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Abstract

We study a problem that plays an important role in the flower industry: we
must determine how many mother plants are required to be able to produce a
given demand of cuttings. This sounds like an easy problem, but working with
living material (plants) introduces complications that are rarely encountered in
optimization problems: the constraints for cutting such that the mother plant
remains in shape are not explicitly known.

We have tackled this problem by a combination of data mining and linear
programming. We apply data mining to infer constraints that a cutting pat-
tern, stating how many cuttings to harvest in each period, should obey, and we
use these constraints in a linear programming formulation that determines the
minimum number of mother plants necessary. We then consider the problem of
maximizing the total profit given the number of mother plants and show how
to solve it through linear programming.

KEYWORDS: data mining, linear programming, cutting patterns, column gener-
ation.

Diimmen Orange is a leading company in breeding and development of cut flowers,
potted plants, bedding plants and perennials with over a century of experience in the
horticultural industry. In addition to a large marketing and sales network, Diimmen
Orange has a strong network of production locations. In these production centra
so-called mother plants are planted and grown for a large number of varieties. When
these mother plants are ready, cuttings are harvested during a period of approximately
16 weeks, after which the mother plants are removed.

OIn this paper we report on the project carried out for Diitmmen Orange in the context of
the study group ‘Wiskunde met de Industrie’ (Math with Industry). Next to the authors of the
report, the group consisted of Yella Klemm, Kevin Laros, Jan Nelissen, and Brian Wismans
from Diimmen Orange, Norbert Mikolajewski (RU Nijmegen), and Jagna Wiesniewska (VU
Amsterdam).
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These cuttings are sold to growers, who either place orders beforehand, or place orders
during the harvesting. For each variety, the majority of sales takes place in the ‘peak
weeks’, which is a period of approximately 10 weeks; the company has reasonably
accurate demand forecasts per week available.

Diimmen Orange experienced the following problem. For each variety, the number
of mother plants to be planted is decided on the basis of sales forecasts to which a
buffer of 10% is added. When orders come in, contracts are concluded with the
growers guaranteeing that the required number of cuttings will be delivered at the
desired time. When the harvesting starts, at some point in time the availability of
the buffer of 10% is reported to the sales agents, who then try to acquire orders for
selling these additional cuttings. Unfortunately, when they are very successful, too
many cuttings are required, and the mother plants cannot keep up this pace for too
many weeks in a row, which results in a shortage in later periods. This led Diimmen
Orange to the question of when to report the availability of the buffer, and possibly
to change its size.

Diimmen Orange posed this problem at the study group ‘Wiskunde met de Indus-
trie’ SWI2016 . In close contact with Diimmen Orange we figured out that we had to
address the following research questions:

1. Model how the number of cuttings harvested in previous weeks influences the
potential number of cuttings that can be taken from a mother plant in the
current and future weeks.

2. Determine how many mother plants should be planted to meet the predicted
demand.

3. Determine how many cuttings to offer for sale in each week (and thus how many
to cut).

We have looked at this problem for just a single variety of plant in isolation, where
we ignored any random disturbances initially. For the variety that we studied, we
were provided with the predicted demands and the average number of cuttings per
mother plant for each week from 2005 onwards. Unfortunately, detailed informa-
tion concerning the effects of taking cuttings on the potential mother plants was not
available.

This paper is organized as follows: In Sections[I]and 2] we describe how to answer
the second and third question by linear programming, for which we need the answer to
the first question, which is solved in Section [3| using techniques from data mining. We
conclude by providing computational experiments in Section [4] and draw conclusions
in Section Bl

Osee http://www.ru.nl/math/research /vmconferences/swi-2016/
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1 Solution approach: linear programming

Since the number of cuttings taken from the mother plants in previous weeks influences
the potential yield for the current week in a way that was unknown to us, we decided
to work with feasible cutting patterns. Here, a cutting pattern describes for each of
the 16 weeks the average number of cuttings that are taken from a mother plant; since
it is an average (taken over all mother plants), this number can be fractional. For the
variety that we studied the typical yield per week was 2 or a little less; as an example
a possible cutting pattern could be {2.0;1.8;1.9;2.0;. ..}, which indicates that in the
first week on average 2.0 cuttings are taken, in the second week 1.8, etc. To be a bit
more general, from now on we use T to denote the number of weeks during which we
take cuttings. After consulting the experts from Diimmen Orange we found out that
the time at which the mother plants were planted made no difference with respect to
their potential yield of cuttings, and therefore we do not need to make the cutting
patterns depend on the time of planting. Observe the close resemblance between our
cutting problem and the standard cutting stock problem (see for example |Gilmore
and Gomory| (1961) and |Gilmore and Gomory| (1963))). In the cutting stock problem,
however, we consider items with different lengths, whereas we now have identical
items that are cut in different periods.

