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Abstract

In this report, we consider a problem on energy minimisation of trains pro-
posed by Nederlandse Spoorwegen (NS). Our results include a quick heuristic
to compute the energy consumption for a given time table as well as a heuristic
to find a timetable which is more energy efficient.
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1 Introduction

We consider the problem proposed by Nederlandse Spoorwegen (NS) at the Study
Group Mathematics with Industry 2016, held at Radboud University, Nijmegen. NS
is a Dutch passenger railway operator and provides domestic and international rail
services, which makes the company one of the largest consumers of electricity in the
Netherlands. Due to environmental considerations and the quality of service for the
passengers, NS seeks methods to reduce carbon dioxide CO2 emissions and to improve
the efficiency of the railway system.

Figure 1 shows that the energy optimal way of going from one station to the next
(when there are no intermediate constraints). The behaviour of a train is described
by four driving regimes: accelerating, cruising (maintaining constant speed), coasting
(driving without using energy), braking. This is derived using Pontrayagin’s Maxium
Principle Pontryagin et al. (1962) cf. Howlett (1996); Khmelnitsky (2000); Liu and
Golovitcher (2003); Scheepmaker and Goverde (2015a). To find the energy optimal
profile one then needs to determine the points x1, x2 and x3 depending on how much
time is scheduled to go from one station to the next.

In this project, the main objective is to obtain understanding of how modifica-
tions in timetabling can even out the electricity demands, and hereby increase energy
efficiency. In fact, this consists of (at least) two subproblems.

• Problem 1: Given a timetable, find the the most energy efficient way for the
trains to drive from station to station.

• Problem 2: Find a timetable that uses least energy.
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Figure 1: Optimal velocity profile of a basic energy-efficient driving strategy on a
level track with switching points between driving regimes at x1, x2 and x3. Courtesy
of Gerben M. Scheepmaker(Scheepmaker, 2013).

In view of Figure 1, it looks that one just has to determine the xi to solve Problem 1
for a given timetable. However, for a journey between two stations there are a lot of
additional constraints that are not visible in the public timetable. For example, there
are constraints saying that two trains may not pass the same point within 3 minutes.

The paper is organized as follows: In Section 2, we formulate these problems
concretely. In the remainder of the paper we focus on our attempts to find a solution
to these problems. In Section 3, we look at a heuristic solution for computing the
optimal energy profile; i.e., a solution to Problem 1. This heuristic is also tested on
a realistic data set from NS. In Section 4, we take a numerical approach to compute
the optimal energy profile for a realistic data set from NS and use this to find an
improved timetable. We close with discussion in Section 5.

2 Formulation of the problem

In this section, we consider a basic energy-efficient train control model which is the
problem of driving along a flat track within a given time T . The train speed v(t) at
time t is governed by an energy functional F (t) and a resistance force r(v) according
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to the Newton force equilibrium

ρmv′ = F (t)− r(v(t)), (1)

where v′ = dv
dt is the derivative of velocity to time, m is the train mass, ρ the di-

mensionless rotating mass factor (Brünger and Dahlhaus, 2007). The resistance force
R(v) is given by the Davis equation

r(v) = r0 + r1v + r2v
2. (2)

Here r1, r2 and r3 are non-negative coefficients (Davis, 1926). The energy consump-
tion to be optimised is given by

E =

∫ T

0

F+(t)v(t)dt, (3)

where F+ denotes the nonnegative part of F . That is we do not assume that the train
can gain energy from braking, contrary to e.g. Scheepmaker and Goverde (2015b).

