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Abstract

In this note we show that the polytope associated with the IP model introduced
by Zwaneveld and Verweij (6) is not integer. We also prove that, for a fixed
number of dike segments, the problem can be solved in polynomial time. Sim-
ilarly, we show that for a fixed number of allowed barrier heights, the problem
can be solved in polynomial time.

1 Introduction
Protection against increasing sea levels is an important issue around the world. Op-
timal dike heights are of crucial importance to the Netherlands as almost 60% of its
surface is under threat of flooding from sea, lakes, or rivers. This area is protected
by more than 3500 kilometers of dunes and dikes. These dunes and dikes require
substantial yearly investments of more than 1 billion euro (5).

Recently, Zwaneveld and Verweij (6) gave an integer programming model for a
cost-benefit analysis to determine optimal dike heights that allows input-parameters
for flood probabilities, damage costs and investment costs for dike heightening. The
model by Zwaneveld and Verweij (6) is an improvement of the model proposed by
Brekelmans et al. (1), who presented a dedicated approach with no optimality guaran-
tee, and which was in turn an improvement of the original model by van Dantzig (4)
from 1956. The latter was introduced after a devastating flood in the Netherlands in
1953.
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Our work is based on the IP model presented in a recent manuscript by Zwan-
eveld and Verweij (6), where the authors study the problem of economical optimal
flood prevention in a situation in which multiple barriers dams and dikes protect the
hinterland to both sea level rise as well as peak river discharges. Current optimal
flood prevention methods (Kind (3), Brekelmans et al. (1)) only consider single dike
ring areas with no interdependency between dikes. Zwaneveld and Verweij (6) present
a model for a cost-benefit analysis to determine optimal dike heights with multiple
interdependencies between dikes and barrier dams, and they also show that it can be
solved quickly to proven optimality. The model was presented at the Study group
Mathematics and Industry (SWI), taking place in Amsterdam in the last week of
January 2017. It was our task at SWI 2017 to give a better understanding of the
mathematical complexity of the model proposed by Zwaneveld and Verweij. The
present report summarizes our approaches and results that were obtained during the
week that SWI took place and the weeks after it.

We will follow the notation used in Zwaneveld and Verweij (6). Before going
into the details of the problem, let us introduce some important terminology and the
geographical configuration of the dikes in the Netherlands. A dike segment is a part
of a dike that is protecting a region. It is possible that several segments protect the
same area and in that case they are called a dike ring. In the Netherlands, dike ring
areas and smaller dikes lie beneath the Afsluitdijk, sometimes denoted by the barrier
dam, which is the most outer dike located in the north. The Afsluitdijk separates the
North Sea and the IJsselmeer, an artificial lake.

In this paper we show that the polytope associated to the IP model introduced
by Zwaneveld and Verweij (6) is not integer. Moreover, we present some sufficient
conditions that allows the linear relaxation of the integer programming to avoid these
non-integral points. We also prove that, for a fixed number of dike segments, the
problem can be solved in polynomial time. Similarly, we show that for a fixed number
of allowed barrier heights, the problem can be solved in polynomial time. This paper
is organized as follows. In Section 2 we introduce the IP model that forms the subject
of our investigations. In Section 3 we discuss integrality of the polytope. In Section
4 we propose an alternative approach to solve the problem by means of dynamic
programming. Finally, in Section 5 we present a natural abstract version of the dike
height problem, which allows for several variations and open problems.

2 IP Model formulation

In this section we present the model formulated in (6).
Throughout we use the following notation:

• D is the set of dike segments.

• HD is the set of possible heights for a dike segment. For ease of notation, we do
not let HD depend on the dike segment, i.e., all dike segments have the same
set of possible heights. We denote the height of a previous year by h1, and that
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of the current year by h2. Likewise, HB is the set of possible heights for the
barrier dam and we denote the height of the barrier in the previous year by hB1 ,
and that of the current year by hB2 .

• T is the set of time periods at which changes to a dike segment can be made
(e.g., one can assume that changes are scheduled per year), for simplicity we
assume (with abuse of notation) T = {0, 1, . . . , T}.

The decision variables are:

• CY (t, d, h1, h2) ∈ {0, 1}. The variable being one meaning that dike ring d is
updated in time period t from height h1 up to height h2. If h1 = h2 then this
dike ring segment is not strengthened in period t and remains at its previous
height. This decision variable is used for tracking investment (and maintenance)
costs.