Suppose that we know the set of all n possible, feasible cutting patterns. In that
case we can solve the problem of determining the required number of mother plants
by formulating it as a linear programming problem. We represent cutting pattern j
by the parameters a;; that indicate the average number of cuttings harvested in week
t(t=1,...,T), when a plant is cut according to pattern j, for j = 1,...,n. Define
z;j (j = 1,...,n) as the number of mother plants that are cut according to cutting
pattern j. If we denote the expected demand in period ¢ by b, (t = 1,...,T), then
we can formulate the problem of determining the minimum number of mother plants
as a linear programming (LP) problem as follows:

minry +...+x,
subject to
Z?:l a5t Z bt Vit
;>0 Vj

The solution of this LP program gives you a lower bound on the number of mother
plants that have to be planted. Diimmen Orange can decide to add more (for ex-
ample to have a buffer to guard against disturbances in the production and/or sales
process). Note that, although the x; variables should attain integral values only since
these correspond to numbers, it is sufficient to solve the problem by solving the LP-
relaxation (where the integrality constraints are relaxed) and round up the outcome
values, since the total of the z; values is big and at most 1" of them will get a value
different from zero (we will see later that we need only one cutting pattern in an
optimal solution). Moreover, if the time of planting the mother plants would make a
difference with respect to the yield of cuttings, then this can easily be incorporated
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in this model by making the z; variables dependent on the time of planting.

Suppose that the management of Diimmen Orange has decided on the number M
of mother plants to be planted. We can then solve the problem of determining how
many cuttings to offer for sale per week in a similar fashion by formulating it as an
LP again. We assume here that we know for each week ¢ how many cuttings we can
sell additionally (which we denote by D;) and the profit p; that we gain per cutting
sold additionally. Next to the decision variables x;, we introduce decision variables
ye (t =1,...,T) that will indicate the number of additional cuttings to be sold in
period ¢. Just like we did for z;, we ignore the integrality of the 3, variables. We
then get the following LP formulation:

max ), Py

subject to

Z?:l QT — Yt >b, Vt
n
Zj:l l‘j S M
0<w <D, Vi

r; >0 V)

If we solve this LP, then we find the cutting strategy that maximizes the total profit
given the number of mother plants M. This LP can also be used to find the value of
M that maximizes the total profit; we can then simply make M a decision variable,
but we have to include the cost of planting M mother plants in the objective function.
Furthermore, we can refine the model in case the profit per additional cutting sold is
not constant but decreases when more get sold.

2 Generating cutting patterns

In our derivation of the LP problems of the previous section we have assumed that
we know all n possible, feasible cutting patterns. Even if we restrict ourselves to a;¢
values that are multiples of 0.1, there are so many possible cutting patterns that it
is neither feasible, nor efficient to generate them all. Fortunately, we can apply the
technique of column generation, which was invented by Ford and Fulkerson |L. R. Ford
and Fulkerson| (1958) and Gilmore and Gomory |Gilmore and Gomory| (1961} [1963).
Here we solve the LP problem while taking only a small number of feasible cutting
patterns into account; we can start with any subset of the cutting patterns, as long as
the feasible region is non-empty. After having solved the current LP, we add variables
(which correspond to feasible cutting patterns) that will improve the quality of the
solution, until we can guarantee that we have found the optimum of the LP for the
entire set of feasible cutting patterns.