As mentioned in the introduction, if there are no further constraints between
station A and B, then Figure 1 gives the energy optimal speed profile. However,
generally there are additional constraints to be met between station A and B. A
journey consists of events. An event should be thought of as ‘train α passes junction
x’ or ‘train β arrives at station y’ etc. For each event i, there is a variable ti saying
at what time in minutes this event takes place. There is one catch however. Since the
timetable should be periodic, these times are to be prescribed modulo 60 minutes.
Then there are constraints prescribing how certain events relate to each other; they
are all of the form

li,j ≤ (ti − tj) mod 60 ≤ ui,j , (4)

saying that event j should take place at least li,j minutes later than event i and not
later than ui,j minutes after event i. For example, this could encode that the time
that train β passes junction x should be at least 3 minutes later than the time that
train α passes junction x. When designing a timetable it is exactly the modularity
of the constraints that makes this a really difficult task. So one usually modifies a
feasible solution to obtain a better solution. In particular, fixing a feasible solution,
i.e. a timetable that satisfies the constraints, one can get rid of the modularity
constraints and then the constraints (4) all of a sudden look much nicer: they are
totally unimodular; see Schrijver (1998) for details on totally unimodularity and its
use in optimisation.

3 Heuristic solution
In the case of a single segment the optimal solution consists of four different phases:
acceleration, cruising, coasting and braking, in this order (Howlett and Pudney, 1995).
The optimal length of each phase can be found by a simple line search (e.g., using
the cruising speed as parameter).
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The optimal solution in the case of multiple segments along a railway track is
fundamentally different and more difficult to obtain, especially if one is interested in
a computationally efficient solution. In the following we will suggest an approximate
solution based on heuristic reasoning. The motivation for this is the following theorem,
which for a lack of better name we call the friction theorem.

3.1 The friction theorem

v
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v(t) = vm + u(t)

vm

a)
v
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Figure 2: Illustration of the friction theorem. a) In velocity space the area under a
curve corresponds to the distance travelled. The constant trajectory with the mean
velocity vm (blue curve) needs less energy than any other equal-area trajectory v(t) =
vm+u(t) (covering the same distance) starting and ending with vm (red curve). b) A
consequence of the friction theorem is a bound on the maximum energy that can be
saved by an equal-area trajectory starting at velocity v1 > vm and ending at v2 < vm.

Theorem 3.1. The optimal way of getting across a distance x1 in time t1, when
nonlinear friction is acting and when starting and ending with the average speed vm =
x1/t1, is by traveling all the way at the average speed.

The proof is based on the intuition that nonlinear friction forces do not average
out across the trajectory. We will show this for the Davis model of friction (2) that
is relevant for railway problems.

Proof. We decompose the work dW performed on the system by external forces into
a contribution dR due to the frictional resistance and a contribution dT used to raise
or lower the kinetic energy: dW = dR + dT . The kinetic energy is the same at the
beginning and at the end of the trajectory, therefore

∫
dT = ∆T = 0. The total work



Energy Consumption of Trains 65

done on the system is therefore equal to the work done against friction, and amounts
to

W =

∫
dW =

∫
dR =

∫ x1

0

r(v) dx =

∫ t1

0

r(v)v dt. (5)

Decompose the trajectory in velocity space into v(t) = vm + u(t), where vm = x1/t1
is the mean velocity ( Figure 2a ). Compared with the mean trajectory v(t) = vm,
the difference in energy expended is

∆W =

∫ t1

0

r(vm + u)(vm + u) dt−
∫ t1

0

r(vm)vm dt, (6)

= r(vm)

∫ t1

0

udt+

∫ t1

0

(r1u+ r2u
2 + 2r2uvm)(vm + u) dt.

The first term is zero due to the constraint on the distance travelled (which is equal
to the area under the velocity trajectory),∫ t1

0

(vm + u) dt = x1 =

∫ t1

0

vm dt ⇒
∫ t1

0

udt = 0. (7)

The remaining term amounts to

∆W =

∫ t1

0

(r1u+ r2u
2 + 2r2uvm)(vm + u) dt, (8)

= (r1 + 3r2vm)

∫ t1

0

u2 dt+ r2

∫ t1

0

u3 dt,

where we have used Eq. 7 again to simplify. Writing the remainder as

∆W = r1

∫ t1

0

u2 dt+ r2

∫ t1

0

(u+ 3vm)u2 dt, (9)

and using that |u| ≤ vm, shows that ∆W ≥ 0.

