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Preface

These are the scientific proceedings of the 114th Study Group Mathematics with
Industry (Studiegroep Wiskunde met de Industrie) held at Radboud University in
Nijmegen, January 25th to 29th, 2016.

In this volume, the participants of SWI 2016 have provided their account of the
week’s developments, aimed at a scientific audience. Each of the six groups has
prepared a contribution that presents the problem they worked on, the approaches
they attempted or used, and the results that they obtained.

In a companion popular proceedings written by Arnout Jaspers, an account meant
for a general audience is given in Dutch.

The organisers of SWI 2016
Eric Cator and Ross J. Kang






Flower power: Finding optimal flower cutting
strategies through a combination of optimization
and data mining
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Tom C. van der Zanden
Utrecht University
T.C.vanderZanden@uu.nl

Abstract

We study a problem that plays an important role in the flower industry: we
must determine how many mother plants are required to be able to produce a
given demand of cuttings. This sounds like an easy problem, but working with
living material (plants) introduces complications that are rarely encountered in
optimization problems: the constraints for cutting such that the mother plant
remains in shape are not explicitly known.

We have tackled this problem by a combination of data mining and linear
programming. We apply data mining to infer constraints that a cutting pat-
tern, stating how many cuttings to harvest in each period, should obey, and we
use these constraints in a linear programming formulation that determines the
minimum number of mother plants necessary. We then consider the problem of
maximizing the total profit given the number of mother plants and show how
to solve it through linear programming.

KEYwWORDS: data mining, linear programming, cutting patterns, column gener-
ation.

Diimmen Orange is a leading company in breeding and development of cut flowers,
potted plants, bedding plants and perennials with over a century of experience in the
horticultural industry. In addition to a large marketing and sales network, Diimmen
Orange has a strong network of production locations. In these production centra
so-called mother plants are planted and grown for a large number of varieties. When
these mother plants are ready, cuttings are harvested during a period of approximately
16 weeks, after which the mother plants are removed.

OIn this paper we report on the project carried out for Diimmen Orange in the context of
the study group ‘Wiskunde met de Industrie’ (Math with Industry). Next to the authors of the
report, the group consisted of Yella Klemm, Kevin Laros, Jan Nelissen, and Brian Wismans
from Diimmen Orange, Norbert Mikolajewski (RU Nijmegen), and Jagna Wiesniewska (VU
Amsterdam).

*corresponding author
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These cuttings are sold to growers, who either place orders beforehand, or place orders
during the harvesting. For each variety, the majority of sales takes place in the ‘peak
weeks’, which is a period of approximately 10 weeks; the company has reasonably
accurate demand forecasts per week available.

Diimmen Orange experienced the following problem. For each variety, the number
of mother plants to be planted is decided on the basis of sales forecasts to which a
buffer of 10% is added. When orders come in, contracts are concluded with the
growers guaranteeing that the required number of cuttings will be delivered at the
desired time. When the harvesting starts, at some point in time the availability of
the buffer of 10% is reported to the sales agents, who then try to acquire orders for
selling these additional cuttings. Unfortunately, when they are very successful, too
many cuttings are required, and the mother plants cannot keep up this pace for too
many weeks in a row, which results in a shortage in later periods. This led Diimmen
Orange to the question of when to report the availability of the buffer, and possibly
to change its size.

Diimmen Orange posed this problem at the study group ‘Wiskunde met de Indus-
trie’ SWI2016 . In close contact with Diimmen Orange we figured out that we had to
address the following research questions:

1. Model how the number of cuttings harvested in previous weeks influences the
potential number of cuttings that can be taken from a mother plant in the
current and future weeks.

2. Determine how many mother plants should be planted to meet the predicted
demand.

3. Determine how many cuttings to offer for sale in each week (and thus how many
to cut).

We have looked at this problem for just a single variety of plant in isolation, where
we ignored any random disturbances initially. For the variety that we studied, we
were provided with the predicted demands and the average number of cuttings per
mother plant for each week from 2005 onwards. Unfortunately, detailed informa-
tion concerning the effects of taking cuttings on the potential mother plants was not
available.

This paper is organized as follows: In Sections 1 and 2, we describe how to answer
the second and third question by linear programming, for which we need the answer to
the first question, which is solved in Section 3 using techniques from data mining. We
conclude by providing computational experiments in Section 4 and draw conclusions
in Section 5.

Osee http://www.ru.nl/math/research /vmconferences/swi-2016/
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1 Solution approach: linear programming

Since the number of cuttings taken from the mother plants in previous weeks influences
the potential yield for the current week in a way that was unknown to us, we decided
to work with feasible cutting patterns. Here, a cutting pattern describes for each of
the 16 weeks the average number of cuttings that are taken from a mother plant; since
it is an average (taken over all mother plants), this number can be fractional. For the
variety that we studied the typical yield per week was 2 or a little less; as an example
a possible cutting pattern could be {2.0;1.8;1.9;2.0;. ..}, which indicates that in the
first week on average 2.0 cuttings are taken, in the second week 1.8, etc. To be a bit
more general, from now on we use 7" to denote the number of weeks during which we
take cuttings. After consulting the experts from Diimmen Orange we found out that
the time at which the mother plants were planted made no difference with respect to
their potential yield of cuttings, and therefore we do not need to make the cutting
patterns depend on the time of planting. Observe the close resemblance between our
cutting problem and the standard cutting stock problem (see for example Gilmore
and Gomory (1961) and Gilmore and Gomory (1963)). In the cutting stock problem,
however, we consider items with different lengths, whereas we now have identical
items that are cut in different periods.

Suppose that we know the set of all n possible, feasible cutting patterns. In that
case we can solve the problem of determining the required number of mother plants
by formulating it as a linear programming problem. We represent cutting pattern j
by the parameters a;; that indicate the average number of cuttings harvested in week
t(t=1,...,T), when a plant is cut according to pattern j, for j = 1,...,n. Define
z;j (j =1,...,n) as the number of mother plants that are cut according to cutting
pattern j. If we denote the expected demand in period ¢ by b; (¢ = 1,...,T), then
we can formulate the problem of determining the minimum number of mother plants
as a linear programming (LP) problem as follows:

minxy + ...+,
subject to
Z?:l At 5 2 bt Vit

The solution of this LP program gives you a lower bound on the number of mother
plants that have to be planted. Diimmen Orange can decide to add more (for ex-
ample to have a buffer to guard against disturbances in the production and/or sales
process). Note that, although the x; variables should attain integral values only since
these correspond to numbers, it is sufficient to solve the problem by solving the LP-
relaxation (where the integrality constraints are relaxed) and round up the outcome
values, since the total of the z; values is big and at most 7" of them will get a value
different from zero (we will see later that we need only one cutting pattern in an
optimal solution). Moreover, if the time of planting the mother plants would make a
difference with respect to the yield of cuttings, then this can easily be incorporated
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in this model by making the x; variables dependent on the time of planting.

Suppose that the management of Diimmen Orange has decided on the number M
of mother plants to be planted. We can then solve the problem of determining how
many cuttings to offer for sale per week in a similar fashion by formulating it as an
LP again. We assume here that we know for each week ¢ how many cuttings we can
sell additionally (which we denote by D;) and the profit p; that we gain per cutting
sold additionally. Next to the decision variables z;, we introduce decision variables
ye (t =1,...,T) that will indicate the number of additional cuttings to be sold in
period ¢. Just like we did for z;, we ignore the integrality of the y, variables. We
then get the following LP formulation:

max » -, iy

subject to

Z?:l ajtxj — Yt Z bt Vt
n
Zj:l Zj <M
0<y <Dy Vt
;>0 Vj

If we solve this LP, then we find the cutting strategy that maximizes the total profit
given the number of mother plants M. This LP can also be used to find the value of
M that maximizes the total profit; we can then simply make M a decision variable,
but we have to include the cost of planting M mother plants in the objective function.
Furthermore, we can refine the model in case the profit per additional cutting sold is
not constant but decreases when more get sold.

2 Generating cutting patterns

In our derivation of the LP problems of the previous section we have assumed that
we know all n possible, feasible cutting patterns. Even if we restrict ourselves to a;¢
values that are multiples of 0.1, there are so many possible cutting patterns that it
is neither feasible, nor efficient to generate them all. Fortunately, we can apply the
technique of column generation, which was invented by Ford and Fulkerson L. R. Ford
and Fulkerson (1958) and Gilmore and Gomory Gilmore and Gomory (1961, 1963).
Here we solve the LP problem while taking only a small number of feasible cutting
patterns into account; we can start with any subset of the cutting patterns, as long as
the feasible region is non-empty. After having solved the current LP, we add variables
(which correspond to feasible cutting patterns) that will improve the quality of the
solution, until we can guarantee that we have found the optimum of the LP for the
entire set of feasible cutting patterns.

We will work this out for the first LP, in which we minimize the number of mother
plants needed to cover the demand. It is well-known from the theory of linear program-
ming that in case of a minimization problem adding a new variable x; will improve
the quality of the solution only if its reduced cost is negative. When we solve the cur-
rent LP, then we find the non-negative shadow prices; let 7; denote the shadow price
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corresponding to the constraint that we produce at least b; cuttings. The reduced
cost of a variable x that corresponds to using a given cutting pattern (a1, ...,ar) is
equal to

T
1- E AT,
t=1

where the 1 corresponds to the cost coefficient of xg in the objective function. Instead
of just checking for each feasible cutting pattern (ai, ..., ar) whether its reduced cost
happens to be negative (for which we need to know all feasible cutting patterns),
we solve the so-called pricing problem, the goal of which is to construct a feasible
cutting pattern (aj,...,ar) with minimum reduced cost. Note that the values a;
(t = 1,...,T) have become decision variables, and we must choose these such that
their combination forms a feasible cutting pattern. To that end, we need a way
to describe when a set of values (ay,...,ar) constitutes a feasible cutting pattern.
Moreover, this knowledge should be cast in such a format that we can use it to solve
the pricing problem efficiently. To that end, we infer these constraints by applying
techniques from data mining to the data on the average number of cuttings harvested
per week in the years 2006-2015.

3 Data mining

Data mining is used to retrieve relations from the data. There is a large interaction
between data mining and operations research, but it is mainly a one way connection:
techniques and algorithms from operations research are applied in data mining Olaf-
sson et al. (2008). We want to apply data mining to learn constraints that will be
incorporated in the model explicitly, after which we can apply the techniques from
operations research. As far as we know, such an approach has not been conducted
before. For example, Li and Olafsson Li and Olafsson (2005), who use data mining
to derive dispatching rules for a complex production scheduling problem, state that
the idea of this data mining approach to production scheduling is to complement more
traditional operations research approaches.

The domain expert at Diimmen Orange gave several constraints on what consti-
tutes a feasible cutting pattern. For instance, for the variety that we consider one can
obtain a maximum of 2.0 cuttings per mother plant in a given week; hence, we find
the constraint that a; < 2.0 forallt =1,...,7T. After having harvested the maximum
of 2.0 cuttings in week ¢, the mother plants have to recover, which can be formulated
in the constraint that a; +a¢41 < 3.9 forallt=1,...,7 —1. Furthermore, a pattern
that alternates between cutting near the maximum and not cutting very much (e.g.
a pattern such as {2.0;1.4;2.0;1.4,...}) is not feasible either; it turned out later that
we must introduce a constraint of the form a; + a;12 + az14 < 5.71.

It is apparent that the number of constraints required is very large, and a dif-
ferent set of values is needed for every species. Since obtaining these values from
domain experts would be very time consuming, we experimented with data mining
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to automatically derive the constraints. To this end, Diimmen Orange provided us
with data specifying the average number of cuttings harvested per mother plant in
the period 2006-2015. We scanned the data to identify all constraints of the form
ag, + agy + ...+ ay, < X, for all k-tuples (¢1,...,t5) with t; < t3 < ... < tg, where
k <6 and tp —t; < 10; here X is set to the maximum value that is observed in the
historical data for the left hand side.

Even though the bound of each constraint is set to the maximum value observed,
the fact that very many such constraints work together ensures that only realistic
cutting patterns will satisfy the constraints. The domain expert confirmed that the
cutting patterns that we identified in this way appeared feasible. Note that to obtain
more conservative constraints one can take X to be the k-th percentile instead of the
maximum of the observed values. However, because our data sets were of limited size
taking this approach was not necessary, and would have resulted in overly conservative
estimates. However, it could be useful in case a larger training data set is used (which
may contain more outliers).

Another possible shortcoming of our data mining model might be that we do not
have the data available that we need. We used the data concerning the number of
cuttings that were actually harvested instead of the maximum number of cuttings
that could have been harvested. Hence, the constraints that were inferred might be
too restrictive: it might not consider a certain feasible cutting pattern, simply because
this cutting pattern has not been used before. We leave these issues to the experts,
who if necessary can perform some experiments to test cutting patterns.

Below, we have listed a small excerpt of the list of constraints that we obtained
using data mining.

a; < 2.0
ag + A¢41 < 3.9
ar + Q42 < 3.85
ap + ag1 + apqo < 5.75
ar + appo + aprq < 571
at + agr1 + a2 + agys < 7.6
ay + A¢4+1 + at4+3 + At44 S 7.61
ay + a¢41 + At4-2 + a¢43 + Q44 § 9.46
g + Qi1+ a3 + A + apgs < 921
as + a¢41 + Ai42 + a¢4+3 + QAi44 + a¢45 < 11.15
at + Qg1 + Q43 + Qppa +aips Hagpe <109

Note that we have linear constraints only. Hence, the resulting pricing problem of
finding the minimum reduced cost, which was equal to

T
1- E atTe,
=1

subject to the constraints we identified using data mining is just another linear pro-
gram, and hence can be solved very efficiently. Since the feasible region described
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by the constraints is convex, we have that each convex combination of a set of cut-
ting patterns satisfies these constraints, and hence corresponds to a feasible cutting
pattern again.

Theorem 3.1. Let z* = (z7,...,x}) denote an optimal solution to the linear program
of minimizing the number of mother plants. Then there exists an equivalent solution
in which we use only one cutting pattern C = (Cq,...,Cr).

Proof. Define M = Z?Zl zj. We construct this cutting pattern C' by taking the
weighted average of all cutting patterns, where we use z} /M as our weight function,

for j =1,...,n. Hence, we have that

Ct = Zaﬁx;/M

Jj=1

Since all weights are non-negative and add up to 1, this is a convex combination, and
therefore C' is a feasible cutting pattern. If we cut all M mother plants according to
this cutting pattern, we get the same yield as we get for the optimal solution x*. [

As a result, we can solve the LP of minimizing the required number of mother plants
in a more efficient way using binary search. In each iteration we test whether har-
vesting b; cuttings in period ¢ (¢t =1,...,T) from a given number @ of mother plants
corresponds to a feasible cutting pattern. The resulting cutting pattern has a; = b;/Q
(t =1,...,T), and all that is left is to check whether it satisfies the constraints. If
this is the case, then we decrease (), and if it fails the test, then we increase Q).

In fact, we do not even need binary search. Recall that we have to check whether
the values a; = b,/Q (t = 1,...,T) satisfy the constraints, like a; + a1 < 3.9. This
is equivalent to checking whether Qa; + Qa1 = by + b1 < 3.9Q, which implies that
() must be greater than or equal to (bs + b141)/3.9. For each constraint from data
mining we can obtain a lower bound on @ in this way, from which we find that the
minimum number of mother plants required is equal to the maximum of these lower
bounds.

Note that this approach works only if we can guarantee that a convex combina-
tion of a set of cutting patterns is feasible. If we would need additional non-linear
constraints to describe a feasible cutting pattern, then we have to resort to column
generation again. The pricing problem would then not be solvable as an LP any more,
but we could apply an approach such as Constraint Programming.

Now we consider the second LP, in which we optimize the choice of the number
of cuttings that must be harvested in period ¢. The LP-formulation is as follows:

max ) ., pi¥

subject to

Z?:l At — Yi >b WVt
n
Zj:l rj <M
0<y. <D, WVt
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We can use Theorem 3.1 again to show that we can use a single cutting pattern C.
As a consequence, we can once again solve this problem without generating cutting
patterns. We introduce the variables z; that indicate the number of cuttings that we
harvest in period ¢t (¢t = 1,...,T); we must have that z; > b; and we sell the remainder
at a price of p; per cutting. Since we use a single cutting pattern, we cut a; = z,/M
cuttings per mother plant. Then we can rewrite the LP as

max ) , P2
subject to

bt S Zt S Dt Vit
Zt = Mat Vit
‘the variables a; form a feasible cutting pattern’

Notice that we have to subtract the constant > p:b; from the objective value to make
the outcome values equal. Even in the case where M is a decision variable, the
problem can still be reformulated so as to avoid column generation by working with
the variables z; = Ma; only. To that end, we multiply the constraints describing the
cutting patterns like a; + a;12 < 3.85 with M, such that we obtain the constraint
2zt + 2412 < 3,85M. Obviously, we have to include the cost of growing M mother
plants to the objective function. We further remark that our approach can also be
used in case we refine the model by offering the possibility of selling up to b ; cuttings
for price p; 1, up to by 2 cuttings for price p; o, etc.

