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Abstract

Fog is one of the most dangerous weather types with more fatalities than
winter storms. It is in the interest of general public that a precise, predictive
and accurate fog density map with high spatial resolution can be created. Cur-
rently, the definition of fog as used by national weather services is so detailed
and technical that the fog can be identified only at a few locations by means
of the prescribed light scattering experiments. With the rising availability of
cameras in public places such as airports, streets and highways, a large amount
of data on the occurrence of fog becomes available to researchers. In this article
we describe methods for determining not necessary only the existence of fog,
but sometimes a visibility distance - a type of optical penetration length - as
well. We will show that digital cameras can be a reliable alternative or comple-
mentary method for creating fog visibility maps when processing of image data
is used.

KEYWORDS: fog detection, Dark Channel Prior, edge detection, colour detec-
tion, visibility distance

1 Introduction

Fog is the weather phenomenon of light scattering particles - usually water droplets
- suspended in air causing an attenuation of light and therefore a severely reducing
a visibility of objects. The sudden appearance of fog - especially a dense fog - can
lead to such reduced visibility that transportation networks can be affected or even
fully compromised: for example massive car collisions resulting in long traffic jams,
grounding of airplanes or even closing of airports and reduced speed of trains to
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prevent derailment. Some of these effects can be alleviated or even prevented when
a transportation network can adjust to a fog density map of high spatial resolution
accuracy by issuing warnings or decreasing the speed limit. Unfortunately such a
density map needs a dense network of sensors that are capable of detecting the fog
and measuring the visibility distance, a network weather services are now lacking.

Current fog detection systems measure the amount of scattering of a collimated beam
of infrared light to determine the Meteorological Optical Range (MOR): the distance
at which a collimated beam of incandescent light with a light colour of 2700K has
reduced to an amount of 5% of the emitted flux. In the Netherlands there are 25 sites,
see Figure 1 for the locations, capable of determining the MOR resulting in a spatial
resolution that is significantly larger than typical length scales on which fog varies
that can be as low as a few meters in the neighbourhood of surface water. Therefore
a new and complementary method based on new data sources is needed.
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Figure 1: Map of the Netherlands showing the Meteorological Optical Range (MOR)
measured at 25 sites capable of determining the MOR. Image from the real time
updated public KNMI website: http://knmi.nl/nederland-nu/weer /waarnemingen.



Fog detection from camera images 27

A possible new source of data are public cameras. The rising spread of public cameras
for control, security and safety allows for a much denser network of fog detecting
sensors. For example The Netherlands had about 2200 state owned traffic cams
der Staten Generaal (2010) in 2010, which would yield a spatial resolution of about
2.5 km if the cameras are distributed uniformly. Unfortunately the meteorological
definition of fog is incompatible with the data gathered by cameras. Cameras do not
see a constant light colour of 2700 K nor have a reference level of the emitted flux.
Therefore different properties of fog have to be used in a camera involved in a fog
detection system. For validation such fog system must correlate to the MOR and to
the fog detection and classification based on human perception.

Properties of fog and their measurement As we stated before fog is the weather
phenomenon of light scattering particles, suspended in air causing an attenuation of
light and therefore a severe reduction of the visibility of objects. This description
already hints to several characteristic properties. The most important parts of this
description are the “light scattering particles" and the “reduced visibility of objects".
The first part implies that the light of a source can be seen from a direction different
than the source direction. As a result the total amount of light scattered into one
specific direction will lead to a shift of an object colour towards white or grey. This
property will be called Colour Level Shift. Furthermore, the attenuation due to the
scattering leads to a gradual change of the fog colour from white to black depending
on the attenuation length of the fog, the thickness of the fog layer and the intensity
of the light source.

The second part of the description indicates a loss of resolution. It indicates that
visibility is a relative quantity depending on the no fog perception of an object. An
object becomes “fuzzy" and less detailed. This property will be called Shape Level
Decrease.

In general both the Colour Level Shift and the Shape Level Decrease can be inter-
preted as some combinations of smearing and averaging effects. The smearing implies
the existence of a diffusion process like scattering, which is the reason why objects
are perceived “fuzzy" and with shifted colour levels, and the averaging indicates the
direction of the Colour Level Shift: towards a specific grey level.