3.2 Consequences of the friction theorem
Theorem 3.1 has important consequences, in combination with the constraint on dis-
tance travelled. Consider first the journey along a single segment or track, that starts
at a velocity below the mean velocity vm and is supposed to finish at a velocity sim-
ilarly below vm. Because of the constraint on distance travelled, there needs to be
some acceleration in between and the trajectory follows the well-known optimal shape
with up to four phases (acceleration, cruising, coasting, braking) in succession.

A trajectory that includes coasting needs to accelerate longer and the final velocity
at the end of the segment will be lower than when only cruising (Figure 3). If the
loss in kinetic energy due to coasting leads to the coasting ending on the braking
curve, some energy has been saved. However, if the loss in kinetic energy due to
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Figure 3: Increasing the energy efficiency by coasting, when there is braking at the
end. The blue curve corresponds to travel without coasting. The red and orange
curves show alternative trajectories that use coasting to reduce the energy expendi-
ture. Longer coasting needs higher initial acceleration and results in lower velocities.
The energy saved with respect to the blue curve is given on the right (in kWh) for
each of these curves. In this example about 15 percent of the energy can be saved.

coasting needs to be compensated, i.e., if an additional acceleration is (during this or
a following segment) needed because of the coasting, then the friction theorem tells
us that this is energetically unfavourable. It is better then to reduce the amount of
coasting (by reducing the cruising speed and increasing the cruising phase) until the
loss in velocity has no consequences. In other words: coasting can be used to reduce
the energy expenditure only when it replaces braking, not when it incurs additional
acceleration later on. Note that in practice, the potential gain of this is eventually
limited by the increasingly unfavourably loss due to the nonlinear behaviour of the
friction, cf. Figure 4.

This is the main difference with the situation where only a single segment needs
to traversed. In that case, coasting could potentially reduce the energy to zero, if this
would result in exactly the right distance travelled. In the case of multiple segments,
however, coasting should only reduce the kinetic energy if the train is travelling too
fast for the next segment anyway, such that braking would be needed otherwise.

The friction theorem also gives us a bound on the maximum energy saving:
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Corollary 3.2. The energy that can be saved by coasting during a trajectory starting
at v1 ≥ vm and ending at v2 ≤ vm is at most equal to the kinetic energy difference
because of the difference in starting and ending velocities,

∆E ≤ 1

2
m
(
v21 − v22

)
. (10)

Proof. The friction theorem shows that ∆E ≤ 0 for a modified trajectory that includes
a (hypothetical, instantaneous) initial and final acceleration from vm to v1 and from
v2 to vm, respectively (Figure 2b). Subtracting the difference in kinetic energy results
in Eq. 10 for the trajectory starting at v1 and ending at v2.

What is the optimal amount of coasting? There is no simple, definite answer to
this, as it depends on the interplay between the nonlinearities in the friction r(v) and
the geometric properties of the trajectory. The optimal trajectory balances replacing
as much cruising (work against frictional losses) as possible with coasting (no work)
with the increased work during the initial acceleration and (shorter) cruising phase.
In practice it seems often to be the case that close to the least amount of cruising
leads to the best energy balance (Figure 3).

This leads to the following heuristic, where the phases in brackets can be missing:

• Where possible, replace cruising + braking with accelerating + (cruising) +
coasting + (braking). If the best curve to follow cannot be determined (e.g., be-
cause of the need for a highly efficient method that cannot optimise the cruising
speed), use the highest cruising velocity ending on the braking curve.

What happens if the train travels too fast initially? It is always possible to satisfy
the constraint on distance by first braking, then cruising, followed by accelerating or
braking, as necessary. Similar to the the first case, it is possible to relax this solution
by the following heuristic, thereby also improving energy efficiency (Figure 4):

• Replace braking + cruising with (braking) + (cruising) + coasting + acceler-
ating. If the best curve cannot be determined, use the one with the highest
cruising speed (and thereby the lowest speed immediately after coasting).

The energy saving in this case is typically much lower than for the first case and
only significant when the acceleration at the end of the segment is very large.