• DY (t, d, h2, h
B
2 ) ∈ {0, 1}. It is one if at the end of period t the barrier dam

has height hb2, and dike segment d is of height h2. This variable is used to
connect investments in dike segments (and the barrier dam) to expected dam-
ages. Another way to view it is that this variable linearizes the 0-1 variable(∑

h1
CY (t, d, h1, h2)

) (∑
hB
1
B(t, hB1 , h

B
2 )
)
.

• B(t, hB1 , h
B
2 ) ∈ {0, 1}. It is one if the barrier dam (i.e., the Afsluitdijk) is

updated in time period t from height hB1 up to hB2 . If hB1 = hB2 then the barrier
dam is not strengthened in period t and remains at its previous height. This
decision variable is used for bookkeeping investment (and maintenance) costs,
flood probabilities and related expected damage costs of the barrier dam.

The input parameters are:

• Dcost(t, d, h1, h2) = costs for investment and maintenance, if dike ring d is
strengthened in time period t from h1 to h2. If h1 = h2, the dike ring segment
is not strengthened and these costs only represent maintenance costs.

• Dexpdam(t, d, h2, h
B
2 ) = expected damage, i.e.,

Dexpdam(t, d, h2, h
B
2 ) = prob(t, d, h2, h

B
2 )× damage(t, d, h2, hB2 ),

where prob(t, d, h2, hB2 ) and damage(t, d, h2, hB2 ) are respectively the probability
of failure and the expected damage cost (the latter given that there is a flooding)
in period t given the height of the segment h2 and the height of the barrier hB2 .
Note that it is assumed that both the probability of failure and the expected
damage upon failure of dike segment d only depend on the height of segment d
and that of the barrier dam.

• Bcost(t, d, hB1 , hB2 ) = costs for investment and maintenance, if the barrier dam
is strengthened in time period t from hB1 to hB2 . If hB1 = hB2 , the barrier dam is
not strengthened and these costs only represent maintenance costs.
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• Bexpdam(t, hB2 ) = expected damage of a flooding of the barrier dam, i.e.
prob(t, hB2 ) × damage(t, hB2 ), here prob(t, hB2 ) and damage(t, hB2 ) are respec-
tively the probability of failure and the expected damage cost (the latter given
that there is a flooding), in period t given the height of the barrier hB2 .

All input parameters are calculated in net present value of a certain year (i.e. 2015,
which is the starting year for our calculations) and represent price levels in a certain
year.

The IP model is:

minimize
∑

t∈T

∑

d∈D

∑

h1∈HD

∑

h2≥h1

Dcost(t, d, h1, h2) · CY (t, d, h1, h2) + (1)

∑

t∈T

∑

d∈D

∑

h2∈HD

∑

hB
2

Dexpdam(t, d, h2, h
B
2 ) ·DY (t, d, h2, h

B
2 ) + (2)

∑

t∈T

∑

hB
1 ∈HB

∑

hB
2 ≥hB

1

(
Bcost(t, hB

1 , h
B
2 ) +Bexpdam(t, hB

2 )
)
·B(t, hB

1 , h
B
2 ) (3)

subject to

CY (0, d, 0, 0) = 1, CY (0, d, h1, h2) = 0 ∀d ∈ D,h1, h2 ∈ HD, h2 ≥ h1 ∧ h2 > 0 (4)
∑

h1≤h2

CY (t− 1, d, h1, h2) =
∑

h3≥h2

CY (t, d, h2, h3) ∀t ∈ T>0, d ∈ D,h2 ∈ HD (5)

∑

h1≤h2

CY (t, d, h1, h2) =
∑

hB
2

DY (t, d, h2, h
B
2 ) ∀t ∈ T, d ∈ D,h2 ∈ HD (6)

B(0, 0, 0) = 1, B(0, hB
1 , h

B
2 ) = 0 ∀hB

1 , h
B
2 ∈ HB , h

B
2 ≥ hB

1 ∧ hB
2 > 0 (7)

∑

hB
1 ≤hB

2

B(t− 1, hB
1 , h

B
2 ) =

∑

hB
3 ≥hB

2

B(t, hB
2 , h

B
3 ) ∀t ∈ T\{0}, d ∈ D,hB

2 ∈ HB (8)

