
Modelling of fluid mixing and dynamics in curved
pipelines

Thijs Bouwhuis, Daan Crommelin, Olfa Jaïbi, Vivi Rottschäfer,
Ray Sheombarsing, Bas van ’t Hof

Abstract

Keywords: Navier Stokes, Modelling, Fluid Dynamics, Advection-diffusion
equation, Multiphase flow

1 Introduction
During the Study Mathematics with Industry held in Amsterdam we worked on a
challenge formulated by Shell about the mixing of fluids in curved pipelines. The
question originates from a problem that can occur when transporting oil and gas
through pipelines. This transportation of hydrocarbon fluids through pipelines in a
safe and efficient way is a major challenge for the petrochemical industry. Especially
in rough conditions like the ones that are present on the bottom of the ocean where
temperatures typically lie around 4◦C. Many oil and gas fields lie beneath inland
waters and offshore areas around the world, and the exploration, drilling and devel-
opment of oil and gas fields in these underwater locations is called subsea. When oil
and gas flow out of a subsea well the fluids are transported through pipelines on the
ocean floor to offshore production platforms. These pipelines, can stretch for many
kilometres, forming a large infrastructure. Because the seabed is not perfectly flat,
there are segments of pipeline which will not lie horizontal but under an angle or even
vertical.

When oil and gas are produced from a well, it is usually a mixture of the two which
is often co-flowing with water, sand particles and other contaminants. A phenomenon
related to the presence of water that can cause a lot of problems is hydrate formation,
typically gas hydrates. These hydrates are solids which are crystalline water-based:
they consist of a gas molecule (e.g. methane, ethane, propane and carbon dioxide)
which is trapped in a water cavity composed of hydrogen bonded water molecules.
Macroscopically, hydrates form a slurry which is quite similar to wet snow. Single gas
hydrates can cluster together and form structures. When these structures grow, they
can form a hydrate plug that blocks the full cross sectional area of the pipe.
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Hydrates only form under specific circumstances, namely at low temperatures
and high pressure. These circumstances arise, for instance, when an oil and gas well
(re-)starts production and the pipeline is filled with cold fluids, including water. To
prevent hydrates from forming the pipeline is usually flushed with a hydrate inhibitor.
Such a hydrate inhibitor chemically acts the same as the antifreeze fluid one uses in
a car. A common hydrate inhibitor is methanol. In general, the aim is to use as little
methanol as possible, since it is both an expensive and dangerous fluid. That is one
of the reasons why Shell wants to be able to better predict how methanol will mix
into a pipeline filled with water.

1.1 Problem description

For our study, we start with a pipeline filled with water. Then, from one entrance of
the pipeline, methanol is flushed into it at a constant speed. The challenge that Shell
posed was:

What is the concentration of methanol along the pipeline as a function of time and
space, when looking at different geometries of the pipe such as the presence of curves
and sections of the pipeline under an angle?

Determining this concentration is not straightforward since there are several effects
that have to be taken into account. The first one is the difference in the densities:
the density of methanol is approximately 800 kg/m3, whereas that of water is ap-
proximately 1000 kg/m3. Because of this density difference, the methanol tends to
‘float’ on the water. This results in different behaviour of the methanol in the water
along the various sections of the pipeline. In downward sloped sections, the density
difference will result in a stable front of methanol that moves down. In horizontal or
upward sloped sections a layer of methanol will form and float on top of the water.
When observing a cross section of the pipe, one can see a distinct region of a ‘light’
fluid on top of a ‘heavy’ fluid. This phenomenon is called stratification.

In addition, we have to take into account that water and methanol are miscible.
This means that they are able to fully dissolve in one another. This in contrary to
immiscible fluids (e.g. oil and water) for which there will always exist a distinct layer
between the two fluids. There are some additional effects (e.g. viscosity differences,
surface tension) which will play a role in reality, but these will not be accounted for
in this study.

This report is structured as follows: First, a physical background in fluid dynamics
is presented with the relevant equations and their derivation. In section 3 appropriate
notations and conventions are introduced. The problem is then approached from two
different angles: in section 4 a 3D tranformation of coordinates is studied, intended
to focus on the mixing interface of the miscible fluids. In section 5 a 1D model reduc-
tion approach is proposed, in which the along-pipeline direction is the only remaining
spatial coordinate in the resulting model. This 1D model is solved numerically, as dis-
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cussed in section 6. Results from simulations with this numerical model are presented
in section 7.

2 Navier-Stokes

In this section we provide a brief description of the Navier-Stokes equations. The con-
tents of this section are not meant as a detailed exposition of the field but should rather
be thought of as a simple and heuristic introduction to fluid dynamics. Furthermore,
the idea’s presented in this section are standard and no originality is claimed. The
interested reader is referred to Chorin and Marsden (1979) for a more comprehensive
introduction into the field of fluid dynamics.

Suppose Ω ⊂ R3 is an open subset which contains a fluid with mass density ρ(t, x),
where t ≥ 0 and x ∈ Ω. Let u(t, x) denote the velocity of a fluid particle starting at
x ∈ Ω at time t. In other words, the trajectory t 7→ ϕ(t, x) of a fluid particle starting
at x satisfies the differential equation

d

dt
ϕ (t, x) = u (t, ϕ(t, x)) .

The Navier-Stokes equations are based on two basic principles: conservation of
mass and Newton’s second law. In order for the computations in the following sections
to be valid we shall henceforth assume that ρ, ϕ and u are sufficiently smooth.

2.1 Conservation of mass

In this section we derive an equation for the conservation of mass. To this end, suppose
B ⊂ Ω is an open subset. Then the rate of change of mass of the fluid contained in
B is given by

d

dt

∫

B

ρ dV =

∫

B

∂ρ

∂t
dV.