3.3 A reference solution for multiple segments

Solving for the optimal cruising velocities in the above cases of a single segment
(Figure 3-4) is not difficult. A straightforward algorithm uses a double loop where
the outer loop optimises the cruising speed for the best saving in energy and the
inner loop searches for the corresponding length of the cruising phase, in order to
fulfill the constraint on distance travelled. As both loops search for a minimum in one
dimension, Brent’s algorithm or a variant thereof can be used (Press et al., 2007).
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Figure 4: Increasing the energy efficiency by coasting. This is the case with accelera-
tion at the end. This results in the need for an initial drop (braking) for the reference
curve (blue) without coasting. The red and orange curves show alternative trajecto-
ries that use coasting to reduce the energy expenditure. Longer coasting needs higher
initial velocity and results in lower velocities. The energy saved with respect to the
blue curve is given on the right (in kWh) for each of these curves. In this example
about 3 percent of the energy can be saved.

The main question is how to optimise the energy across multiple segments with in-
termediary constraints on times and distances. The above suggests a simple, heuristic
solution:

1. The first segment is treated in a special way. The train accelerates to the velocity
needed to cross the rest of the segment just by cruising. The rest of the segment
is then treated as a new segment according to the following procedure.

2. Each segment starts with the mean velocity needed to cross it only by cruising,
which would be optimal if not for the differences in mean velocity between
segments.

3. Each segment anticipates the subsequent segment and at its end either acceler-
ates or brakes the train to the mean velocity of the following segment.
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4. If this cannot be achieved (due to time/distance constraints), then the train
accelerates or brakes as much as possible, and the next segment is split into
two phases. In the first part the train continues to accelerate or brake until
the mean velocity for the remaining second part is reached. (The point where
this happens needs to be calculated in an iterative way, since shortening the
second part changes its mean velocity). The second part is then treated as a
new segment.

5. If braking is needed at the end of the current segment, this means that an
additional acceleration is needed at the beginning. Coasting is additionally in-
troduced to relax this situation to a more energetically favourable one, reducing
the amount of braking (as in Figure 3).

6. If acceleration is needed at the end of the current segment, this means that
additional braking is needed at the beginning. Coasting is additionally intro-
duced to relax this situation to a more energetically favourable one, reducing
the amount of braking (as in Figure 4).

3.4 Example solution

Figure 5: Example track. The mean velocity for each segment is shown. Large
differences in these velocities potentially lead to energy-inefficient journeys.
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The track between Groningen and Zwolle was used for this example, consisting of
in total 10 segments. The mean speed along the segments of the track varies consid-
erably (Figure 5). The train data was compiled from data given by (Scheepmaker,
2013) and NS. The timetable entries were rounded to the minute and are therefore
not completely realistic. In fact, the timetable had to be slightly adjusted in order to
be feasible.

A reference solution with only cruising needs 582.6 kWh for this track. Solving for
the solution with the above algorithm leads to an energy consumption of 550.1 kWh,
which is an improvement of 5.6 percent. This value is not the true minimum, but it
seems unlikely that the energy expenditure could be further reduced by very much.
Most improvements were obtained during the longest segments, where coasting could
be used for a significant part of the journey (Figure 6, panels 5 and 8).

3.5 Discussion

This section shows one way of quickly constructing an approximate solution to the
most energy-efficient journey along a railroad track with multiple segments (check-
points). The method is sufficiently fast that it can be used to evaluate thousands of
tracks, i.e., a complete timetable, in a reasonable time.

The computations for this section have been made with a simple, straightforward
implementation in the system for computational statistics R (R Core Team, 2015).
Solving for a single track and plotting the solution takes a few seconds only. Imple-
menting the method in a compiled language and optimizing the code should result in
runtimes of a few microseconds per track, which is suitable for applications such as
timetable optimisation.

The timetable constrains the solution very much. Especially the occurrence of
large differences in mean velocities for different segments of a journey lead to inefficient
voyages, due to the need for braking and re-acceleration. Coasting can reduce some of
these losses, but often only partially. It seems likely that more energy can be saved by
adjusting the timetable (if possible) then by further optimizing the individual journeys
for the given timetable beyond what has been shown here. As a next step one should
therefore investigate how changes in the timetable affect the energy expenditure.