We will work this out for the first LP, in which we minimize the number of mother
plants needed to cover the demand. It is well-known from the theory of linear program-
ming that in case of a minimization problem adding a new variable x; will improve
the quality of the solution only if its reduced cost is negative. When we solve the cur-
rent LP, then we find the non-negative shadow prices; let m; denote the shadow price
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corresponding to the constraint that we produce at least b, cuttings. The reduced
cost of a variable z( that corresponds to using a given cutting pattern (aq,...,ar) is
equal to

T
1- E AT,
t=1

where the 1 corresponds to the cost coefficient of z( in the objective function. Instead
of just checking for each feasible cutting pattern (aq,...,ar) whether its reduced cost
happens to be negative (for which we need to know all feasible cutting patterns),
we solve the so-called pricing problem, the goal of which is to construct a feasible
cutting pattern (aj,...,ar) with minimum reduced cost. Note that the values a;
(t =1,...,T) have become decision variables, and we must choose these such that
their combination forms a feasible cutting pattern. To that end, we need a way
to describe when a set of values (aq,...,ar) constitutes a feasible cutting pattern.
Moreover, this knowledge should be cast in such a format that we can use it to solve
the pricing problem efficiently. To that end, we infer these constraints by applying
techniques from data mining to the data on the average number of cuttings harvested
per week in the years 2006-2015.

3 Data mining

Data mining is used to retrieve relations from the data. There is a large interaction
between data mining and operations research, but it is mainly a one way connection:
techniques and algorithms from operations research are applied in data mining |Olaf-
sson et al.| (2008)). We want to apply data mining to learn constraints that will be
incorporated in the model explicitly, after which we can apply the techniques from
operations research. As far as we know, such an approach has not been conducted
before. For example, Li and Olafsson |Li and Olafsson| (2005)), who use data mining
to derive dispatching rules for a complex production scheduling problem, state that
the idea of this data mining approach to production scheduling is to complement more
traditional operations research approaches.

The domain expert at Diimmen Orange gave several constraints on what consti-
tutes a feasible cutting pattern. For instance, for the variety that we consider one can
obtain a maximum of 2.0 cuttings per mother plant in a given week; hence, we find
the constraint that a; < 2.0 forallt =1,...,T. After having harvested the maximum
of 2.0 cuttings in week t, the mother plants have to recover, which can be formulated
in the constraint that a; +a;41 < 3.9 forallt =1,...,7 — 1. Furthermore, a pattern
that alternates between cutting near the maximum and not cutting very much (e.g.
a pattern such as {2.0;1.4;2.0;1.4,...}) is not feasible either; it turned out later that
we must introduce a constraint of the form a; + azyo + arpqa < 5.71.

It is apparent that the number of constraints required is very large, and a dif-
ferent set of values is needed for every species. Since obtaining these values from
domain experts would be very time consuming, we experimented with data mining
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to automatically derive the constraints. To this end, Diimmen Orange provided us
with data specifying the average number of cuttings harvested per mother plant in
the period 2006-2015. We scanned the data to identify all constraints of the form
ag, + ag, + ...+ a, < X, for all k-tuples (ty,...,t;) with ¢; < to < ... < tg, where
k <6 and t; —t; < 10; here X is set to the maximum value that is observed in the
historical data for the left hand side.

Even though the bound of each constraint is set to the maximum value observed,
the fact that very many such constraints work together ensures that only realistic
cutting patterns will satisfy the constraints. The domain expert confirmed that the
cutting patterns that we identified in this way appeared feasible. Note that to obtain
more conservative constraints one can take X to be the k-th percentile instead of the
maximum of the observed values. However, because our data sets were of limited size
taking this approach was not necessary, and would have resulted in overly conservative
estimates. However, it could be useful in case a larger training data set is used (which
may contain more outliers).

Another possible shortcoming of our data mining model might be that we do not
have the data available that we need. We used the data concerning the number of
cuttings that were actually harvested instead of the maximum number of cuttings
that could have been harvested. Hence, the constraints that were inferred might be
too restrictive: it might not consider a certain feasible cutting pattern, simply because
this cutting pattern has not been used before. We leave these issues to the experts,
who if necessary can perform some experiments to test cutting patterns.