4 Computational experiments

4.1 First approach

To make our mathematical formulation more tangible for the domain experts, we
created a graphical user interface around the LP formulation, which allows the user
to enter a set of cutting patterns as training data (note that we used the historic
data to that avail), and then experiment with various scenarios. The user can specify
a number of mother plants and the (predicted) demand levels for each week, and
then see whether the demands can be met given this number of mother plants, and
how much (if any) additional capacity there is in each week. The software can also
calculate the minimum number of mother plants required to meet a specific set of
demands.

The red line shows the demands entered by the user, while the green line shows
the maximum number of cuttings we could take each week, while still being able to
meet the demands. The gray line shows the absolute maximum number of cuttings
available in a single week, but note that it is never feasible to take this many cuttings,
except for in the last week (when the demand has dropped to zero).

We also implemented an interface for the harvesting stage, which aids in deter-
mining how many additional cuttings to offer for sale (on top of the amounts that
have already been (pre-)ordered). This is depicted in Figure 2. For each week, the



Flower power: Finding optimal flower cutting strategies through a
combination of optimization and data mining 9

2- Flarting Stage | 3 - Selling Stage

Week #1 0
Week #2 0
Week#3 0
Week 24 D

Week #5 5000
Week #6  7.500
Week #7 10.000
Week #8  10.000
Week #3  10.000
Week #10 10.000
Week #11 10.000
Week #12 5100
Week #13 8700
Week #14 D
Week #15 0

| M L] R RS (| R | (S (R R

Mumber of plants: 5793 =

Figure 1: GUI for the planting stage.

user can enter how many cuttings have been ordered so far, as well as (an estimate
of) the number of cuttings for which there is additional demand. Additionally, the
user can enter (for each week) a profit for each additional cutting sold, and a penalty
for not delivering cuttings that have already been ordered. Given these values, the
program calculates an optimal strategy for selling the additional cuttings.

The red and green lines have the same meaning as before, while the blue line
represents our program’s advice on selling additional cuttings.

We found that this implementation was a quite powerful tool for conveying our
mathematical model to the domain experts.

w confimed possible proft penaty  advice
E1 |0 = 5000 | 1 =100
E2 |0 S| (5000 = (1 B[00 5
F3 [0 & 5000 B 1 BH100 [
F4 [0 = 5000 | 1 =100
15 (5000 [ (5000 [1 5100
F]6 (7500 [ 5000 5 1 BH100k
[F17 [10000 (= (5000 [1 =100 0
m8 [9000 f[soo0f [1 oo <848
Mo [soo0 R[soo0f [1 Rd[iood <1500
[F] 10 (10000 [ (5000 & [1 5100 0
01 11 [10000 [ (5000 [1 ooy O
12 (9100 R [soo0 R [1 RfiooRd ©
[ 13 (3700 = 5000 B 1 B[00
ImREN S| (5000 = (1 B[00 5
15 |0 H| (5000 & (1 B[00 &

Figure 2: GUI for the selling stage.
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4.2 Second approach

A limitation of the model proposed so far is that it does not take into account unpre-
dictable effects, such as the effects of weather or disease. We performed an experiment
where the right hand sides of the constraints were perturbed randomly as a potential
approach to getting more robust solutions. However, even though it is possible to
determine a good relation between environmental conditions (sun, rain, etc.) and the
condition of the mother plants, we cannot use this in our computation of the number
of mother plants to plant, since the mother plants have to be planted in advance, and
it is impossible to give a reasonable prediction of the environmental conditions at the
time of harvest. On the other hand, when we get more data, then we could estimate
the fluctuations in outcomes. Therefore, we propose an expert-based approach as
well.

In the following Matlab based GUI, the user can infer constraints from data mining
results or experience and estimate their variability (error). The estimated variability
is used to generate scenarios, which are essential to provide confidence intervals. To
generate scenarios we sample from a uniform probability distribution, where the range
depends on the estimated variability. Intuitively, variability should decrease with
number of summed values in constraints. Obviously, we do not take into account
rare, but possible events like wars, droughts, volcanic eruptions (which may block
deliveries) or plant diseases.

Based on the provided constraints and variability data, possible scenarios are
simulated. They are used to calculate the number of mother plants and a buffer (in
percentages) needed to cover, for instance 98% of scenarios. See Figure 3.

£y Production Optimisation ver. 0 - oEE
Losd | Optimize

Mother plants (median): 12.4542 Total possible production (median): 244.1826
T

Figure 3: Print screen of Matlab based GUI which is used to estimate number of
mother plants and buffer needed to cover 98% of scenarios.

In order to automate a process of estimating the buffer and number of mother
plants one has to use history in combination with the advice of experts at least once
at the beginning. Due to high number of varieties (thousands) it would be very
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time consuming. Moreover, estimation of variability from historical data might be
challenging. We believe that expert judgement is essential in this approach.

5 Conclusions

The problem of Diimmen Orange is quite different from other applications because of
the laws of nature that have to be obeyed: the output is not constant, but decreases
over time if you require too much in the beginning. We have attacked this problem
by techniques from mathematical programming, where we use techniques from data
mining to cover the lack of technical constraints. Especially this latter part seems to
be new and very useful for dealing with these kinds of problems. The linear programs
are very flexible and easily solvable, which offers great potential for future use by
Diimmen Orange, especially when looking at combinations of varieties.

Finally, we want to thank the organizers of the study group ‘Wiskunde met de
Industrie’ for their work, which has resulted in our collaboration with Diimmen Or-
ange.
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Predicting Early Bulking in Potatoes

Fetsje Bijma Alessandro Di Bucchianico* Eric Cator
Henk Don Patrick Hafkenscheid Jakub Nowotarski
Bijan Ranjbar-Sahraei

Abstract

Early bulking of potatoes is important for potato breeders for several rea-
sons, including flexibility in scheduling and less influence of weather conditions.
In this paper we use statistical models to model tuber growth in order to iden-
tify which existing varieties allow for early bulking. We also investigate which
genetic properties (SNP’s) may be important for early bulking.

KEYwORDS: early bulking, SNP, variance stabilizing transformation, linear re-
gression, sparse data, elastic net

1 Introduction

In this section we provide the necessary background for the problem, and state the
main research questions.

1.1 Company background

HZPC (www.hzpc.nl) is the world leading developer and seller of high quality seed
potatoes. It is an internationally operating Dutch company with head quarters in
Joure. HZPC has 320 employees, 800 growers and 55 breeders on 19 locations. To
serve its customers better, HZPC has an R&D department in Metslawier. The main
goal is to develop new varieties of potatoes that meet the needs of consumers and
industrial partners by advanced data-driven breeding techniques.

1.2 Problem description

Tuber bulking is the 4th growth stage in the development of a potato (see Figure 1).
Tuber cells expand with the accumulation of water, nutrients and carbohydrates.
Tubers become the dominant site for deposition of carbohydrates and mobile inorganic
nutrients.

*Corresponding author.
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Figure 1: Early bulking (source: www.sqgm.com).

HZPC wishes to breed early bulking varieties in order to be able to harvest as
early as possible high quantities of tubers with desirable sizes . The benefits of early
bulking are the opportunities to have new harvests as early as possible, more flexibility
with scheduling (since it takes less until harvest), and less influence of climate factors
such as rain and humidity.

In order to search for early bulking varieties in an efficient way, there is a need
for a statistical model that predicts the tuber filling in length and volume in time
per variety and to find the genetic parameters that have a significant effect on early
bulking performance. Furthermore, a simple and efficient strategy should be designed
for selection of early bulking varieties. More concretely, we will address the following
research questions:

Research questions:

Question 1 How to model tuber growth and predict which varieties are more likely
to bulk early?

Question 2 How to identify important genetic properties for early bulking?

With respect to Question 1, HZPC is interested in the mass of harvested tubers with
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tuber size 45 mm or more as well as subtraits of varieties like tuber filling (length
and diameter of tubers) and the number of tubers per plant. Tuber size is commonly
defined by potato breeders in terms of “square size”, i.e. the length of the side of the
smallest square in which the tuber fits. A complication for the development of models
for Question 1 is that the number of tubers and sizes of the tubers are correlated (if
there are more tubers, then they are likely to be smaller).

For Question 2, the goal is to find models with causal explanations in terms of DNA
differences so that one effectively and efficiently measure early bulking in breeding
programs. We note that a complication here is that important traits are usually
determined by several genes simultaneously.

2 Available data

In this section we describe the data that we could use to address the research questions.
In Subsection 2.1 we describe the field data for Question 1, while in Subsection 2.2
we describe the genetic data for Question 2.

2.1 Tuber data

Data of trial fields of the the years 2011-2015 were made available to us by HZPC.
These trial fields were laid out using the following experimental design (see also Fig-
ure 2):

e 100 varieties of tubers.
o 4 different harvest times.
e 2 replicates per harvest time.

The data set of the year 2015 is very detailed and contains for every individual tuber
length, width, height, square size (as defined in Subsection 1.2, weight and volume.
For the previous years (2011-2014) only summarized data were available through the
number of tubers and total weight for each field plot, square size category and harvest
time.

2.2 Genetic data

The genetic data set made available by HZPC is in the form of frequency counts of
SNP’s ( single nucleotide polymorphisms, pronounced “snips”). A SNP is a genetic
variation at a specific position in the genome in the form of the replacement of a
single nucleotide at a specific base location. The SNP’s in the data set only allow two
different alleles (i.e., two different nucleotides), so a 0 indicates no variation (the most
frequent nucleotide) and a 1 indicates the genetic variation (the alternative nucleotide,
which must occur in at least 1% of the population. The values in the data set are
integers from 0 to 4, since the SNP’s are determined for the 4 chromosomes of a tuber
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Figure 2: Experimental design

(2 from the father and 2 from the mother). SNP data are available for 113 varieties
for the years 2011-2014, and for only 12 of the varieties of the 2015 field trial.

3 Tuber growth modelling

Before we try to make a statistical model for tuber growth, we performed a small
exploratory data analysis to check for data quality issues, variation between individual
tubers as well as get an idea of the time evolution of tuber growth. Figure 3 shows that
there is considerable variation between the individual tubers within varieties. There
is no clear difference between the two replicates (indicated by different colours). The
main interest of HZPC is the weight of tubers with a square size of at least 45 mm.
After examining various plots, we found that a log-log relationship seems to be a
suitable model for tuber size and tuber weight since the data points in the plots lie
reasonably well on a straight line and the deviations from the straight line are less
than for the other standard relationships that we tried out (see Figure 4). So the log-
log transformation is also a variance stabilizing transformation. Other plots showed a
moderate plot effect, i.e., there is some variation between the weights of tubers of the
same variety but planted on different parts (plots) of the experimental field. Since
the main interest of HZPC is the total weight of tubers with square size at least 45
mm, we decided to fit a joint model for log-weight and log-square size as function of
time and number of tubers instead of model for weight and time. This model allows
us to predict yield as function of time. In view of the considerable variation between
tubers, we decided to model every tuber individually. Based on Figure 3 we assume
a quadratic function as a simple form for the time evolution. To be more precise, we
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Figure 3: Scatter plot of tuber size (“square size”) as function of days after planting

fitted the following linear regression model'. Define for each variety v the following
quantities:

e Y(t) = log of square size of the tubers at time ¢
e Y (t) = log of weight of the tubers at time ¢

e NV(t) number of tubers belonging to the same potato plant at time ¢.

Then our model is
Bi1 Bra

OO =(1 e No)| R e, o
AT A8

where (€¥(t),€4(t)) ~ N ((0,0),%?). We obtained estimates for the parameters 3, A
and ¥ by using maximum likelihood.

In order to predict the total weight of a potato plant, we multiplied the estimates
N?(t) into the model and compute for each ¢ the expected total weight of big tubers
(e.g., tubers with square size at least 45 mm). A graphical representation of our
results is presented in Figure 5.

INote that although the time evolution is described as a quadratic function, the parameters
appear in a linear way in the regression function.
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Figure 4: Log-log plot of tuber size (“square size”) and weight as function of days after
planting

4 Genetic properties and early bulking

In the previous section we made models to predict the early bulking properties of
existing varieties. In order to develop new varieties with favourable early bulking
performance, it is important to study the genetic properties of early bulking varieties.
Therefore we now turn to the genetic data described in Subsection 2.2. Our approach
consists in trying to build a linear regression model with the SNP’s as independent
(explanatory) variables and the total weights per variety of the tubers with square
size at least 45 mm. Since the data set contains 113 varieties and 11763 SNP’s, we
have many more parameters than observations. Thus we cannot perform an ordinary
linear regression. However, we may safely assume that only a few SNP’s may influence
the early bulking performance of a variety. In other words, a sparse model may be
appropriate. Sparse models may be fitted using special variants of linear regression,
in which the least squares criterion is replaced by another criterion that puts an
extra penalty on the number of selected explanatory variables. These variants are
sophisticated counterparts of the traditional backward and forward model selection
methods. The first example of such a method is the lasso introduced by Tibshirani
(see Tibshirani (1996), which makes use of an ¢;-criterion rather than the standard
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Figure 5: Time profile of total weight of big tubers

{y-criterion used in the least squares approach. Further refinements are the elastic
net in which the criterion involves both an ¢;-term and an ¢>-term, with an automatic
choice of the relative weights of these terms (see Zou and Hastie (2005)) and least
angle regression which features a continuous way of including explanatory variables
(see Efron et al. (2004)). We refer to Hesterberg et al. (2008) for a gentle and lucid
introduction to these advanced regression methods and to Hastie et al. (2015) for an
accessible monograph on methods for sparse data like in our case (i.e., we expect that
only a few SNP’s will influence early bulking performance).

For our analysis we used the data of the 2011 — 2014 field trials since they contain
SNP data for 113 varieties. It should be noted however, that there are several missing
values. Certain SNP’s may be difficult to obtain since the maximum number of missing
values per SNP equals 51 and there are 266 SNP’s with more than 10% missing values.

We followed a two-step approach:

1. apply multiple imputation to fill in missing values
2. apply elastic net to preselect important SNP’s

The elastic net regression method requires complete cases. One could leave out the
SNP’s with missing values, but that would lead to an underestimation of the standard
error. Therefore we decided to apply imputation. One should choose a suitable
imputation method by considering the possible mechanism causing the missing data.
In our case the SNP observations were obtained per variety using a complicated
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procedure to extract the relevant genetic data. Due to the complicated nature of
the extraction procedure, determination of SNP’s may fail at certain locations in the
genome. Since there is no indication that this depends on the variety, the missing
data mechanism that is appropriate is “missing completely at random” as introduced
in Rubin (1976). We chose “predictive mean matching” as imputation method, since it
is likely that varieties with similar SNP values for non-missing data entries will have
similar SNP entries for missing data (see Van Buuren (2012) for a comprehensive
overview of both theoretical and practical issues related to imputation). The analysis
was performed using the statistical software R with the following packages:

1. the mice package for Step 1
2. the glmnet package for Step 2

In our analysis we used the following linear regression model:

Wi 1 x4 ... Z111673 7 €1

Wi 1 113,11 ---  T113,11673 711673 €113
where
e W; is total weight of all tubers with square size 45+ of variety i (i = 1,...,113).
e x(i,7) is the value for SNP-j and variety i.

We selected elastic net as regression method instead of the lasso, since the lasso can
only select as many variables as there are observations and it does not behave well in
case of correlated independent variables (cf. (Hastie et al., 2015, Section 4.2)) so that
is hard to make valid statements about which SNP’s are important indicators for early
bulking performance. Although there is SNP data for 113 varieties, we could only
use the 69 varieties because of lacking early bulking data. We used elastic net with
«a = 0.5 in order to have an equal weight of the ¢1- and ¢5-penalties, since this gave the
best result. Cross-validation was used to obtain an optimal value of the A parameter
in the elastic net. After performing the elastic net analysis, we first removed all
parameters (SNP’s) that had a zero estimate which yielded a list of 140 SNP’s worth
investigating further. A further look at the results revealed some spurious effects
caused by the effect that some SNP’s had only 1 observation for a certain value and
the remaining observations for one other value or for which there was only value of the
SNP (in other words, such SNP’s were constant for all varieties and thus no inference
could be made for the effect of these SNP’s). We removed these SNP’s after doing
the imputation and the elastic net analysis because it was much easier to remove this
SNP’s in the relatively small list of SNP’s with complete data that remained. Note
that we decided not to remove several SNP’s with only 2 possible values, one value of
which has only 2, 3 or 4 observations or SNP’s with several values, but one which has
only 1 observation (these SNP’s could also lead to spurious effects, see e.g. Figure 6
for an illustration of the possible leverage effect in the form of box plots).
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Figure 6: Selected SNP’s, possibly spurious effects

After these steps, the list of potentially interesting SNP’s reduced to 35 SNP’s, only
1 of which has a positive effect (higher number of chromosomes with a modification
give a higher weight) and the remaining 34 have a negative effect. So the data is
indeed sparse, since this means that at most 1% of the SNP’s seem to influence the
early bulking performance. In view of possible correlations between the SNP’s, one
should be careful in identifying which SNP’s influence early bulking performance.

5 Discussion

In this section we summarize our main conclusions and results. Based on these con-
clusions and results, we also indicate we also give some recommendations for future
research.
5.1 Key insights
We list our key insights for the questions separately.
Question 1 How to model tuber growth and predict which varieties are more likely
to bulk early?

1. There is a linear relation between log-weight and log-square size

2. A log — log transformation has a variance stabilizing effect (this is important as
constant variance is one of the assumptions of standard linear regression models)

3. There is a moderate plot effect
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4. The number of tubers stabilizes after the second harvest time.

