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Abstract

Autoregression models are used by Ortec Finance to forecast the evolution
of economic variables, such as interest rates. To distinguish the impact of short,
medium and long term fluctuations, the company decomposes their models into
three components: month, business and trend, respectively. We answer the
question of how to design a model, so that predictions generated for a given
frequency band do not overlap with other frequencies. We also discuss several
other related matters, i.e. how to address the frequency leaking problem, how to
choose the number of frequencies in each band and how our method generalizes
to time-dependent models.
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1 Introduction

This paper contains results on the problem of designing a good filtering method for
autoregression models posed by Ortec Finance for the 114th European Study Group
Mathematics with Industry. The general setting of the problem is as follows. Suppose
we have a time series r = {r;};, where r is a quantity of interest (such as interest
rate, oil price etc.), or a collection thereof, and ¢ € Z is a time parameter which takes
discrete steps (representing months, years etc.). We want to make future predictions
of ry, given a historical set of values. A natural approach for forecasting based on
data of such a time series is to describe it as a function of its predecessors

re = f(ree1,me—2,...) + €, (1)

where f is some function and ¢; is a sequence of independently, identically distributed
random variables representing the probabilistic nature of future predictions. Vaguely
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put, the aim is to choose f as simple as possible, while minimizing the deviation of
the error terms ¢;. Often f is taken to be linear and dependent on only finitely many
predecessors, in which case the model is called the AR (k) model:

k

Ty =C+ E ApTi—p + €,
p=1

with a, € R. We will assume that the ¢; are independent and identically distributed
with mean 0 and the same standard deviation o. Such a set {e:}: is called white
noise.

The AR(k) model is a special case of the vector regression model, where r; and ¢;
are both vector valued and the recursive structure is given by

re=c+ Ari_1 + € (2)

where A is a matrix and ¢ a vector. We will impose the restriction ||A|| < 1, where
[|A|| denotes the operator norm of A, which will allow us to discard high powers of
A. Intuitively, this condition amounts to stability of the model, but we will not make
this statement precise.

By demeaning the data we can take ¢ = 0. Let us also assume that the sequence
starts at t = 0 with value ryo. Then, equation has the following solution

t—1

ry = ZAlet—l + At’l“o.
=0

Note that the expectation E(r:) decays to 0 as time goes to infinity, because the e;
have zero mean and ||A|| < 1. Furthermore, as time becomes large the effect of the
initial value diminishes.

Of course one cannot expect a single forecast based on such a rough model to
be accurate. The value of the method is that it can be used to quickly generate a
large number of scenarios and evaluate probabilities of future states via Monte Carlo
experiments.

Ortec’s approach to forecasting economic variables via autoregression models is to
decompose the time series into a sum

r=r’ 418 M (3)

where r’ represents the long term (trend) fluctuations, r the medium term (business
cycle) oscillations, and r™ the short term (month) movements. This is performed via
so-called filters. We will elaborate more on them in Section [2] but to give some
intuition, let us mention that a basic example is a filter is based on a discrete Fourier
transform (the Fourier filter). For this filter the terms r” correspond to low Fourier
modes, the terms r® to medium ones and r™ to the high frequencies.

The motivation for the decomposition is that short, medium and long term
terms are (to a certain degree) independent from each other, and, as such, their
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evolution should also be forecasted independently. However, a naive approach of
applying an AR model separately for the trend, business cycle and month components
can result in an undesirable effect, where a forecast for shorter fluctuations starts
developing long term movements e.g. a forecast for the month term evolves a trend
on its own.

For more background information about the intuition and practical applications of
the frequency decomposition approach, we refer to[Van der Schans and Steenhouwer
(2012) and references therein.

In this paper we propose a filtered AR model, where long-term predictions are made
for each term separately, in such a way that they stay in their own frequency band
(which is chosen on the basis of historical data). Given a frequency decomposition,
i.e. the choice of the filter, the recipe for such a prediction for a given term is as
follows:

1. Firstly, we choose a forecasting period, which we specify by an integer N € Z,
so that the outcome of the prediction will be a set {rq,...,ry}, with initial
condition rg.

