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Abstract

In this paper, we model an active tension control (ATC) of a long production
line offered by Marel Stork Poultry Processing. The production line consists of
trolleys with poultry product which move along a rail. The trolleys are con-
nected by a chain. The motor drives the chain by pushing the trolleys forward.
However, when the motor is spinning too quickly the tension in the chain, right
after the motor can drop which leads to collisions of the trolleys or entanglement
of the chain. Hence, control of the tension is necessary. This ATC method works
by means of a dead weight, pulling on the chain after the motor, the so-called
‘dancer’. The dancer maintains the tension in the chain when the weight is suf-
ficiently high. However, if the dancer is too heavy it will shorten the life-time of
the chain. By modelling the motion of the trolleys between the first motor and
the following dancer we numerically compute the optimal force for the dancer.
Furthermore, we suggest extensions of our model and a novel modification to
control the tension.

1 Introduction

In this paper we consider a problem proposed by Marel Stork Poultry Processing at
SWI 2016. Marel Stork offers solutions for in-line poultry processing in accordance
with a desired automation level and production capacities. Marel Stork systems
are modular, that is, they can be combined with other equipment and with manual
processes. We consider only one modular part of the whole processing system, namely
a long production line transporting poultry through a chilled storage room. This
closed-loop line is called an overhead conveyor.

The overhead conveyor consists of a long chain, the maximum length of which is
5500 m, driven by the up to 40 electric motors along the rail with a constant speed
(0.6-0.8 m/s), see Figure

Every 6 inches, a trolley is attached to the chain. These trolleys move over an
overhead rail. Each trolley contains a shackle, hanging downwards, which suspends
poultry products, see Figure [l Each poultry product weighs between 1.5 and 2.5
kg. We will refer to a trolley containing poultry product as a carriage. The weight
of a fully loaded production line is 68000 kg. The hanging poultry in the shackle
can swing in all directions; also, the products can almost touch each other with their
wings.
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Figure 1: Schematics of the overhead conveyor with poultry. Courtesy of Marel Stork]
Poultry Processing|

From the characteristics above one can see that the production line is very heavy
and has a relatively large travelling speed. A problem occurring in the conveyor is
slack of the chain. Slack has many causes, however, it is most often caused by the
motor. The motor contains uniformly placed slots through which it transports the
carriages, see Figure[2] If the motor is spinning quickly and if the chain is stretched
due to wear such that the length of the chain between the carriages is longer than
the distance between the slots then the chain will slack when carriages leave the
motor. This slack could spread throughout the chain. If the chain slacks too much

Figure 2: A motor of the overhead conveyor. |Courtesy of Marel Stork Poultry Pro-|

the carriages can collide or the chain could entangle. This leads to a production stop
and could even cause permanent damage of the production line. Hence, whenever too
much slack is observed the production line is stopped.

The slack is controlled by an active tension control whose simplified schematic is
displayed in Figure [3] Since the chain is very long many motors are needed to drive
the chain. The first motor, the master motor, turns at a fixed speed. Each motor is
followed by a dead weight, the so-called ‘dancer’. The dancer is a pulley with a heavy
weight. The pulley is fixed to a rail whose length determines the range of the motion
of the dancer. Since the dancer applies a force it pulls the carriages in its direction
and, consequently, reduces the slack. Hence, it is very similar to a train locomotive
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Figure 3: Active tension control of the overhead conveyor. M1, S1, S2 and S3 denote
motors. The motor M1 is the master motor which turns at a fixed speed. Each
motor is followed by a dead weight, the ‘dancer’. The dancer is a pulley with a heavy
weight. Since the dancer applies a force it pulls the carriages in its direction and,
consequently, reduces the slack. Observe that a quantitative measure of the slack in
the chain between a motor and the following dancer is given by the position of the
dancer. The motors S1, S2 and S3 are the slave motors. Their speed is controlled by
the position of the dancer. [Courtesy of Marel Stork Poultry Processing

which pulls its carriages forward. However, contrary to the carriages of a locomotive,
these carriages will move past the pulling force. Observe that a quantitative measure
of the slack in the chain between a motor and the following dancer is given by the
position of the dancer. Hence, the speed of the motors after the master motor are
controlled by the position of the dancer. Thus, the motors after the master motor are
called slave motors.