∑

hB
1 ≤hB

2

B(t, hB
1 , h

B
2 ) =

∑

h2

DY (t, d, h2, h
B
2 ) ∀t ∈ T, d ∈ D,hB

2 ∈ HB (9)

CY (t, d, h1, h2) ∈ {0, 1} ∀t ∈ T, d ∈ D,h1 ∈ HD, h2 ≥ h1 ∈ HD (10)

DY (t, d, h2, h
B
2 ) ∈ {0, 1} ∀t ∈ T, d ∈ D,h2 ∈ HD, hB

2 ∈ HB (11)

B(t, hB
1 , h

B
2 ) ∈ {0, 1} ∀t ∈ T, d ∈ D,hB

2 ≥ hB
1 ∈ HB (12)

3 On the integrality of the polytope
In this section we show that, in general, there are vertices of the polytope defined by
the linear relaxation of the constraints (when the integer values are considered to be
in the interval [0, 1] instead of {0, 1}), that have non integral coordinates.
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Figure 1: Example of non-integer point.

(t = 0, h = 0) (t = 1, h = 0)

(t = 1, h = 1)

(t = 2, h = 0)

(t = 2, h = 1)

CY (1, 0, 0) = 1/2

CY (1, 0, 1) = 1/2

CY (2, 1, 1) = 1/2

CY (2, 0, 0) = 1/2

CY (2, 0, 1) = 0

(t = 0, hB = 0) (t = 1, hB = 0)

(t = 1, hB = 1)

(t = 2, hB = 0)

(t = 2, hB = 1)

B(1, 0, 0) = 1/2

B(1, 0, 1) = 1/2

B(2, 0, 0) = 1/2

B(2, 1, 1) = 1/2

B(2, 0, 1) = 0

DY (1, 1, 0) = 1/2

DY (1, 0, 1) = 1/2
DY (2, 0, 0) = 1/2 DY (2, 1, 1) = 1/2

The example involves the following sets indexing the variables.

• T = {0, 1, 2}

• one segment. Hence, we remove the dike index from all related variables.

• H = {0, 1}, HB = {0, 1}

The point P , candidate to be a vertex of the polytope of the linear relaxation, has
the following non-zero values:

• CY (t, h1, h2): CY (0, 0, 0) = 1, CY (1, 0, 1) = 1/2, CY (1, 0, 0) = 1/2, CY (2, 1, 1) =
1/2, CY (2, 0, 0) = 1/2.

• B(t, h1, h2): B(0, 0, 0) = 1, B(1, 0, 1) = 1/2, B(1, 0, 0) = 1/2, B(2, 1, 1) = 1/2,
B(2, 0, 0) = 1/2.

• DY (t, h2, h
B
2 ): DY (0, 0, 0) = 1,DY (1, 0, 1) = 1/2,DY (1, 1, 0) = 1/2,DY (2, 1, 1) =

1/2, DY (2, 0, 0) = 1/2.

The example is summarized in Figure 3 where each arrow corresponds to one of
the decision variables.
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One can check that the example is a feasible solution (a point in the polytope).
Indeed, the flow conditions are verified, as well as the equations linking the dummy
variables DY and the CY ’s and B’s (Equations (6) and (14)).

To argue that the point P is indeed a vertex of the polytope, we show that, for
every line with non-zero direction vector v = (x0, . . . , x14), and for every ε > 0, either
P + εv or P − εv is outside the polytope. Every coordinate xi of v corresponds,
uniquely, to a variable B(·), CY (·), or DY (·).

First observe that if xi is the coordinate related to a variable that is either 0 or 1
in P , then xi = 0, as otherwise, for any ε, either P + εv or P − εv would be outside
of the polytope. Hence, the only xi that may be non-zero, are those for which the
coordinate i in P is in the open interval (0, 1).

In our example, every equation involves at most 2 variables on each side of the
equality, one of them being either 0 or 1. Hence the implications written below
are forced by the previous observation. Assume, for instance, that the coefficient xi
corresponding to B(2, 1, 1) in v is negative.

• Then, by the flow constraints (Equation (8)), the coefficient of B(1, 0, 1) is
negative.

• Then, by the flow constraints, the coefficient of B(1, 0, 0) is positive.

• Then, by the flow constraints, the coefficient of B(2, 0, 0) is positive.

Now, using the equations that link the variables B and DY , we obtain that the
the coefficient of DY (2, 1, 1) is positive, which implies that

• the coefficient of CY (2, 1, 1) in v is positive.