2. Secondly, we generate a time series of noise {e;}1<i<n of length equal to the
forecasting period N, using the white noise probability distribution.

3. Thirdly, we apply the filter to the sequence {e;}:, in order to obtain a filtered
noise sequence {€f}+.

4. Finally, we use the sequence {€}}; to generate a prediction by the formula .

The filter F is typically chosen on the basis of the last N consecutive historical data
points, so that both the employed historical data and the prediction are represented
by a N—dimensional time series, implying that both are in the domain of F. As a
consequence, it is possible to apply the same filter to both the employed historical
data and the prediction, thus facilitating a meaningful comparison between the filtered
historical data and the filtered prediction.

In order to apply the recipe, the forecasting period N can be arbitrary. In practice
however, it is limited by the amount of historical data we have available.

In Section[2]we show, for the class of filters that are linear, weakly translation invariant
and commuting with the autoregression parameter matrix, that such predictions will
indeed remain in their own frequency band. Next, we give an example of two linear
filters. The Fourier filter, presented in Subsection [2.1] is translation invariant, hence
it can be employed in the filtered AR model. Another example is the Christiano-
Fitzgerald Band Pass Filter, treated in Subsection 2.2] It is not clear whether this
filter is weakly translation invariant. However, its advantage is that it deals with the
frequency leaking problem, discussed later. In Section [3] we extend this method to
regression models with time-dependent parameters.

Another problem we deal with is how to choose a partition into frequency bands.
Ortec Finance chooses its decompositions based on heuristic reasoning backed by
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Figure 1: Demeaned interest rate of US bonds with a 10 year term over the past 116
years (in months; z-axis).

economic theories. We propose a different approach, where the allocation of the
frequencies to each of the three terms is chosen to minimize the total variance of the
given historical time series {r;}; with respect to the filtered regression model. The
rationale behind this is that the variance gives a measure of how well the regression
model fits the given data, which is also the reason why least squares methods are
often used to estimate the parameters of such models.

Due to analytical difficulties, we only performed a numerical study, and imple-
mented our idea on historical data of the (univariate) interest rate of US bonds with
a term of 10 years (see Figure . The details are presented in Section

2 Filters

As discussed previously, a time series of interest can sometimes be regarded as a su-
perposition of other time series with different kinds of evolution behaviors. To take
that into account, we introduce a filtering process below, whose purpose is to decom-
pose time series into its different constituents.

Let [*°(R) := {(zn)nez| sup|z,| < oo} be the vector space of bounded sequences,
and denote by L : [*°(R) — [°°(R) the shift operator (L(x)), = 2,,—1. We are mainly
interested in finite sets of data, which we regard as a subset of [*°(R) by periodic
extension. More precisely, we fix an N € Z~( and define V' C [*°(R) as the subspace
of N-periodic sequences. Obviously, V' is invariant under L.
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Definition 2.1. A linear filter is a linear map F' : V. — V. We call F weakly
translation invariant if L(im(F')) C im(F).

We think of F' as a device that takes a time series and picks out a component with
a specific evolution behavior. In particular, time series in the image of F' are to be
thought of as evolving in this specific way. The question at hand is how to produce a
regression model that has as output a time series in the image of F'. To this end, we
modify the vector regression model (2)) as follows. Let F',..., F'¢ be linear filters and

define F := diag(F!,... F?), considered as a linear map from V®? to itself. Let €
be a set of random variables, with 1 <i < dand ¢ € {0,..., N —1}, put together into
a sequence of vectors ¢ := (e}, ...,e?). We take all ¢! independent of each other and,

for each fixed i, we take the ¢! identically distributed with zero mean and variance
o;. We can regard (€})1<i<n as an element of V', and we will denote it by ¢'. Then,
we define

€ = (Fe); = (F'e)y, ..., (Fled),).