The MOR detection method is fully based on scattering and therefore it is by defini-
tion a colour level method: a decrease of flux in a specific small wavelength interval
will indicate a colour level shift. The MOR detection method does not determine
the loss of resolution or the absolute change of colour. Therefore camera data can
complement the MOR detection method by determining both the loss of resolution
and the absolute change of colour. A loss of resolution can be quantified by edge de-
tection realized e.g. via gradient thresholding, high level wavelet transforms or total
variability measures. The colour shift can be quantified by comparison between the
RGB-channels of camera.
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2 Fog detection based on Dark Channel Prior

In this chapter we introduce fog detection methods that are based on so called Dark
Prior Channel from RGB colour images.

2.1 Description of available data

Although in general a video data can be available for our purposes, we note that the
video footage is in principle a sequence of photographs, where each photograph is
only shown for a very short time interval, usually too short to be perceived as a single
photograph. Therefore we will only discuss the datasets consisting of single pictures.
Each colour picture consists of three channels - Red, Blue and Green (RGB) - where
each channel is a picture: an intensity map of the light received after passing through
a specific band pass filter. The combination of the three channels yields the real
life colour picture. Current camera technology is typically based on digital data
obtained from a CCD (Charged Coupled Device), where the CCD is an array of
integrating capacitors |Rieke| (2009). Each pixel of the picture is identified with a
single integrating capacitor. The amount of charge collected by the capacitor is a
direct measure of the intensity of the light. The relation is linear except for high
values of charge. Current CCDs use a pixel with three integrating capacitors, one
for each of the RGB channels Kitchin| (2009). A CCD will give an electronic signal,
the read-out signal, that consists of sequence of voltage spikes, one for each pixel
channel. The data is therefore immediately in an analogue format which is easily and
automatically converted into a digital signal.

Camera data will therefore consists of three digital RGB channel data sets in our
study. In particular, the methods that will be discussed in this paper are applied
to pictures provided by Koninklijk Nederlands Meteorologisch Instituut (KNMI), see
Figures [2] or [4] later for an illustration. The pictures obtained from camera images
are taken from a single location - KNMI institute terrain at De Bilt, Utrecht, the
Netherlands (52.0990 N, 5.1766 E) - and pointed in a single steady direction towards
the horizon (NNE). The pictures have a size of about 60 degrees wide and 40 degrees
high with the horizon centered at about 18 degrees from the bottom, in pixel sizes
768 x 562. The temporal resolution is 10 minutes.

Complementary to the camera data the KNMI provided the Meteorological Optical
Range (MOR) values of the same weather station location at the same times. The
MOR values are in meters and are determined with the same temporal resolution.
However the MOR is determined for the air directly at the location of the detector,
while the camera has a solid angle to probe with a certain angular resolution resulting
in multiple probes of fog of locations at least several tens of meters away from the
camera. We assume that the fog is spatially homogeneous on the visible length scales
and therefore probed in the same way by the MOR detector and the camera.
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Transmission and Dark Channel Prior If we see the i-th image channel as an
intensity density mapping I;, ¢ = r, g, b, then the density mapping can be decomposed
into two mappings: the transmission mapping and the air scattering mapping, see
e.g. |[Fattal (2008)); Narasimhan and Nayar| (2000, [2002)). The transmission mapping
is the perfect visibility image (or the scene radiance) J; weighted with a transmission
density ¢ indicating the amount of transmission of the medium - in this case air.
The air scattering mapping is the additive complement of the transmission mapping
depending on the global atmospheric radiance A; indicating the amount of intensity
of air radiance being scattered in the direction of the camera.

I(x) = J(x)t(x) + A(1 - £(x))), (1)

Mathematically speaking, the mappings I = [I,., I, I;] ", J = [J;, Jg, Jo| T, A = [A,, Ay, Ap) T
are defined on [1,n] x [1,m], the image of size n x m pixels, and with their values in
[0, 1], the relative colour intensities for each RGB channel. Remark that the RGB
intensity is rescaled to 1 instead of the to the usual value of 28 — 1 for B-bits colour
coding.

We are interested in the transmission coefficient ¢ € [0, 1], since 1 — ¢ is a measure of
the amount of fog at the location depicted by the image pixel. Therefore one must
be able to remove the fog from the image and create the scene radiance image J.
The procedure for doing this is called dehazing, because it is the inverse operation of
applying fog or haze to an image He et al.| (2011)).