• Then, by the flow constraints, the coefficient of CY (1, 0, 1) is positive.

• Then, by the flow constraints, the coefficient of CY (1, 0, 0) is negative.

• Then, by the flow constraints, the coefficient of CY (2, 0, 0) is negative.

Observe now that this implies that the coefficient of DY (2, 0, 0) has to be negative.
However, let us now look at the coefficients of DY (1, 0, 1) and the one corresponding
to DY (1, 1, 0).

If we use the links between the variables DY and B, the coefficients corresponding
to the variables DY (1, 0, 1) and DY (1, 1, 0) in v have to be negative and positive
respectively. However, if we look at the equations linking the variables DY and CY ,
the signs of the coefficients should have the opposite sign. Thus, these coefficients
should be zero, implying that all the other coefficients have to be 0, which shows that
no non-zero vector v exists.

The first coefficient involved in the argument was the one involving the variable
B(2, 1, 1). Since the implications described here involve all the non-zero variables of
the point, and the implications are reversible, the result now follows.



Optimal dike heights around the IJsselmeer 21

3.1 Avoiding the non-integral points
We present here a sufficient condition on the objective function (1)–(3), that guaran-
tees that either the linear relaxation of the integer program finds an integral point as
a solution, or that there is an integral point in the optimal face and a procedure to
find it.

Proposition 1. Assume that, for every h2 ≤ h′2 and hB
2 ≤ h′B2 the objective function

satisfies:

Dexpdam(t, i, h′2, h
B
2 ) +Dexpdam(t, i, h2, h

′B
2 ) ≥ Dexpdam(t, i, h2, h

B
2 ) +Dexpdam(t, i, h′2, h

′B
2 )
(13)

and that, if h1 ≤ h′1 and h2 ≤ h′2, then, for every t,

Bcost(t, h1, h
′
2) +Bcost(t, h

′
1, h2) ≥ Bcost(t, h1, h2) +Bcost(t, h

′
1, h
′
2) (14)

and, for every t and d,

Dcost(t, d, h1, h
′
2) +Dcost(t, d, h

′
1, h2) ≥ Dcost(t, d, h1, h2) +Dcost(t, d, h

′
1, h
′
2) . (15)

Then, there is an optimal solution of the linear relaxation of the IP model in Section 2
with integer coordinates.

Proof of Proposition 1. The problem from Section 2 can be thought of as several
intertwined min-cost flow problems (see Section 5), one for each dyke, and one for the
barrier.

Let x0 be a solution point given by the linear relaxation, and assume it is non-
integral. Using the monotone relations (14) and (15), the paths of the non-zero
flows that x0 defines for each of the dykes and the barrier can be assumed to be
completely ordered (as otherwise, the flow values on the edges might be modified while
maintaining the value of the in flow and out flow at each vertex while not increasing
the objective function). So, we obtain a layered flow, where no two flow-paths strictly
cross between two layers of vertices corresponding to two different consecutive times.
In particular, for each of the dykes d, we can talk about a top path Ud (the height
profile being always larger or equal than all the other height profiles), and a bottom
path Ld, whose heights are smaller or equal than all the other height profiles. There
is also a top UB and bottom LB paths for the flow of the barrier.

Observe that, as x0 is non-integral, at least one of the variables DY is non-integral
(either not equal to zero or not equal to one). Let DYmin be the minimal distance of
the non-integral variables to either 0 or 1.

Using (13) as a guideline repeatedly, we modify the variables DY from x0 to create
a new feasible solution x1 in which the variables DY (t, i, h2, h

B
2 ) are “untangled”. In

particular, we can assume that

DYx1(t, i, h2(Ui), h
B
2 (UB)) =

= min




∑

h2

DYx0
(t, i, h2, h

B
2 (UB)),

∑

hB
2

DYx0
(t, i, h2(Ui), h

B
2 )




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and that

DYx1
(t, i, h2(Li), h

B
2 (LB)) =

= min




∑

h2

DYx0(t, i, h2, h
B
2 (LB)),

∑

hB
2

DYx0(t, i, h2(Li), h
B
2 )





by reassigning some mass of the variables DY that are crossed. The remaining vari-
ables of x0 are kept equal in x1. The reassignment is done in a way to preserve the
flow constraints, so x1 remains feasible. By (13), x1 has the same objective value as
x0, since x0 is optimal.