Question 2 How to identify important genetic properties (SNP’s) for early bulking?

1. Do not include SNP’s that are almost constant for all varieties since they may
lead to spurious results.

2. A regression analysis with SNP’s as predictor variables is possible in spite of
the fact that there are many more SNP’s than varieties using the elastic net
approach

3. At most 1% of the SNP’s show a significant effect.

4. Both positive and negative effects occur.

5.2 Future research

There are several ways in which research on the two main questions of this paper
could be pursued.

For the growth modeling question, a further investigation of model accuracy should
be undertaken and a sensitivity analysis should be performed with respect to harvest
times. The growth model should also be enhanced with a plot effect in view of
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the observed moderate plot effect. One should explore different shapes for the time
profiles, e.g., V1.

For the genetic properties question, one should further explore the elastic net
model. First of all one should perform modeling diagnostics in particular the normal-
ity assumption. In case of normality problems, one could try Box-Cox transformation
or model the joint distribution. A further analysis of the relative importance of the
significant SNP’s is also important. There are several ways to do this, ranging from
applying recently developed post-selection inference methods (see e.g., Section 6.3 of
Hastie et al. (2015) and Chapter 11 of Bithlmann and van de Geer (2011) to variants
of the lasso and elastic net that allow for group effects (i.e., methods that single out
groups of highly correlated parameters, see e.g., Bach et al. (2012) for an overview
of relevant methods). Apart from these statistical approaches, we also recommend to
use more refined genetic data than SNP’s.
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Fog detection from camera images
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Abstract

Fog is one of the most dangerous weather types with more fatalities than
winter storms. It is in the interest of general public that a precise, predictive
and accurate fog density map with high spatial resolution can be created. Cur-
rently, the definition of fog as used by national weather services is so detailed
and technical that the fog can be identified only at a few locations by means
of the prescribed light scattering experiments. With the rising availability of
cameras in public places such as airports, streets and highways, a large amount
of data on the occurrence of fog becomes available to researchers. In this article
we describe methods for determining not necessary only the existence of fog,
but sometimes a visibility distance - a type of optical penetration length - as
well. We will show that digital cameras can be a reliable alternative or comple-
mentary method for creating fog visibility maps when processing of image data
is used.

KEywoRrbDSs: fog detection, Dark Channel Prior, edge detection, colour detec-
tion, visibility distance

1 Introduction

Fog is the weather phenomenon of light scattering particles - usually water droplets
- suspended in air causing an attenuation of light and therefore a severely reducing
a visibility of objects. The sudden appearance of fog - especially a dense fog - can
lead to such reduced visibility that transportation networks can be affected or even
fully compromised: for example massive car collisions resulting in long traffic jams,
grounding of airplanes or even closing of airports and reduced speed of trains to
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prevent derailment. Some of these effects can be alleviated or even prevented when
a transportation network can adjust to a fog density map of high spatial resolution
accuracy by issuing warnings or decreasing the speed limit. Unfortunately such a
density map needs a dense network of sensors that are capable of detecting the fog
and measuring the visibility distance, a network weather services are now lacking.

Current fog detection systems measure the amount of scattering of a collimated beam
of infrared light to determine the Meteorological Optical Range (MOR): the distance
at which a collimated beam of incandescent light with a light colour of 2700K has
reduced to an amount of 5% of the emitted flux. In the Netherlands there are 25 sites,
see Figure 1 for the locations, capable of determining the MOR resulting in a spatial
resolution that is significantly larger than typical length scales on which fog varies
that can be as low as a few meters in the neighbourhood of surface water. Therefore
a new and complementary method based on new data sources is needed.
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Figure 1: Map of the Netherlands showing the Meteorological Optical Range (MOR)
measured at 25 sites capable of determining the MOR. Image from the real time
updated public KNMI website: http://knmi.nl/nederland-nu/weer/waarnemingen.
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A possible new source of data are public cameras. The rising spread of public cameras
for control, security and safety allows for a much denser network of fog detecting
sensors. For example The Netherlands had about 2200 state owned traffic cams
der Staten Generaal (2010) in 2010, which would yield a spatial resolution of about
2.5 km if the cameras are distributed uniformly. Unfortunately the meteorological
definition of fog is incompatible with the data gathered by cameras. Cameras do not
see a constant light colour of 2700 K nor have a reference level of the emitted flux.
Therefore different properties of fog have to be used in a camera involved in a fog
detection system. For validation such fog system must correlate to the MOR and to
the fog detection and classification based on human perception.

Properties of fog and their measurement As we stated before fog is the weather
phenomenon of light scattering particles, suspended in air causing an attenuation of
light and therefore a severe reduction of the visibility of objects. This description
already hints to several characteristic properties. The most important parts of this
description are the “light scattering particles" and the “reduced visibility of objects".
The first part implies that the light of a source can be seen from a direction different
than the source direction. As a result the total amount of light scattered into one
specific direction will lead to a shift of an object colour towards white or grey. This
property will be called Colour Level Shift. Furthermore, the attenuation due to the
scattering leads to a gradual change of the fog colour from white to black depending
on the attenuation length of the fog, the thickness of the fog layer and the intensity
of the light source.

The second part of the description indicates a loss of resolution. It indicates that
visibility is a relative quantity depending on the no fog perception of an object. An
object becomes “fuzzy" and less detailed. This property will be called Shape Level
Decrease.

In general both the Colour Level Shift and the Shape Level Decrease can be inter-
preted as some combinations of smearing and averaging effects. The smearing implies
the existence of a diffusion process like scattering, which is the reason why objects
are perceived “fuzzy" and with shifted colour levels, and the averaging indicates the
direction of the Colour Level Shift: towards a specific grey level.

The MOR detection method is fully based on scattering and therefore it is by defini-
tion a colour level method: a decrease of flux in a specific small wavelength interval
will indicate a colour level shift. The MOR detection method does not determine
the loss of resolution or the absolute change of colour. Therefore camera data can
complement the MOR detection method by determining both the loss of resolution
and the absolute change of colour. A loss of resolution can be quantified by edge de-
tection realized e.g. via gradient thresholding, high level wavelet transforms or total
variability measures. The colour shift can be quantified by comparison between the
RGB-channels of camera.
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2 Fog detection based on Dark Channel Prior

In this chapter we introduce fog detection methods that are based on so called Dark
Prior Channel from RGB colour images.

2.1 Description of available data

Although in general a video data can be available for our purposes, we note that the
video footage is in principle a sequence of photographs, where each photograph is
only shown for a very short time interval, usually too short to be perceived as a single
photograph. Therefore we will only discuss the datasets consisting of single pictures.
Each colour picture consists of three channels - Red, Blue and Green (RGB) - where
each channel is a picture: an intensity map of the light received after passing through
a specific band pass filter. The combination of the three channels yields the real
life colour picture. Current camera technology is typically based on digital data
obtained from a CCD (Charged Coupled Device), where the CCD is an array of
integrating capacitors Rieke (2009). FEach pixel of the picture is identified with a
single integrating capacitor. The amount of charge collected by the capacitor is a
direct measure of the intensity of the light. The relation is linear except for high
values of charge. Current CCDs use a pixel with three integrating capacitors, one
for each of the RGB channels Kitchin (2009). A CCD will give an electronic signal,
the read-out signal, that consists of sequence of voltage spikes, one for each pixel
channel. The data is therefore immediately in an analogue format which is easily and
automatically converted into a digital signal.

Camera data will therefore consists of three digital RGB channel data sets in our
study. In particular, the methods that will be discussed in this paper are applied
to pictures provided by Koninklijk Nederlands Meteorologisch Instituut (KNMI), see
Figures 2 or 4 later for an illustration. The pictures obtained from camera images
are taken from a single location - KNMI institute terrain at De Bilt, Utrecht, the
Netherlands (52.0990 N, 5.1766 E) - and pointed in a single steady direction towards
the horizon (NNE). The pictures have a size of about 60 degrees wide and 40 degrees
high with the horizon centered at about 18 degrees from the bottom, in pixel sizes
768 x 562. The temporal resolution is 10 minutes.

Complementary to the camera data the KNMI provided the Meteorological Optical
Range (MOR) values of the same weather station location at the same times. The
MOR values are in meters and are determined with the same temporal resolution.
However the MOR is determined for the air directly at the location of the detector,
while the camera has a solid angle to probe with a certain angular resolution resulting
in multiple probes of fog of locations at least several tens of meters away from the
camera. We assume that the fog is spatially homogeneous on the visible length scales
and therefore probed in the same way by the MOR detector and the camera.
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Transmission and Dark Channel Prior If we see the i-th image channel as an
intensity density mapping I;, ¢ = 7, g, b, then the density mapping can be decomposed
into two mappings: the transmission mapping and the air scattering mapping, see
e.g. Fattal (2008); Narasimhan and Nayar (2000, 2002). The transmission mapping
is the perfect visibility image (or the scene radiance) J; weighted with a transmission
density ¢ indicating the amount of transmission of the medium - in this case air.
The air scattering mapping is the additive complement of the transmission mapping
depending on the global atmospheric radiance A; indicating the amount of intensity
of air radiance being scattered in the direction of the camera.

I(x) = J(x)t(x) + A(1 - t(x))), (1)

Mathematically speaking, the mappings I = [I,., I, I,) T, J = [J,, Jg, J)|T, A = [A,, Ay, 4] T
are defined on [1,n] x [1,m], the image of size n x m pixels, and with their values in
[0,1]3, the relative colour intensities for each RGB channel. Remark that the RGB
intensity is rescaled to 1 instead of the to the usual value of 22 — 1 for B-bits colour
coding.

We are interested in the transmission coefficient ¢ € [0, 1], since 1 — ¢ is a measure of
the amount of fog at the location depicted by the image pixel. Therefore one must
be able to remove the fog from the image and create the scene radiance image J.
The procedure for doing this is called dehazing, because it is the inverse operation of
applying fog or haze to an image He et al. (2011).

The objective of dehazing is to estimate J, A and ¢ in (1) from a single image L.
Naturally this procedure is a priori ill-posed since the output is 7/3 times greater
than the input from the image. Therefore the relation (1) cannot be solved without
extra constraints.

It was empirically observed in He et al. (2011) that patches in haze-free outdoor
(day) images in the non-sky regions have very low intensities in at least one channel
at some pixels belonging to the patch. These very low intensity pixels are due to
large deviations in the intensity of a channel, which is by itself a measure of object
resolution (pixel to pixel deviations) and transmission (channel to channel deviations).
One expects that for foggy (day) images the scattering causes both a decrease in the
object resolution as well as a colour shift to white or grey. Note that the grey scale
colours are by a definition unbiased to any of the RGB channels. Therefore the RGB
channels must have small deviations in the intensity of the channels, which can be
interpreted as a loss of resolution (pixel to pixel) and colour shift (channel to channel).

Consequently, we can introduce the dark channel Jy,1, which is the minimum over
all channels of the minimum of all pixels in a (small) neighbourhood, a patch Q(x),
centered at a pixel x,

Jinslo) = _min (min (2.7)). @)

ce{r,g,b} \ye(x)

The dark channel is therefore a prior knowledge for dehazing. Note that this Dark
Channel Prior is depending on the choice of a patch. If the patch is too large, then
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the Dark Channel Prior will be almost uniform in the image, while a too small patch
will go beyond the effective resolution of the image causing a Dark Channel Prior
with almost the same variability as the original RGB channels.

The scene radiance image is the “no fog” transmission image, which is assumed to have
zero values in the dark channel prior, i.e. Jgu-x = 0. Therefore the minimal values
over all channels for the observed image are fully caused by the scattering mapping.
Thus using (1) and supposing an estimate A of A is known, we can estimate the
transmission density mapping by

t(x) =1 —w min ( min <I(y))) (3)

cer,g,b \yeQ(x) Ac

where w € [0,1] is a constant parameter introducing a small amount of haze to
preserve a correct perception of distant objects. The haze indicated by the factor
1 — w can be attributed to other effects than scattering by water vapour, such as
Rayleigh scattering of air, thermal deviations of the refractive index, or lens problems
such as defocussing, chromatic aberration and astigmatism F.L. Pedrotti (2007). In
our applications we set w = 1, since the camera is assumed to have no lens problems
and the unobstructed view distance of 250 meter (a typical value in our test images)
is assumed to be too small to allow other natural scattering effects.

To determine A we pick the top 0.1% brightest pixels in the dark channel and then
the pixels with highest intensity in the input image I to estimate the atmospheric
light A, see He et al. (2011) for more details

In the following fog detection methods we make use of smoothed transmission t.
The smoothing is permormed using Guided Filter, where we filter ¢ and the filtering
process is guided by I He et al. (2011).

In next sections we present particular fog detection methods based on Dark Channel
Prior and transmission image. To obtain them for images in our computations we
have used an available Matlab implementation, see Tierney (2014).

2.2 C(Classification Tree methods for fog detection

We assume we have obtained a smoothed transmission ¢ for all pixels of the image from
RGB data. Afterwards we compute the average of the smoothed transmission for each
row. The resulting function of one variable indicates the transition between sky/air
and the ground. One expects that a fog will create a smooth transition between the
two, while clear days will have a sharp distinction between the two. In Figures 2 - 5
one can see examples how a clear day and a foggy day will change the transmission
function. Hence this horizontal averaged smooth transmission function can be a good
indicator for fog.

To test this approach we compute horizontal average for smoothed transmissions ¢
for 4458 images from October 2015 (the dataset Oct15) and for 2554 images from
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Figure 2: Image with a fog. Figure 3: Smoothed transmission ¢ and
horizontal averaged function.

November 2015 (the dataset Novwl5). Thanks to MOR method we have accurate
estimation of visibility for these two datasets. We discard images for which visibility
measurement is not available. Our goal is to be able to distinguish 3 classes:

e Class 1 - visibility < 250m,
e Class 2 - visibility > 250m and < 1000 m,
e Class 3 - visibility >1000 m.

Based on the MOR data one can easily determine to which class an image belongs,
see Table 1.

Table 1: Number of images for each class and each dataset based on MOR data

‘ ‘ Class 1 ‘ Class 2 ‘ Class 3 ‘

Oct15 171 194 4092
Novlb 3 17 2451

However to determine these classes we intend to use the image datasets only. There-
fore to distinguish between the three classes we use machine learning techniques on
image data only and the predetermined partition of the images by the MOR data.

We proceeded as follows. We randomly partition the images into training and valida-
tion sets for each dataset. The 50% of each dataset is used for the training and the
rest for the validation. We report in Figures 6 - 9 the results for two machine learning
techniques: Single Classification Tree (SCT) and Bagged Classification Trees (BCT)
Breiman et al. (1984) .
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horizontal averaged function.

We find that the BCT outperforms the SCT for the November 2015 dataset in both
Class 1 and 3. In Class 2 both methods are equally bad with 1 in 4 images wrongly
classified.

For the October 2015 dataset the both methods are equally correct with a wrong
classification of only 1 in 6 of the Class 1 (dense fog) images, 2 in 5 of the Class 2
(moderate fog) images, and 1 in 100 of the Class 3 (no fog) images. However due to
the low amount of images with Class 1 and 2 classification it is premature to conclude
that the methods are useful for fog classification.

We note that from the point of safety it is not problematic if a method has a bias
for a higher probability on false positives towards lower Classes (more fog) images.
However from the point of view of disruption, public awareness, believability and
costs for society such a method is problematic if the bias is significant. Therefore a
machine learning method should be combined with another fog detection method to
decrease false positives and false negatives.

2.3 Transmittance Method

A second method exploiting the transmission function, called the transmittance method,
is based on two consequences of the model (1).

The first one is the diffusion of the air region in the image into the ground region.
This can cause an effective lowering of the horizon in pixel height. In the transmission
function this effect can be seen as a shift of the location of the largest transmission
jump to lower pixel height values.

The second consequence is the smoothing of the colour level due to the air intensity
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Figure 8: The SCT for dataset Novls. Figure 9: The BCT for dataset Nov15.

mixing with the strength 1 —¢ in (1). This smoothing of color level can easily be seen
by applying a column average of the transmission. The obtained function will be very
noisy if there is no fog, while it will be smooth if there is a homogeneous fog.

A clear problem with the determination of the jump location is the smoothing itself.
The smoothing implies smaller and more gradual jumps due to the horizon as the
horizon itself becomes fuzzier and less clear. However large objects can still create
large local deviations resulting in contamination of the jump location. The jump
location can therefore only be used for extreme cases (dense fog or no fog conditions).
As a result one can see that the jump location is usually at large values when there is
fog and at small values when there is no fog. Unfortunately still a significant fraction
of fog conditions according to both MOR, and total variability data has a small jump
location value.
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A problem with the usage of total variability method is its dependence on the vari-
ability of no fog image. If a camera is pointed at a low variability location such as
a snowy landscape or a calm sea, then foggy and clear weather conditions can be
difficult to distinguish. Furthermore, the total variability method is only applicable
when the camera is focussed at infinity. If a camera is focussed at a nearby location
such as an object on the lens, then the resulting defocussing of the background will
directly imply low variability, while the actual weather condition might be a clear
day.