We assume that the change of mass in B is only caused by fluid flowing in from Ω\B
or flowing out from B. In particular, the rate at which fluid comes in or escapes
through ∂B is

−
∫

∂B

〈ρu,n〉 dA = −
∫

B

div (ρu) dV,

where 〈·, ·〉 is the standard Euclidian product on R3 and n is the outward (unit)
normal vectorfield on ∂B. Therefore, conservation of mass is equivalent to

∫

B

∂ρ

∂t
dV = −

∫

B

div (ρu) dV. (1)
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In turn, this implies that

∂ρ

∂t
+ div (ρu) = 0, (2)

since (2) holds for any open subset B ⊂ Ω.

2.2 Newton’s second law
In this section we use Newton’s second law and the conservation of mass to derive an
equation for the velocity field u. The idea is straightforward: we simply compute the
rate of change of momentum of the fluid, the net force acting on the fluid, and then
use Newton’s second law to relate the two.

Rate of change of momentum The acceleration of a fluid particle at x ∈ Ω at
time t is given by

d2

dt2
ϕ (t, x) =

∂u

∂t
(t, ϕ(t, x)) + u · ∇u (t, ϕ(t, x)) ,

where

u · ∇u :=

3∑

j=1

∂u

∂xj
uj .

Let B ⊂ Ω be an open subset as before and set Bt := ϕ(t, B). Then the momentum
of the fluid initially contained in B at time t is given by

∫

Bt

ρu dV =

∫

B

(ρu) ◦ ϕ · detDxϕ dV.

The conservation of mass (2) and a tedious (but straightforward) computation can
now be used to show that the rate of change of momentum is given by

d

dt

∫

Bt

ρu dV =

∫

Bt

ρ

(
∂u

∂t
+ u · ∇u

)
dV. (3)

Forces acting on the fluid Next, we explain how to model the forces acting on
the fluid. One can separate these forces into two categories:

(i) forces which act “directly” on the fluid particles in Bt,

(ii) forces which act on Bt through its boundary.

It is out of the scope of this text to give a detailed treatment of all the forces acting on
the fluid. Instead, we have chosen to give two simple but representative examples of
how to model forces of either type. We will use these examples to derive a simplified
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equation for the rate of change of momentum. In the next section we will then
proceed by stating the full Navier-Stokes equations with the understanding that the
forces appearing in the equation are derived by using the principles presented in this
section.

A simple example of a force of type (i) is gravity. Indeed, gravity is a force which
acts “directly” on each fluid particle in Ω. In the easiest case, the force on Bt due to
gravity is given by

Fg =

∫

Bt

ρg dV,

where g ≈ 9.81 m/s2 is the gravitational acceleration.
The general procedure for modeling forces of the second type is to derive an integral

formulation of the force by using the Divergence Theorem. Let us, for example,
consider the internal force Fp which corresponds to the fluid pressing on itself. One
could attempt to model this force by assuming the existence of a function p : [0,∞)×
Ω→ R, usually called the pressure, so that the force on ∂Bt due to the fluid outside
of Bt is given by

Fp = −
∫

∂Bt

pn dA = −
∫

Bt

∇p dV,

where n is the outward unit normal on Bt. We remark, however, that in reality there
is also another non-tangential force acting on the boundary of Bt which contributes
to the internal force and is related to the viscosity of the fluid.

If gravity and internal pressure are the only forces acting on the fluid, i.e. Fnet =
Fg + Fp, then

∫

Bt

ρ

(
∂u

∂t
+ u · ∇u

)
dV =

∫

Bt

(ρg −∇p) dV (4)

by Newton’s second law and (3). Hence

ρ

(
∂u

∂t
+ u · ∇u

)
= ρg −∇p, (5)

since (4) holds for any open subset B. The latter equation is essentially an infinitesi-
mal formulation of Newton’s second law.

2.3 Navier-Stokes equations
In this section we combine the conservation of mass and Newton’s second law to state
the Navier-Stokes equations. We start with the simplified considerations from the
previous section and explain why the resulting system is ill-posed. We then resolve
this issue by introducing the notion of incompressiblity. Finally, we state the full set
of Navier-Stokes equations for an incompressible fluid.
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An ill-posed Navier-Stokes equation The equations for the conservation of mass
and Newton’s second law from the previous sections yield the following simplified
system:





ρ

(
∂u

∂t
+ u · ∇u

)
= ρg −∇p,

∂ρ

∂t
+ div (ρu) = 0.

(6)

The unknowns in (6) are the the mass density ρ, the internal pressure p and the
three components of the velocity field u. Note, however, that the system in (6) is
underdetermined, since we have five unknowns but only four equations. A possible
solution to this problem is to take the conservation of energy into account.

The total energy of the physical model consists of kinetic and internal energy. The
kinetic energy of the fluid is simply the classical energy related to the motion of the
fluid on a macroscopic level. More precisely, the kinetic energy of the fluid initially
contained in B at time t is given by

Ekin (t, B) =
1

2

∫

Bt

ρ ‖u‖2 dV,

where ‖·‖ denotes the Euclidian norm on R3.
The internal energy Ein is related to the potential energy and microscopic motion

of the fluid molecules. A detailed treatment of the internal energy requires thermody-
namical considerations and is out of the scope of this text. We remark, however, that
it is possible to balance the number of equations and unknowns by adding a scalar
equation based on the conservation of energy:

dE

dt
= 0, E := Ekin + Ein.

The incompressible Navier-Stokes equations Another strategy for balancing
the number of equations and unknowns is to introduce a so-called equation of state,
providing an algebraic relation between the pressure and the fluid properties, the
density in this case. A simple approach is to assume that the fluid is incompressible,
i.e., ϕ preserves volume. This is equivalent to requiring that div (u) = 0. It depends
on the properties of the fluid whether this assumption is realistic or not. For water
and methanol in liquid state, this is generally a suitable assumption.