4 Towards better timetable

4.1 Optimal Energy for a given timetable

Two stops, A and B, are positioned at distance X apart from each other. We consider
a train going from A to B in time T . The velocity at A,B is zero, v(t) = 0, t =
tA, tB , T = tB − tA. In the current setup of the problem the timetable is fixed. That
is to say a train has to pass prescribed intermediate points at distances xi from A at
specific times ti, i = 1, . . . , N. Without loss of generality we may consider both the
journey time and the distance to be unities: X = 1, T = 1, so that tA = 0, tB = 1
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Figure 6: Heuristic solution for example track from Groningen to Zwolle. Each panel
shows a segment of the journey. If it is not possible to accelerate enough during a
segment (e.g. panel 2 in the top right), an additional acceleration phase is initiated
after the segment, adjusting the next segment. These phases are not shown.
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and 0 ≤ xi ≤ 1. Then the associated velocity profile v(t) is a continuous function
v(t) ∈ C[0, 1] that is restricted by the timetable with the following constraints:

v(0) = v(1) = 0 (full stop at terminal points); (11)
1∫

0

v(t) dt = 1 (total distance);

ti∫
0

v(t) dt = xi, for i = 1, . . . , N (passing xi at time ti);

0 ≤ (t) ≤ vmax and amin ≤ v′(t) ≤ amax (velocity and acceleration limits) .

The constraints do generally not determine v(t) completely, allowing to search for the
specific profile that realises the minimum of the energy functional

F (v) =

1∫
0

v[v′ +
r(v)

ρm
]+ dt, (12)

where the nonlinear resistance r(v) is defined in Eq. 2 according to the Davis model.
In order to apply a numerical optimisation algorithm we discretise the continuous

function v(t) by means of projection onto the space spanned by a convenient basis:

ṽ(t) =

n∑
i=0

αiφi(t), t ∈ [0, 1].

For the sake of simplicity we demonstrate the concept for the piecewise-linear approx-
imation on a uniform grid with step h = 1

n . That is the approximation coefficients αi
are chosen so that

ṽ(
i

n
) = v(

i

n
), i = 0, . . . , n,

and for i = 0, . . . , n the basis functions are defined as

φi(t) :=

{
1− |nt− i|, if |nt− i| ≤ 1,

0, otherwise,

that have derivatives

φ′i(t) :=


n, if − 1 ≤ nt− i < 0,

−n, if 0 < nt− i ≤ 1,

0, otherwise.

In this way, every φi(t) is supported only on interval [i/n− h, i/n+ h]. Values of ṽ(t)
and ṽ′(t) at grid points can be computed as a multiplication of the matrices M,D
with coefficient column α = (α0, . . . , αn)T ,

(M)i,j = φj(
i

n
),
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(D)i,j = φ′j(
i

n
).

The approximation to the energy functional (12) is now expressed as a function of α :

F̃ (α) = T
(

[Dα+ r(α)]+ ·Mα
)
, (13)

where functions r(α), [α]+ and multiplication · are taken element-wise and T imple-
ments appropriate integration quadrature. In the case of a linear basis this is the
trapezoidal rule,

(T )i,j =

{
1

2(n−1) , 0 ≤ i− j ≤ 1,

0, otherwise.

Finally, the cumulative integral of v(t) is approximated by the vector product q(τ)Tα,

(q(τ))i =

τ∫
0

φi(t)dt.

Now, we are ready to formulate a non-linear optimisation problem that approximates
the desired solution v(t) :
find a vector α ∈ Rn+1 such that

(Mα)0 = 0 and (Mα)n = 0; (14)

q(1)Tα = 1;

q(ti)
Tα = xi;

0 ≤ (Mα) ≤ vmax;

amin ≤ (Dα) ≤ amax;

and put F̃ (α)→ min.