Observe that the dancer does not make the slack vanish instantaneously. Hence,
the force of the dancer should be large enough such that it counteracts the slack
caused by the motor. However, the problem with the dancer is that it applies a con-
stant force on the chain which leads to stretching of the chain over time, in turn, this
leads to more slack. Furthermore, when the chain is stretched for about 3%, the chain
is classified as worn out and needs to be entirely replaced. During this maintenance
process no products can be processed. Thus, it is of importance to maintain a tension
in the chain which prevents its slack and reduces its wear.

In Section [2] we set up a model for the motion of the carriages where the slack is
caused by the motor. More specifically, we focus on the motion between the master
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motor and the following dancer. In Section [3] we present the results of numerical
simulations of the model constructed in Section[2] Finally, we present the conclusions
and recommendations in Section [d More specifically, we explain how the numerics
validates our model, how the model can be extended to model the system better and
how the mathematical results might lead to an improvement of the current system.

2 Modelling the production line as a train with car-
riages
In this section we formulate the model. We consider a chain that is fully loaded with

product. However, we only study part of the complete chain and restrict our model
to the study of the carriage motion between the master motor and the next dancer,

see Figure [
k’( ) Carriages
Dancer 1 )

Figure 4: The chain between the master motor and the dancer. The carriages are
depicted by the black dots.

2.1 Modelling assumptions

To set up the equations of motion we consider some modelling assumptions:

Carriage: 1. Carriages are point masses with equal mass.
2. The friction of the wheels with the rails is linear.

3. When the chain between two carriages has slack the carriages do not
exert forces on each other. However, when the chain is tight the
forces on both carriages are equal.

—_

Dancer: The position of the dancer is fixed.

2. The dancer applies a constant force on the chain.
Chain: 1. There is no mechanical energy loss through the chain.

Motor:

—_

The motor supplies carriages with a constant rate.

2. The carriages that leave the motor have a prescribed initial velocity.
This velocity is sufficiently low such that the chain between the motor
and the first carriage is never pulled tight whenever this carriage is
unaffected by the dancer. Hence, the motor causes slack.
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The model will consist of equations of motion for each of the carriages. Here we
measure their position by the distance to the motor where the motor is located at
x = 0 and and the dancer is located at x = . Based on the assumptions above we
can introduce the parameters for the equations of motion:

{: the length, in meters, from the motor to the dancer
£+ the length, in meters, of the chain between two carriages when it is pulled tight
m: the mass, in kilograms, of the (loaded) carriage

c: the friction coeflicient, in kilograms per second, between the wheels of the hangar
with the rails

fmot: the number of carriages that enter per second through the motor
Umot: the velocity, in meters per second, of the carriages that enter through the motor

Fyan: the force, in Newton, which is being applied by the dancer
We assume that all the constants are non-zero.

Denote by z(t) the position of a carriage. Then, if the carriages is unaffected by
the force of the dancer the equation of motion is given by

mi = —ct, (1)

where we used the short-hand notation & = dx/dt and & = d?xz/dt?. If the carriage
is part of W carriages whose chains are pulled tight the total mass is Wm and the
total friction is We. Hence, if these carriages are affected by the force of the dancer
the equation of motion is given by

Wmi = —Wed + Fyan. (2)
The equations and are standard ODEs of the form
Y =ay+b, (3)
with a,b € R of which solutions are given by

cre®™ — bt
y(t) = —— + e, (4)

a
with c¢1,co € R constants determined by the initial conditions. It will turn out that
all the ODEs in this paper are of the form .