The objective of dehazing is to estimate J, A and ¢ in from a single image I.
Naturally this procedure is a priori ill-posed since the output is 7/3 times greater
than the input from the image. Therefore the relation cannot be solved without
extra constraints.

It was empirically observed in He et al.| (2011) that patches in haze-free outdoor
(day) images in the non-sky regions have very low intensities in at least one channel
at some pixels belonging to the patch. These very low intensity pixels are due to
large deviations in the intensity of a channel, which is by itself a measure of object
resolution (pixel to pixel deviations) and transmission (channel to channel deviations).
One expects that for foggy (day) images the scattering causes both a decrease in the
object resolution as well as a colour shift to white or grey. Note that the grey scale
colours are by a definition unbiased to any of the RGB channels. Therefore the RGB
channels must have small deviations in the intensity of the channels, which can be
interpreted as a loss of resolution (pixel to pixel) and colour shift (channel to channel).

Consequently, we can introduce the dark channel Jy,,1, which is the minimum over
all channels of the minimum of all pixels in a (small) neighbourhood, a patch (x),
centered at a pixel x,

Jark()i= _nin, ( min (1)) @)

ce{r,g,b} \yeQ(x)

The dark channel is therefore a prior knowledge for dehazing. Note that this Dark
Channel Prior is depending on the choice of a patch. If the patch is too large, then
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the Dark Channel Prior will be almost uniform in the image, while a too small patch
will go beyond the effective resolution of the image causing a Dark Channel Prior
with almost the same variability as the original RGB channels.

The scene radiance image is the “no fog” transmission image, which is assumed to have
zero values in the dark channel prior, i.e. Jg,-r = 0. Therefore the minimal values
over all channels for the observed image are fully caused by the scattering mapping.
Thus using and supposing an estimate A of A is known, we can estimate the
transmission density mapping by

f(x) =1 —w min < min (Iﬂ(}')», (3)

cer,g,b \ yeQ(x) IA[2

where w € [0,1] is a constant parameter introducing a small amount of haze to
preserve a correct perception of distant objects. The haze indicated by the factor
1 — w can be attributed to other effects than scattering by water vapour, such as
Rayleigh scattering of air, thermal deviations of the refractive index, or lens problems
such as defocussing, chromatic aberration and astigmatism [F.L. Pedrotti (2007)). In
our applications we set w = 1, since the camera is assumed to have no lens problems
and the unobstructed view distance of 250 meter (a typical value in our test images)
is assumed to be too small to allow other natural scattering effects.

To determine A we pick the top 0.1% brightest pixels in the dark channel and then
the pixels with highest intensity in the input image I to estimate the atmospheric
light A, see He et al.| (2011) for more details

In the following fog detection methods we make use of smoothed transmission t.
The smoothing is permormed using Guided Filter, where we filter ¢ and the filtering
process is guided by I He et al.| (2011)).

In next sections we present particular fog detection methods based on Dark Channel
Prior and transmission image. To obtain them for images in our computations we
have used an available Matlab implementation, see Tierney| (2014).

2.2 Classification Tree methods for fog detection

We assume we have obtained a smoothed transmission ¢ for all pixels of the image from
RGB data. Afterwards we compute the average of the smoothed transmission for each
row. The resulting function of one variable indicates the transition between sky/air
and the ground. One expects that a fog will create a smooth transition between the
two, while clear days will have a sharp distinction between the two. In Figures [2]-
one can see examples how a clear day and a foggy day will change the transmission
function. Hence this horizontal averaged smooth transmission function can be a good
indicator for fog.

To test this approach we compute horizontal average for smoothed transmissions ¢
for 4458 images from October 2015 (the dataset Oct15) and for 2554 images from
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Figure 2: Image with a fog.
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Figure 3: Smoothed transmission ¢ and
horizontal averaged function.

November 2015 (the dataset Novwl5). Thanks to MOR method we have accurate
estimation of visibility for these two datasets. We discard images for which visibility
measurement is not available. Our goal is to be able to distinguish 3 classes:

e Class 1 - visibility < 250m,

e Class 2 - visibility > 250m and < 1000 m,

e Class 3 - visibility >1000 m.