To illustrate the concept let us consider the case when there is only one intermediate
constraint, i.e., a train going from A to B has to pass intermediate point x1 precisely
a time t1. We treat position as fixed, x1 = 0.5, and by varying t1 obtain a family of
velocity profiles vt1(t) corresponding to minimal energies, as shown in the left panel
of Figure 7. One may observe that certain constraints yield optimal velocity profiles
with lower energy cost than others, (see Figure 7, right panel). The velocity profile
that has the smallest energy within the family is also the optimal velocity profile
with no intermediate constraints. This observation can be used to adjust the given
timetable in order to achieve even better energy efficiency (see Figure 8).

4.2 Optimisation of train timetable

Here, we assume that a train always travels according to the optimal velocity profile.
The main question is: can we alter the existing set of constraints (i.e. timetable)
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so that the energy consumption is even better? Small adjustments to the timetable
(ti, xi) are feasible as long the timetable satisfies the periodic event scheduling model,

li,j ≤ (tj − ti) mod 60 ≤ ui,j ,

where ti, tj are event times and li,j , ui,j are fixed limitations. In principle it is possible
to directly set up an optimisation with an objective function defined as the energy
of the timetable fo = F̃ (α) where α solves the optimal velocity profile problem from
the previous section. Such a routine, however, has to deal with a big non-linear
optimisation problem and thus requires a good initial guess. We obtain this initial
guess by running optimisation with a heuristic objective function. Let vo(t) be an
optimal energy profile with no intermediate constraints. We construct a heuristic
objective function fh(t1, . . . , tN ) that measure how far in L2 norm is the given set of
constraints ti from passing times according to the optimal profile τi :

fh(t1, . . . , tN ) =

N∑
i=1

(ti − τi)2,

where τi solves
τi∫
0

vo(t) dt = xi. If a train makes stops at (tx,i, xs,i), i = 1, . . . ,M we

will additionally require the average speed between each pairs of stops be close to the
overall average speed, vavg (when calculated between terminal stations),

fh(t1, . . . , tN ) =

N∑
i=1

(ti − τi)2 +

M∑
i=2

(ts,i − (xs,i − xs,j−1)/vavg)2. (15)

Such an objective function provides a crude optimality estimate for a timetable. This
estimate can be later used as an initial guess for, computationally more expensive,
optimisation involving the functional F̃ (v) in ’predictor/corrector’ combination. Ta-
ble 1 depicts results of such an approach applied to a sample timetable. The first
column of Table 1 contains information on the current timetable; the second column
describes results of heuristic optimisation (CPU time less than 1 sec); the third col-
umn contains correction of the heuristic results by energy optimisation according to
the functional F̃ (v) (CPU time 1.5 hour). Fragments of the optimal velocity profile
for the optimised and original timetables are given in Figure 9.

Type ti Predictor ∆ Corrector ∆
D 37 37 0 36.97 −0.03
P 41 41 0 40.99 −0.01
P 42 42 0 41.93 −0.07
A 44 44 0 43.96 −0.04
D 45 45 0 44.98 −0.02
P 47 47 0 47.00 0
P 48 48 0 48.01 +0.01
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A 50 50 0 50.00 +0.01
D 51 51 0 50.98 −0.02
P 52 52 0 52.02 +0.02
P 54 54 0 53.94 −0.06
P 55 55 0 55.00 0
P 57 57 0 56.98 −0.02
P 58 58 0 57.96 −0.04
P 59 59 0 58.97 −0.03
P 2 2 0 2.00 0
P 6 5 −1 4.99 −1.01
A 7 6 −1 6.03 −0.97
D 8 7 −1 7.00 −1.00
P 13 13.23 +0.23 13.04 +0.04
P 14 14.23 +0.23 13.97 −0.03
A 21 21 0 21.00 0
D 23 23 0 22.97 −0.03
P 25 25 0 24.98 −0.02
P 27 27 0 26.93 −0.07
P 32 32 0 31.85 −0.15
P 36 36 0 35.83 −0.17
A 47 47 0 46.75 −0.25
D 48 48 0 47.67 −0.33
P 49 49 0 48.60 −0.40
P 50 50 0 49.65 −0.35
P 53 53 0 53.15 +0.15
A 58 58 0 58.07 +0.07
D 0 0 0 0.00 0
P 2 2 0 1.99 −0.01
P 3 3 0 3.00 0
P 4 4 0 3.98 −0.02
P 15 15 0 14.98 −0.02
P 20 19 −1 18.90 −1.10
A 24 23 −1 22.97 −1.03
D 26 25 −1 24.94 −1.06
P 37 35 −1 35.05 −1.95
P 38 36 −1 36.01 −1.99
A 45 46 +1.5 46.34 +1.34
D 41 36 −5 36.22 −4.78
P 43 43 0 43.02 +0.02
A 50 50 0 50.04 +0.04
D 53 52 −1 52.07 −0.93
P 4 4 0 4.01 +0.01
A 6 6 0 5.94 −0.06
D 10 10 0 9.93 −0.07
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P 11 11 0 11.24 +0.24
P 23 26 +1 26.05 +3.05
A 25 28 +3 28.08 +3.08