Observe that assumption 2 for the motor is an assumptions on the parameters.
Hence, let us formulate this assumptions in terms of the parameters using :
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Motor: 2. Consider the equations of motion in . Let x satisfy the initial conditions
l’(O) = 07 I(O) = Umot -

At t = 1/ fmot @ new carriage will enter via the motor. Hence, we assume
that vy is sufficiently small such that

x(l/fmot) < Ect-

2.2 Set-up: possible events

We assumed that when the chain between two carriages is loose the carriages do
not exert forces on each other. However, when the chain is tight the forces on both
carriages are equal. In formulating the model it turns out that the configuration of the
carriages is very important. As we explained before the chain between the carriages
can hang loose or be tight and we have to take that into account. So, by configuration
we mean the number of carriages between the motor and dancer, and also between
which carriages the chain is tight and loose.

For a given configuration the equations of motion remain unchanged. However,
when the configuration changes the equations of motion also change. The configura-
tion changes when one of the following events occur:

P: aloose chain is pulled tight,

C': a collision occurs between two carriages,

FE: a new carriage enters via the motor,

L: the last carriage leaves by passing the dancer.

We shall abbreviate these events by the capital letters above. Note that several of
the above events could also occur at the same time. Hence, all possible events are
given by all the combinations of (P,C, E, L). When an event occurs the equations of
motion change and we have to prescribe the new equations of motion until the next
event. The event C is special in this respect since in this case the production line
should be stopped so our model should end too.

2.3 The event map

In this section we will present a general procedure which gives the equations of motion
as the system undergoes a configuration change due to an event.

First, we assume that we know the equations of motion at ¢ = 0 and that at t = 0
there are Ny > 0 carriages between the motor and dancer. We denote the position of
the ith carriage by x,(t) for i = 1,2,..., Ng. Here we order the carriages in such a
way that the 1st carriage is closest to the motor and the Nyth carriage is closest to
the dancer, see Figure
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Figure 5: Carriage position at ¢ = 0. The carriages are depicted by black dots. The
1st carriage is closest to the motor and the Nyth carriage is closest to the dancer.

Now, assume that the first time that an event occurs is at £; > 0. Then, a full
description of the carriages for 0 < ¢ < t; is given by the tuple

(To, Xo), (5)

with
To = [0,t1), Xo(t) = (zo1,Zo2, "+ s Ton,)-

The tuple will be called the carriage motion on Tj. Denote the event at ¢; by A.
Then we want to construct a map ¥ such that

U(Ty, Xo) = (T1, Xu),

with
Ty = [t1,t2), X1(t) = (11,212, , Z1Ny )s

where t5 is time when the next event occurs, N7 is the number of carriages between
the motor and dancer and x1,(t) is the position for the ith carriage for all ¢t € T7.
Again the carriages are ordered in such a way that the 1st carriage is closest to the
motor and the Nith carriage is closest to the dancer. Observe that ¥ maps (Ty, Xo)
into the carriage motion until the next event. Hence, we call ¥ the event map and
U(Ty, Xo) is called the carriage motion from the 1st to the 2nd event of (Tp, Xp).
Similarly, ¥™(Tp, Xo) is called the carriage motion from the nth to the (n + 1)th
event of (Tp, Xo).

2.4 Initial carriage motion

To construct a general ¥ is a very lengthy exercise. However, by restricting to a
specific initial carriage motion the construction of ¥ simplifies. We consider (Tp, Xj)
the tuple . As the initial configuration we assume that the chain is tight between
all the carriages. Observe that we must require that Noley < £ < (Ng+ 1)f; when all
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the chains are tight. Then, it follows from that the equations of motion for the
carriages are given by

Nomio; = —Nocto; + Faan, 7=1,2,---,Nog, (6)
with initial conditions
20;(0) = (j — 1)l + do, #0;(0) = w1 >0, j=1,2,---,Ng, (7)

where dy € [0,4.¢]. Since the chain between the carriages is tight, the initial distance
between two adjacent carriages is f.;. Observe that dj is the distance between the
motor and the first carriage. Hence, the chain between the motor and the first carriage
can be loose (dy < lct), tight (do = £.¢) or the first carriage starts at the position of
the motor (dy = 0). Since the Ny carriages move as a whole all the carriage have the
same initial velocity.