Simply put, we have d sequences of random variables and d filters, and we apply the
filters component-wise. The filtered vector regression model is then defined by an
initial value 7y, with time evolution given by

Ty = A?"t,1 + 6:, (4)

where, as before, A is a matrix satisfying the stability condition ||A4|| < 1. Note that,
in contrast to the non-filtered regression models, we need to specify the prediction
period N in advance, in order for to make sense. Indeed, we first need all the ¢
in order to apply the filter, after which the regression model can be initiated. The
answer to the above question is given by the following proposition.

Proposition 2.1. If all the F* are linear and weakly translation invariant and if A
commuteﬂ with F = diag(F*,..., F%), then

(rt - Atr0> € Im(F).
1<t<N

So, except for the initial value terms Atry that converge to 0, the output of the filtered
regression model is contained in the image of F.

Proof. By writing out the definitions and using that [F, A] = 0 we get

t—1 t—1 t—1
Ty = Z AlG:_l + Alry = Z Al(LlF€)t + Alry = Z Al(Fyl)t + Alrg
=0 =0 =0

:(F(tzfAl(yl)))t+Atro.
=0

1To be precise, A is a d X d matrix which acts naturally on V®e while F acts on VO in a
diagonal way by applying F* to each component.
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In the third equality we used that L preserves the image of F', so that we can find
sequences y' with the property that L'Fe = Fy'. O

This proposition tells us that if we think of the filter as forcing the noise (&;); to have
a certain time evolution, then the prediction for r will have this time evolution as well
(at least in the long run, if we ignore the contribution from the initial value), provided
that we use the same filters for those components of r that are interacting with each
other (i.e. we need [4, F] = 0). We will discuss interactions between evolutions lying
in different filters in Section [3l

2.1 The Fourier filter

An example of a linear filter F is the Fourier filter defined below. The discrete Fourier
transform (DFT) of a sequence x € V' is given by

1 = e
Tp = —— Tpe” N
w5
The sequence Ty is obviously also N—periodic and the inverse DFT is given by
1 = 2nwikn

Given a subset K C {0,..., N — 1} with the property that k € K & N —k € K, we
define the Fourier filter with respect to K as the map x — Fx =: x*, where

* ]. ~ 27r17<’kn
T = —— E Ire .
n

vN

keK

Basically, the Fourier filter is given by first applying DFT, then applying a linear
projection by forgetting some of the frequencies and then applying the inverse DFT.
This example is prototypical for the concept of filter, designed with the purpose of
making a separation between different time scales or frequencies, which are expected
to have different driving mechanisms. Note that the Fourier filter F' is translation
invariant, satisfies 2 = F and F* = F, with respect to the inner product on V' given
by

N-1
<x7y> = Z InYn-
n=0

If{0,...,N -1} = K; U...UK, is a disjoint decomposition, the associated Fourier
filters Fr, additionally satisfy: 1 =), Fi, and Fk, Fi; = 0 for all i # j.
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2.2 The Christiano-Fitzgerald Band Pass Filter

In this section, we investigate the Christiano-Fitzgerald filter, for the following reasons.
Firstly, the Fourier filter has the disadvantage of frequency leaking (see also below).
For this reason, Ortec Finance is using another filter which is, however, non-linear.
The Christiano-Fitzgerald filter might be the most prominent choice of a linear filter
that prevents frequency leaking.

The discrete Fourier transform only filters a discrete set of frequencies. However,
it may be possible (even plausible) that the frequencies of the input signal do not
(perfectly) match the frequencies that are chosen to be filtered by the discrete Fourier
transform. The discrete Fourier transform assumes that the input signal is periodic
with a certain period, but it could happen that the input signal has a slightly different
period. For instance, we want to filter the business cycle component of the interest
rate and we assume a period of 8 years. However, the actual period of the rate turns
out to be 7 years. It follows that if we use the discrete Fourier filter in order to filter
certain frequencies out, we might damp certain eigenfrequencies of the input signal
nearby the frequencies we actually want to keep, which is not desirable. This effect
is called frequency leaking.