If the velocity field is divergence free, then the equation for the conservation of
mass (2) can be explicitly solved. To see this, suppose that div (u) = 0, then

∂ρ

∂t
+ div (ρu) =

∂ρ

∂t
+ 〈∇ρ,u〉 = 0,

where 〈·, ·〉 denotes the Euclidian inner product on R3. Consequently,

d

dt

∫

Bt

ρ dV =

∫

Bt

(
∂ρ

∂t
+ 〈∇ρ,u〉

)
dV = 0,



Modelling of fluid mixing and dynamics in curved pipelines 103

by the same computation as in (3). In other words, if u is divergence free, then ϕ
preserves mass (the converse holds as well), i.e.,

∫

B

ρ(0, x) dV =

∫

Bt

ρ(t, x) dV =

∫

B

ρ (t, ϕ (t, x)) detDxϕ(t, x) dV,

for all t ≥ 0. Therefore,

ρ (t, ϕ (t, x)) =
ρ(0, x)

detDxϕ(t, x)
= ρ(0, x), t ≥ 0, x ∈ Ω, (7)

since B was arbitrary and detDxϕ(t, x) ≡ 1 (because div (u) = 0). In particular, the
mass density is independent of time along trajectories of the fluid.

We are now ready to state the incompressible Navier-Stokes equations:



ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u + ρg,

div (u) = 0,

(8)

where (t, x) ∈ [0, T ]× Ω and

• p : [0,∞)× Ω→ R is the internal pressure,

• µ is the dynamic viscosity of the fluid,

• g ≈ 9.81 is the acceleration of gravity,

• T > 0 is a prescribed integration time.

The unknowns in (8) are the internal pressure p and the velocity field u. The mass
density ρ is explicitly given by the initial and boundary conditions, as can be inferred
from (7). Therefore, the number of unknowns and equations in (8) is balanced.
Finally, the system should be supplemented with an initial condition u0 : Ω → R3

and suitable boundary conditions. These are dictated by the physical model under
consideration.

3 Notation and conventions

Here we introduce the coordinates/variables as seen in Figure 1. The pipeline is fully
described using the following coordinates:

• s is tangential to the central line of the pipeline. It is oriented along the flow,
which we chose to be from left to right (water flowing in from the left entrance)

• w is the vertical direction starting from the the central line. It is normal to the
central line and the radial direction q but not to the mixing layer.



104 SWI 2017 Proceedings

• q is normal to both s and w. It is pointing out of the paper in the sketch shown
in Figure 1. We will ignore this coordinate in all our subsequent transformations
since we assume that the liquid is homogeneously distributed along a vertical
cross section (the mixing layer is horizontal).

• α denotes the angle that the central line makes with the horizontal. It is positive
in case the pipeline is sloping downwards and negative in case the pipeline is
sloping upwards (see sketch).

• c and A denote the concentration of methanol in the fluid and the area of
the fluid (see Figure 1), respectively. Since we only have two components, the
concentration of water c̃ satisfies c̃ = 1− c.

• The subscripts u and l denote the upper and lower regions, with respect to the
vertical position of the fluids.

• Dw is the normal diffusion coefficient in the w-direction.

• ψ is a mixing term that will be used in the 1D model in section 5.

Figure 1: Sketch of the 3D pipeline and a cross-section of the pipeline in the vertical
direction.
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4 3D Approach: Coordinate transformation along
the central line

4.1 3D co-moving frame
The non-trivial curvature of pipelines makes it difficult to model the flow of different
fluids and the change in concentration. To account for this, we suggest to perform a
coordinate transformation that allows us to focus on the specific needs: computing
the concentration in the case of miscible fluids. In this section we discuss how such
a transformation can be carried out. Although not fully complete at this point, the
ideas presented in this section may provide a useful approach when worked out in
more detail. We leave a more detailed exploration of these ideas for future study.

The performed coordinate transformation follows the fluid interface and allows
for a stretching in the direction normal to the flow (so where the diffusion is highest
between the two fluids), a method also known as asymptotics. We assume that the
fluids are evenly distributed along a vertical cross-section, as depicted in Figure 1.
Therefore, the y-direction can be omitted when it comes to the spatial distribution of
the fluids. Therefore, our 3D model reduces to a 2D model, centred along the central
line of the pipe s. The height of the interface between the fluids, can be parametrized
as a (non-trivial) function of position and time. Define h(s, t) as the height of the
interface surface, oriented along the w-direction, which is defined to be normal to the
interface surface. Then, for any time t, the interface at point s0 has height h(s0, t).

For immiscible fluids, the concentration of methanol is represented by a Heaviside
function, with changing point at h(s, t):

c0(s, t) =

{
0 if w < h(s, t)
1 if w > h(s, t)

(9)

Note that the immiscible solution has a discontinuous volume fraction c0. The mass
fraction can only be 1 or 0, because there is no mixing. The velocity and pressure
fields are continuous, but there may be discontinuities in their derivatives.

Due to the discontinuity in the volume fractions, the advection-diffusion equations
only hold in integrated form.

4.2 Immiscible and miscible solutions
We will try to find the solution of the miscible system

ρ
∂~v

∂t
+ ρ~vT∇~v = µ∇2~v −∇p+ ρ~g, (10)

∇ · ~v = 0, (11)
∂c

∂t
+ ∇ · c~v = D∇2c. (12)

where D is small. The first two equations are the incompressible Navier-Stokes equa-
tions (8) discussed before. The third equation is the advection-diffusion equations for
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c, with the flow velocity ~v from (10)-(11).