Next, we look at which event can occur at t;. First, let us make a distinction
between two different P events:

P_.: The chain between two carriages is pulled tight
Poot: The chain between the motor and the first carriage is pulled tight

Then, the events C' and P, cannot occur at ¢;. Hence, the events E, L and/or Ppot
can occur at t;. We assume that the motor is switched on at t = 0. Hence, at
t = 1/ fimot the first carriage will enter via the motor. Thus, ¢; is given by

tl = min(Tl,TQ,l/fmot), (8)
where 1, 79 > 0 are the smallest 71, 75 such that

Tono(T1) = £, (event L)

x01(12) = Lo (event E).

2.5 Carriage motion from the nth to the (n + 1)th event

It turns out that we chose the initial carriage motion, (T, Xo), in such a way that
the following holds for U™ (Ty, Xo) = (T, X,,) for any n € N:

Property 1. The carriages can be divided into two connected parts: the loose part,
which consists of all the carriages with a loose chain in between them,
and the tight part, which consists of all the carriages with a tight chain
between them. Denote the number of carriages of the loose part by K.
If the loose part contains more than 0 carriages, so K, > 0, then the
first carriage of the loose part connects to the motor. If the tight part
consists of more than 0 carriages then the last carriage of the tight part
is next to the dancer, see Figure [6]
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Property 2. If K,, > 0 then the speed of the carriage closest to the motor is largest
and the speed of the carriages decreases when moving away from the
motor. Hence, for all ¢ € T;, the following inequality holds:

dxn, dxps drnx
L) > () s s S ) )
Motor
TnK,
TnK,+1 TnK,+2 TnN,

Dancer

Figure 6: The loose part and tight part. Denote the number of carriages by N,, and
the carriages of the loose part by K,. The carriages can be divided into a loose part
with K, carriages which are connected to the motor and a tight part of (N,, — K,,)
carriages which are connected to the dancer.

These two properties are important for the construction of ¥. We will now construct
¥ and prove the above properties by induction. Observe that property 1 and 2 hold
for (To, X 0).

Now, we assume that (T), X%) is known. Furthermore, we assume that (T}, Xj)
satisfies property 1 and 2. Then, we want to prescribe the carriage motion from the
(k+1)th to the (k+2)th event of (Ty, Xo), ¥(Tk, Xi) =: (Tk+1, Xk+1), and prove that
property 1 and 2 hold. We denote Ty, = [tk, tx+1) and Ny is the number of carriages.
As before, we index X}, in the following way:

Xi = (Tr1, Th2y -+ TN, )-

First we determine which events can occur at tx4;. We will present mathematical
equivalents for the events. Using property 1 and 2, we first make some observations:

- If Pyt occurs at tgy1 then all the chains are pulled tight.

- If P. occurs at tj41 then the chain between the loose part and the tight part of
the carriages is pulled tight.

- If C occurs at ti1 then the last carriage of the loose part and the first carriage
of the tight part collide.



54 SWI 2016 Proceedings

Denote the number of carriages of the loose part by K. Then the events are described

by
Prot atiy1 = xpi(trsr) = Lo,
Lattyy1 <= zxkn, (tge1) =4,
Eattyyr <= tpt1 =D/ fmot Withp = min Do,
p()/fmot_l\?k>07
po€E

and if Kj > 0 then, in addition, the following events could occur:

P attrr1 <= Tiret+1(tet1) — Thk, (ter1) = £,
C at thy1 < kak+1(tk+1) — TkK, (tk-',-l) =0.

(13)
(14)

If C occurs at tjy; then there is no carriage motion after the (k + 1)th event of
(Th, Xo). At t11 either a single event or a combination of (L, E, Pyet, P.) can occur.