2.4 Fog Indicator method

The third method related to the transmission function will be called the Fog Indicator
method. This method applies the horizontal averaging to the estimated transmission.
The method combines the slope change of the obtained horizontal averaged trans-
mission function f with the location of the biggest jump. An elementary observation
is the large difference between the transmission values of the sky and the ground.
Furthermore, the horizon is a sharp drop during clear days and a shallow drop during
foggy days. Thus the horizontal averaged transmission function f for clear days looks
more like a step function than in the case of foggy days. Hence the Fog Indicator
Fj,q can be suggested as the squared L? norm of the difference between the (discrete)
horizontal averaging function f and the fitted step function S; with respect to f, see
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Figures 13 and 12 for an illustration.
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Figure 12: An image without fog. Figure 13: The horizontal averaged

transmission function f (blue) and the
fitted step function Sy (red).

Consequently, the low values of Fj,4 indicate clear days, while high values indicate
foggy conditions. We summarize the obtained results for available data sets in Figures
14 and 15.

Oct15 dataset Nov15 dataset
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Figure 14: Logarithmic MOR values
against Fog Indicator values for the
Oct15 dataset. The colours are directly
related to the logarithmic MOR values.

FoglIndicator values

Figure 15: Logarithmic MOR values
against Fog Indicator values for the
Nov15 dataset. The colours are directly
related to the logarithmic MOR values.

When considering the data of October 2015 the Fog Indicator seems like a good
predictor for fog or even MOR values. However for the data of November 2015 one
can see two additional groups of points that indicate a discrepancy between the two
methods. One group (the blue points in the lower and left part of graph) is probably
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caused by a faulty MOR reading as the images do not show fog (as indicated by the
low Fog Indicator value as well). The other group (the orange points in the top and
right part of graph) is due to dark images because of the decreased length of days
in winter in the Netherlands. It is natural that the second group did not occur in
October as the days are not yet short enough to cause problems for the daily time
intervals we are looking at. For typical representative pictures of each group see see
Figure 16 and 17.

Figure 16: An image with a faulty low Figure 17: An image with a faulty large
MOR value. Fog Indicator value.

Clearly, the Fog Indicator method has some issues. Dark and nightlike images will
yield wrong values. Moreover, the amount of clouds in the sky will influence the
Fog Indicator value even though they do not cause fog. In general the Fog Indicator
method depends on the visibility of a horizon in the image. If a camera is pointed
towards the ground in such a way that the horizon is not visible, then the Fog Indicator
method may fail for clear day images.

3 Fog detection methods from shapes in images

Fog is known to affect visibility by reducing the contrast. Multiple methods are
possible for determining an effective value for the contrast. We were not successful
to create fog detection methods with some of them. For example Fourier analysis
methods did not show clear characteristics for discriminating between fog and clear
conditions. Other methods like wavelet analysis were relatively complex and compu-
tationally expensive compared to the reliability of the data. Therefore we have chosen
to do only two related methods: gradient thresholding and local contrast correlation.
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3.1 Gradient Threshold method

This method is based on the assumption that the fog has a tendency to smooth
colour values, creating a less pronounced colour gradient between an object and a
background, the edge.

For simplicity we have converted the RGB colour images into grey scale images.
Having this grey scale image we calculate the local gradient vector and its norm.
Afterwards we count the number of pixels with a local gradient norm larger than a
certain threshold. Our experience is that for a well chosen threshold one can distin-
guish for the chosen image between fog and clear days, see Figures 18 and 19 for an
illustration.

Figure 19: An image representation of
ent treshold method. gradient thresholding: the white pixels
denote locations with sufficiently large
gradients (the detected edges), while the
black pixels indicate gradients below the
threshold.

Figure 18: The chosen image for gradi-

To compute the gradient we apply a finite difference method, usually a second order
one, which implies that the local gradient is a patch size dependent given by the order
of the finite difference method.

The proposed Gradient Threshold method seems to be a good fog indicator for at
least the presence of fog, see Figures 20 and 21. Concerning the visibility distance
we still see a large spread that can give unacceptably large deviations in the visibility
distance.

The gradient method is still sensitive to defocussing, a presence of objects on the lens,
and ground fog when it can give errors and incorrect interpretations of the data, but it
is quite robust in the sense that the problems like astigmatism, chromatic aberration
or night images will affect the method far less then colour dependent methods.
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3.2 Local Contrast Correlation method

In the Local Contrast Correlation method we make use of the fact that we have
a sequence of images taken from the same viewpoint. The method proceeds in two
phases. First we analyze a set of reference images from the past and determine specific,
small-scale, contrast-rich features that are present in this set of images. Secondly, we
take the current image, and determine whether the features that have been identified
in previous images can be observed in the current image. In other words, the Local
Contrast Correlation method tests specifically for the presence of certain contrast-rich
features identified from reference images, and not directly for the presence of fog. But
since fogs blurs the features of the image one might expect a good correlation with
the presence of fog. The first phase will be called the analysis phase, the second phase
the test phase. Analogous to the Gradient Threshold method we convert the RGB
images to grey scale images. In the examples we only used daytime images.

The main motivation for this method, as compared to the previous, gradient threshold
method, is to address the issue of contamination on the shape level, see section 4
below. For example, theoretically it is possible that in a situation of fog, a bird flies
close the camera and introduces a lot of extra contrast, compensating for the loss
of contrast elsewhere in the picture due to the fog. In the local contrast correlation
method, the contrast from the bird will be discarded because it was not present in
the set of reference images.

We next describe the analysis phase. For each reference image, we identify the small-
scale, contrast-rich features as follows. We subdivide the image into a specified number
of patches of a certain size. In each patch, we set the zeroth and first moments of
the local grey scale expansion to zero. The constants are chosen to equal the average
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constant value and gradients within a patch. The remaining grey scale image for a
certain patch will have highly pronounced edges (if edges are present in the patch).
The corresponding patches obtained from the different reference images are averaged,
to keep only contrast present in many of the images. A set of patches is selected where
contrast is above a certain threshold. These will be used for testing the presence of
specific features in the test image. Patches can e.g. be of size 16 x 16 and 100 patches
can be selected. After moment removal, the patches where normalized, so that, as
a vector, they had unit length. We denote by ]A%a,ﬁ (j, k) the patches after moment
removal, averaging and normalization, with a, 8 the index of the patch and (j, k) the
coordinates of each pixel in the patch, and by S = {(a1, 51), (a2, B2),. .., (ar, Bum)}
the set of patches selected for testing. See Figure 22 and 23 for an illustration.

In the test phase, one subdivides the test image I(j,k) in patches I, g(j, k) in the
same way as for the analysis phase. To find whether a certain feature is present in
the image, we consider the inner product (correlation)

tap = Lap(i k) Ra (i, k).
7,k

A large value of t,, g means that the detailed features, observed in the reference images,
are present in the test image. Small values for ¢, g can mean either that there is no
contrast present in the specific patch, or that there is an altogether different contrast
present, e.g. due to an object with a different shape that is present in the image.
The logarithms of the values t, g can be summed to give a first indication of the
“fogginess”.

Small scale contrast

Figure 22: An RGB reference image used
for the analysis phase of the Local Contrast
Correlation method.

Figure 23: An outtake of the greyscale
image of which the zeroth and first mo-
ments are removed in grid patches. The
colouring is from dark blue for value -1
to bright yellow for value +1.

The indicator value of the proposed Local Contrast Correlation method is actually a
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good indicator for the October 2015 data with no deviations from a specific functional
form with respect to the MOR data. However for November 2015 we see again a group
of points deviating from the October functional dependence. Again these points seem
false positives of the MOR data as the values of the edge detection are similar to the
values of the clear days. It is highly likely that this group is the same false positive
group as found by the Fog Indicator method.

Correlations October Correlations November
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Figure 24: Local contrast correlation in-
dicator values against MORvalues for
images of October 2015 dataset.

log visibility

Figure 25: Local contrast correlation in-
dicator values against MOR values for
images of November 2015 dataset.

The Local Contrast Correlation method shares some properties of Gradient Treshold-
ing method. But there is also a number of differences. An important difference is the
use of reference images, showing what was previously visible at the site. As explained,
this could address the issue of shape contamination. In principle, using more of the
available information should lead to a reduction of the statistical uncertainty. How-
ever, it is unclear whether this is the case when including information from reference
images, because there are also potential complications. The use of patches in principle
allows the use of different statistics than simply summing the values ¢, g. Each low
t,3 value is an indicator of reduced contrast in some part of the image which could
be caused by fog. However, it is not easy to say anything in general about the relation
between the t, g and the fog conditions. Reasons for this are for example that the
depth- and height-maps of the pictures are unknown, that the distribution of contrast
over the picture can vary and that fog can have different characteristics.

4 Error sourcess in fog detection methods

All methods for determining the existence of fog are subjected to three types of error
sources: difficult weather conditions, camera errors and errors in the method itself.
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We assume that all errors in the method itself, for example ill-posed matrices for
inversion or other problems resulting in non-uniqueness, are negligible, while all other
errors are due to the difficult weather conditions or camera errors.

In what follows we discuss contaminating conditions in fog detection methods.

Contamination on the colour level The colour level depends on the properties
of the objects seen in the picture, the intensity of the light, the position of the sun
and the weather conditions. Several combinations of these factors can lead to false
positives in the colour level methods for fog detection. Due to the variable nature
of weather, light intensity and solar position in the sky one expects the colour level
contamination to be highly variable with predictable time dependencies.

Contamination on the shape level The shape level depends on the local vari-
ability in colour (or grey scale), which ultimately depends on the resolution and the
intensity of the light. Therefore the same contamination problems as with colour
level are present. If the objects in the images vary with time, as it is the case for
traffic cameras, then the shape level depends on the amount, shape, size and colour
of objects visible in the clear image as well. An empty road should not be classified as
foggy just because no car is visible, while a foggy traffic jam should not be classified
as clear just because a lot of cars are visible. Therefore only not hidable stationary
objects should be used in the determination of the shape level, e.g.one does not want
to use the lines on a highway as objects, because they can be hidden from the camera
by another objects such as a car or a truck.

Weather conditions A crucial part in the colour level methods is the Dark Channel
Prior. By definition this Dark Channel Prior is the minimal value over all channels
for all pixels within a patch. As a consequence the Dark Channel Prior is biased
towards dark images: darker images are perceived as clearer pictures. Therefore
every weather condition that creates dark images will artificially be interpreted as
clear. Thick rain clouds, clouds during dusk or dawn and night images can all give
the wrong interpretation of fog. Night images are even more problematic because of
the vanishing horizon.

A second problem is the imitation of fog by other weather conditions. Heavy precip-
itation in any form will create a decrease in the visibility distance, but it is not fog
and therefore not seen by the MOR (if the sensor is encased for protection purposes).
Therefore false positives of the image methods with respect to fog and false negatives
of the MOR method with respect to visibility distance will occur.

One can pose the question what the ultimate goal of the KNMI (or any other user
of these tools) is: fog detection or visibility distance determination? This question is
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crucial in the evaluation of the data, for example in the determination of the influence
of the MOR values compared to the image data indicators.

A third problem is the inhomogeneous distribution of fog. If fog is only present in
a part of the image, then even dense fog can be classified as moderate fog. Clear
examples are thin layers of dense ground fog. They can result in multiple effective
horizons or a high spatial discrepancy in edge detection.

Camera errors Camera errors are systematic errors that effect all image data
indicators. The most prominent problems are defocussing, chromatic aberration and
astigmatism.

Defocussing implies a large scale averaging on the entire perfect image resulting in an
artificial dense fog condition. Almost all colours of the image are mixed resulting in a
fog like Dark Channel Prior. Chromatic aberration is an effect when a lens does not
work equally for all wavelengths. Chromatic aberration occurs in two types: different
focal lengths or different foci. Different focal lengths imply different magnifications
for different colors. Therefore edges become less pronounced and blurring occurs on
the edges of the image resulting in artificial fog. Different foci implies a homogeneous
defocussing of different strength for different colours. This results in a local aver-
aging for different colours implying higher values for the Dark Channel Prior, hence
the method can classify the image as slightly foggy. Astigmatism is an effect when
different lens axes have different foci, resulting in an effective blurring of the image.
Naturally the Dark Channel Prior can again classify the image as slightly foggy.

Miscellaneous errors There are other reasons why errors are introduced. For
example animal interference. If a spider creates a cobweb on a camera, then it will
influence the determination of fog or visibility distance. Similarly wind can blow
leaves or cloths on the camera, while animals like bugs or arachnids can stay on
the lens. Precipitation can cause blurring as well just by exposure of the lens to
weather. Water droplets or ice severely influence the viewing angle or distort the view.
Furthermore, dew and crystallization of moisture can cause fast changing operating
conditions with total blockage of the camera lens in extreme cases. Aging of the lens
due to degrading lens surfaces by sand, salt or other effects can create optical effects
that persist. Moreover, CCD aging due to long exposures to high intensities of light
or other effects can create permanent artifacts on images.

5 Conclusions

In this paper we present several fog detection methods based purely on processing of
image data obtained from digital cameras. We can classify these methods into two
groups. The first group is based on well established Dark Channel Prior method that
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was originally proposed to dehaze foggy images, and it includes Classification Trees
methods, Transmittance methods, and Fog Indicator method. The second group
works with converted grey scale images, and it includes Gradient Tresholding and
Local Contrast Correlation method.

We note that not only the fog detection but also the visibility correlated to the current
meteorological standard for visibility ranging can be obtained from camera images
in several cases. For practical usage one may propose a combination of presented
methods supported by proper statistical tools to create a fog detection method that
is robust against false positives and false negatives of individual methods. In fact,
using proposed fog detection methods we could recognize faulty data in Meteorological
Optical Range (MOR) measurements.
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Modelling a long production line as a train with
coupled carriages

Nick Gaiko Thomas de Jong Vivi Rottschéfer

Abstract

In this paper, we model an active tension control (ATC) of a long production
line offered by Marel Stork Poultry Processing. The production line consists of
trolleys with poultry product which move along a rail. The trolleys are con-
nected by a chain. The motor drives the chain by pushing the trolleys forward.
However, when the motor is spinning too quickly the tension in the chain, right
after the motor can drop which leads to collisions of the trolleys or entanglement
of the chain. Hence, control of the tension is necessary. This ATC method works
by means of a dead weight, pulling on the chain after the motor, the so-called
‘dancer’. The dancer maintains the tension in the chain when the weight is suf-
ficiently high. However, if the dancer is too heavy it will shorten the life-time of
the chain. By modelling the motion of the trolleys between the first motor and
the following dancer we numerically compute the optimal force for the dancer.
Furthermore, we suggest extensions of our model and a novel modification to
control the tension.

1 Introduction

In this paper we consider a problem proposed by Marel Stork Poultry Processing at
SWI 2016. Marel Stork offers solutions for in-line poultry processing in accordance
with a desired automation level and production capacities. Marel Stork systems
are modular, that is, they can be combined with other equipment and with manual
processes. We consider only one modular part of the whole processing system, namely
a long production line transporting poultry through a chilled storage room. This
closed-loop line is called an overhead conveyor.

The overhead conveyor consists of a long chain, the maximum length of which is
5500 m, driven by the up to 40 electric motors along the rail with a constant speed
(0.6-0.8 m/s), see Figure 1.

Every 6 inches, a trolley is attached to the chain. These trolleys move over an
overhead rail. Each trolley contains a shackle, hanging downwards, which suspends
poultry products, see Figure 1. Fach poultry product weighs between 1.5 and 2.5
kg. We will refer to a trolley containing poultry product as a carriage. The weight
of a fully loaded production line is 68000 kg. The hanging poultry in the shackle
can swing in all directions; also, the products can almost touch each other with their
wings.
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Figure 1: Schematics of the overhead conveyor with poultry. Courtesy of Marel Stork
Poultry Processing

From the characteristics above one can see that the production line is very heavy
and has a relatively large travelling speed. A problem occurring in the conveyor is
slack of the chain. Slack has many causes, however, it is most often caused by the
motor. The motor contains uniformly placed slots through which it transports the
carriages, see Figure 2. If the motor is spinning quickly and if the chain is stretched
due to wear such that the length of the chain between the carriages is longer than
the distance between the slots then the chain will slack when carriages leave the
motor. This slack could spread throughout the chain. If the chain slacks too much

Figure 2: A motor of the overhead conveyor. Courtesy of Marel Stork Poultry Pro-
cessing

the carriages can collide or the chain could entangle. This leads to a production stop
and could even cause permanent damage of the production line. Hence, whenever too
much slack is observed the production line is stopped.

The slack is controlled by an active tension control whose simplified schematic is
displayed in Figure 3. Since the chain is very long many motors are needed to drive
the chain. The first motor, the master motor, turns at a fixed speed. Each motor is
followed by a dead weight, the so-called ‘dancer’. The dancer is a pulley with a heavy
weight. The pulley is fixed to a rail whose length determines the range of the motion
of the dancer. Since the dancer applies a force it pulls the carriages in its direction
and, consequently, reduces the slack. Hence, it is very similar to a train locomotive
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Figure 3: Active tension control of the overhead conveyor. M1, S1, S2 and S3 denote
motors. The motor M1 is the master motor which turns at a fixed speed. Each
motor is followed by a dead weight, the ‘dancer’. The dancer is a pulley with a heavy
weight. Since the dancer applies a force it pulls the carriages in its direction and,
consequently, reduces the slack. Observe that a quantitative measure of the slack in
the chain between a motor and the following dancer is given by the position of the
dancer. The motors S1, S2 and S3 are the slave motors. Their speed is controlled by
the position of the dancer. Courtesy of Marel Stork Poultry Processing

which pulls its carriages forward. However, contrary to the carriages of a locomotive,
these carriages will move past the pulling force. Observe that a quantitative measure
of the slack in the chain between a motor and the following dancer is given by the
position of the dancer. Hence, the speed of the motors after the master motor are
controlled by the position of the dancer. Thus, the motors after the master motor are
called slave motors.