Because the interface moves with the fluid, the time derivative of the water height
is given by the kinematic boundary condition for the interface in two dimensions. :

(
0, 0,

∂h

∂t

)
· ~n = ~v · ~n ⇔ ∂h

∂t
+
∂h

∂s
v0,s = v0,w. (13)

A (non-unit) upward normal vector ~m to the interface is given by

~m :=

(
−∂h
∂s
, 1

)
. (14)

The unit upward normal vector ~n is found by scaling ~m:

~n :=
~m

|~m| . (15)

The directions parallel to the interface are called ~a and ~b:

~a :=
(1, ∂h∂s )

|(1, ∂h∂s )| , ~b := ~n× ~a. (16)

Introduce the coordinate transformation:

s̃(s, χ, t) = s− ∂h(s, t)

∂s
χδ (17)

w(s, χ, t) = h(s, t) + χδ (18)

where χ represents the stretching along the w-axis. Then the derivatives in terms of
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the new coordinates become:

∂c

∂s
=

∂χ

∂s̃

∂s̃

∂s

∂c

∂χ
+
∂s̃

∂s

∂c

∂s̃
(19)

=

(
−∂h
∂s
δ

)−1(
1− ∂2h

∂s2
χδ

)
∂c

∂χ
+

(
1− ∂2h

∂s2
χδ

)
∂c

∂s̃
(20)

∂c

∂w
=

∂χ

∂w

∂c

∂χ
+
∂s̃

∂χ

∂χ

∂w

∂c

∂s̃
(21)

= δ−1
∂c

∂χ
− ∂h

∂s

∂c

∂s̃
(22)

∂2c

∂s2
=

∂2h

∂s2
δ

(
∂h

∂s
δ

)−2(
1− ∂2h

∂s2
χδ

)
∂c

∂χ
+

(
−∂h
∂s
δ

)−1(
−∂

3h

∂s3
χδ

)
∂c

∂χ
(23)

+

(
∂h

∂s
δ

)−2(
1− ∂2h

∂s2
χδ

)2
∂2c

∂χ2
− ∂3h

∂s3
χδ
∂c

∂s̃
(24)

+ 2

(
∂h

∂s
δ

)−1(
1− ∂2h

∂s2
χδ

)
∂2c

∂χ∂s̃
+

(
1− ∂2h

∂s2
χδ

)
∂2c

∂s̃2
(25)

∂2c

∂w2
= δ−2

∂2c

∂χ2
+

(
∂h

∂s

)2
∂2c

∂s̃2
− 2δ−1

∂h

∂s

∂2c

∂χ∂s̃
(26)

(27)

Then the LHS of equation (12) for the concentration becomes:

∂c

∂t
+∇ · c~v =

∂c(s̃, w̃, t)

∂t
+∇ · c(s̃, w̃, t)~v (28)

=
∂c(s̃, w̃, t)

∂t
+
∂c(s̃, w̃, t)

∂s
· vs +

∂c(s̃, w̃, t)

∂w
· vw (29)

=
∂c(s̃, w̃, t)

∂t
+

((
−∂h
∂s
δ

)−1(
1− ∂2h

∂s2
χδ

)
∂c

∂χ
(30)

+

(
1− ∂2h

∂s2
χδ

)
∂c

∂s̃

)
· vs +

(
δ−1

∂c

∂χ
− ∂h

∂s

∂c

∂s̃

)
· vw (31)
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Furthermore, the RHS of (12) becomes:

Dw∇2c = Dw

(
∂2c(s̃, w̃, t)

∂s2
+
∂2c(s̃, w̃, t)

∂w2

)
(32)

= Dw ·
(
∂2h

∂s2
δ

(
∂h

∂s
δ

)−2(
1− ∂2h

∂s2
χδ

)
∂c

∂χ
(33)

+

(
−∂h
∂s
δ

)−1(
−∂

3h

∂s3
χδ

)
∂c

∂χ
(34)

+

(
∂h

∂s
δ

)−2(
1− ∂2h

∂s2
χδ

)2
∂2c

∂χ2
− ∂3h

∂s3
χδ
∂c

∂s̃
(35)

+ 2

(
∂h

∂s
δ

)−1(
1− ∂2h

∂s2
χδ

)
∂2c

∂χ∂s̃
+

(
1− ∂2h

∂s2
χδ

)
∂2c

∂s̃2
(36)

+ δ−2
∂2c

∂χ2
+

(
∂h

∂s

)2
∂2c

∂s̃2
− 2δ−1

∂h

∂s

∂2c

∂χ∂s̃

)

These expressions can lead to the advection-diffusion equation in the new coordi-
nates. Further work is needed to apply a similar approach, using the same coordinate
stretching, to equations (10)-(11). As mentioned at the start of this section, such a
further exploration is beyond the scope of this report, and is left for future study.

5 1D approach: Averaging over the concentrations

5.1 A two-layer model with one space dimension

In this section we discuss a simple model for mixing and diffusion of fluids in a pipeline.
We consider a situation with two layers with different fluid mixtures, one above the
other. This vertical stratification can be the result of e.g. density differences, with the
heaviest mixture in the lower layer and the lightest in the upper layer. Furthermore,
we assume that each layer contains a mixture of two fluids, methanol and water.
We remark that two natural extensions of this simple set-up are (i) to model more
than two layers in the vertical, or even consider a situation of continuous vertical
stratification, and (ii) to let each mixture consist of more than two fluids. Clearly,
the number of layers and the number of mixture components need not be the same.

The fluid mixtures in the upper and lower layers have different horizontal velocities.
The time evolution of the fluid mixtures are governed by 1-dimensional advection-
diffusion equations for the upper and lower layer separately. The spatial coordinate
in these advection-diffusion equations is s, the coordinate along the central line of the
pipe. The two layers exchange fluid at the layer interface, modelled with source/sink
terms in the horizontal advection-diffusion equations. These source/sink terms are
derived from a vertical diffusion equation. For simplicity, we ignore here the angle of
the pipeline, and assume that the pipeline is oriented horizontally so that a vertical
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cross-section forms a perfect circle in a plane orthogonal to the direction of s. The
circle has the diameter of the pipe, denoted D, so we have 0 ≤ w ≤ D for the vertical
coordinate w. We denote by h the height of the layer interface, i.e. the lower layer
extends from w = 0 to w = h, and the upper layer from w = h to w = D.