Based on the MOR data one can easily determine to which class an image belongs,

see Table [Tl

Table 1: Number of images for each class and each dataset based on MOR data

| Class 1 | Class 2 | Class 3 |

Oct15

171

194

4092

Novl5

3

17

2451

However to determine these classes we intend to use the image datasets only. There-
fore to distinguish between the three classes we use machine learning techniques on
image data only and the predetermined partition of the images by the MOR data.

We proceeded as follows. We randomly partition the images into training and valida-
tion sets for each dataset. The 50% of each dataset is used for the training and the
rest for the validation. We report in Figures[6]- [9] the results for two machine learning
techniques: Single Classification Tree (SCT) and Bagged Classification Trees (BCT)

Breiman et al.| (1984) .
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Figure 4: Image without fog. Figure 5: Smoothed transmission ¢ and
horizontal averaged function.

We find that the BCT outperforms the SCT for the November 2015 dataset in both
Class 1 and 3. In Class 2 both methods are equally bad with 1 in 4 images wrongly
classified.

For the October 2015 dataset the both methods are equally correct with a wrong
classification of only 1 in 6 of the Class 1 (dense fog) images, 2 in 5 of the Class 2
(moderate fog) images, and 1 in 100 of the Class 3 (no fog) images. However due to
the low amount of images with Class 1 and 2 classification it is premature to conclude
that the methods are useful for fog classification.

We note that from the point of safety it is not problematic if a method has a bias
for a higher probability on false positives towards lower Classes (more fog) images.
However from the point of view of disruption, public awareness, believability and
costs for society such a method is problematic if the bias is significant. Therefore a
machine learning method should be combined with another fog detection method to
decrease false positives and false negatives.

2.3 Transmittance Method

A second method exploiting the transmission function, called the transmittance method,
is based on two consequences of the model .

The first one is the diffusion of the air region in the image into the ground region.
This can cause an effective lowering of the horizon in pixel height. In the transmission
function this effect can be seen as a shift of the location of the largest transmission
jump to lower pixel height values.

The second consequence is the smoothing of the colour level due to the air intensity
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Figure 6: The SCT for dataset Octl5. Flgure 7: The BCT for dataset Oct15.
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Figure 8: The SCT for dataset Novl15. Figure 9: The BCT for dataset Nov1s.

mixing with the strength 1 —¢ in . This smoothing of color level can easily be seen
by applying a column average of the transmission. The obtained function will be very
noisy if there is no fog, while it will be smooth if there is a homogeneous fog.

A clear problem with the determination of the jump location is the smoothing itself.
The smoothing implies smaller and more gradual jumps due to the horizon as the
horizon itself becomes fuzzier and less clear. However large objects can still create
large local deviations resulting in contamination of the jump location. The jump
location can therefore only be used for extreme cases (dense fog or no fog conditions).
As a result one can see that the jump location is usually at large values when there is
fog and at small values when there is no fog. Unfortunately still a significant fraction
of fog conditions according to both MOR and total variability data has a small jump
location value.
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A problem with the usage of total variability method is its dependence on the vari-
ability of no fog image. If a camera is pointed at a low variability location such as
a snowy landscape or a calm sea, then foggy and clear weather conditions can be
difficult to distinguish. Furthermore, the total variability method is only applicable
when the camera is focussed at infinity. If a camera is focussed at a nearby location
such as an object on the lens, then the resulting defocussing of the background will
directly imply low variability, while the actual weather condition might be a clear
day.

2.4 Fog Indicator method

The third method related to the transmission function will be called the Fog Indicator
method. This method applies the horizontal averaging to the estimated transmission.
The method combines the slope change of the obtained horizontal averaged trans-
mission function f with the location of the biggest jump. An elementary observation
is the large difference between the transmission values of the sky and the ground.
Furthermore, the horizon is a sharp drop during clear days and a shallow drop during
foggy days. Thus the horizontal averaged transmission function f for clear days looks
more like a step function than in the case of foggy days. Hence the Fog Indicator
F;,q can be suggested as the squared L? norm of the difference between the (discrete)
horizontal averaging function f and the fitted step function Sy with respect to f, see
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Figures [I3] and [I2] for an illustration.

Figure 12: An image without fog.
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fitted step function Sy (red).