Observe that the dancer does not make the slack vanish instantaneously. Hence,
the force of the dancer should be large enough such that it counteracts the slack
caused by the motor. However, the problem with the dancer is that it applies a con-
stant force on the chain which leads to stretching of the chain over time, in turn, this
leads to more slack. Furthermore, when the chain is stretched for about 3%, the chain
is classified as worn out and needs to be entirely replaced. During this maintenance
process no products can be processed. Thus, it is of importance to maintain a tension
in the chain which prevents its slack and reduces its wear.

In Section 2 we set up a model for the motion of the carriages where the slack is
caused by the motor. More specifically, we focus on the motion between the master
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motor and the following dancer. In Section 3 we present the results of numerical
simulations of the model constructed in Section 2. Finally, we present the conclusions
and recommendations in Section 4. More specifically, we explain how the numerics
validates our model, how the model can be extended to model the system better and
how the mathematical results might lead to an improvement of the current system.

2 Modelling the production line as a train with car-
riages

In this section we formulate the model. We consider a chain that is fully loaded with
product. However, we only study part of the complete chain and restrict our model
to the study of the carriage motion between the master motor and the next dancer,
see Figure 4.

Figure 4: The chain between the master motor and the dancer. The carriages are
depicted by the black dots.

2.1 Modelling assumptions

To set up the equations of motion we consider some modelling assumptions:

Carriage: 1. Carriages are point masses with equal mass.
2. The friction of the wheels with the rails is linear.

3. When the chain between two carriages has slack the carriages do not
exert forces on each other. However, when the chain is tight the
forces on both carriages are equal.

[

Dancer: The position of the dancer is fixed.

2. The dancer applies a constant force on the chain.
Chain: 1. There is no mechanical energy loss through the chain.

Motor:

—_

The motor supplies carriages with a constant rate.

2. The carriages that leave the motor have a prescribed initial velocity.
This velocity is sufficiently low such that the chain between the motor
and the first carriage is never pulled tight whenever this carriage is
unaffected by the dancer. Hence, the motor causes slack.
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The model will consist of equations of motion for each of the carriages. Here we
measure their position by the distance to the motor where the motor is located at
r = 0 and and the dancer is located at x = ¢. Based on the assumptions above we
can introduce the parameters for the equations of motion:

£: the length, in meters, from the motor to the dancer
£.: the length, in meters, of the chain between two carriages when it is pulled tight
m: the mass, in kilograms, of the (loaded) carriage

c: the friction coeflicient, in kilograms per second, between the wheels of the hangar
with the rails

fmot: the number of carriages that enter per second through the motor
Umot: the velocity, in meters per second, of the carriages that enter through the motor

Fyan: the force, in Newton, which is being applied by the dancer
We assume that all the constants are non-zero.

Denote by z(t) the position of a carriage. Then, if the carriages is unaffected by
the force of the dancer the equation of motion is given by

mi = —ct, (1)

where we used the short-hand notation & = dx/dt and & = d%x/dt?. If the carriage
is part of W carriages whose chains are pulled tight the total mass is Wm and the
total friction is We. Hence, if these carriages are affected by the force of the dancer
the equation of motion is given by

Wmi = —Wez + Faan. (2)
The equations (1) and (2) are standard ODEs of the form
j=ay+b, (3)
with a,b € R of which solutions are given by

at
gty = 2=, )
a
with ¢1,ce € R constants determined by the initial conditions. It will turn out that
all the ODEs in this paper are of the form (3).
Observe that assumption 2 for the motor is an assumptions on the parameters.
Hence, let us formulate this assumptions in terms of the parameters using (1):
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Motor: 2. Consider the equations of motion in (1). Let x satisfy the initial conditions
z(0) =0, £(0) = Vmot-

At t = 1/ fmot @ new carriage will enter via the motor. Hence, we assume
that vy, is sufficiently small such that

2(1/ fmot) < Let-

2.2 Set-up: possible events

We assumed that when the chain between two carriages is loose the carriages do
not exert forces on each other. However, when the chain is tight the forces on both
carriages are equal. In formulating the model it turns out that the configuration of the
carriages is very important. As we explained before the chain between the carriages
can hang loose or be tight and we have to take that into account. So, by configuration
we mean the number of carriages between the motor and dancer, and also between
which carriages the chain is tight and loose.

For a given configuration the equations of motion remain unchanged. However,
when the configuration changes the equations of motion also change. The configura-
tion changes when one of the following events occur:

P: aloose chain is pulled tight,

C: a collision occurs between two carriages,

E: a new carriage enters via the motor,

L: the last carriage leaves by passing the dancer.

We shall abbreviate these events by the capital letters above. Note that several of
the above events could also occur at the same time. Hence, all possible events are
given by all the combinations of (P,C, E, L). When an event occurs the equations of
motion change and we have to prescribe the new equations of motion until the next
event. The event C is special in this respect since in this case the production line
should be stopped so our model should end too.

2.3 The event map

In this section we will present a general procedure which gives the equations of motion
as the system undergoes a configuration change due to an event.

First, we assume that we know the equations of motion at ¢ = 0 and that at ¢t =0
there are Ny > 0 carriages between the motor and dancer. We denote the position of
the ith carriage by xo;(t) for i = 1,2,..., Ng. Here we order the carriages in such a
way that the 1st carriage is closest to the motor and the Nyth carriage is closest to
the dancer, see Figure 5.
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Figure 5: Carriage position at t = 0. The carriages are depicted by black dots. The
1st carriage is closest to the motor and the Nyth carriage is closest to the dancer.

Now, assume that the first time that an event occurs is at ¢; > 0. Then, a full
description of the carriages for 0 < ¢ < ¢; is given by the tuple

(To, Xo), (5)

with
To = [0,t1), Xo(t) = (wo1,T02, " ,ToN,)-

The tuple (5) will be called the carriage motion on Ty. Denote the event at ¢; by A.
Then we want to construct a map ¥ such that

U(Ty, Xo) = (Th, X1),

with
Ty = [t1,t2), Xa(t) = (211,712, -+, 21N, ),

where t5 is time when the next event occurs, N; is the number of carriages between
the motor and dancer and z1;(¢) is the position for the ith carriage for all ¢t € T.
Again the carriages are ordered in such a way that the 1st carriage is closest to the
motor and the Nyth carriage is closest to the dancer. Observe that ¥ maps (Tp, Xo)
into the carriage motion until the next event. Hence, we call ¥ the event map and
U(Ty, Xo) is called the carriage motion from the 1st to the 2nd event of (Tp, Xo).
Similarly, ¥™(Tp, Xo) is called the carriage motion from the nth to the (n + 1)th
event of (Tp, Xo).

2.4 Initial carriage motion

To construct a general W is a very lengthy exercise. However, by restricting to a
specific initial carriage motion the construction of ¥ simplifies. We consider (T, Xo)
the tuple (5). As the initial configuration we assume that the chain is tight between
all the carriages. Observe that we must require that Nof., < ¢ < (Np+ 1) when all
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the chains are tight. Then, it follows from (2) that the equations of motion for the
carriages are given by

Nomio; = —Nocto; + Faan, 7=1,2,---,Np, (6)
with initial conditions
(L‘Oj(O) = (j—l)gct-‘rdo, i?oj(O) = v1>0, j=1,2,---, Ny, (7)

where dj € [0, £]. Since the chain between the carriages is tight, the initial distance
between two adjacent carriages is £.;. Observe that dy is the distance between the
motor and the first carriage. Hence, the chain between the motor and the first carriage
can be loose (dy < £.t), tight (dg = ) or the first carriage starts at the position of
the motor (dy = 0). Since the Ny carriages move as a whole all the carriage have the
same initial velocity.

Next, we look at which event can occur at t;. First, let us make a distinction
between two different P events:

P.: The chain between two carriages is pulled tight
Poot: The chain between the motor and the first carriage is pulled tight

Then, the events C' and P. cannot occur at ¢;. Hence, the events E, L and/or Pyt
can occur at t;. We assume that the motor is switched on at ¢ = 0. Hence, at
t = 1/ fimot the first carriage will enter via the motor. Thus, ¢; is given by

tl = HliIl(Tl, T2, 1/fmot)7 (8)
where 71,75 > 0 are the smallest 71, 75 such that

Tono(T1) = ¥, (event L)
zo1(m2) = {lo (event E).

2.5 Carriage motion from the nth to the (n + 1)th event

It turns out that we chose the initial carriage motion, (Ty, Xp), in such a way that
the following holds for ¥"(Ty, Xo) = (Ty, X,) for any n € N:

Property 1. The carriages can be divided into two connected parts: the loose part,
which consists of all the carriages with a loose chain in between them,
and the tight part, which consists of all the carriages with a tight chain
between them. Denote the number of carriages of the loose part by K.
If the loose part contains more than 0 carriages, so K,, > 0, then the
first carriage of the loose part connects to the motor. If the tight part
consists of more than 0 carriages then the last carriage of the tight part
is next to the dancer, see Figure 6.
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Property 2. If K,, > 0 then the speed of the carriage closest to the motor is largest
and the speed of the carriages decreases when moving away from the
motor. Hence, for all ¢ € T, the following inequality holds:

dl‘nl dSUnQ dwnK
t t = (%).
L) > S () s S )
Motor
Tnl Tn2 TnKk,
TnK,+1 TnK,+2 TnN,

Dancer

Figure 6: The loose part and tight part. Denote the number of carriages by INV,, and
the carriages of the loose part by K,,. The carriages can be divided into a loose part
with K, carriages which are connected to the motor and a tight part of (N,, — K,)
carriages which are connected to the dancer.

These two properties are important for the construction of ¥. We will now construct
¥ and prove the above properties by induction. Observe that property 1 and 2 hold
fOI“ (To, Xo)

Now, we assume that (T, Xj) is known. Furthermore, we assume that (7%, Xx)
satisfies property 1 and 2. Then, we want to prescribe the carriage motion from the
(k+1)th to the (k+2)th event of (Ty, Xo), U(Tk, Xi) =: (Tk+1, Xg+1), and prove that
property 1 and 2 hold. We denote Ty, = [t,tr+1) and Ny is the number of carriages.
As before, we index X}, in the following way:

Xi = (Tr1, Th2y -+ 5 ThN)-

First we determine which events can occur at t;;. We will present mathematical
equivalents for the events. Using property 1 and 2, we first make some observations:

- If Pyt occurs at t;41 then all the chains are pulled tight.

- If P. occurs at tx41 then the chain between the loose part and the tight part of
the carriages is pulled tight.

- If C occurs at ti11 then the last carriage of the loose part and the first carriage
of the tight part collide.
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Denote the number of carriages of the loose part by K. Then the events are described
by

Pmot a tk+1 — gflcl(tk+l) = ecta (10)
Latty1 <= xpn,(tes1) =4, (11)
Eattgrr <= tp41 =D/ fmot Withp = min Do, (12)

po/fmoc—l\;fk>07
Po€

and if Kj > 0 then, in addition, the following events could occur:

P attyy, <= kak+1(tk+1) — kK, (tk+1) =/, (13)
Cattiy1 <= ZTrie+1(te1) — Tek, (the1) = 0. (14)

If C occurs at tx41 then there is no carriage motion after the (k + 1)th event of
(Ty, Xo). At ty41 either a single event or a combination of (L, E, Pyot, P.) can occur.
Next, we will prescribe X1 based on which event occurs:

Event L:

The last carriage leaves. We have that
Xit1 = (Th1, Thz,  + Thky, YK+ 15 YK+20 7 5 YNe—1), (15)
where y; with j = K +1,--- , N, — 1, satisfies
m(Ny — 1 — Ki)ij; = —c¢(Nk — 1 — K¢)y; + Faan, (16)
and initial conditions

Yi(tea1) = 2 (terr), 95 (1) = Taj(tryr)- (17)

Event E:

A new carriage enters. Hence, we have

Xk+1 = (Zaxklaxkﬂa"' ){L‘k:Nk)7 (18)
with z satisfying
mzZ = —cz, (19)
and initial conditions
Z(tk+1) = 0, 2(tk+1) = Umot- (20)
Events F and L:
We have that
Xip1 = (2,51, Th2, - ThKy» YK o+1> YKa4+25 " 2 YNp—1);5 (21)

where z satisfies Equation (19) and (20) and where y; with j = K3 +1,--- , Ny — 1,
satisfies (16) and (17).
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Event P,::
We have that

Xk+1 = (U}l,U}Q, o aka)a
where w; with j =1,2,--- | IV, satisfies
'lbj = 0, (22)

and initial conditions

Wj(th41) = T (trgr)- (23)
Events F and P,
We have that

Xk+1 = (wO; w1, W2, -+ 7ka)7

where w; with j =0,1,2,---, Ny, satisfies Equation (22) and (23).

Events L and P,

We have that
Xk-‘rl = (w17w27 T aka—l)v

where w; with j =1,2,--- N, — 1 satisfies (22) with (23).

Events E, L and P,

We have that
Xk‘Jrl - (w07w17w27' o ,kafl)a

where w; with j =0,1,2,---, N, — 1, satisfies (22) and (23).

Event P.:

This only happens when Kj > 0. The Kjth carriage which was in the loose part
during T}, will become part of the tight part at ¢51. We then have that

Xit1 = (Th1, Th2, - 5 ThKy—1, UKy, UK +15° 5 UNy, ) (24)
where u; with j = Ky, Ki + 1, -+, Ny, satisfies
m(N, — Ki + 1)i; = —c¢(Nk — Ki + 1) + Faan, (25)
and initial conditions

Wi (te1) = Taj(trr1)s U5 (tkr1) = Tj (tot1)- (26)
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Events I and P,:
Again, K; > 0 and it follows that

Xk-‘rl - (Z,l'kl,l'kg,"' sy kK —1, UK, UK, +1," " ,U;ka),

(27)

where z is satisfies (19) and (20) and where u; with j = Ky, Kj + 1,-- - , Ny, satisfies

(25) and (26).
Events L and P.:

Then K > 0 and
X1 = (Tr1, Tho, 5 ThK—1, UK, UK 15 5 UNG—1)5
where u; with j = K, K +1,--- , N, — 1 satisfies
m(Ny — 1 — Kp.)tj = —c(Ny — 1 — Kp)tj + Faan
and initial conditions
Wj(the1) = Trj(tes), U5 (tetr) = Taj(Besr)-
Events F, L and P.:
Then K > 0 and

X1 = (2, Tp1, T, -+, Thico—1, Uy, UK 415+ s UNp—1),

where z is satisfies (19) with (20) and where u; with j = Ky, K +1,---

satisfies (29) with (30). The ODEs above are solved by (4).

(31)
aNk -1

We have given Xj.1. We denote T11 = [tg+1,tk+2) and Niy; is the number of

carriages. As before, we index X1 in the following way:

Xpy1 = (Trg1 15 Thp1 2, 5 Thopl Niyr )-

It remains to give ty12. From (10), (11), (12), (13), (14) it follows that

; min(7y, 72, 73) if K41 =0,
k42 = . .
+ mln(Tl,TQ,Tg,T4T5) if Kk+1 >0,
where 7; > t41 with ¢ = 1,2, 3,4, 5 are the smallest 7; such that
Try11(m1) = Lo,
Tr+1 Nk+1(7—2) = &
msmod 1/fiot = 0,
Tyt Kp41(T2) — Thg1 &, (12) = 4,
Tyt K 41(75) — Thy1 Kk, (75) = 0
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We have given T; k,&H.. We are left with proving property 1 and 2, but this follows
eri

directly from considering the equations of motion for all the cases.

3 Numerical simulation

We implemented the model in Mathematica. It turns out that the dynamics of the
slack caused by the motor does not change if we consider a chain with many carriages.
Hence, for convenience we consider a chain starting with only 4 carriages. At ¢t =0
we assume that the system is at rest, which means that the velocity of the carriages is
zero. In the physical system many carriages per minute enter via the motor. Hence,
we will take fio¢ large. We consider the following parameters:

=4 Ly =1, ¢=1/100, m =1, fimot = 100, vyet = 10, (32)
and for the following initial conditions:
Xo(0) = (1/2,3/2,5/2,7/2), Xo(0) = (0,0,0,0). (33)

We will vary the force Fy.,. The results for Fy., = 150 and Fy,, = 250 are displayed
in Figure 7 and Figure 8, respectively. In Figure 7 and Figure 8 the carriages are
labelled with numbers so that the motion of each carriage can be followed over time.

t=20
4 3 2 1
> ° ° °
I T N ST T Y AT T S T T T T S S T T Y Y T S SN T TN Y N AT N N S S |
0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
t =0.04
76 5 4 3 2
o0 O ° ° °
L ol b e e e b e b b b
0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
t =0.08
1110 98 7 6 5 4 3
YY XY ° ° ° «
L T I R R P TT TN S N T T O [N T ST T S T TS S AT T ST T N SO SO SO W |
0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
t=0.12
151413121110 9 8 7 6 5
90000000 ° ° °
L ol e b e e e e e e b e e e e e e b e )
0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

Figure 7: Time frames of the numerical simulations with initial conditions (33) and
with parameters (32), Fgan = 150.
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Figure 8 Time frames of the numerical simulations with initial conditions (33) and
with parameters (32), Fgan = 250.