Next, we will prescribe X171 based on which event occurs:

Event L:

The last carriage leaves. We have that
X1 = (Tr1, Th2y *  ThKpr YKp+15 YK42, " s YN—1),5
where y; with j = K +1,--- , N}, — 1, satisfies
m(Ng — 1 — Ky)j; = —c(Ny, — 1 — Ki.)y; + Faan,
and initial conditions
Yj(tes1) = @rj(tirr), 95 (tkr1) = Erj(tesr)-
Event E:
A new carriage enters. Hence, we have
Xiy1 = (2, Tk1, Th2, 5 TN, )

with z satisfying

and initial conditions

Events F and L:
We have that

Xit1 = (2,11, Th2s - ThKp> YKp41> YKp+25 " s YNe—1)s

where z satisfies Equation and (20) and where y; with j = K, +1,---

satisfies and .
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Event P,i:
We have that
Xk+1 = (w17w27 e 7ka)?
where w; with j =1,2,--- | Ny, satisfies
'li)j = 0, (22)

and initial conditions

wj (thr1) = @rj (trr)- (23)

Events F and P,

We have that
Xk+1 = (woawlaw27 te 7ka)7

where w; with j = 0,1,2,--- , Ny, satisfies Equation and (23).

Events L and P,:

We have that
Xk-i-l = (w17w2a T aka—l)y

where w; with j =1,2,---, N}, — 1 satisfies with .

Events E, L and Py,

We have that
X1 = (wo, wi,wa, -+, WN,—1),

where w; with j =0,1,2,---, Ny — 1, satisfies and .

Event P.:

This only happens when Kj > 0. The Kjith carriage which was in the loose part

during T}, will become part of the tight part at tx41. We then have that
X1 = (Th1, Th2, - ThK 1, UK UK 4157 5 UN ),
where u; with j = Ky, Ki, + 1, --- , Ny, satisfies
m(Ng — Ky + 1)il; = —c(Ny — K + 1)@ + Faan,
and initial conditions

Ui (tht1) = Thj(trr1), W (ter1) = T (ter1)-

(24)

(25)
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Events £ and P.:
Again, K > 0 and it follows that

X1 = (2, T11, Th2, -+ 5 ThEG—15 UK, UK +15 7+ 5 UkNG, ) (27)
where z is satisfies (19) and and where u; with j = Ky, K, +1,--- , Nj, satisfies
and .
Events L and P,:
Then K > 0 and

X1 = (Tr1, Tha, 5 ThE—1, UK, UKG415 7 5 UNy—1), (28)
where 4; with j = Ky, K +1,--- , Nj, — 1 satisfies

m(Ny — 1 — Kp)tj = —¢(Ny — 1 — K )it; + Faan (29)

and initial conditions

i (tes1) = Taj(tra), 5 (tegr) = Taj(trgn)- (30)

Events FE, L and P.:
Then K > 0 and

Xig1 = (2, @p1, Th2, -+, ThKp—1, Uiy, Ukpt 1, UNG—1)s (31)

where z is satisfies (19 with and where @; with j = K, K +1,--- N — 1
satisfies with (30). The ODEs above are solved by .

We have given Xj11. We denote Ty 1 = [tg+1,tk+2) and Niyq is the number of
carriages. As before, we index Xj41 in the following way:

X1 = (Thg1 1, Thg12, 5 Th 1 Ny sy )-
It remains to give tx42. From 7 7 , , it follows that

; ) min(7y, 72, 73) if K41 =0,
k42 — . .
mln(Tl,TQ,T3,T4T5) if Kk—i—l >07

where 7; > t541 with ¢ = 1,2,3,4,5 are the smallest 7; such that
Tp+1 1(7'1) = Ly,
xk}Jrl Nk+1(7-2) = €7
Tamod 1/ fiot =

0,
Tht1 Ke+1(Ta) — Thr1 k, (T2) = ¢,
0

Tr4+1 Kk+1(7'5) — Tk+1 Ky, (7'5) =
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We have given Ty,1. We are left with proving property 1 and 2, but this follows
directly from considering the equations of motion for all the cases.