Below, we have listed a small excerpt of the list of constraints that we obtained
using data mining.

a; < 20
ay + ap41 < 39
ay + At4-2 < 3.85
ag + apq1 + apgo < 5.75
ag + Ai4-2 + Atyq < 5.71
at 4+ apq41 + apypo + a3 < 76
a4 Gp41 + Qry3 + Qrga < 761
ar + ag41 + Gryo + a3 + apgg < 9.46
ay + Ai41 + a¢43 + A¢44 + at45 S 9.21
at + Q1 + Qg2 + Ay + Qs Hargs < 11015
ag + Ai41 + A¢43 + Ai4q + Ai45 + ai+6 < 10.9

Note that we have linear constraints only. Hence, the resulting pricing problem of
finding the minimum reduced cost, which was equal to

T
1- E AT,
t=1

subject to the constraints we identified using data mining is just another linear pro-
gram, and hence can be solved very efficiently. Since the feasible region described
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by the constraints is convex, we have that each convex combination of a set of cut-
ting patterns satisfies these constraints, and hence corresponds to a feasible cutting
pattern again.

Theorem 3.1. Let z* = (x7,...,2}) denote an optimal solution to the linear program
of minimizing the number of mother plants. Then there exists an equivalent solution
in which we use only one cutting pattern C = (C1,...,Cr).

Proof. Define M = Z?Zl zj. We construct this cutting pattern C' by taking the
weighted average of all cutting patterns, where we use z7 /M as our weight function,
for j =1,...,n. Hence, we have that

n
Ct = Z ajta:’;/M.
j=1

Since all weights are non-negative and add up to 1, this is a convex combination, and
therefore C is a feasible cutting pattern. If we cut all M mother plants according to
this cutting pattern, we get the same yield as we get for the optimal solution z*. [

As a result, we can solve the LP of minimizing the required number of mother plants
in a more efficient way using binary search. In each iteration we test whether har-
vesting b; cuttings in period ¢ (¢t =1,...,T) from a given number @ of mother plants
corresponds to a feasible cutting pattern. The resulting cutting pattern has a; = b;/Q
(t=1,...,T), and all that is left is to check whether it satisfies the constraints. If
this is the case, then we decrease @, and if it fails the test, then we increase Q).

In fact, we do not even need binary search. Recall that we have to check whether
the values a; = b;/Q (t =1,...,T) satisfy the constraints, like a; + a;1 < 3.9. This
is equivalent to checking whether Qa; + Qas+1 = by + b1 < 3.9Q, which implies that
@ must be greater than or equal to (by + biy1)/3.9. For each constraint from data
mining we can obtain a lower bound on ) in this way, from which we find that the
minimum number of mother plants required is equal to the maximum of these lower
bounds.

Note that this approach works only if we can guarantee that a convex combina-
tion of a set of cutting patterns is feasible. If we would need additional non-linear
constraints to describe a feasible cutting pattern, then we have to resort to column
generation again. The pricing problem would then not be solvable as an LP any more,
but we could apply an approach such as Constraint Programming.

Now we consider the second LP, in which we optimize the choice of the number
of cuttings that must be harvested in period t. The LP-formulation is as follows:

max ), pey
subject to
Z?:l QjtTj — Yt Z bt Vit
n
D1t <M
0<y <D; Vt
;>0 Vj
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We can use Theorem [3.1] again to show that we can use a single cutting pattern C.
As a consequence, we can once again solve this problem without generating cutting
patterns. We introduce the variables z; that indicate the number of cuttings that we
harvest in period ¢ (¢t = 1,...,T); we must have that z; > b; and we sell the remainder
at a price of p; per cutting. Since we use a single cutting pattern, we cut a; = z;/M
cuttings per mother plant. Then we can rewrite the LP as

max ), P2
subject to

by <z <Dy WVt
Zt = M(Zt Vit
‘the variables a; form a feasible cutting pattern’

Notice that we have to subtract the constant > p;b; from the objective value to make
the outcome values equal. Even in the case where M is a decision variable, the
problem can still be reformulated so as to avoid column generation by working with
the variables z; = Ma; only. To that end, we multiply the constraints describing the
cutting patterns like a; + aryo < 3.85 with M, such that we obtain the constraint
2zt + 212 < 3,85M. Obviously, we have to include the cost of growing M mother
plants to the objective function. We further remark that our approach can also be
used in case we refine the model by offering the possibility of selling up to b ; cuttings
for price p; 1, up to by 2 cuttings for price p; o, etc.

4 Computational experiments

4.1 First approach

To make our mathematical formulation more tangible for the domain experts, we
created a graphical user interface around the LP formulation, which allows the user
to enter a set of cutting patterns as training data (note that we used the historic
data to that avail), and then experiment with various scenarios. The user can specify
a number of mother plants and the (predicted) demand levels for each week, and
then see whether the demands can be met given this number of mother plants, and
how much (if any) additional capacity there is in each week. The software can also
calculate the minimum number of mother plants required to meet a specific set of
demands.

