meaning: they can be interpreted by their centroid
observations. The downside is that a priori the number of clusters must be known,
and that the method allows only for the creation of clusters with a specific shape:
convex clusters.

In our analysis, we choose a centroid-based clustering algorithm: k-means cluster-
ing. This choice is based on the fact that the data is high-dimensional and that before
we start our analysis, we lack knowledge of how the data is structured or how the
clustering could be interpreted. It is worth the effort to investigate if other algorithms
are more suitable.

4.5.1 Distance metric

In our implementation, we used the function kmean of the statistical software R, which
performed the k-mean clustering using standard distance metrics such as the Eu-
clidean distance. However, Euclidean distance has no valid meaning for the variables
in their current state. Since the spread in money-related variables is much higher than
in age-related variables, a transformation is required to ensure that the Euclidean
distance is normalized. Furthermore, from an information entropy perspective, some
variables in the data may be redundant. These are also transformed to a more com-
pact form. In the following section, we explain in what way the data is non-uniform
and redundant, and how we transform it.

4.5.2 Feature transformation

The variables as given in the data are of different types. Some count the number of
individual belonging to a category of a binary attribute (e.g. the number of individual
using certain drug) or to a category of a categorical attribute (e.g. the number of
individuals with source of income high). As, for each attribute, each category is
represented by a variable, there are as many variables as there are categories. In
fact, some variables represent the count of a category from a certain age group, which
is a finer resolution. As a result, an attribute that has been broken down in many
categories and in age groups comprises many variables.

The exact distribution in age group for each category seems redundant, therefore
we apply the following transformation:

• We collapse the age-gender categories into gender and add a feature with the
gender-ratio per instance.

• We collapse the age-‘source of income’ categories into age.

• We convert the binary variables to ratios.

Although we have reduced the number of variables of some attributes, some at-
tributes still have many variables. To uniformly distribute the contribution of each
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attribute to the distance, we weight each with the reciprocal of the number of cate-
gories such that the total weight of all categories sums to one.

Finally, we weigh each of the variables with the reciprocal of its observed variance.
This follows from our assumption to let all features be equally important.

Our transformation creates a uniform information representation, and combine
some of them into new features. Although it loses some accuracy in the exact age
distribution of some attributes, this greatly reduces the dimensionality of the data,
which is a welcome benefit for the quality of the cluster analysis.

It should be noted that we do not have to include all features when we compute a
cluster. Different subsets of features may yield different clusterings. For this reason,
our scripts allow for an arbitrary subset of features.

4.5.3 Finding the optimal cluster

The k-means clustering algorithm is a probabilistic algorithm that finds clusters in the
following way. First, it randomly chooses k centres in the feature space. Each of these
centres represents an initial cluster. Then, for each cluster it repeatedly executes the
following steps.

1. Find the closest instance and add it to the cluster.

2. Compute the new centre of all instances in the cluster.

The clustering is finished when all the instances belong to one of the k clusters. The
quality of a set of clusters is determined by computing the sum of squares (CSS) of
each of the instances with the centre of its cluster. The lower the CSS, the better
the clustering. This procedure is repeated an arbitrary number of times, each time
choosing randomly new initial locations, and finally choosing the clustering with the
minimal CSS. The k-means clustering algorithm can find clusterings for any number
of clusters. A heuristic way to determine the optimal number of clusters is to find the
elbow in the plot of the CSS against the number of clusters.

4.5.4 Results

In our exploratory analysis, we used two different groups of features to generate two
clustering. The first clustering uses the age categories as features and the second uses
the source of income (s_avi). The elbow method determines the optimal number of
clusters for both clusterings to be 3. A detail of the geographic distribution of the
clusters using age categories is depicted in Figure 6. In both maps, clusters clearly
distinguish between urban (Amsterdam, Utrecht, Almere, Amersfoort) and suburban
areas. We now discuss the findings for the two clusters separately.
Figure 7 shows the characteristic profiles for the clusters based on age. The left-hand
panel shows the distribution of people over the age groups per cluster, the right-hand
panel shows the distribution of health care costs. We see that clusters 1 (black) and
3 (red) have relatively young age profiles, of which cluster 1 has the most centralized
distribution of health care costs. One would expect young clusters (i) to be associated
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Figure 6: Detail of maps showing the result of clustering postcodes based on age (left)
and based on AVI categories (right).
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Figure 7: Cluster profiles when clustering based on age. Left: distribution of people
over different age groups per cluster. Right: distribution of health care costs per
cluster.
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with better health and therefore low health care costs and (ii) to cluster around the
urban area, which are somewhat confirmed by in our results.
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Figure 8: Cluster profiles when clustering based on source of income (s_avi). Left:
distribution of people over different source of income categories. Right: distribution
of health care costs per cluster.

Figure 8 shows the characteristic profiles for the clusters based on source of income
(s_avi). The left-hand panel shows the distribution of people over the source of
income categories per cluster, the right hand panel shows the distribution of health
care costs. Cluster 1 (black) has the lowest distribution of health care costs. It would
be interesting to see whether it agrees with the actual meaning of the avi-categories.

Due to time constraints, we were only able to analyse clustering based on age and
avi-categories. For further analysis, it would be interesting to explore the clustering
based on different sets of features. For instance, a larger set of features may better
describe the health profile of regions.