Consequently, the low values of Fj,4 indicate clear days, while high values indicate
foggy conditions. We summarize the obtained results for available data sets in Figures
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When considering the data of October 2015 the Fog Indicator seems like a good
predictor for fog or even MOR values. However for the data of November 2015 one
can see two additional groups of points that indicate a discrepancy between the two
methods. One group (the blue points in the lower and left part of graph) is probably



36 SWI 2016 Proceedings

caused by a faulty MOR reading as the images do not show fog (as indicated by the
low Fog Indicator value as well). The other group (the orange points in the top and
right part of graph) is due to dark images because of the decreased length of days
in winter in the Netherlands. It is natural that the second group did not occur in
October as the days are not yet short enough to cause problems for the daily time
intervals we are looking at. For typical representative pictures of each group see see

Figure [I6) and [I7}

Figure 16: An image with a faulty low Figure 17: An image with a faulty large
MOR value. Fog Indicator value.

Clearly, the Fog Indicator method has some issues. Dark and nightlike images will
yield wrong values. Moreover, the amount of clouds in the sky will influence the
Fog Indicator value even though they do not cause fog. In general the Fog Indicator
method depends on the visibility of a horizon in the image. If a camera is pointed
towards the ground in such a way that the horizon is not visible, then the Fog Indicator
method may fail for clear day images.

3 Fog detection methods from shapes in images

Fog is known to affect visibility by reducing the contrast. Multiple methods are
possible for determining an effective value for the contrast. We were not successful
to create fog detection methods with some of them. For example Fourier analysis
methods did not show clear characteristics for discriminating between fog and clear
conditions. Other methods like wavelet analysis were relatively complex and compu-
tationally expensive compared to the reliability of the data. Therefore we have chosen
to do only two related methods: gradient thresholding and local contrast correlation.
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3.1 Gradient Threshold method

This method is based on the assumption that the fog has a tendency to smooth
colour values, creating a less pronounced colour gradient between an object and a
background, the edge.

For simplicity we have converted the RGB colour images into grey scale images.
Having this grey scale image we calculate the local gradient vector and its norm.
Afterwards we count the number of pixels with a local gradient norm larger than a
certain threshold. Our experience is that for a well chosen threshold one can distin-
guish for the chosen image between fog and clear days, see Figures [I8] and [I9] for an
illustration.

Figure 19: An image representation of
ent treshold method. gradient thresholding: the white pixels
denote locations with sufficiently large
gradients (the detected edges), while the
black pixels indicate gradients below the
threshold.

Figure 18: The chosen image for gradi-

To compute the gradient we apply a finite difference method, usually a second order
one, which implies that the local gradient is a patch size dependent given by the order
of the finite difference method.

The proposed Gradient Threshold method seems to be a good fog indicator for at
least the presence of fog, see Figures and Concerning the visibility distance
we still see a large spread that can give unacceptably large deviations in the visibility
distance.

The gradient method is still sensitive to defocussing, a presence of objects on the lens,
and ground fog when it can give errors and incorrect interpretations of the data, but it
is quite robust in the sense that the problems like astigmatism, chromatic aberration
or night images will affect the method far less then colour dependent methods.
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3.2 Local Contrast Correlation method

In the Local Contrast Correlation method we make use of the fact that we have
a sequence of images taken from the same viewpoint. The method proceeds in two
phases. First we analyze a set of reference images from the past and determine specific,
small-scale, contrast-rich features that are present in this set of images. Secondly, we
take the current image, and determine whether the features that have been identified
in previous images can be observed in the current image. In other words, the Local
Contrast Correlation method tests specifically for the presence of certain contrast-rich
features identified from reference images, and not directly for the presence of fog. But
since fogs blurs the features of the image one might expect a good correlation with
the presence of fog. The first phase will be called the analysis phase, the second phase
the test phase. Analogous to the Gradient Threshold method we convert the RGB
images to grey scale images. In the examples we only used daytime images.

The main motivation for this method, as compared to the previous, gradient threshold
method, is to address the issue of contamination on the shape level, see section [4]
below. For example, theoretically it is possible that in a situation of fog, a bird flies
close the camera and introduces a lot of extra contrast, compensating for the loss
of contrast elsewhere in the picture due to the fog. In the local contrast correlation
method, the contrast from the bird will be discarded because it was not present in
the set of reference images.