Distance from original 24.0min 26.19min
Total energy 87.39% 83.96%

Table 1: A sample of a real timetable with 12 stops and 42 passing constraints. All
distances are indicated in km and time in min. The timetable is consequently opti-
mised with heuristic (predictor) and energy-functional (corrector) objective functions.
The constraint types are encoded as follows: Departure, Passing, Arrival. Distance
from original indicates the sum of absolute changes in minutes.

4.3 Conclusions

For a given timetable we can find the optimal velocity profile numerically. This
information may be presented to train drivers as an advisory. The routine comput-
ing optimal velocity profiles and energy is then further used to adjust the existing
timetable. Such adjustment is done in two steps: heuristic objective function (cpu
time 1sec, reduces energy down to 87.39 on sample data), and energy objective func-
tion (cpu time 1.5h, 83.96 on sample data). Even though the energy reduction is
quite high, this approach involves numerical non-linear optimisation and does not
necessarily lead to global minimum.

5 Conclusion and discussion

In this paper, we have looked at the problem proposed by NS. We considered two
approaches. The first approach was primarily aimed at trying to reduce energy con-
sumption while not changing the timetable. This was done by trying to understand
what an optimal journey (with respect to energy consumption) looks like. Using this
knowledge we developed a simple heuristic to optimise the usage of energy of a single
train journey. This heuristic has been applied to a sample of actual train data and
resulted in a energy reduction of 5%.

In the second approach, our aim was to compute for a given timetable the optimal
energy profile numerically. Using this we applied numerical optimisation to a sample
of an actual time table. Since the constraints Eq. 4 are modular this is not an
easy task. However, taking the current timetable one can rewrite these constraint
to absoute constraints. This resulted in a time table (for the sample) for which the
optimal velocity profile yields a 16% energy reduction.

The main conclusion that can be drawn from this work is that energy consumption
can in fact be reduced significantly. Not only by more efficient driving, but also
by making small adjustments to the timetable allowing for more efficient velocity
profiles. We note however that our results have only been applied to small samples
of the timetable. To see what happens on a larger scale one should of course apply
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Figure 9: Fragments of optimal velocity profiles for current (blue) and improved (red)
timetables. The vertical lines represent constraints after optimisation.

our results to the entire timetable. One thing that we observed is that prescribing
time in minutes appear to make matters a bit complicated. For example the current
timetable has some inconstancies, i.e. a train α should be at position x at time t
but also on position x′ at the same time. So it makes more sense to determine these
times more accurately. Also from the point of view of energy reduction this makes
sense. Allowing more flexible times values (not just entire minutes) can already lead
to significant energy reduction (for the optimal profile).

It is not unlikely that the methods we have used can be improved. In particular,
we believe that it would pay off to get a fast direct computation of the optimal velocity
profile given a timetable. This could then be used to search for a better timetable
with more advanced heuristics than we have currently employed.
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