From here on, we use notations with subscripts u and l to denote quantities for the
upper and lower layer, respectively. The cross-sectional area of the upper layer is Au,
and that of the lower layer is Al. Clearly Au+Al = A with A the total cross-sectional
area A = πR2 and R = D/2 the pipe radius. Given the layer interface height h, we
have

Au = R2 cos−1((h−R)/R) + (R− h)
√

2hR− h2 and Al = πR2 −Au . (37)

5.2 Coupled advection-diffusion equations
We denote by cu the volume fraction of methanol in the upper layer. By construction,
the volume fraction of water in the upper layer, denoted by c̃u, satisfies c̃u = 1− cu.
Likewise, the lower layer methanol and water fractions are denoted cl and c̃l, satisfying
cl + c̃l = 1. Furthermore, let uu and ul be the fluid velocities (in the s-direction) in
the upper and lower layer. We model the time evolution of the fractions cu(s, t) and
cl(s, t) with advection-diffusion equations coupled by a source/sink term:

∂t(cuAu) + ∂s(uucuAu) = ∂s(Du∂s(cuAu)) + ψ (38a)
∂t(clAl) + ∂s(ulclAl) = ∂s(Dl∂s(clAl))− ψ (38b)

We denote partial derivatives with respect to s and t by ∂s and ∂t, respectively.
The velocity fields uu(s, t) and ul(s, t) are given. We assume that the effective axial
diffusion coefficients (Du and Dl) are constant in s and t, and that they are identical
in the upper and lower layer, i.e. Du = Dl. Finally, the term ψ is a source/sink term
that accounts for the exchange/mixing of fluids between the two layers. Below, we
derive an expression for ψ based on a diffusion equation in the vertical direction.

As can be seen, the volume fractions cu, cl depend only on (s, t) in our model
set-up here. Thus, these fractions are assumed constant over the upper (w > h) and
lower (w < h) parts of the pipe cross-section. Any exchange of fluids between the
layers, as modelled by ψ, is assumed to be mixed instantaneously within each layer
in the directions perpendicular to s. This will guide the derivation of ψ.

5.3 Exchange between layers: a source/sink term from the
heat equation

In our model set-up, there is no advection in the vertical direction, only diffusion.
We start our derivation of ψ by considering the methanol volume fraction in a pipe
cross-section (i.e., s is fixed) to be a function of both the vertical coordinate w and
time t, so c = c(w, t). The time evolution is governed by the diffusion equation

∂tc = ∂w(Dw∂wc) (39)
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with diffusion coefficient Dw. Let the initial state of c be the piecewise-constant
(in w) profile with cu in the upper layer and cl in the lower layer. Thus, c(w, 0) =
cl + H(w − h)(cu − cl) with h the interface height and H(.) the Heaviside function.
We assume cu > cl so that the lower layer fluid mixture is heavier than the mixture
in the upper layer (as water is heavier than methanol).

If Dw is independent of w, (39) reduces to the heat equation in 1-d. Below, we use
a simple analytical solution for the heat equation on R, although strictly speaking,
the domain for our problem is finite since w is bounded by the pipe wall. A more
refined treatment, beyond the scope of this report, would be to take account of this
finite domain size (note that the curvature of the pipe wall makes the characterization
of the finite domain complicated). We remark that our primary interest is in diffusion
over small time intervals, so that most of the exchange is (very) close to the layer
interface and effects of finite domain size may not have much impact.

Consider the following standard initial value problem for the heat equation on R:

∂t v = κ ∂2x v , x ∈ R , v(x, 0) =

{
1 if x > 0

0 if x < 0
(40)

with diffusion constant κ > 0. The solution at time t > 0 is

v(x, t) =
1

2
+

1

2
erf
(

x√
4κt

)
(41)

with erf(.) the error function Temme (1996). From the solution at t we can calculate
the amount of exchange over the time interval [0, t] across the interface at x = 0 in
this standard problem:
∫ ∞

0

[v(x, t)− v(x, 0)] dx = lim
x∗→∞

1

2

∫ x∗

0

[
erf
(

x√
4κt

)
− 1

]
dx

= lim
x∗→∞

1

2

[√
4κt

π

(
e−(x

∗)2/(4κt) − 1
)
− x∗ + x∗erf

(
x∗√
4κt

)]

= −
√
κt

π
(42)

where we have used that erf(x)→ 1− exp(−x2)

x
√
π

as x→ +∞ Oldham et al. (2009).

Transforming the standard problem above to the diffusion equation (39) of interest
to us, we obtain for the exchange over a time interval dt the following:

∫ ∞

h

[c(w, dt)− c(w, 0)] dw = −(cu − cl)
√
Dw dt

π
(43)

To obtain an expression for the source/sink term ψ from this, we must take into
account that the vertical exchange takes place over the layer interface with length
2
√

2hR− h2, hence it should be proportional to this length.
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Furthermore, an important assumption is that the amount of exchanged fluid is
instantaneously mixed throughout the upper and lower parts of the pipe cross-section,
with cross-sectional areas Au and Al, respectively. Thus, if we consider the upper layer
at location s and time t, the change in cu over a time interval dt due to fluid exchange
between the layers is

cu(s, t+ dt) =
cu(s, t)Au(s, t) + exchange

Au(s, t)

= cu(s, t)− [cu(s, t)− cl(s, t)]
√
Dw dt/π 2

√
2h(s, t)R− h2(s, t)

Au(s, t)

= cu(s, t)− [cu(s, t)− cl(s, t)]F (s, t)
√
Dw dt

Au(s, t)
(44)

where F is dependent on the interface height h(s, t) :

F (s, t) = 2

√
2h(s, t)R− h2(s, t)

π
(45)

We note that Au depends on (s, t) through h(s, t), see (37). Also, we neglect the
(presumably small) change in h(s, t) (and thus Au) over the time interval dt.