We next describe the analysis phase. For each reference image, we identify the small-
scale, contrast-rich features as follows. We subdivide the image into a specified number
of patches of a certain size. In each patch, we set the zeroth and first moments of
the local grey scale expansion to zero. The constants are chosen to equal the average
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constant value and gradients within a patch. The remaining grey scale image for a
certain patch will have highly pronounced edges (if edges are present in the patch).
The corresponding patches obtained from the different reference images are averaged,
to keep only contrast present in many of the images. A set of patches is selected where
contrast is above a certain threshold. These will be used for testing the presence of
specific features in the test image. Patches can e.g. be of size 16 x 16 and 100 patches
can be selected. After moment removal, the patches where normalized, so that, as
a vector, they had unit length. We denote by I%aﬁ (J, k) the patches after moment
removal, averaging and normalization, with «, 5 the index of the patch and (j, k) the
coordinates of each pixel in the patch, and by S = {(aq, £1), (a2, B2), ..., (an, Ba)}
the set of patches selected for testing. See Figure 22) and 23] for an illustration.

In the test phase, one subdivides the test image I(j, k) in patches I, 5(j,k) in the
same way as for the analysis phase. To find whether a certain feature is present in
the image, we consider the inner product (correlation)

tap = Lop(j,k)Rap(i k).
gk

A large value of ¢, g means that the detailed features, observed in the reference images,
are present in the test image. Small values for ¢, g can mean either that there is no
contrast present in the specific patch, or that there is an altogether different contrast
present, e.g. due to an object with a different shape that is present in the image.
The logarithms of the values t, g can be summed to give a first indication of the
“fogginess”.

Small scale contrast

Figure 22: An RGB reference image used
for the analysis phase of the Local Contrast
Correlation method.

Figure 23: An outtake of the greyscale
image of which the zeroth and first mo-
ments are removed in grid patches. The
colouring is from dark blue for value -1
to bright yellow for value +1.

The indicator value of the proposed Local Contrast Correlation method is actually a
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good indicator for the October 2015 data with no deviations from a specific functional
form with respect to the MOR data. However for November 2015 we see again a group
of points deviating from the October functional dependence. Again these points seem
false positives of the MOR data as the values of the edge detection are similar to the
values of the clear days. It is highly likely that this group is the same false positive
group as found by the Fog Indicator method.

Correlations October Correlations November
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Figure 24: Local contrast correlation in-
dicator values against MORvalues for
images of October 2015 dataset.
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Figure 25: Local contrast correlation in-
dicator values against MOR values for
images of November 2015 dataset.

The Local Contrast Correlation method shares some properties of Gradient Treshold-
ing method. But there is also a number of differences. An important difference is the
use of reference images, showing what was previously visible at the site. As explained,
this could address the issue of shape contamination. In principle, using more of the
available information should lead to a reduction of the statistical uncertainty. How-
ever, it is unclear whether this is the case when including information from reference
images, because there are also potential complications. The use of patches in principle
allows the use of different statistics than simply summing the values ¢, 3. Each low
tq,3 value is an indicator of reduced contrast in some part of the image which could
be caused by fog. However, it is not easy to say anything in general about the relation
between the ¢, g and the fog conditions. Reasons for this are for example that the
depth- and height-maps of the pictures are unknown, that the distribution of contrast
over the picture can vary and that fog can have different characteristics.

4 Error sourcess in fog detection methods

All methods for determining the existence of fog are subjected to three types of error
sources: difficult weather conditions, camera errors and errors in the method itself.
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We assume that all errors in the method itself, for example ill-posed matrices for
inversion or other problems resulting in non-uniqueness, are negligible, while all other
errors are due to the difficult weather conditions or camera errors.

In what follows we discuss contaminating conditions in fog detection methods.

Contamination on the colour level The colour level depends on the properties
of the objects seen in the picture, the intensity of the light, the position of the sun
and the weather conditions. Several combinations of these factors can lead to false
positives in the colour level methods for fog detection. Due to the variable nature
of weather, light intensity and solar position in the sky one expects the colour level
contamination to be highly variable with predictable time dependencies.