Therefore, it is desirable to filter an interval of frequencies. This leads to the Ideal
Band Pass Filter. Unfortunately, this filter has the disadvantage that it requires the
use of an infinite number of input values, whereas data sets are usually finite sets.
Hence, an approximation is required, leading to the Christiano-Fitzgerald Band Pass
Filter. This filter assumes that the historical data follows a random walk pattern
(even though in most cases, this is a false assumption).

We start by defining the Ideal Band Pass Filter.

Definition 2.2. Let (x,)nez be a time series. Choose 0 < a < b < 7 and let L be
the shift operator sending x,, to x,_1. Then, the Ideal Band Pass Filter is given by

B= Z B, L"

neL
with
b=a n =0,
B, = sig(nb)—sin(na)
T’ n # O.

The sum of all B,, is zero and B_,, = B,,. Moreover, we have

ZBnefinw _ {17 w e (a‘7b) U (_b7 —CL),

0, otherwise.
neE”Z

Hence B is a filter that ‘accepts’ frequencies between a and b. Usually, the data
set x, is split into a ‘trend’ component ¢, and a ‘cyclic’ component y,, such that
Ty = Yp + tp, where y, = Bz, for each n € Z. By definition, we have

Yn = Z Brz, .

kEZ
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Hence we require all x; in order to calculate y,,. However, usually we only have a
finite data set (z,,))_;, so the output y, might not be accurate. We now define the
Christiano-Fitzgerald Band Pass Filter (abbreviated by CF Filter) C as follows. Let
zn be the solution of minimizing the mean square error

E((yn 7Zn)2|1'1,...,SUN).
Then, we define Cx,, = z,. For k=1,..., N — 1, define

. 1 N—k—1
By =—5Bo~ Z B;.
j=1
It is stated in (Christiano and Fitzgerald| (2003) that for k € {2,...,N — 1}, we
have

N—k—1 k—2
zp = Bowy + Z Bjzp,; + Z Bjxp_j + Br—171.
=1 i=1

The values of z; and zy are given by

N—-2

1 N
Z2 = 530551 + Z Bjz;y1 + Br_jzNn
j=1
and
1 N-2 3
ZN = QBOxN + Zl BjJ?N_j + Br_1x1.
J:

More generally, the CF filter is of the following form (cf. [Schleicher| (2003])):

na,k

=) Cuyn

J=—n1k

for some coeflicients Cj, ;. Clearly, this formula is only translation invariant if C ; =
C; for each k, which is not the case for the CF filter. It is also not clear, whether the
CF filter is weakly translation invariant. Hence, the CF filter might not be a useful
filter if one wants to implement the methods that are developed in this contribution.
Another filter which deals with frequency leakage is the Hodrick-Prescott filter. It is
both linear and translation invariant, therefore it may be better suited to our purposes.
For more information about the Hodrick-Prescott filter we refer to (Schleicher) 2003,
§2.5.2).

3 Coupling models with different frequencies

In Proposition [2.1] we saw that the filtered regression model produces sequences lying
in the image of the filter, provided that the filter is linear and weakly translation in-
variant in all components and commutes with the regression matrix A. Another way
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to describe the final condition is: different components that interact with each other
need to be filtered in the same way. In practice however, there are situations where
components with different time evolution still influence each other in some way. We
now give one strategy to incorporate such interactions whilst preserving the conclu-
sion of Proposition

We can generalize the regression model a bit if we allow A and the distribution of
the €;’s to depend on time as well. For instance, one can consider the AR(1)-model
with constant a = a(t) and standard deviations o = o(t) that depend on time. In this
way one can incorporate interactions between different models by letting them act via
the parameters. Suppose that ¢; is a sequence of vector-valued random variables with
zero mean and standard deviations o; and that A; is a sequence of matrices with
operator norms ||A¢|| < 1 where t € {0,..., N —1}. If F = (F',..., F'%) is a filter, we
can define, as before, the filtered regression by starting with an initial value r¢ and
applying the recursive formula

ry = At’l"tfl + 6: (5)
with €* = Fe. As before, we have

Proposition 3.1. If F is linear and weakly translation invariant and commutes with
Ay for all t, then the solution of the filtered regression @ lies in the image of F,
modulo an initial value term that converges to zero.

