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Abstract
We investigate reliability test plans under different censoring schemes for es-
timating performance of bearings with different life characteristics. The test
plans, which are based on Weibull distributions, should deliver estimates of per-
formance characteristics with a specified precision. We present results on both
a theoretical approach based on Fisher information and a simulation approach.
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1 Introduction

1.1 About SKF

Figure 1: Bearings.

SKF is a global technology provider offering products and
services related to bearings and units, seals, mechatronics
and lubrication systems. Its headquarters are located in
Sweden. The company has around 165 production sites in
28 countries. SKF has several research centres, including
one in the Netherlands in Nieuwegein.

Mechanical bearings (see Figure 1) are an important
product of SKF. They are mechanical elements that con-
strain motions to desired motions only, and at the same time
reduce friction between moving parts. There is a wide range
of applications of bearings, including bicycles, cars, manu-
facturing machines, trains, wind turbines and airplanes (see
Figure 2). Sizes of bearings range from less than 10 mm to
14 m. Since bearings are essential for the proper and safe
functioning of machines and equipment, it is essential for SKF to give customers re-
liable information on the performance. The performance of mechanical bearings is
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Figure 2: Examples of applications of mechanical bearings.

expressed through their life, i.e., the amount of time or number of revolutions that
a bearing is capable to reach within nominal functioning. Bearing life depends on
various parameters like the bearing type or size and the operating conditions (speed,
load, lubrication,. . . ). SKF uses an internal calculation tool based on physical models
to assess bearing life. However, there is a need for life testing on actual bearings in
order to validate these models, evaluate performance of prototypes and obtain insight
in effect of design choices. Even identical bearings running under identical operating
conditions may experience a wide dispersion in their life. The ratio of the longest to
the shortest life may exceed 100 in large samples.

Figure 3: Test rigs used in bearing life tests.

1.2 Outline of the problem

Life tests consist of running a group of bearings under identical operating conditions
until a stopping criterion is fulfilled. There exist three classical stopping criteria:



Statistical Modeling of
Mechanical Bearing Life Testing 105

• Type I. The test is stopped when a preset time has been reached. This is
illustrated in the left-hand side of Figure 4.

• Type II. The test is stopped when a preset number of failures has been reached.
This is illustrated in the right-hand side of Figure 4.

• Hybrid. The test is stopped when either a preset time or a preset number of
failures has been reached. This is illustrated in Figure 5 .

Life times of both failed and not yet failed bearings are recorded since both types of
data contain information. Usually most bearings have not yet failed at the end of
the life test. As usual in reliability engineering, the data is modelled using a Weibull
distribution.

Figure 4: Type I and II stopping criteria.

Figure 5: Hybrid stopping criterion.

The objective of life tests is the estimation of the Weibull parameters (see Subsec-
tion 2.1 for details). The precision of such an estimation depends strongly on the test
strategy (number of bearings tested, test duration, number of observed failures, re-
placement policy). Therefore, obtaining precise estimation of the Weibull parameters
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may require lengthy (up to several months) and thus costly tests. It is thus necessary
to understand the link between the test duration and the precision of the estimation
in order to optimize the test time while reaching the target precision. The precision
of the estimation is traditionally defined as the length of the confidence intervals for
each of the parameters (see Subsection 2.1 for details) on a logarithmic scale:

R10(L10) =
L10,95

L10,05
and R10(β) =

β95
β05

,

where (L10,05, L10,95) and (β05, β95) are the 90% two-sided confidence intervals for
L10 and β, respectively.

Problem statement Given N life tests (i.e., life tests with bearings of the same
type and conducted under identical conditions) to be run within the same fixed test
capability, what is the strategy to follow to minimize the total test duration of all N life
tests with a given confidence to obtain parameter estimates with a preset precision?

When designing a test strategy, the precision and the available bearings of a certain
type are constraints. The degrees of freedom are the sample size, the type of stopping
criterion, the replacement policy and the value associated to this stopping criterion
(preset time and/or preset number of failures). Some extra degrees of freedom can be
added like the replacement of failed bearings by new ones for instance, but they are
not treated in this article.

In addition, both the test time and the test precision are depending on the test
strategy in a stochastic way. Therefore, the specifications onto the precision and
the time need to be expressed in terms of their distributions via the mean, standard
deviation or some percentiles.

1.3 Approach

This report reflects our first attempt to tackle the general problem. We did so by
concentrating ourselves on a simpler problem where we had only 1 type of bearing.
For this case, we derived theoretical results based on Fisher information that we will
allow us in the future to compare different testing strategies. We complemented these
theoretical results by running simulations for different testing strategies based on a
fast R code that we developed ourselves.

1.4 Outline of this article

This article is organized as follows. In Section 2 we provide details on the Weibull
distribution (parametrizations, estimation for the different censoring schemes). Sec-
tion 3 contains our theoretical approach to test plans based on the Fisher information.
The results of our numerical simulations can be found in Section 4. We end our paper
with conclusions and recommendations in Section 5.
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2 Background on the model

2.1 Weibull Distribution

Figure 6: Weibull.