The advection-diffusion equations (38) describe the time evolution of cuAu and
clAl rather than cu and cl. As a result, the factor Au in (44) drops out and we obtain
for the source/sink term

ψ(s, t) = lim
dt↓0

−[cu(s, t)− cl(s, t)]F (s, t)

√
Dw

dt
(46)

Note that ψ diverges in the dt→ 0 limit, a consequence of our set-up with a sharp layer
interface at which the mixture fractions are discontinuous. It implies that ψ should
be interpreted in a weak or distributional sense. For numerical time integration with
time step ∆t we will use ψ(s, t) ∆t ≈ −[cu(s, t)− cl(s, t)]F (s, t)

√
Dw ∆t.

We conclude this section with some remarks about the vertical diffusion coefficient
Dw. Above, we assumed it to be independent of w to obtain an expression for ψ from
the 1-dimensional heat equation. It would make sense to let Dw depend on the (local)
shear, i.e. the horizontal velocity difference between the two layers, |uu(s, t)−ul(s, t)|.
A large shear may generate small-scale turbulence at the layer interface, enhancing
the effective vertical diffusivity. We leave further exploration of this issue for future
study.

6 Implementation
In this section we provide a concise description of the numerical method employed to
approximate solutions of the coupled 1-d advection-diffusion equations presented in
the previous section. For notational convenience, we will replace the subscripts u and
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l by the integers 1 and 2, respectively, and refer to the upper and lower region as the
first and second region, respectively.

The system of equations to be solved is




∂

∂t
(Aici) +

∂

∂s
(uiAici) =

∂

∂s

(
Di

∂

∂s
(Aici)

)
+ (−1)

i+1
ψ,

ci (t, 0) = αi,
∂ci
∂s

(t, L) = βi,

ci (0, s) = c0i (s),

(47)

for 1 ≤ i ≤ 2, where

• T > 0 is the integration time,

• L > 0 is the length of the pipe,

• ui : [0, T ]× [0, L]→ R is the prescribed speed of the mixture in the i-th region
in the direction of the pipe,

• Di ∈ R is the diffusion coefficient of methanol in the i-th region,

• ψ : [0, T ]× [0, L]× R× R→ R models the diffusion across the interface,

• c0i : [0, L]→ R is the initial concentration of methanol,

• αi, βi ∈ R≥0.

The Dirichlet-boundary conditions at s = 0 correspond to a constant stream of
methanol being pumped into the pipe. The Neumann-boundary conditions at s = L
are used to model the outward flux of methanol at the end of the pipe.

The strategy is to first discretize (47) in space by using the Finite Volume Method
(FVM). This results in a system of nonlinear ODEs. The solution of this ODE is then
approximated by using the so-called θ-method. Both methods are discussed in more
detail below.

6.1 Discretization in space

In this section we explain how to discretize (47) in space by using the FVM. The
main idea of the FVM is to approximate the averages of (ci)

2
i=1 instead of the point-

wise values. To this end, partition [0, L] into N ∈ N subdomains of equal size and
let
{
sj := δs

(
j − 1

2

)
: 1 ≤ j ≤ N

}
denote the midpoints of these subdomains, where

δs = L
N (see Figure 2). The objective is to approximate the averages

c̄i,j(t) :=
1

δs

∫ s
j+1

2

s
j− 1

2

ci(t, s) ds, 1 ≤ i ≤ 2, 1 ≤ j ≤ N,
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0 L

s1 sj sNs0 sN+1

δs

Figure 2: The interval [0, L] is subdivided into N subdomains of size δs = L
N . The

boundaries of these subdomains are depicted as black vertical lines. The red dots
correspond to the associated midpoints (sj)

N
j=1. The additional grid-points s0 = − δs2

and sN+1 = L+ δs
2 are needed to approximate

∂ci
∂s

(t, 0), and
∂ci
∂s

(t, L), respectively,
with central differences.

on each subdomain at some prescribed points in time {0 = t0 < t1 . . . < tm = T}.
Observe that if δs is sufficiently small and ci is sufficiently regular, the averages c̄i,j
constitute accurate approximations of the point-values (ci (t, sj))

N
j=1.

Let 1 ≤ i ≤ 2, 1 ≤ j ≤ N and take the average of (47) around sj to obtain the
following equation:

Ai


dc̄i,j
dt

+
(uici)

(
t, sj+ 1

2

)
− (uici)

(
t, sj− 1

2

)

δs




=
AiDi

δs

[
∂ci
∂s

(
t, sj+ 1

2

)
− ∂ci
∂s

(
t, sj− 1

2

)]

+
(−1)

i+1

δs

∫ s
j+1

2

s
j− 1

2

ψ (t, s, c1 (t, s) , c2 (t, s)) ds. (48)

We will now explain how to discretize the latter equation in space for fixed time t. In
order for the following arguments to make sense, we will henceforth assume that δs is
sufficiently small.