In Figure 7 and Figure 8 the carriages with loose chain between them are pulled tight
by the dancer. We observe that the time it takes for the chain between the loose
part and the tight part of the carriages to be pulled tight is too large. This can be
seen from the fact that the loose carriages accumulate over time. We find that for
Fyan = 390 the carriages have the same configuration as for Fy,, = 250 at t = 0.12
at a later time, namely at ¢t = 2, see Figure 9.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 9: The numerical simulation at ¢ = 2 with initial conditions (33), parameters
(32) and Fya, = 390.

If we take Fya, > 400 then we find that the events Pyt and L are the first events
that occur. Recall that when P, occurs all the velocities become zero. The event
Pt L is followed by the event E after which we are back in the starting configuration
and the process repeats. Consequently, there is no accumulation of carriages with
loose chain.
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4 Conclusions and recommendations

In this paper we constructed a mathematical model for the carriage motion between
the master motor and the next dancer. In Section 3 we found that if the force applied
by the dancer is large enough then the slack in the chain that is caused by the motor
will not spread over the whole chain. This is also observed in the physical system.
Alternatively, we could have modelled the chain as a moving continuum (e.g., string
Chen (2005)) or a harmonic oscillator (spring-mass system). However, we looked into
the approaches and neither of them yielded satisfying results.

The model we formulated is only a first step in the study of this system. There are
several ways in which it can be extended. As next steps, we recommend the following
extensions of our model:

- General initial configurations: Our model can only be used for the initial
configuration when the chain is tight between all the carriages. For a more
general initial configuration the possible events will increase. Consequently, the
event map ¥ will become more complicated.

- Moving dancer: The distance between the motor and dancer is assumed to
be constant in our model. However, in the physical system the dancer can move
and this can be incorporated in our model.

- Control problem for coupled dancers and motors: In the original problem
the master motor is followed by motors whose speed is coupled to the position
of the dancer. Using our model we can formulate a control problem for this
system.

- Not fully loaded chain: When there is not a product on every trolley but
several are empty we should consider a partially filled chain. This can be done
by varying the mass of the carriages which enter via the motor.

- Realistic parameters: In Section 3 we only consider very specific parameters.
Parameters which better fit the reality should be studied.

The numerical simulation in Section 3 is aimed at finding the lowest force on the
dancer such that the carriages with loose chains between them do not accumulate.
We call this the optimal force of the dancer. Recall that the greater the force of the
dancer the shorter the life-time of the chain. A topic for future work is a further
improvement of the life-time of the chain. More specifically, by modifying the system
we want to take the force of the dancer lower than the optimal force of our model
while ensuring that the entire chain will not slack over time. If we could reduce the
speed of the carriages with loose chain that leave the motor then the dancer has more
time to pull the chains between the carriages tight. This might be accomplished by
placing a high friction mat on the rails close to the motor. This reduces the speed of
the carriages close to the motor. By using our model it is possible to test whether
this might work.
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Energy Consumption of Trains
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Abstract

In this report, we consider a problem on energy minimisation of trains pro-
posed by Nederlandse Spoorwegen (NS). Our results include a quick heuristic
to compute the energy consumption for a given time table as well as a heuristic
to find a timetable which is more energy efficient.

KEYWORDS: Energy minimisation, Timetabling, Heuristic algorithm

1 Introduction

We consider the problem proposed by Nederlandse Spoorwegen (NS) at the Study
Group Mathematics with Industry 2016, held at Radboud University, Nijmegen. NS
is a Dutch passenger railway operator and provides domestic and international rail
services, which makes the company one of the largest consumers of electricity in the
Netherlands. Due to environmental considerations and the quality of service for the
passengers, NS seeks methods to reduce carbon dioxide CO5 emissions and to improve
the efficiency of the railway system.

Figure 1 shows that the energy optimal way of going from one station to the next
(when there are no intermediate constraints). The behaviour of a train is described
by four driving regimes: accelerating, cruising (maintaining constant speed), coasting
(driving without using energy), braking. This is derived using Pontrayagin’s Maxium
Principle Pontryagin et al. (1962) cf. Howlett (1996); Khmelnitsky (2000); Liu and
Golovitcher (2003); Scheepmaker and Goverde (2015a). To find the energy optimal
profile one then needs to determine the points x1, 2 and z3 depending on how much
time is scheduled to go from one station to the next.

In this project, the main objective is to obtain understanding of how modifica-
tions in timetabling can even out the electricity demands, and hereby increase energy
efficiency. In fact, this consists of (at least) two subproblems.

e Problem 1: Given a timetable, find the the most energy efficient way for the
trains to drive from station to station.

e Problem 2: Find a timetable that uses least energy.
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Figure 1: Optimal velocity profile of a basic energy-efficient driving strategy on a
level track with switching points between driving regimes at x1, ro and x3. Courtesy
of Gerben M. Scheepmaker(Scheepmaker, 2013).

In view of Figure 1, it looks that one just has to determine the z; to solve Problem 1
for a given timetable. However, for a journey between two stations there are a lot of
additional constraints that are not visible in the public timetable. For example, there
are constraints saying that two trains may not pass the same point within 3 minutes.

The paper is organized as follows: In Section 2, we formulate these problems
concretely. In the remainder of the paper we focus on our attempts to find a solution
to these problems. In Section 3, we look at a heuristic solution for computing the
optimal energy profile; i.e., a solution to Problem 1. This heuristic is also tested on
a realistic data set from NS. In Section 4, we take a numerical approach to compute
the optimal energy profile for a realistic data set from NS and use this to find an
improved timetable. We close with discussion in Section 5.

2 Formulation of the problem

In this section, we consider a basic energy-efficient train control model which is the
problem of driving along a flat track within a given time 7". The train speed v(t) at
time ¢ is governed by an energy functional F'(¢) and a resistance force r(v) according

0

*Delft University of Technology

TUniversity of Amsterdam

fNorwegian University of Science and Technology
$University of Amsterdam. Email: g.regts@uva.nl



Energy Consumption of Trains 63

to the Newton force equilibrium

pmv’ = F(t) — r(v(t)), (1)

where v/ = % is the derivative of velocity to time, m is the train mass, p the di-
mensionless rotating mass factor (Briinger and Dahlhaus, 2007). The resistance force

R(v) is given by the Davis equation
r(v) = 1o + r1v + rov?. (2)

Here r1, 7o and r3 are non-negative coefficients (Davis, 1926). The energy consump-
tion to be optimised is given by

E= /O " E ey, 3)

where F'* denotes the nonnegative part of F'. That is we do not assume that the train
can gain energy from braking, contrary to e.g. Scheepmaker and Goverde (2015b).
As mentioned in the introduction, if there are no further constraints between
station A and B, then Figure 1 gives the energy optimal speed profile. However,
generally there are additional constraints to be met between station A and B. A
journey consists of events. An event should be thought of as ‘train « passes junction
2’ or ‘train § arrives at station y’ etc. For each event i, there is a variable t; saying
at what time in minutes this event takes place. There is one catch however. Since the
timetable should be periodic, these times are to be prescribed modulo 60 minutes.
Then there are constraints prescribing how certain events relate to each other; they
are all of the form
liJ' S (tz — tj) mod 60 S Usj,j5, (4)

saying that event j should take place at least /; ; minutes later than event ¢ and not
later than u;; minutes after event 7. For example, this could encode that the time
that train 8 passes junction x should be at least 3 minutes later than the time that
train o passes junction z. When designing a timetable it is exactly the modularity
of the constraints that makes this a really difficult task. So one usually modifies a
feasible solution to obtain a better solution. In particular, fixing a feasible solution,
i.e. a timetable that satisfies the constraints, one can get rid of the modularity
constraints and then the constraints (4) all of a sudden look much nicer: they are
totally unimodular; see Schrijver (1998) for details on totally unimodularity and its
use in optimisation.

3 Heuristic solution

In the case of a single segment the optimal solution consists of four different phases:
acceleration, cruising, coasting and braking, in this order (Howlett and Pudney, 1995).
The optimal length of each phase can be found by a simple line search (e.g., using
the cruising speed as parameter).
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The optimal solution in the case of multiple segments along a railway track is
fundamentally different and more difficult to obtain, especially if one is interested in
a computationally efficient solution. In the following we will suggest an approximate
solution based on heuristic reasoning. The motivation for this is the following theorem,
which for a lack of better name we call the friction theorem.

3.1 The friction theorem

a) b)

v v

Figure 2: Tlustration of the friction theorem. a) In velocity space the area under a
curve corresponds to the distance travelled. The constant trajectory with the mean
velocity vy, (blue curve) needs less energy than any other equal-area trajectory v(t) =
U, +u(t) (covering the same distance) starting and ending with vy, (red curve). b) A
consequence of the friction theorem is a bound on the maximum energy that can be
saved by an equal-area trajectory starting at velocity v; > v, and ending at vy < v,.

Theorem 3.1. The optimal way of getting across a distance x1 in time t1, when
nonlinear friction is acting and when starting and ending with the average speed v,, =
x1/t1, is by traveling all the way at the average speed.

The proof is based on the intuition that nonlinear friction forces do not average
out across the trajectory. We will show this for the Davis model of friction (2) that
is relevant for railway problems.

Proof. We decompose the work dW performed on the system by external forces into
a contribution dR due to the frictional resistance and a contribution dT" used to raise
or lower the kinetic energy: dW = dR + dT. The kinetic energy is the same at the
beginning and at the end of the trajectory, therefore [dT' = AT = 0. The total work
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done on the system is therefore equal to the work done against friction, and amounts

! W = /dW = /dR = /OI1 r(v)de = /Ot1 r(v)vdt. (5)

Decompose the trajectory in velocity space into v(t) = v, + u(t), where v, = x1/t;
is the mean velocity ( Figure 2a ). Compared with the mean trajectory v(t) = vy,
the difference in energy expended is

tl tl
AW = / 7(Vm + ) (O, + u) dt — / 7 (Vi ) Uy, d, (6)
0 0
t1 t1
= r(Um) / udt + / (r1u + rou® 4 2rouvy, ) (v, + 1) dt.
0 0

The first term is zero due to the constraint on the distance travelled (which is equal
to the area under the velocity trajectory),

t1 t1 t1
/ (v +u)dt =21 = / Updt = / udt = 0. (7)
0 0 0

The remaining term amounts to
t1
AW = / (r1t + rou® + 2r9uvy) (0 + ) dt, (8)
0

t1 ty
= (r1 + 3rqvpm,) / wdt + o / u? dt,
0 0
where we have used Eq. 7 again to simplify. Writing the remainder as
t1 t1
AW =71 / u? dt + 7y / (u + 3, )u? dt, (9)
0 0

and using that |u| < vy, shows that AW > 0. O

3.2 Consequences of the friction theorem

Theorem 3.1 has important consequences, in combination with the constraint on dis-
tance travelled. Consider first the journey along a single segment or track, that starts
at a velocity below the mean velocity v, and is supposed to finish at a velocity sim-
ilarly below v,,. Because of the constraint on distance travelled, there needs to be
some acceleration in between and the trajectory follows the well-known optimal shape
with up to four phases (acceleration, cruising, coasting, braking) in succession.

A trajectory that includes coasting needs to accelerate longer and the final velocity
at the end of the segment will be lower than when only cruising (Figure 3). If the
loss in kinetic energy due to coasting leads to the coasting ending on the braking
curve, some energy has been saved. However, if the loss in kinetic energy due to
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Figure 3: Increasing the energy efficiency by coasting, when there is braking at the
end. The blue curve corresponds to travel without coasting. The red and orange
curves show alternative trajectories that use coasting to reduce the energy expendi-
ture. Longer coasting needs higher initial acceleration and results in lower velocities.
The energy saved with respect to the blue curve is given on the right (in kWh) for
each of these curves. In this example about 15 percent of the energy can be saved.

coasting needs to be compensated, i.e., if an additional acceleration is (during this or
a following segment) needed because of the coasting, then the friction theorem tells
us that this is energetically unfavourable. It is better then to reduce the amount of
coasting (by reducing the cruising speed and increasing the cruising phase) until the
loss in velocity has no consequences. In other words: coasting can be used to reduce
the energy expenditure only when it replaces braking, not when it incurs additional
acceleration later on. Note that in practice, the potential gain of this is eventually
limited by the increasingly unfavourably loss due to the nonlinear behaviour of the
friction, cf. Figure 4.

This is the main difference with the situation where only a single segment needs
to traversed. In that case, coasting could potentially reduce the energy to zero, if this
would result in exactly the right distance travelled. In the case of multiple segments,
however, coasting should only reduce the kinetic energy if the train is travelling too
fast for the next segment anyway, such that braking would be needed otherwise.

The friction theorem also gives us a bound on the maximum energy saving:
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Corollary 3.2. The energy that can be saved by coasting during a trajectory starting
at v > v, and ending at vo < v, is at most equal to the kinetic energy difference
because of the difference in starting and ending velocities,

1
AE < —m (v —vj). 10
= 2m (Ul Uz) (10)
Proof. The friction theorem shows that AE < 0 for a modified trajectory that includes
a (hypothetical, instantaneous) initial and final acceleration from v,, to vy and from
V9 10 vy, respectively (Figure 2b). Subtracting the difference in kinetic energy results
in Eq. 10 for the trajectory starting at v; and ending at vs. O

What is the optimal amount of coasting? There is no simple, definite answer to
this, as it depends on the interplay between the nonlinearities in the friction r(v) and
the geometric properties of the trajectory. The optimal trajectory balances replacing
as much cruising (work against frictional losses) as possible with coasting (no work)
with the increased work during the initial acceleration and (shorter) cruising phase.
In practice it seems often to be the case that close to the least amount of cruising
leads to the best energy balance (Figure 3).

This leads to the following heuristic, where the phases in brackets can be missing:

e Where possible, replace cruising + braking with accelerating + (cruising) +
coasting + (braking). If the best curve to follow cannot be determined (e.g., be-
cause of the need for a highly efficient method that cannot optimise the cruising
speed), use the highest cruising velocity ending on the braking curve.

What happens if the train travels too fast initially? It is always possible to satisfy
the constraint on distance by first braking, then cruising, followed by accelerating or
braking, as necessary. Similar to the the first case, it is possible to relax this solution
by the following heuristic, thereby also improving energy efficiency (Figure 4):

e Replace braking + cruising with (braking) + (cruising) + coasting + acceler-
ating. If the best curve cannot be determined, use the one with the highest
cruising speed (and thereby the lowest speed immediately after coasting).

The energy saving in this case is typically much lower than for the first case and
only significant when the acceleration at the end of the segment is very large.

3.3 A reference solution for multiple segments

Solving for the optimal cruising velocities in the above cases of a single segment
(Figure 3-4) is not difficult. A straightforward algorithm uses a double loop where
the outer loop optimises the cruising speed for the best saving in energy and the
inner loop searches for the corresponding length of the cruising phase, in order to
fulfill the constraint on distance travelled. As both loops search for a minimum in one
dimension, Brent’s algorithm or a variant thereof can be used (Press et al., 2007).
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Figure 4: Increasing the energy efficiency by coasting. This is the case with accelera-
tion at the end. This results in the need for an initial drop (braking) for the reference
curve (blue) without coasting. The red and orange curves show alternative trajecto-
ries that use coasting to reduce the energy expenditure. Longer coasting needs higher
initial velocity and results in lower velocities. The energy saved with respect to the
blue curve is given on the right (in kWh) for each of these curves. In this example
about 3 percent of the energy can be saved.

The main question is how to optimise the energy across multiple segments with in-
termediary constraints on times and distances. The above suggests a simple, heuristic
solution:

1. The first segment is treated in a special way. The train accelerates to the velocity
needed to cross the rest of the segment just by cruising. The rest of the segment
is then treated as a new segment according to the following procedure.

2. Each segment starts with the mean velocity needed to cross it only by cruising,
which would be optimal if not for the differences in mean velocity between
segments.

3. Each segment anticipates the subsequent segment and at its end either acceler-
ates or brakes the train to the mean velocity of the following segment.
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3.4

Velocity [km/hr]

. If this cannot be achieved (due to time/distance constraints), then the train

accelerates or brakes as much as possible, and the next segment is split into
two phases. In the first part the train continues to accelerate or brake until
the mean velocity for the remaining second part is reached. (The point where
this happens needs to be calculated in an iterative way, since shortening the
second part changes its mean velocity). The second part is then treated as a
new segment.

. If braking is needed at the end of the current segment, this means that an

additional acceleration is needed at the beginning. Coasting is additionally in-
troduced to relax this situation to a more energetically favourable one, reducing
the amount of braking (as in Figure 3).

. If acceleration is needed at the end of the current segment, this means that

additional braking is needed at the beginning. Coasting is additionally intro-
duced to relax this situation to a more energetically favourable one, reducing
the amount of braking (as in Figure 4).

Example solution
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Figure 5: Example track. The mean velocity for each segment is shown. Large
differences in these velocities potentially lead to energy-inefficient journeys.
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The track between Groningen and Zwolle was used for this example, consisting of
in total 10 segments. The mean speed along the segments of the track varies consid-
erably (Figure 5). The train data was compiled from data given by (Scheepmaker,
2013) and NS. The timetable entries were rounded to the minute and are therefore
not completely realistic. In fact, the timetable had to be slightly adjusted in order to
be feasible.