The red line shows the demands entered by the user, while the green line shows
the maximum number of cuttings we could take each week, while still being able to
meet the demands. The gray line shows the absolute maximum number of cuttings
available in a single week, but note that it is never feasible to take this many cuttings,
except for in the last week (when the demand has dropped to zero).

We also implemented an interface for the harvesting stage, which aids in deter-
mining how many additional cuttings to offer for sale (on top of the amounts that
have already been (pre-)ordered). This is depicted in Figure [2| For each week, the
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Week #1 il
Week #2 D
Week #3 D
Week #4 0

Week #5  (5.000
Week #6  (7.500
Week #7  (10.000
Week #8  [10.000
Week #5 (10,000
Week #10 (10,000
Week #11  (10.000
Week 12 (5.100
Week 13 (8.700
Week 14 |0
Week #15 |0
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Number of plants 5.793 =

Figure 1: GUI for the planting stage.

user can enter how many cuttings have been ordered so far, as well as (an estimate
of) the number of cuttings for which there is additional demand. Additionally, the
user can enter (for each week) a profit for each additional cutting sold, and a penalty
for not delivering cuttings that have already been ordered. Given these values, the
program calculates an optimal strategy for selling the additional cuttings.

The red and green lines have the same meaning as before, while the blue line
represents our program’s advice on selling additional cuttings.

We found that this implementation was a quite powerful tool for conveying our

mathematical
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model to the domain experts.
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0 <5000 [ w0k
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Figure 2: GUI for the selling stage.
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4.2 Second approach

A limitation of the model proposed so far is that it does not take into account unpre-
dictable effects, such as the effects of weather or disease. We performed an experiment
where the right hand sides of the constraints were perturbed randomly as a potential
approach to getting more robust solutions. However, even though it is possible to
determine a good relation between environmental conditions (sun, rain, etc.) and the
condition of the mother plants, we cannot use this in our computation of the number
of mother plants to plant, since the mother plants have to be planted in advance, and
it is impossible to give a reasonable prediction of the environmental conditions at the
time of harvest. On the other hand, when we get more data, then we could estimate
the fluctuations in outcomes. Therefore, we propose an expert-based approach as
well.

In the following Matlab based GUI, the user can infer constraints from data mining
results or experience and estimate their variability (error). The estimated variability
is used to generate scenarios, which are essential to provide confidence intervals. To
generate scenarios we sample from a uniform probability distribution, where the range
depends on the estimated variability. Intuitively, variability should decrease with
number of summed values in constraints. Obviously, we do not take into account
rare, but possible events like wars, droughts, volcanic eruptions (which may block
deliveries) or plant diseases.

Based on the provided constraints and variability data, possible scenarios are
simulated. They are used to calculate the number of mother plants and a buffer (in
percentages) needed to cover, for instance 98% of scenarios. See Figure

o] Production Optimisation ver. 0 -6
Load. | Opfania) -

Conditions

Mother plants (median): 12.4542 Total possible production (median): 244.1826
T T

5
Needed buffer to cover 98% scenarios: 5%

Figure 3: Print screen of Matlab based GUI which is used to estimate number of
mother plants and buffer needed to cover 98% of scenarios.

In order to automate a process of estimating the buffer and number of mother
plants one has to use history in combination with the advice of experts at least once
at the beginning. Due to high number of varieties (thousands) it would be very
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time consuming. Moreover, estimation of variability from historical data might be
challenging. We believe that expert judgement is essential in this approach.

5 Conclusions

The problem of Diimmen Orange is quite different from other applications because of
the laws of nature that have to be obeyed: the output is not constant, but decreases
over time if you require too much in the beginning. We have attacked this problem
by techniques from mathematical programming, where we use techniques from data
mining to cover the lack of technical constraints. Especially this latter part seems to
be new and very useful for dealing with these kinds of problems. The linear programs
are very flexible and easily solvable, which offers great potential for future use by
Diimmen Orange, especially when looking at combinations of varieties.

Finally, we want to thank the organizers of the study group ‘Wiskunde met de
Industrie’ for their work, which has resulted in our collaboration with Diimmen Or-
ange.
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