Let Fmin be the minimal difference to 0 or 1 of the flow through each Ld, Ud for
every dyke d and LB or UB , which can be assumed to be the minimal value of

min
t,i

{
DYx1

(t, i, h2(Ui), h
B
2 (UB)), DYx1

(t, i, h2(Li), h
B
2 (LB))

}

We note that x1 is not a vertex of the polytope. Indeed, for any dyke d, we can
pair up Ld ↔ LB and Ud ↔ UB . Using (14) and (15), this pairing is well defined and
consistent. In particular, we can redirect an ε flow (0 < ε ≤ Fmin) from each of the
Ld to Ud and from LB to UB , or viceversa (the redirection of the flow should be done
on each of the paths simultaneously, either from upper to lower paths, or from lower
to upper ones). Since there exists a d (or B) for which the paths Ld and Ud differ,
this flow-redirection by ε gives a different point on the polytope of feasible points and
shows that x1 is not a vertex of the polytope.

Furthermore, for every ε > 0, the mentioned flow redirection should give the same
value of the objective function (since otherwise x0 would not have been an optimal
solution). Hence we can choose to redirect the flow at our convenience; we redirect it
so that the edge whose flow-value is Fmin becomes either 0 or 1 (depending on whether
its value is closer to 0 or to 1, if Fmin = 1/2, we arbitrarily redirect the flow either
way). In particular, we have obtain a new solution x2 where the number of edges with
non-integral flow has been reduced, at least, by one. This procedure can be iterated
until no non-integral flows are found. Therefore, an integral vertex of the polytope in
the optimal face of the linear relaxation of the integer program is found.

4 Alternative approaches
A feasible solution to the integer program presented in Section 2 can be interpreted
as a choice of height hd(t) for each dike segment at each time period t, and a height
hb(t) of the barrier dam. Abstractly, the cost of these height series can be written as
a sum of cost terms which depend only on the ‘upgrade’ done in period t to segment
d (i.e., a heightening of the dike, or merely the maintenance cost), we denote this by
costd(hd(t− 1), hd(t), t) for segment d, and by costb(hb(t− 1), hb(t), t) for the barrier.
Finally, there is also an expected damage cost for upgrading the dike and barrier to
heights hd(t) and hb(t) in period t, denoted by damd,b(hb(t), hd(t), t). The problem
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modeled in Section 2 can thus be written in the following way:

d− opt =

min
{ ∑

t∈[T ]

costb(hb(t− 1), hb(t), t) +
∑

d∈D
costd(hd(t− 1), hd(t), t) + damd,b(hb(t), hd(t), t)

s.t. hd(t) ∈ HD, hb(t) ∈ HB for d ∈ D, t ∈ T

hd(t) ≥ hd(t− 1) for d ∈ D, t ∈ T

hb(t) ≥ hb(t− 1) for t ∈ T
}

The linear relaxation of the integer programming model presented in Section 2 can be
solved in time polynomial in |D|, |T |, |HD|, and |HB |. However, in general there is no
guarantee that the returned solution is integral, see Section 3. In the next two sections
we describe two different approaches to solving this problem. Both approaches have
the benefit of solving the integer problem exactly. However, this comes at a cost:
both approaches give a polynomial time algorithm only if one of the parameters is
regarded as a constant. The first approach is to solve the integer program by ways
of a dynamic program. The second approach comes down to enumerating all possible
height profiles of the barrier dam, and for each profile solving shortest path problems
on small graphs.

4.1 Dynamic programming
There are two key observations to be made. First, the second part of the objective
function decomposes naturally into a sum of |D| terms, each of which depends only
on the barrier height and one segment. Secondly, for each time period the cost only
depends on the dike/barrier heights at times t − 1 and t. Together this allows us to
solve the problem using a dynamic program. The recursion will be on the time period.
We maintain the following table: opt(hb,hs, t) for all t ∈ T, hb ∈ HB ,h

d ∈ (HD)D.
The interpretation is as follows, opt(hb,hd, t) is equal to the minimum cost made,
up to time t, if the barrier and segments are of height hb and hd at time period t
respectively. We can compute the entries of this table as follows:

opt(hb,hd, t) = min
{
opt(hb − ib,hd − id, t− 1) + costb(hb − ib, hb, t)+

cost(hd − id,hd, t) + dam(hb,hd, t) :

hb − ib ∈ HB ,h
d − id ∈ (HD)|D|

}

It follows that each entry of the table can be computed in time O(|HB ||HD||D|).
Hence, all entries of the table can be filled in time O

(
(|HB ||HD||D|)2 · |T |

)
. Using the

interpretation of opt(hb,hd, t) it follows that

d− opt = min
hb∈HB ,hd∈(HD)|D|

opt(hb,hd, T )

This shows the following result:
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Theorem 4.1. One can determine d− opt in time O
(
(|HB ||HD||D|)2 · |T |

)
.