Discretization of the spatial derivatives To approximate the spatial derivatives
in the righthand-side of (48) we would like to use the (second order) central difference
approximation

∂ci
∂s

(
t, sj+ 1

2

)
≈ ci (t, sj+1)− ci (t, sj)

δs
≈ c̄i,j+1(t)− c̄i,j(t)

δs
(49)

for 0 ≤ j ≤ N . However, the latter approximation only makes sense for 1 ≤ j ≤ N−1,
since c̄i,0 and c̄i,N+1 are undefined. In order to make sense of (49) for j = 0 and j = N
we formally introduce additional ghost nodes s0 = − δs2 and sN+1 = L+ δs

2 , see Figure
2.
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The value of c̄i,0 is determined by taking an average over the two neighboring
nodes and using the boundary condition at s = 0. In other words, since

αi = ci (t, 0) ≈ ci (t, s1) + ci (t, s0)

2

we set c̄i,0 := 2αi − c̄i,1. Similarly, the value of c̄i,N+1 is determined by using the
Neumann-boundary condition at s = L. That is, since

βi =
∂ci
∂s

(t, L) ≈ ci (t, sN+1)− ci (t, sN )

δs
,

we set c̄i,N+1 := δsβi + c̄i,N . We can now use (49) to approximate the spatial deriva-
tives for 0 ≤ j ≤ N .

Approximation of the nonlinearity If the map s 7→ ψ (t, s, c1(t, s), c2(t, s)) is
sufficiently regular (at the very least L1), then

1

δs

∫ s
j+1

2

s
j− 1

2

ψ (t, s, c1 (t, s) , c2 (t, s)) ds

≈ ψ (t, sj , c1 (t, sj) , c2 (t, sj))

≈ ψ (t, sj , c̄1,j(t), c̄2,j(t)) , (50)

for 0 ≤ j ≤ N . Alternatively, one could use numerical quadrature to approximate the
integral. The latter could potentially yield more accurate approximations provided
s 7→ ψ (t, s, c1(t, s), c2(t, s)) is sufficiently smooth.

Approximation of the advection term To approximate the advection term in
(48) we simply approximate the average of ci, as before, by using its values at the
neighboring nodes:

(uici)
(
t, sj+ 1

2

)
≈ ui

(
t, sj+ 1

2

) ci (t, sj+1) + ci (t, sj)

2

≈ ui
(
t, sj+ 1

2

) c̄i,j+1(t) + c̄i,j(t)

2
, (51)

for 0 ≤ j ≤ N . Recall that we are assuming that ui is known, in the sense that we
can evaluate it at any (t, s) ∈ [0, T ]× [0, L] on the computer.

6.2 Discretization in time
In this section we explain how the spatial discretizations from the previous section
can be used to approximate solutions of (47). Substitution of (49), (50), and (51)
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into (48) yields a system of nonlinear equations of the form




dc̄i
dt

= Q · c̄i + (−1)
i+1

Ψ (t, c̄1, c̄2) , t ∈ [0, T ],

c̄i (0) =
[
c0i (sj)

]N
j=0

,

1 ≤ i ≤ 2, (52)

where c̄i :=
[
c̄i,0 . . . c̄i,N

]T , Q is the (N + 1)× (N + 1) matrix which encodes the
linear part of the equations (i.e. it is the discretization of the advection and diffusion
term), and Ψ : [0, L] × RN+1 × RN+1 → RN+1 corresponds to the nonlinear part
associated to (50).

For notational convenience, we introduce the map F : [0, T ]×R2(N+1) → R2(N+1)

defined by

F (t, c̄) :=

[
Q · c̄1 + Ψ (t, c̄1, c̄2)

Q · c̄2 −Ψ (t, c̄1, c̄2)

]
,

where c̄ :=

[
c̄1
c̄2

]
. Then (52) can be rewritten as





dc̄

dt
= F (t, c̄) , t ∈ [0, T ],

c̄(0) = c0,

(53)

where

c0 =
[
c01 (s0) . . . c01 (sN ) c02 (s0) . . . c02 (sN )

]T
.

Finally, the solution of (53) is approximated at the times (tk)
m
k=0 by using the θ-

method:

c̄ (tk+1) = c̄ (tk) + δk

[
θF (tk, c̄ (tk)) + (1− θ)F (tk+1, c̄ (tk+1))

]
,

where 0 ≤ k ≤ m− 1, δk = tk+1 − tk, and θ ∈ [0, 1] is a fixed parameter.

7 Numerical results
In this section we investigate the behavior of the 1-d model developed in Section 5 with
the aid of numerical simulations. There are many interesting aspects of the proposed
model to investigate; both from a numerical point of view and from a modeling point
of view. Here we restrict our attention to studying the influence of the coupling
term ψ. More precisely, we investigate the dependence of the model on the height
h ∈ (0, D) of the layer interface for two different scenarios. To accomplish this, we
fix all other parameters throughout this section. We note that there are many more
interesting parameter dependencies to investigate and leave this as a topic of future
research.
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Physically relevant parameters We set the length of the pipe and the radius
of its cross-sections equal to L = 2 and R = 1, respectively. The constant volume
fractions of methanol pumped into the upper and lower regions of the pipe are set to
α1 = 1 and α2 = 1

10 , respectively. For the sake of simplicity, we choose the initial
distribution of methanol in both the upper and lower part of the pipe to be constant
throughout the pipe, i.e., c01, c02 : [0, L] → R are constant. Therefore, due to the
Dirichlet boundary conditions at the left-end of the pipe, we must necessarily set
c0i ≡ αi. We impose a Neumann boundary condition at the right end of the pipe
by setting β1 = β2 = 0. Finally, we choose the horizontal and vertical diffusion
coefficients to be the same in each coordinate direction: Dw = D1 = D2 = 10−2.

Computational parameters We use the same computational parameters in all
numerical simulations (see Section 6 for the implementation details). The parameters
associated to the discretization sizes in time and space are set to δk ≡ δ = 10−3 and
N = 200, respectively. The latter corresponds to a uniform spatial discretization of
size L

N . Furthermore, we use θ = 0 to perform the time integration, which corre-
sponds to a backward Euler scheme. Finally, in each numerical simulation, we set the
integration time to T = 10. This particular choice was motivated by the observation
that in all numerical experiments the solutions approached a steady state within this
time frame.