3 Numerical simulation

We implemented the model in Mathematica. It turns out that the dynamics of the
slack caused by the motor does not change if we consider a chain with many carriages.
Hence, for convenience we consider a chain starting with only 4 carriages. At ¢ =0
we assume that the system is at rest, which means that the velocity of the carriages is
zero. In the physical system many carriages per minute enter via the motor. Hence,
we will take fi,ot large. We consider the following parameters:

=4 Ly =1, ¢c=1/100, m =1, fiot = 100, vt = 10, (32)
and for the following initial conditions:
XO(O) = (1/23 3/27 5/27 7/2)7 XO(O) - (07 0,0, O) (33)

We will vary the force Fyq.,. The results for Fya, = 150 and Fy,, = 250 are displayed
in Figure [7] and Figure [8] respectively. In Figure [7] and Figure [§] the carriages are
labelled with numbers so that the motion of each carriage can be followed over time.
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) [ ] ([ ] (]
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Figure 7: Time frames of the numerical simulations with initial conditions and
with parameters , Faan = 150.
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Figure 8: Time frames of the numerical simulations with initial conditions and
with parameters , Fyan = 250.

In Figure[7] and Figure [§]the carriages with loose chain between them are pulled tight
by the dancer. We observe that the time it takes for the chain between the loose
part and the tight part of the carriages to be pulled tight is too large. This can be
seen from the fact that the loose carriages accumulate over time. We find that for
Fyan = 390 the carriages have the same configuration as for Fg,, = 250 at ¢ = 0.12
at a later time, namely at ¢t = 2, see Figure[J]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 9: The numerical simulation at ¢ = 2 with initial conditions , parameters
and Fyan = 390.

If we take Fy., > 400 then we find that the events P and L are the first events
that occur. Recall that when P, occurs all the velocities become zero. The event
Pt L is followed by the event E after which we are back in the starting configuration
and the process repeats. Consequently, there is no accumulation of carriages with
loose chain.
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4 Conclusions and recommendations

In this paper we constructed a mathematical model for the carriage motion between
the master motor and the next dancer. In Section [3| we found that if the force applied
by the dancer is large enough then the slack in the chain that is caused by the motor
will not spread over the whole chain. This is also observed in the physical system.
Alternatively, we could have modelled the chain as a moving continuum (e.g., string
Chen| (2005))) or a harmonic oscillator (spring-mass system). However, we looked into
the approaches and neither of them yielded satisfying results.

The model we formulated is only a first step in the study of this system. There are
several ways in which it can be extended. As next steps, we recommend the following
extensions of our model:

- General initial configurations: Our model can only be used for the initial
configuration when the chain is tight between all the carriages. For a more
general initial configuration the possible events will increase. Consequently, the
event map ¥ will become more complicated.

- Moving dancer: The distance between the motor and dancer is assumed to
be constant in our model. However, in the physical system the dancer can move
and this can be incorporated in our model.

- Control problem for coupled dancers and motors: In the original problem
the master motor is followed by motors whose speed is coupled to the position
of the dancer. Using our model we can formulate a control problem for this
system.

- Not fully loaded chain: When there is not a product on every trolley but
several are empty we should consider a partially filled chain. This can be done
by varying the mass of the carriages which enter via the motor.

- Realistic parameters: In Section [3] we only consider very specific parameters.
Parameters which better fit the reality should be studied.

The numerical simulation in Section [3]|is aimed at finding the lowest force on the
dancer such that the carriages with loose chains between them do not accumulate.
We call this the optimal force of the dancer. Recall that the greater the force of the
dancer the shorter the life-time of the chain. A topic for future work is a further
improvement of the life-time of the chain. More specifically, by modifying the system
we want to take the force of the dancer lower than the optimal force of our model
while ensuring that the entire chain will not slack over time. If we could reduce the
speed of the carriages with loose chain that leave the motor then the dancer has more
time to pull the chains between the carriages tight. This might be accomplished by
placing a high friction mat on the rails close to the motor. This reduces the speed of
the carriages close to the motor. By using our model it is possible to test whether
this might work.
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