Proof. In this case, the solution of is given by
t—1
Ty = ZAtAtfl A+ A Agro.
1=0

From here on the proof is identical to the proof of Proposition 2.1 O

4 A minimal variance approach to band decomposi-
tion

In this section we numerically investigate the (optimal) decomposition into frequency
bands. For this, we focus on the (univariate) time series of the monthly interest rate
of US bonds with a term of 10 years. We restrict our attention to the AR(1) model
and a Fourier filter (Section [2.T)).

As explained in the introduction, the current decomposition used by Ortec Finance
consists of three bands — trend, business cycle and month. For the Fourier filter, the
table below explicilty shows which of the frequencies are part of which band.

H period ‘ frequencies
Month 2 months-2 years Ky =[N/24, N — N/24]
Business || 2 years-16 years Kp =[N/192,N/24) U(N — N/24,N — N/192]

Trend longer than 16 years | Kp = [1, N/192) U(N — N/192, N — 1]
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Given the equidistant frequency distribution of the Fourier filter, about 92% of
the frequency components is in the month component, 7% is in the business cycle
component and only 1% is in the trend component. We note that 0 € K corresponds
to the mean interest rate which we have (without loss of generality) disregarded. We
also note that Ortec Finance currently uses a nonlinear filter which may lead to a
different distribution of frequencies.

How does the decomposition compare to other possible partitions in the simple
univariate setting? We will compare the different decompositions based on the linear
Fourier filter by comparing the total variances from the AR(1) model. As mentioned
before, the total variance is a certain measure of fit of the model to the time series,
so our idea for the choice of decomposition is to select the one that has the minimal
total variance.

Since the interest rate time series is real and we want the filtered time series
to be real as well, we impose that j € K implies N — j € K. Furthermore, to
make the computation feasible, we make the reasonable assumption that each of
the three parts of the partition is ‘connected’ in the sense that there exist integers
2<a<b< |5 suchthat Ky ={1,...,.a—1}U{N—a+1,...,N -1} ,Kp =
{a,...,6 =1} U{N —=b+1,...,N —a} and Kp; = {b,..., N — b}.

Write r = (Fk,, (v), Fr, (r), Fx,.(r)) = (™, rB rT) for the decomposition of the
interest rate in a month, business and trend component. We initialize the AR(1)-
model for each frequency band by using the ordinary least squares method.

To have the best fit with the historical data, we should find (™, a?, ™) such that
the total variance

N-1
1 2
Varget := N1 g HT;M +rB 4l — oMM, —aBrP | —aTTtT_lH (6)
t=1

is minimal. Instead, in the filtered AR(1) framework based on the least squares

method, the parameters ™, a?, a” are chosen separately to minimize the separate

variances:

1 py T T.T |2

Vary := V1 2 Hrt —a rt,lH ,
1 sy B BB |2

VarB = m 2 HT’t —a Ty || s (7)
1 = M M, M ||2

VarT = m 2 ||Tt —a Tt—1||

The separate minimizers a™, a? and a” of (7)) together yield an (almost) minimal
value of @ To see this, we show that Vary; + Varg + Varr &~ Vary,,. We make use
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of the inner product (-,-) on V and orthogonality of the Fourier basis. It holds that

N-2
2
(N — 1)Varyo, = Z ||7",f” +rP el —aMr ) —dPr — aTrt,lH
t=0

=M 4B 4T —aMLr —aPLr — " Lr,v™ 418 42T —aMLr — P Lr — o’ Lr)

- Hr%_l + rﬁ_l +T%_1 - aMréw - aBréB - aTrgHz

=(Fk,,* — aMFKMLnFKMr — aMFKMLr> + (Fgpr — aBFKBLr,FKBr — aBFKBLr>

+ (Fg,r —a’ Fg Lr, Fg,.vr — a’ F Lr)

— Hr%_l + rﬁ_l —|—7‘%_1 — aMréw — aBrég — aTrgHg

=(N —1)Vary; + (N — 1)Varg + (N — 1)Varp
— Hr%_l —i—rﬁ_l +r%_1 — aMréV[ — aBréB — aTrgH2
[Ny = @ |+ Ry = aPr |+ oy — e ]|

After dividing the equality by N —1, we see that the error that is made by minimizing
the separate variances instead of @, represented by the terms on the last two
lines of the equation, is small if the amount of data IV is large.