A reference solution with only cruising needs 582.6 kWh for this track. Solving for
the solution with the above algorithm leads to an energy consumption of 550.1 kWh,
which is an improvement of 5.6 percent. This value is not the true minimum, but it
seems unlikely that the energy expenditure could be further reduced by very much.
Most improvements were obtained during the longest segments, where coasting could
be used for a significant part of the journey (Figure 6, panels 5 and 8).

3.5 Discussion

This section shows one way of quickly constructing an approximate solution to the
most energy-efficient journey along a railroad track with multiple segments (check-
points). The method is sufficiently fast that it can be used to evaluate thousands of
tracks, i.e., a complete timetable, in a reasonable time.

The computations for this section have been made with a simple, straightforward
implementation in the system for computational statistics R (R Core Team, 2015).
Solving for a single track and plotting the solution takes a few seconds only. Imple-
menting the method in a compiled language and optimizing the code should result in
runtimes of a few microseconds per track, which is suitable for applications such as
timetable optimisation.

The timetable constrains the solution very much. Especially the occurrence of
large differences in mean velocities for different segments of a journey lead to inefficient
voyages, due to the need for braking and re-acceleration. Coasting can reduce some of
these losses, but often only partially. It seems likely that more energy can be saved by
adjusting the timetable (if possible) then by further optimizing the individual journeys
for the given timetable beyond what has been shown here. As a next step one should
therefore investigate how changes in the timetable affect the energy expenditure.

4 Towards better timetable

4.1 Optimal Energy for a given timetable

Two stops, A and B, are positioned at distance X apart from each other. We consider
a train going from A to B in time 7. The velocity at A,B is zero, v(t) = 0, t =
ta,tg, T =tp —ta. In the current setup of the problem the timetable is fixed. That
is to say a train has to pass prescribed intermediate points at distances x; from A at
specific times t;, i = 1,..., N. Without loss of generality we may consider both the
journey time and the distance to be unities: X = 1,7 = 1, so that t4 = 0,ip =1
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Figure 6: Heuristic solution for example track from Groningen to Zwolle. Each panel
shows a segment of the journey. If it is not possible to accelerate enough during a
segment (e.g. panel 2 in the top right), an additional acceleration phase is initiated
after the segment, adjusting the next segment. These phases are not shown.
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< x; < 1. Then the associated velocity profile v(¢) is a continuous function
v(t) € C0,1] that is restricted by the timetable with the following constraints:

v(0) = v(1) = 0 (full stop at terminal points); (11)

v(t)dt =1 (total distance);

v(t)dt = z;, for i =1,..., N (passing x; at time t;);

1
0
j
0
0 < (t) < Vmax and amin < ' (t) < amax (velocity and acceleration limits) .

The constraints do generally not determine v(t) completely, allowing to search for the
specific profile that realises the minimum of the energy functional

/1@ +dt (12)
0

where the nonlinear resistance r(v) is defined in Eq. 2 according to the Davis model.
In order to apply a numerical optimisation algorithm we discretise the continuous
function v(¢) by means of projection onto the space spanned by a convenient basis:

Zal@ ,telo,1].

For the sake of simplicity we demonstrate the concept for the piecewise-linear approx-
imation on a uniform grid with step h = 717 That is the approximation coeflicients «;

are chosen so that ) )
i i

(=) =wv(—), i=0,...
By =), i=0,...n
and for ¢ = 0,...,n the basis functions are defined as
1—|nt—1d|, if|nt—1i] <1,
¢i(t) = .
0, otherwise,
that have derivatives
n, if —1<nt—1i<0,
¢L(t):=4 —n, f0<nt—i<l,
0, otherwise.

In this way, every ¢;(¢) is supported only on interval [i/n — h,i/n + h]. Values of 9(t)
and ¥'(t) at grid points can be computed as a multiplication of the matrices M, D
with coefficient column a = (ag, ..., a,)T,

(M)ig = 65(5),
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(D)ij = ¢5(=).

n

The approximation to the energy functional (12) is now expressed as a function of « :
F(a) =T([Da+r(@)]" - Ma), (13)

where functions 7(c), [@]™ and multiplication - are taken element-wise and T imple-
ments appropriate integration quadrature. In the case of a linear basis this is the

trapezoidal rule,
1 . .
(T)Zj: 2(n—1) OSZ_]S17
’ 0, otherwise.

Finally, the cumulative integral of v(¢) is approximated by the vector product ¢(7)7 a,

(g(r)); = / pi(t)dt.

Now, we are ready to formulate a non-linear optimisation problem that approximates
the desired solution v(t) :
find a vector a € R"*! such that

(Ma)o =0 and (Ma), =0; (14)
g()Ta=1;
q(t:) o = a;;

0 < (Ma) < Vmax;
Amin S (DOL) S Amax;

and put F(a) — min.

To illustrate the concept let us consider the case when there is only one intermediate
constraint, i.e., a train going from A to B has to pass intermediate point x; precisely
a time t;. We treat position as fixed, z; = 0.5, and by varying t¢; obtain a family of
velocity profiles vy, () corresponding to minimal energies, as shown in the left panel
of Figure 7. One may observe that certain constraints yield optimal velocity profiles
with lower energy cost than others, (see Figure 7, right panel). The velocity profile
that has the smallest energy within the family is also the optimal velocity profile
with no intermediate constraints. This observation can be used to adjust the given
timetable in order to achieve even better energy efficiency (see Figure 8).

4.2 Optimisation of train timetable

Here, we assume that a train always travels according to the optimal velocity profile.
The main question is: can we alter the existing set of constraints (i.e. timetable)
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Figure 7: Left: optimal velocity profiles for a single intermediate constraint with po-
sition = 0.5 and various passing-time values (indicated). Right: the optimal energy
depends significantly on the passing time, t. The smallest optimal energy is reached
if constraint’s passing time coincides with the passing time of the unconstrainted
velocity profile (i.e. 0.4884 for the current value of the constraint’s position).
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Figure 8: Optimal velocity profile for 4 constraints. The timetable can be improved
by moving the constraints towards their optimal place (as if the constraint passing
times belong to the unconstrained profile v,.)
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so that the energy consumption is even better? Small adjustments to the timetable
(t;, ;) are feasible as long the timetable satisfies the periodic event scheduling model,

liJ' S (tj - tz) mod 60 S U, 75,

where ¢;,t; are event times and [; j, u; ; are fixed limitations. In principle it is possible
to directly set up an optimisation with an objective function defined as the energy
of the timetable f, = F(a) where « solves the optimal velocity profile problem from
the previous section. Such a routine, however, has to deal with a big non-linear
optimisation problem and thus requires a good initial guess. We obtain this initial
guess by running optimisation with a heuristic objective function. Let v,(t) be an
optimal energy profile with no intermediate constraints. We construct a heuristic
objective function fy,(t1,...,ty) that measure how far in L? norm is the given set of
constraints t; from passing times according to the optimal profile 7; :

N

fh(tla e ,tN) = Z(tl — Ti)Q,

i=1

T
where 7; solves [ vo(t)dt = z;. If a train makes stops at (£, 2s,), i = 1,..., M we

0
will additionally require the average speed between each pairs of stops be close to the
overall average speed, vaye (When calculated between terminal stations),

N M
Fultnostn) =3 (= 7)° + (i — (@00 — T jm1) /vave) (15)
=2

=1

Such an objective function provides a crude optimality estimate for a timetable. This
estimate can be later used as an initial guess for, computationally more expensive,
optimisation involving the functional F(v) in ’predictor/corrector’ combination. Ta-
ble 1 depicts results of such an approach applied to a sample timetable. The first
column of Table 1 contains information on the current timetable; the second column
describes results of heuristic optimisation (CPU time less than 1 sec); the third col-
umn contains correction of the heuristic results by energy optimisation according to
the functional F'(v) (CPU time 1.5 hour). Fragments of the optimal velocity profile
for the optimised and original timetables are given in Figure 9.

Type t; Predictor A | Corrector A
D 37 37 0| 36.97 —0.03
P 41 41 0| 40.99 —0.01
P 42 42 0| 4193 —-0.07
A 44 44 0| 43.96 —0.04
D 45 45 0| 44.98 —0.02
P 47 47 0 | 47.00 0
P 48 48 0 | 48.01 +0.01
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—0.07
—0.15
—0.17
-0.25
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P 11 11 0] 11.24 +0.24
P 23 26 +1 | 26.05 +3.05
A 25 28 +3 | 28.08 +3.08
Distance from original 24.0min 26.19min
Total energy 87.39% 83.96%

Table 1: A sample of a real timetable with 12 stops and 42 passing constraints. All
distances are indicated in km and time in min. The timetable is consequently opti-
mised with heuristic (predictor) and energy-functional (corrector) objective functions.
The constraint types are encoded as follows: Departure, Passing, Arrival. Distance
from original indicates the sum of absolute changes in minutes.

4.3 Conclusions

For a given timetable we can find the optimal velocity profile numerically. This
information may be presented to train drivers as an advisory. The routine comput-
ing optimal velocity profiles and energy is then further used to adjust the existing
timetable. Such adjustment is done in two steps: heuristic objective function (cpu
time 1sec, reduces energy down to 87.39 on sample data), and energy objective func-
tion (cpu time 1.5h, 83.96 on sample data). Even though the energy reduction is
quite high, this approach involves numerical non-linear optimisation and does not
necessarily lead to global minimum.

5 Conclusion and discussion

In this paper, we have looked at the problem proposed by NS. We considered two
approaches. The first approach was primarily aimed at trying to reduce energy con-
sumption while not changing the timetable. This was done by trying to understand
what an optimal journey (with respect to energy consumption) looks like. Using this
knowledge we developed a simple heuristic to optimise the usage of energy of a single
train journey. This heuristic has been applied to a sample of actual train data and
resulted in a energy reduction of 5%.

In the second approach, our aim was to compute for a given timetable the optimal
energy profile numerically. Using this we applied numerical optimisation to a sample
of an actual time table. Since the constraints Eq. 4 are modular this is not an
easy task. However, taking the current timetable one can rewrite these constraint
to absoute constraints. This resulted in a time table (for the sample) for which the
optimal velocity profile yields a 16% energy reduction.

The main conclusion that can be drawn from this work is that energy consumption
can in fact be reduced significantly. Not only by more efficient driving, but also
by making small adjustments to the timetable allowing for more efficient velocity
profiles. We note however that our results have only been applied to small samples
of the timetable. To see what happens on a larger scale one should of course apply
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Figure 9: Fragments of optimal velocity profiles for current (blue) and improved (red)
timetables. The vertical lines represent constraints after optimisation.

our results to the entire timetable. One thing that we observed is that prescribing
time in minutes appear to make matters a bit complicated. For example the current
timetable has some inconstancies, i.e. a train « should be at position z at time ¢
but also on position 2’ at the same time. So it makes more sense to determine these
times more accurately. Also from the point of view of energy reduction this makes
sense. Allowing more flexible times values (not just entire minutes) can already lead
to significant energy reduction (for the optimal profile).

It is not unlikely that the methods we have used can be improved. In particular,
we believe that it would pay off to get a fast direct computation of the optimal velocity
profile given a timetable. This could then be used to search for a better timetable
with more advanced heuristics than we have currently employed.
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Frequency decompositions in autoregression models
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Abstract

Autoregression models are used by Ortec Finance to forecast the evolution
of economic variables, such as interest rates. To distinguish the impact of short,
medium and long term fluctuations, the company decomposes their models into
three components: month, business and trend, respectively. We answer the
question of how to design a model, so that predictions generated for a given
frequency band do not overlap with other frequencies. We also discuss several
other related matters, i.e. how to address the frequency leaking problem, how to
choose the number of frequencies in each band and how our method generalizes
to time-dependent models.

KEYwoORDSs: Fourier filter, autoregression, time series forecast

1 Introduction

This paper contains results on the problem of designing a good filtering method for
autoregression models posed by Ortec Finance for the 114th European Study Group
Mathematics with Industry. The general setting of the problem is as follows. Suppose
we have a time series r = {r;};, where r is a quantity of interest (such as interest
rate, oil price etc.), or a collection thereof, and ¢ € Z is a time parameter which takes
discrete steps (representing months, years etc.). We want to make future predictions
of ry, given a historical set of values. A natural approach for forecasting based on
data of such a time series is to describe it as a function of its predecessors

Tt :f(rtflart727"°)+€ta (1)

where f is some function and ¢; is a sequence of independently, identically distributed
random variables representing the probabilistic nature of future predictions. Vaguely
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put, the aim is to choose f as simple as possible, while minimizing the deviation of
the error terms ¢;. Often f is taken to be linear and dependent on only finitely many
predecessors, in which case the model is called the AR(k) model:

k

ry =C+ E ApTi—p + €,
p=1

with a, € R. We will assume that the ¢; are independent and identically distributed
with mean 0 and the same standard deviation o. Such a set {e}; is called white
noise.

The AR(k) model is a special case of the vector regression model, where r; and €,
are both vector valued and the recursive structure is given by

re=c+Ari_1 +¢ (2)

where A is a matrix and ¢ a vector. We will impose the restriction ||A|| < 1, where
[|A]| denotes the operator norm of A, which will allow us to discard high powers of
A. Intuitively, this condition amounts to stability of the model, but we will not make
this statement precise.

By demeaning the data we can take ¢ = 0. Let us also assume that the sequence
starts at ¢ = 0 with value r. Then, equation (2) has the following solution

t—1

Tt = ZAZQ,[ + At’l"o.
1=0

Note that the expectation E(r;) decays to 0 as time goes to infinity, because the ¢
have zero mean and ||A|| < 1. Furthermore, as time becomes large the effect of the
initial value diminishes.

Of course one cannot expect a single forecast based on such a rough model to
be accurate. The value of the method is that it can be used to quickly generate a
large number of scenarios and evaluate probabilities of future states via Monte Carlo
experiments.

Ortec’s approach to forecasting economic variables via autoregression models is to
decompose the time series into a sum

r=r’ 4r8 M (3)

where r” represents the long term (trend) fluctuations, r® the medium term (business
cycle) oscillations, and r™ the short term (month) movements. This is performed via
so-called filters. We will elaborate more on them in Section 2, but to give some
intuition, let us mention that a basic example is a filter is based on a discrete Fourier
transform (the Fourier filter). For this filter the terms r” correspond to low Fourier
modes, the terms r? to medium ones and r™ to the high frequencies.

The motivation for the decomposition (3) is that short, medium and long term
terms are (to a certain degree) independent from each other, and, as such, their
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evolution should also be forecasted independently. However, a naive approach of
applying an AR model separately for the trend, business cycle and month components
can result in an undesirable effect, where a forecast for shorter fluctuations starts
developing long term movements e.g. a forecast for the month term evolves a trend
on its own.

For more background information about the intuition and practical applications of
the frequency decomposition approach, we refer to Van der Schans and Steenhouwer
(2012) and references therein.

In this paper we propose a filtered AR model, where long-term predictions are made
for each term separately, in such a way that they stay in their own frequency band
(which is chosen on the basis of historical data). Given a frequency decomposition,
i.e. the choice of the filter, the recipe for such a prediction for a given term is as
follows:

1. Firstly, we choose a forecasting period, which we specify by an integer N € Z,
so that the outcome of the prediction will be a set {ry,...,rn}, with initial
condition rq.

2. Secondly, we generate a time series of noise {€;}1<¢i<n of length equal to the
forecasting period N, using the white noise probability distribution.

3. Thirdly, we apply the filter to the sequence {e;}:, in order to obtain a filtered
noise sequence {€f}+.

4. Finally, we use the sequence {€;}; to generate a prediction by the formula (2).

The filter F is typically chosen on the basis of the last N consecutive historical data
points, so that both the employed historical data and the prediction are represented
by a N—dimensional time series, implying that both are in the domain of F. As a
consequence, it is possible to apply the same filter to both the employed historical
data and the prediction, thus facilitating a meaningful comparison between the filtered
historical data and the filtered prediction.

In order to apply the recipe, the forecasting period N can be arbitrary. In practice
however, it is limited by the amount of historical data we have available.

In Section 2 we show, for the class of filters that are linear, weakly translation invariant
and commuting with the autoregression parameter matrix, that such predictions will
indeed remain in their own frequency band. Next, we give an example of two linear
filters. The Fourier filter, presented in Subsection 2.1 is translation invariant, hence
it can be employed in the filtered AR model. Another example is the Christiano-
Fitzgerald Band Pass Filter, treated in Subsection 2.2. It is not clear whether this
filter is weakly translation invariant. However, its advantage is that it deals with the
frequency leaking problem, discussed later. In Section 3 we extend this method to
regression models with time-dependent parameters.

Another problem we deal with is how to choose a partition into frequency bands.
Ortec Finance chooses its decompositions based on heuristic reasoning backed by
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Figure 1: Demeaned interest rate of US bonds with a 10 year term over the past 116
years (in months; x-axis).

economic theories. We propose a different approach, where the allocation of the
frequencies to each of the three terms is chosen to minimize the total variance of the
given historical time series {r;}; with respect to the filtered regression model. The
rationale behind this is that the variance gives a measure of how well the regression
model fits the given data, which is also the reason why least squares methods are
often used to estimate the parameters of such models.

Due to analytical difficulties, we only performed a numerical study, and imple-
mented our idea on historical data of the (univariate) interest rate of US bonds with
a term of 10 years (see Figure 1). The details are presented in Section 4.