Moreover, we suggest a new approach to discover municipalities with inefficient
care, which is to search for outliers with high health care costs within clusters. Con-
ceptionally, this approach is similar to outlier identification as discussed in Section 4.2,
since it also searches for outliers after adjustment for explanatory variables.

5 Conclusions
The Dutch government compensates health insurance companies when insuring in-
dividuals who are estimated to require more or more expensive health care. This is
necessary to avoid insurers avoiding certain groups or not providing them with a high
quality of service. To estimate the required costs, the government uses a number of
personal characteristics that are deemed good indicators of the general health status.
The basis for this estimator is a linear regression model that fits the real health care
costs based on the chosen parameters. It is, however, unclear whether the realized
costs are due to a difference in health status, or due to other reasons that affect the
health care expenses made. The model employed for the Dutch government is made
for prediction rather than explanation.
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We used several different techniques that investigate these differences, providing
a first step towards understanding if these differences are preferably compensated for
or not. The conclusions are somewhat diverse — in part due to how the research was
carried out. Studying the outliers in the data using a linear regression model revealed
no surprising results. We did, however, find that certain variables in the model are
of much greater importance than others. Comparing Mallow’s Cp for models using
different subsets of the variables suggests the current model might suffer from overfit-
ting. This method can help in simplifying the risk equalization model together with
the clustering approach. Work needs to be done on the impact of these methods on
the usual criteria for evaluating the risk equalization model. Elastic net regression
provides for regularization of the model parameters (and thus avoids overfitting), at
the cost of introducing a single metaparameters. With this regularization in place,
it is easier to explain the impact of various parameters on quality of the regression.
By applying clustering techniques we exposed a remarkable difference in the health
expenditure between clusters based on only a few of the prognostic variables. Differ-
ences within these clusters may provide valuable information on possible causes for
health care expenditure differences.

The techniques presented in this work all contribute to a greater understanding
of the factors influencing the health care costs. One main conclusion is that we can
leave out variables with no or limited loss of the quality of the model. The methods
we used can help in selecting variables that contribute and variables that have no
contribution. It can also help in selecting and combining variables in the current
model in order to be capable of interpreting the results of the regressions and solve
the issues with multicollinearity in the model.

6 Recommendations

Besides the methods presented above, we also have a number of suggestions for tech-
niques that may improve the prediction, or improve the understanding of the factors
at play. In particular we briefly discuss two approaches and their merits.

Since the data show significant differences across The Netherlands such as depen-
dencies on the region, on the municipality, on the geographical location, and on the
presence of academic hospitals just to name a few, it is strongly advisable to take
into account this heterogeneity when fitting a unique model on all the available data.
An option is the inclusion of random effects in a simple linear regression model, the
so-called linear mixed model of Laird and Ware (1982). The approach is similar to
linear regression, but now part of the observed effect is supposed to be due to some
random effects. Consequently, the estimate is a sum of two terms: the product of a
design matrix (i.e. a matrix of the covariates) with a vector of coefficients, the fixed
effects, and the product of another design matrix (containing the same or other co-
variates) with a vector of random coefficients drawn from a particular distribution.
Including these random effects shrinks the estimates of the first deterministic part
towards the mean. Since the second term is a random sample drawn from a wider
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population, this allows taking into account the effects of some variables that are only
partially observed, such as the overall health status. Furthermore, this method is
advantageous in terms of estimation. In fact, fitting a traditional regression model
including a fixed effect for each unit can become cumbersome when the chosen unit
is small, and thus the number of units and corresponding coefficients is large. The
bigger advantage of random effects model with respect to fixed effects model is the
reduction in the number of parameters. That is, if in a regression model we include
a variable for each region (province, zipcode or any other cluster) and we have n
regions, then we will have to estimate n coefficients (one for each region). Instead, if
we include the random effect for that same variable (region, province, zipcode or any
other cluster), then the number of parameters to be estimated reduces to 2 (mean
and variance) in case of assumption of normality for the random effects. I.e. the n
coefficients (one for each region) are samples from a normal distribution with mean
µ and variance sigma2.

Introducing the random effects reduces to one the number of parameters to be
estimated to account for the heterogeneity among units, namely the variance of the
random effects. For further details and implementation, see for example Verbeke and
Molenberghs (2009), Verbeke et al. (2010), and Fitzmaurice et al. (2008).

Another approach is given by the mixture model, which fit different distributions
(or the same distribution with different parameters) for each region (province, zipcode
or any other cluster). If all the data can be modelled by the same distribution, then
there is no need for mixture model - the data is homogeneous. On the other hand,
if there is heterogeneity in the data, it can be captured by this flexible model fitting
different distributions of the data on different regions.

This method can be used not only to fit a completely new model, but also to check
whether the distribution of the data of a certain supposed subpopulation is indeed
different from the others. Since it is possible to include and merge almost any desired
distribution, it results in an extremely flexible and thus powerful tool in capturing
and explaining heterogeneity.

Many statistical softwares have built-in procedures to fit both linear mixed mod-
els and mixture models, see R, SAS, STATA, SPSS and Matlab among others. As
highlighted earlier, heterogeneity is visible at different levels, thus when fitting these
models one might want to explore the effect size of various subpopulations at different
scales, such as postcode, municipality, province, and so on.
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