4.2 Shortest paths

In the previous section we have seen an algorithm for computing the optimal dike/barrier
height profiles which has polynomial runtime for a fixed number of dike segments, in
this section we present a different algorithm, based on shortest paths, that runs in
polynomial time when the number of possible barrier heights is fixed. We present an
algorithm that computes d− opt in time

O




# segments︷︸︸︷
|D| · (T · |HD|)2︸ ︷︷ ︸

Complexity shortest path

·
# barrier height profiles︷ ︸︸ ︷

T |HB |


 .

To illustrate the basic idea we first discuss the algorithm for the setting of one dike
segment and no barrier, we then add a barrier dam and from that the generalization
to multiple dike segments and barriers easily follows.

4.2.1 One dike segment, no barrier

First consider the situation with only one dike segment and no barrier. In this case
the problem of minimizing the cost at time period T becomes equivalent to finding a
shortest p-q path in the following graph. The source p = (0, 0) is the initial height of
the dike at time 0. Then, for each time t ∈ [T ] and each possible height of the dike
h, we define a node (t, h). Finally we define a sink node q. The edges are defined as
follows. We first add an edge between (0, 0) and (1, h) for each h ∈ HD, with weight
cost(0, h, 1), similarly for each t ∈ [T ] and height pair h1 ≤ h2 there is an edge from
(t − 1, h1) to (t, h2) with weight cost(h1, h2, t) equal to the financial cost associated
to the decision of raising the dike segment from height h1 to h2 in time period t.
Notice that since there is no barrier, we can assume that the expected damage cost
dam(t, h) are incorporated in cost(h1, h2, t). Finally, the nodes (T, h) are all connected
to the sink q. In the figure below the incoming and outgoing arcs of a node (t, h2) are
sketched for some 0 < t < T and h2 ∈ HD. One observes that, indeed, the shortest
p-q path corresponds to the best strategy of heightening this dike segment.

Recall, the shortest p-q path in a graph G = (V,E) with nonnegative edge weights
can be found in time O(|V |2) using Dijkstra’s algorithm.
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(t− 1, h2)

(t− 1, h2 − 1)

(t− 1, h2 − 2)

(t, h2) (t+ 1, h2)

(t+ 1, h2 + 1)

(t+ 1, h2 + 2)

cost(t, h1, h2)

4.2.2 One dike segment, a barrier

We now consider the case of a single dike segment and a barrier. The observation we
need to make is that the total financial cost incurred by upgrading the dike segment
from height h1 to height h2 in time period t no longer only depend on the dike segment,
they also depend on the height of the barrier at time point t. This means that we
cannot solve a shortest path problem for the barrier and dike segment separately: the
costs on the dike segment graph depend on the path chosen in the barrier graph.

The key idea is that if we fix the height of the barrier at each time t, then we
reduce to the previous setting where all the costs are known. Hence, the optimization
problem d− opt can be solved by minimizing over the possible height profiles hb(t) of
the barrier over time, the minimum cost of a p-q path in the network defined in the
previous section (using the costs associated to hb(t)) plus the cost of implementing
height profile hb(t). The outer minimization over the possible height profiles hb(t)
is performed by enumeration, which takes time roughly T |HB |. This means that the
optimal investment strategy for both the dike segment and barrier can be found in
time

O
(
(T · |HD|)2 ·

(
T

|HB |

))
= O

(
(T · |HD|)2 · T |HB |

)
.