Contamination on the shape level The shape level depends on the local vari-
ability in colour (or grey scale), which ultimately depends on the resolution and the
intensity of the light. Therefore the same contamination problems as with colour
level are present. If the objects in the images vary with time, as it is the case for
traffic cameras, then the shape level depends on the amount, shape, size and colour
of objects visible in the clear image as well. An empty road should not be classified as
foggy just because no car is visible, while a foggy traffic jam should not be classified
as clear just because a lot of cars are visible. Therefore only not hidable stationary
objects should be used in the determination of the shape level, e.g.one does not want
to use the lines on a highway as objects, because they can be hidden from the camera
by another objects such as a car or a truck.

Weather conditions A crucial part in the colour level methods is the Dark Channel
Prior. By definition this Dark Channel Prior is the minimal value over all channels
for all pixels within a patch. As a consequence the Dark Channel Prior is biased
towards dark images: darker images are perceived as clearer pictures. Therefore
every weather condition that creates dark images will artificially be interpreted as
clear. Thick rain clouds, clouds during dusk or dawn and night images can all give
the wrong interpretation of fog. Night images are even more problematic because of
the vanishing horizon.

A second problem is the imitation of fog by other weather conditions. Heavy precip-
itation in any form will create a decrease in the visibility distance, but it is not fog
and therefore not seen by the MOR (if the sensor is encased for protection purposes).
Therefore false positives of the image methods with respect to fog and false negatives
of the MOR method with respect to visibility distance will occur.

One can pose the question what the ultimate goal of the KNMI (or any other user
of these tools) is: fog detection or visibility distance determination? This question is
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crucial in the evaluation of the data, for example in the determination of the influence
of the MOR values compared to the image data indicators.

A third problem is the inhomogeneous distribution of fog. If fog is only present in
a part of the image, then even dense fog can be classified as moderate fog. Clear
examples are thin layers of dense ground fog. They can result in multiple effective
horizons or a high spatial discrepancy in edge detection.

Camera errors Camera errors are systematic errors that effect all image data
indicators. The most prominent problems are defocussing, chromatic aberration and
astigmatism.

Defocussing implies a large scale averaging on the entire perfect image resulting in an
artificial dense fog condition. Almost all colours of the image are mixed resulting in a
fog like Dark Channel Prior. Chromatic aberration is an effect when a lens does not
work equally for all wavelengths. Chromatic aberration occurs in two types: different
focal lengths or different foci. Different focal lengths imply different magnifications
for different colors. Therefore edges become less pronounced and blurring occurs on
the edges of the image resulting in artificial fog. Different foci implies a homogeneous
defocussing of different strength for different colours. This results in a local aver-
aging for different colours implying higher values for the Dark Channel Prior, hence
the method can classify the image as slightly foggy. Astigmatism is an effect when
different lens axes have different foci, resulting in an effective blurring of the image.
Naturally the Dark Channel Prior can again classify the image as slightly foggy.

Miscellaneous errors There are other reasons why errors are introduced. For
example animal interference. If a spider creates a cobweb on a camera, then it will
influence the determination of fog or visibility distance. Similarly wind can blow
leaves or cloths on the camera, while animals like bugs or arachnids can stay on
the lens. Precipitation can cause blurring as well just by exposure of the lens to
weather. Water droplets or ice severely influence the viewing angle or distort the view.
Furthermore, dew and crystallization of moisture can cause fast changing operating
conditions with total blockage of the camera lens in extreme cases. Aging of the lens
due to degrading lens surfaces by sand, salt or other effects can create optical effects
that persist. Moreover, CCD aging due to long exposures to high intensities of light
or other effects can create permanent artifacts on images.

5 Conclusions

In this paper we present several fog detection methods based purely on processing of
image data obtained from digital cameras. We can classify these methods into two
groups. The first group is based on well established Dark Channel Prior method that
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was originally proposed to dehaze foggy images, and it includes Classification Trees
methods, Transmittance methods, and Fog Indicator method. The second group
works with converted grey scale images, and it includes Gradient Tresholding and
Local Contrast Correlation method.

We note that not only the fog detection but also the visibility correlated to the current
meteorological standard for visibility ranging can be obtained from camera images
in several cases. For practical usage one may propose a combination of presented
methods supported by proper statistical tools to create a fog detection method that
is robust against false positives and false negatives of individual methods. In fact,
using proposed fog detection methods we could recognize faulty data in Meteorological
Optical Range (MOR) measurements.
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