We consider the following two scenarios:

(i) The velocity in the upper part of the pipe is smaller than in the lower part:
u1 = 1

10 , u2 = 1.

(ii) The velocity in the upper part of the pipe is larger than in the lower part:
u1 = 1, u2 = 1

10 .

For each scenario, we have performed numerical simulations for different choices of
the height of the layer interface; we have considered

h ∈ ∆ :=

{
hj :=

5 + j

100
: 0 ≤ j ≤ 95

}
.

7.1 Case (i)

We start with the case in which u1 < u2. In all scenarios, i.e., for all h ∈ ∆, the
volume concentrations of methanol in the upper and lower part of the pipe converged
to a steady state. We have shown the typical behavior of c1 and c2 in Figure 3 for three
different choices of h. The results show that the volume fractions of methanol in the
upper part of the pipe evolved into a decreasing function of s as time progressed. In
particular, the concentration profiles transitioned more quickly into these decreasing
“states” as the height of the layer interface increased. Furthermore, the time in which
c1 approached a steady state decreased as h increased.
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The volume fraction of methanol in the lower part of the pipe evolved into an
increasing function of s as time progressed. For relatively small t, the fractions were
relatively high “near” the right-end of the pipe (the part of the pipe which corresponds
to the green regions in Figures 3d, 3e and 3f). Furthermore, the fractions in these
regions decreased as time progressed. In particular, the rate at which this decrease
occurred (with respect to time) slightly decreased as h increased.

We have depicted the steady states to which c1 and c2 converged in Figure 4
for h ∈ ∆. In all scenarios the steady states were constant in a relatively large
region of the pipe. Furthermore, the size of these regions increased as h increased.
Moreover, the “final” volume fractions of methanol in these parts of the pipe were
(approximately) the same in both the upper and lower region and increased as h
increased from h = 0.05 to h = 1.

(a) h = 0.05 (b) h = 0.2 (c) h = 1

(d) h = 0.05 (e) h = 0.2 (f) h = 1

Figure 3: Case (i): (a), (b), (c) The values of c1 on [0, T ]× [0, L] for various choices
of h. (d), (e), (f) The values of c2 on [0, T ]× [0, L] for various choices of h.

To quantify the assertion that c1 and c2 approached a steady state more quickly
as h increased, recall that we approximated the volume fractions at the following
discrete moments in time: t ∈ T :=

{
kδ : 0 ≤ k ≤ 104

}
, where δ = 10−3. Let ε > 0

be a given tolerance and set

Ti(h) := min
{
t ∈ T : ‖ci (t, ·)− ĉi‖L2([0,L]) < ε

}
, i ∈ {1, 2}, h ∈ ∆,
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Figure 4: Case (i): numerical approximations of the steady states to which c1 and c2
converged for various values of h ∈ ∆. (a) The steady states associated to the upper
part of the pipe. For h close to h0 = 0.05, we have colored the corresponding steady
states in light blue. As h increased to 1, we have used increasingly darker shades of
blue. (b) The steady states associated to the lower part of the pipe. For h close to
h0 = 0.05, we have colored the corresponding steady states in orange. As h increased
to 1, the color of the steady states transitioned from orange to red.

where ĉi : [0, L] → R is a numerical approximation of the steady state to which ci
converged. In practice, we set ĉi = ci (T, ·). We remark that it would be more accurate
to determine an approximation ĉi by directly solving the steady state equation (an
ODE). In any case, if ĉi is a sufficiently accurate approximation of the steady state
in question (which we are assuming) and ε > 0 is sufficiently small (but not too
small), then Ti can be used to substantiate the above assertion. More specifically,
if Ti (h1) < Ti (h2), then we have numerical evidence for the claim that the solution
associated to h1 approached a steady state more quickly than the solution associated
to h2.

We have depicted the points {(h, Ti(h)) : h ∈ ∆} on the graph of Ti for ε = 10−5

and i ∈ {1, 2} in Figure 5. The results support our claim and show that c1 and c2
approached a steady state more quickly as h increased.

7.2 Case (ii)

Finally, we consider the case in which u1 > u2. The typical behavior of the fractions
is shown in Figure 6. In each scenario, the observed behavior was similar (but not
entirely the same) as in the previous case. In particular, c1 and c2 both approached
a steady state as time progressed. The steady state associated to the upper part of
the pipe was decreasing in s and the one associated to the lower part was increasing.
Furthermore, both steady states were constant in a relatively large part of the pipe.
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Figure 5: The dependence of Ti on the height of the interface for i ∈ {1, 2}. The
depicted curves were obtained by sampling Ti on ∆.

A key difference in this case is that the volume fraction of methanol “near” the
right-end of the pipe (the “upper” green regions in Figure 6) increased as time pro-
gressed, whereas in the previous case it decreased. Furthermore, on average, the
methanol fraction throughout the pipe was higher than in the previous case. Another
noticeable difference is that the values of the steady state solutions decreased as h
increased in those regions of the pipe where the “final” fractions were constant, see
Figure 7.
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(a) h = 0.05 (b) h = 0.2 (c) h = 1

(d) h = 0.05 (e) h = 0.2 (f) h = 1

Figure 6: Case (ii) (a), (b), (c) The values of c1 on [0, T ]× [0, L] for various choices
of h. (d), (e), (f) The values of c2 on [0, T ]× [0, L] for various choices of h.
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Figure 7: Case (ii): numerical approximations of the steady states to which c1 and c2
converged for various values of h ∈ ∆. (a) The steady states associated to the upper
part of the pipe. For h close to h0 = 0.05, we have colored the corresponding steady
states in light blue. As h increased to 1, we have used increasingly darker shades of
blue. (b) The steady states associated to the lower part of the pipe. For h close to
h0 = 0.05, we have colored the corresponding steady states in orange. As h increased
to 1, the color of the steady states transitioned from orange to red.