4.2.3 Multiple dike segments and a barrier

The approach of the previous section easily generalizes to the setting of multiple
dike segments and a barrier. Once a height profile hb(t) of the barrier dike is fixed,
the optimal height profiles of each of the different dike segments can be computed
independently. Hence the problem of finding the optimal investment strategy for
multiple dike segments and a barrier can be solved in time

O
(
|D| · (T · |HD|)2 · T |HB |

)
.
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This approach generalizes to the setting of multiple barriers and dike segments (where
the costs of a dike segment at time t may depend on the height of several barriers).
The complexity will be of the form

O
(
|D| · (T · |HD|)2 · T |HB ||B|

)
,

where |B| is the number of barriers. One should note that the above approach assumes
the same discretization in time of the barrier and dike segments. It seems reasonable
to assume a coarser discretization for the barrier of say TB steps, this would reduce
the above-mentioned formula to

O
(
|D| · (T · |HD|)2 · (TB)|HB ||B|

)
.

5 An abstraction of the problem
In this section we present a natural abstract version of the dike height problem, which
allows for several variations and questions, which we believe have not been considered
in the literature before. We believe that studying these variations may shed more
light on the complexity of the dike height problem.

In the dike height problem we essentially have two directed graphs where each path
in one of the two graphs (the one modeling the height of the barrier dam) influences
the cost of arcs in the other graph. It is not difficult to show that if we were to allow
any kind of influence of the path in the one graph on the cost of arcs in the other
graph, the problem would automatically become NP-hard. Indeed, one can easily
show that in this case the problem contains the problem of finding two vertex disjoint
paths in a directed graph, which is NP-complete (2).

For this reason, we consider the following restricted problem.

Definition 5.1. For k ∈ N, a k-layered graph is a directed graph D = (V,A) such
that V is partitioned into layers V = V0 ∪V1 ∪ . . .∪Vk ∪Vk+1 such that each a ∈ A is
from Vi to Vi+1 for some i = 0, . . . , k and where V0 and Vk+1 both consist of a single
vertex and where |V1| = |V2| = · · · = |Vk|. We denote the arcs between Vi and Vi+1

by A[Vi, Vi+1] and we refer to |V1| as the partition size.

Definition 5.2 (Minimum intertwined-cost path).
Input: two k-layered graphs G1 = (V1, A1), G2 = (V2, A2), with partitions Vi =

V
(i)
1 ∪ . . . ∪ V (i)

k , respectively, cost functions c1 : A1 → R≥0, c2 : A2 → R≥0 and for
each i = 1, . . . , k a map mi : V

(2)
i ×A[Vi−1, Vi]→ R≥0.

Given a path P2 = (a1, v1, a2, v2, . . . , ak, vk, ak+1) from V
(2)
0 to V (2)

k+1 and a path
P1 = (a′1, . . . , a

′
k+1) from V

(1)
0 to V (1)

k+1, we define the cost of the pair (P1, P2) as

cost(P1, P2) =
k+1∑

i=1

(c1(ai) + c2(a
′
i)) +

k+1∑

i=1

mi(vi, ai).
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Output: the minimum cost of a pair of paths (P1, P2) over all pairs and a pair of
paths (P ∗1 , P ∗2 ) attaining this minimum.

In the Minimum intertwined-cost problem, the dependence of cost(P1, P2) on the
path P2 is linear in the edges of P2. It is not difficult to see that the dike height problem
in Section 4.2.2 can be modeled as a special case of the Minimum intertwined-cost path
problem, where for both graphs the arcs between Vi and Vi+1 are somewhat restricted.
More precisely, if we identify each V (2)

i (i = 1, . . . , k) with HB =: {h1, . . . , ht} then
the only arcs that are present are of the from (hi, hj) with hi ≤ hj . This particular
fact allowed us in Section 4.2.2 to give an algorithm for the problem, which runs in
polynomial time if we consider the size of the sets in the partition of the vertices of
the second graph as a constant. Clearly if the bipartite graphs between V (2)

i and V (2)
i+1

are complete, then this dynamic programming approach will not work. It would be
interesting to find out if some other approach may yield an efficient algorithm.

We end this section with some concrete questions.

Question 1. Is the Minimum intertwined-cost path problem NP-hard?

If this question has a positive answer, then it makes sense to consider the following
questions.

Question 2. Under which conditions on the bipartite graphs Gj [V
(j)
i , V

(j)
i+1], (j = 1, 2,

i = 1, . . . , k) is there a polynomial time algorithm for the Minimum intertwined-cost
path problem?

Question 3. Suppose the partition size of G2 is constant. Under which conditions
on the bipartite graphs Gj [V

(j)
i , V

(j)
i+1] (j = 1, 2, i = 0, . . . , k) is there a polynomial

time algorithm for the Minimum intertwined-cost path problem?
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