Since it is computationally much more efficient to optimize three times over a one
dimensional set than once over a three dimensional data set, our script minimizes the
separate variances (/7).

We performed numerical tests on the monthly time series of interest rates from the
past 116 years, consisting of 1392 data points (Figure . We computed the resulting
total variance of all possible frequency decompositions (Figure . We found that (in
this case) Varyo is minimal for a decomposition given by 624 frequencies in the month
component, 410 in the business cycle component and 358 in the trend component.
This results in the decomposition of the interest rate as shown in Figure The
corresponding frequency and period decomposition is shown in the table below.

H frequencies ‘ period
Month Ky = [384,1008] 2 months-3.6 months
Business | Kp = [179,384) U (1008, 1087] | 3.6 months-7.8 months
Trend Kp =[1,179) U (1087,1391] longer than 7.8 months

so that about 456% of the frequencies are in the month component, 29% in the business
component and 26% in the trend component.

5 Concluding remarks

We have proposed two ways to possibly improve the filtered regression models used
by Ortec Finance. The first one is a method for generating predictions, which ensures
that predictions via regression stay in the same frequency band as the one correspond-
ing to the filtered historical time series. To put it shortly, a sequence of samples from



92 SWI 2016 Proceedings

Varmt

|

# business cycle frequencies

# trend frequencies

Figure 2: The total variance for all frequency decompositions attains its minimum
(N — 1) x Varyet =~ 0.004640976 for 358 frequencies in the trend component and
410 frequencies in the business cycle component. The total number of frequencies is
N = 1392, so the remaining ones (624) belong to the month component.
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Figure 3: The optimal (minimizing the total variance) decomposition of the interest
rate. The month component in green, the business cycle component in red and the
trend component in blue.

white noise needs to be generated a priori for the whole prediction period, and then
filtered, as opposed to sampling the white noise at each time step of the prediction.
We identify a group of filters for which the method is applicable — the class of linear,
weakly translation invariant filters that commute with the parameter matrix. In par-
ticular, the method can be readily applied for scalar, Fourier filtered AR(1) models,
and can incorporate time-dependent parameters. However, currently Ortec Finance
is using nonlinear filters to address the frequency leaking problem, and further in-
vestigation has to be performed to find a weakly translation invariant, linear filter
that prevents frequency leaking. In particular, even though the Christiano-Fitzgerald
band pass filter is linear and prevents frequency leaking, it is not applicable as it does
not possess good translation invariance properties.

Our second contribution is the idea that by optimizing the number of frequencies
in each band, one can further reduce the total variance of the model with respect
to the given time series. This way, the frequency decomposition can be adapted to
the time series, rather than arbitrarily fixed beforehand. Our numerical calculations
based on the data set of demeaned interest rates of US bonds and a Fourier filtered
AR(1) model indeed shows that there seems to be a clear global minimum for the
total variance; see Figure 2] The method is, in principle, independent of the filter
and applicable to any filtered autoregression model. We note that in the application
to this particular dataset, only 45% of the frequencies entered the month component,
as opposed to 92% in the decomposition used by Ortec Finance and consequently the
size of the business cycle component, and particularly of the trend component was
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much bigger. Perhaps increasing the number of frequency bands (e.g. to four or five)
would make a clear narrow trend similar to the one from Ortec’s decomposition reveal
itself, and what has been captured as trend in the three frequency band setting is in
fact a new, intermediate pattern.
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