2 Filters

As discussed previously, a time series of interest can sometimes be regarded as a su-
perposition of other time series with different kinds of evolution behaviors. To take
that into account, we introduce a filtering process below, whose purpose is to decom-
pose time series into its different constituents.

Let [°(R) := {(zn)nez| sup|z,| < oo} be the vector space of bounded sequences,
and denote by L : [*°(R) — [°°(R) the shift operator (L(z)),, = z,_1. We are mainly
interested in finite sets of data, which we regard as a subset of {*°(R) by periodic
extension. More precisely, we fix an N € Z< and define V' C [*°(R) as the subspace
of N-periodic sequences. Obviously, V is invariant under L.
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Definition 2.1. A linear filter is a linear map F' : V. — V. We call F weakly
translation invariant if L(im(F)) C im(F).

We think of F' as a device that takes a time series and picks out a component with
a specific evolution behavior. In particular, time series in the image of F' are to be
thought of as evolving in this specific way. The question at hand is how to produce a
regression model that has as output a time series in the image of F. To this end, we
modify the vector regression model (2) as follows. Let F!,..., F? be linear filters and
define F := diag(F!,...,F?), considered as a linear map from V% to itself. Let ¢!
be a set of random variables, with 1 <¢ < d and t € {0,..., N — 1}, put together into
a sequence of vectors €; := (€7, ...,el). We take all €/ independent of each other and,
for each fixed i, we take the ¢! identically distributed with zero mean and variance
o;. We can regard (Ei)létSN as an element of V, and we will denote it by €. Then,
we define

e = (Fe)y = (F'e)y, ..., (Flel),).

Simply put, we have d sequences of random variables and d filters, and we apply the
filters component-wise. The filtered vector regression model is then defined by an
initial value rg, with time evolution given by

re=Ar1+ €, (4)

where, as before, A is a matrix satisfying the stability condition ||A|| < 1. Note that,
in contrast to the non-filtered regression models, we need to specify the prediction
period N in advance, in order for (4) to make sense. Indeed, we first need all the ¢;
in order to apply the filter, after which the regression model can be initiated. The
answer to the above question is given by the following proposition.

Proposition 2.1. If all the F? are linear and weakly translation invariant and if A
commutes' with F = diag(F*, ..., F9), then

(rt — Atrg)lgtSN € Im(F).

So, except for the initial value terms Alrg that converge to 0, the output of the filtered
regression model is contained in the image of F'.

Proof. By writing out the definitions and using that [F, A] = 0 we get

t—1 t—1 t—1
ry = Z Ale;;l + Alry = Z Al(LlFe)t + Alpy = Z Al(Fyl)t + Alrg
1=0 1=0 1=0

(F(thA%yl)))t + Alrg.
=0

!To be precise, A is a d X d matrix which acts naturally on V®d while F acts on V®? in a
diagonal way by applying F* to each component.
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In the third equality we used that L preserves the image of F', so that we can find
sequences y' with the property that L' Fe = Fyl. O

This proposition tells us that if we think of the filter as forcing the noise (€;); to have
a certain time evolution, then the prediction for r will have this time evolution as well
(at least in the long run, if we ignore the contribution from the initial value), provided
that we use the same filters for those components of r that are interacting with each
other (i.e. we need [A, F| = 0). We will discuss interactions between evolutions lying
in different filters in Section 3.

2.1 The Fourier filter

An example of a linear filter F' is the Fourier filter defined below. The discrete Fourier
transform (DFT) of a sequence z € V' is given by

The sequence Iy, is obviously also N—periodic and the inverse DFT is given by

2nikn

;| N-l
Ty = — Tpe N .
mkz:o’“

Given a subset K C {0,..., N — 1} with the property that k € K & N —k € K, we
define the Fourier filter with respect to K as the map = +— Fx =: z*, where

« 1 ~ 27r]ifkn
T, = —— Z Tre .
VN

keK

Basically, the Fourier filter is given by first applying DFT, then applying a linear
projection by forgetting some of the frequencies and then applying the inverse DFT.
This example is prototypical for the concept of filter, designed with the purpose of
making a separation between different time scales or frequencies, which are expected
to have different driving mechanisms. Note that the Fourier filter F' is translation
invariant, satisfies 2 = F and F* = I/, with respect to the inner product on V given
by

N-1
<£C,y> = Z TnYn-

n=0

If{0,...,N -1} = K; U... UK, is a disjoint decomposition, the associated Fourier
filters Fr, additionally satisfy: 1 =3, Fk, and Fg, Fx, = 0 for all i # j.
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2.2 The Christiano-Fitzgerald Band Pass Filter

In this section, we investigate the Christiano-Fitzgerald filter, for the following reasons.
Firstly, the Fourier filter has the disadvantage of frequency leaking (see also below).
For this reason, Ortec Finance is using another filter which is, however, non-linear.
The Christiano-Fitzgerald filter might be the most prominent choice of a linear filter
that prevents frequency leaking.

The discrete Fourier transform only filters a discrete set of frequencies. However,
it may be possible (even plausible) that the frequencies of the input signal do not
(perfectly) match the frequencies that are chosen to be filtered by the discrete Fourier
transform. The discrete Fourier transform assumes that the input signal is periodic
with a certain period, but it could happen that the input signal has a slightly different
period. For instance, we want to filter the business cycle component of the interest
rate and we assume a period of 8 years. However, the actual period of the rate turns
out to be 7 years. It follows that if we use the discrete Fourier filter in order to filter
certain frequencies out, we might damp certain eigenfrequencies of the input signal
nearby the frequencies we actually want to keep, which is not desirable. This effect
is called frequency leaking.

Therefore, it is desirable to filter an interval of frequencies. This leads to the Ideal
Band Pass Filter. Unfortunately, this filter has the disadvantage that it requires the
use of an infinite number of input values, whereas data sets are usually finite sets.
Hence, an approximation is required, leading to the Christiano-Fitzgerald Band Pass
Filter. This filter assumes that the historical data follows a random walk pattern
(even though in most cases, this is a false assumption).

We start by defining the Ideal Band Pass Filter.

Definition 2.2. Let (z,)necz be a time series. Choose 0 < a < b < 7 and let L be
the shift operator sending x,, to z,,_1. Then, the Ideal Band Pass Filter is given by

B= Z B, L"
neZ

with

o

—a

5 n= 07
B, = {sin(nb)sin(na)’ n ;A 0.

nim

The sum of all B,, is zero and B_,, = B,,. Moreover, we have

Z Bnefinw — {17 w e (a7b) U (_b7 _a)7

0, otherwise.
neE”Z

Hence B is a filter that ‘accepts’ frequencies between a and b. Usually, the data
set x, is split into a ‘trend’ component ¢, and a ‘cyclic’ component ¥, such that
Ty = Ypn + tn, where y, = Bz, for each n € Z. By definition, we have

Yn = Z Byxy_k.

keZ
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Hence we require all z; in order to calculate y,,. However, usually we only have a
finite data set (z,))_;, so the output y, might not be accurate. We now define the
Christiano-Fitzgerald Band Pass Filter (abbreviated by CF Filter) C as follows. Let
zn be the solution of minimizing the mean square error

E((yn — 20)?|z1, ... ,mN).
Then, we define Cz,, = z,. For k=1,..., N — 1, define
) 1 N—k—1
By-x=—5Bo - Z Bj.
j=1
It is stated in Christiano and Fitzgerald (2003) that for k € {2,...,N — 1}, we

have
N—k—1 k—2

2z = Boxy + Z szk+j + Z Bjmk_j + Bk_lxl.

j=1 j=1

The values of z; and zy are given by

N-2
1 -
2= §BO$1 + Zl Bjzji1 + Br_ixzn
j=
and
1 N-2 3
ZN = §B01‘N + ; Bij—j —|—BT_1J?1.

More generally, the CF filter is of the following form (cf. Schleicher (2003)):

na2k

=y Okjtrsy

Jj=—n1k

for some coefficients C}, ;. Clearly, this formula is only translation invariant if C ; =
C; for each k, which is not the case for the CF filter. It is also not clear, whether the
CF filter is weakly translation invariant. Hence, the CF filter might not be a useful
filter if one wants to implement the methods that are developed in this contribution.
Another filter which deals with frequency leakage is the Hodrick-Prescott filter. It is
both linear and translation invariant, therefore it may be better suited to our purposes.
For more information about the Hodrick-Prescott filter we refer to (Schleicher, 2003,
§2.5.2).

3 Coupling models with different frequencies
In Proposition 2.1 we saw that the filtered regression model produces sequences lying

in the image of the filter, provided that the filter is linear and weakly translation in-
variant in all components and commutes with the regression matrix A. Another way
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to describe the final condition is: different components that interact with each other
need to be filtered in the same way. In practice however, there are situations where
components with different time evolution still influence each other in some way. We
now give one strategy to incorporate such interactions whilst preserving the conclu-
sion of Proposition 2.1.

We can generalize the regression model (2) a bit if we allow A and the distribution of
the ¢;’s to depend on time as well. For instance, one can consider the AR(1)-model
with constant a = a(t) and standard deviations o = o(t) that depend on time. In this
way one can incorporate interactions between different models by letting them act via
the parameters. Suppose that €; is a sequence of vector-valued random variables with
zero mean and standard deviations o; and that A; is a sequence of matrices with
operator norms ||4;|| < 1 wheret € {0,...,N—1}. If F = (F!,..., F%) is a filter, we
can define, as before, the filtered regression by starting with an initial value ry and
applying the recursive formula

ry = Atrt_l + 6: (5)
with €* = Fe. As before, we have

Proposition 3.1. If F is linear and weakly translation invariant and commutes with
A; for all t, then the solution of the filtered regression (5) lies in the image of F,
modulo an initial value term that converges to zero.

Proof. In this case, the solution of (5) is given by
t—1
ry = Z AtAt,1 cee AtflJrle;Ll + At te A17‘0.
1=0

From here on the proof is identical to the proof of Proposition 2.1. O

4 A minimal variance approach to band decomposi-
tion

In this section we numerically investigate the (optimal) decomposition into frequency
bands. For this, we focus on the (univariate) time series of the monthly interest rate
of US bonds with a term of 10 years. We restrict our attention to the AR(1) model
and a Fourier filter (Section 2.1).

As explained in the introduction, the current decomposition used by Ortec Finance
consists of three bands — trend, business cycle and month. For the Fourier filter, the
table below explicilty shows which of the frequencies are part of which band.

H period ‘ frequencies
Month 2 months-2 years Ky =[N/24, N — N/24]
Business || 2 years-16 years Kp =[N/192,N/24) U (N — N/24,N — N/192]

Trend longer than 16 years | K7 =[1,N/192) U (N — N/192, N — 1]
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Given the equidistant frequency distribution of the Fourier filter, about 92% of
the frequency components is in the month component, 7% is in the business cycle
component and only 1% is in the trend component. We note that 0 € K corresponds
to the mean interest rate which we have (without loss of generality) disregarded. We
also note that Ortec Finance currently uses a nonlinear filter which may lead to a
different distribution of frequencies.

How does the decomposition compare to other possible partitions in the simple
univariate setting? We will compare the different decompositions based on the linear
Fourier filter by comparing the total variances from the AR(1) model. As mentioned
before, the total variance is a certain measure of fit of the model to the time series,
so our idea for the choice of decomposition is to select the one that has the minimal
total variance.

Since the interest rate time series is real and we want the filtered time series
to be real as well, we impose that j € K implies N —j € K. Furthermore, to
make the computation feasible, we make the reasonable assumption that each of
the three parts of the partition is ‘connected’ in the sense that there exist integers
2<a<b< |5 suchthat Kr = {1,...,a—1}U{N—a+1,...,N—1} , Kp =
{a,...,b=1}U{N —-b+1,...,N —a} and Kj; = {b,..., N — b}.

Write r = (Fk,, (v), Fx, (r), Fx,(r)) = (™, rB rT) for the decomposition of the
interest rate in a month, business and trend component. We initialize the AR(1)-
model for each frequency band by using the ordinary least squares method.

To have the best fit with the historical data, we should find (a*, a?,a”) such that
the total variance

1
Vargoy := N_1 Z HTiM +7”tB +rf - aMrtMl - aBTgl - aTTtT71H2 (6)
t=1

is minimal. Instead, in the filtered AR(1) framework based on the least squares

method, the parameters a™, a®, a” are chosen separately to minimize the separate

variances:

1 = 2
— T_ . T.T
Vary := N1 ; Hrt —a rt71|| ,
1 = 2
— B _ B.B
Varg := N1 tz_:l Hrt —a rt_1|| , (7)
1 = 2
Vary := N_o1 ||7‘t —aMrtMlH .
t=1
The separate minimizers a™, a® and a® of (7) together yield an (almost) minimal

value of (6). To see this, we show that Vary + Varg + Varr & Vari.. We make use
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of the inner product (-,-) on V and orthogonality of the Fourier basis. It holds that

N-2
M BT M B T 2
(N —1)Vary,, = E Hrt +ro+r, —atri_1—a®rio1 —a rt,lH
t=0
=M 4P 4T —aMLr —aPLr — a"Lr,v™ 4¢P 42T — oM Lr — a®Lr — o" Lr)

— ||TJI\V,[_1 +7']J‘3_1 + 1"71\}_1 — aMré” — aBrég — aTTOT||2

=(Fk,, v — a" Fg, Lr, Fg, v —a™ Fg, Lr) + (Fx v — a® Fg Lr, Fge.v — a® Fi, Lr)
+ (Fgpr — aTFKTLr,FKTr — aTFKTLr>

— Hr%ﬁl + rf_l —&—7‘]7\“,71 — aMréV[ — aBrg; — aTrgHz

=(N —1)Varps + (N — 1)Varg + (N — 1) Vary
- ||7’J]\V/[_1 +rﬁ_1 + r%_l - aMréV[ - aBrég - aTrgHQ
+ [Ny = M|+ (R o = aPrf |+ (ko — ™o

After dividing the equality by N —1, we see that the error that is made by minimizing
the separate variances (7) instead of (6), represented by the terms on the last two
lines of the equation, is small if the amount of data IV is large.

Since it is computationally much more efficient to optimize three times over a one
dimensional set than once over a three dimensional data set, our script minimizes the
separate variances (7).

We performed numerical tests on the monthly time series of interest rates from the
past 116 years, consisting of 1392 data points (Figure 1). We computed the resulting
total variance of all possible frequency decompositions (Figure 2). We found that (in
this case) Varos is minimal for a decomposition given by 624 frequencies in the month
component, 410 in the business cycle component and 358 in the trend component.
This results in the decomposition of the interest rate as shown in Figure 3. The
corresponding frequency and period decomposition is shown in the table below.

H frequencies ‘ period
Month Ky = [384,1008] 2 months-3.6 months
Business || Kp = [179,384) U (1008,1087] | 3.6 months-7.8 months
Trend Ky =11,179) U (1087, 1391] longer than 7.8 months

so that about 45% of the frequencies are in the month component, 29% in the business
component and 26% in the trend component.

5 Concluding remarks

We have proposed two ways to possibly improve the filtered regression models used
by Ortec Finance. The first one is a method for generating predictions, which ensures
that predictions via regression stay in the same frequency band as the one correspond-
ing to the filtered historical time series. To put it shortly, a sequence of samples from
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# business cycle frequencies

# trend frequencies

Figure 2: The total variance for all frequency decompositions attains its minimum
(N — 1) x Vary, &~ 0.004640976 for 358 frequencies in the trend component and
410 frequencies in the business cycle component. The total number of frequencies is
N = 1392, so the remaining ones (624) belong to the month component.
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Figure 3: The optimal (minimizing the total variance) decomposition of the interest
rate. The month component in green, the business cycle component in red and the
trend component in blue.

white noise needs to be generated a priori for the whole prediction period, and then
filtered, as opposed to sampling the white noise at each time step of the prediction.
We identify a group of filters for which the method is applicable — the class of linear,
weakly translation invariant filters that commute with the parameter matrix. In par-
ticular, the method can be readily applied for scalar, Fourier filtered AR(1) models,
and can incorporate time-dependent parameters. However, currently Ortec Finance
is using nonlinear filters to address the frequency leaking problem, and further in-
vestigation has to be performed to find a weakly translation invariant, linear filter
that prevents frequency leaking. In particular, even though the Christiano-Fitzgerald
band pass filter is linear and prevents frequency leaking, it is not applicable as it does
not possess good translation invariance properties.

Our second contribution is the idea that by optimizing the number of frequencies
in each band, one can further reduce the total variance of the model with respect
to the given time series. This way, the frequency decomposition can be adapted to
the time series, rather than arbitrarily fixed beforehand. Our numerical calculations
based on the data set of demeaned interest rates of US bonds and a Fourier filtered
AR(1) model indeed shows that there seems to be a clear global minimum for the
total variance; see Figure 2. The method is, in principle, independent of the filter
and applicable to any filtered autoregression model. We note that in the application
to this particular dataset, only 45% of the frequencies entered the month component,
as opposed to 92% in the decomposition used by Ortec Finance and consequently the
size of the business cycle component, and particularly of the trend component was
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much bigger. Perhaps increasing the number of frequency bands (e.g. to four or five)
would make a clear narrow trend similar to the one from Ortec’s decomposition reveal
itself, and what has been captured as trend in the three frequency band setting is in
fact a new, intermediate pattern.
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