The Weibull distribution has been introduced in the set-
ting of material strength by Waloddi Weibull (Weibull
(1939)) and was later extended to a wide range of types
of experimental data (Weibull (1951)). The Weibull dis-
tribution is one of the extreme value distributions and ap-
pears if one considers minima of random variables (which
is very natural in material strength since material break
when the weakest link fails). Another motivation for the
use of the Weibull distribution is that the hazard rate is
flexible since it is a power function and may thus model
both increasing and decreasing failure rates (depending
on the sign of the exponent).

The Weibull distribution is extensively used in reliabil-
ity theory together with its special case, the exponential
distribution. The Weibull distribution possesses two main forms, one with 2 pa-
rameters (with domain (0,∞)) and one with 3 parameters (which has an additional
location parameter so that the domain need not start at 0).

Here we will describe the background on the Weibull distribution (parameteriza-
tions, parameter estimation, censoring, . . . ). For a comprehensive overview on the
Weibull distribution, we refer to the excellent monograph Rinne (2008).

The two-parameter Weibull distribution has a scale parameter and a shape pa-
rameter. The standard representation in term of the cumulative distribution function
is

F (x|α, β) = 1− e−( xα )
β

(1)

The parameter α is the scale parameter, while the parameter β is the shape parameter.
The exponential distribution is included as the special case β = 1. Note that for β > 1
the Weibull distribution has an increasing failure rate. Here we will use another
representation of the Weibull distribution which has the same shape parameter β,
but a different scale parameter, L10. In this representation, the cumulative density
function has the form:

F (x|L10, β) = 1−
(

9

10

)( x
L10

)β

. (2)

The parameter L10 has a clear interpretation; it is the 10%-quantile of the distribution,
i.e. 90% of the bearings survive at least until time L10. The parameters are linked to
each other through the relation

L10 = α (− log(9/10))
1/β

. (3)
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The Weibull distribution can also be described by the survival function

S(x|L10, β) =

(
9

10

)( x
L10

)β

. (4)

In this paper, we will consider L10 as a parameter of the Weibull distribution. How-
ever, if one wants to estimate the 10%-quantile of the distribution one could estimate
L10 also non-parametrically.

The probability density function of the Weibull distribution in this parameteriza-
tion is given by

f(x|L10, β) =
1

L10

(
9

10

)( x
L10

)β (
x

L10

)β−1
β log

(
10

9

)
. (5)

Note that in the remaining part we suppress in the notation for the cumulative dis-
tribution function and the probability density function sometimes the dependence on
L10 and β to obtain clearer expressions.

2.2 Censoring

In real-life testing of bearings, it is impossible to test until all bearings have failed.
This is also the case if one uses accelerated life testing, i.e. testing under more severe
conditions than normal in such a way that using physical degradation laws one can
connect life times under severe conditions to life times under normal conditions (see
e.g., Meeker and Escobar (1998)). The data that we obtain from life tests will thus
include data on non-failed items. Such observations are called censored observations.
This terminology is used in engineering contexts (life tests of physical objects) as well
as in medical contexts (clinical trials). Note that censored observations in the context
of life tests do contain useful information on life times (one usually has a lower bound
for the actual lifetimes). In order not to lose information, it is thus important to use
statistical techniques that make use of both the censored and uncensored observations.
This very much applies to the case of life tests for bearings, since typically the majority
of observations is censored.

In order to include censored observations in statistical analyses, it is necessary
to model the censoring mechanism at hand. In medical contexts (survival analysis)
it is common to model censoring as a random variable independent of the lifetime
distribution. In engineering context (reliability theory) it is more common to model
censoring in a different way (see e.g., (Rinne, 2008, Section 8.3.1) for a detailed
discussion about the different ways of modelling censoring mechanisms). We now
consider in more detail censoring types that are common in reliability theory (they also
appear in medical contexts under the name administrative censoring). We will restrict
ourselves to the case of a single right-censoring. For multiple censoring schemes such
as progressive censoring, we refer to the literature (see e.g., Ng et al. (2004) and
(Rinne, 2008, Sections 8.3.3 and 8.3.4)).
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Type I censoring

Suppose we run n bearings on n machines and we stop the experiment at a preset
time T . The number r of failed items at time T is then the realisation of a random
variable R. We have thus observed r failures at times {x(1), x(2), . . . , x(r)} and we
have not observed the failure of the other n− r bearings. With the notation x(i) we
denote the ith order statistic, i.e., the ith smallest observed failure time. The joint
probability density function to observe the failure times is given by:

f(x1, . . . , xn|L10, β) =
n!

(n− r)!
r∏

i=1

f(x(i)|L10, β) (1− F )n−r(T |L10, β). (6)

for 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(r) (where r := max
{
i : x(i) ≤ T

}
) and equals 0

otherwise. Note that for this type of censoring (known as administrative censoring in
the context of survival analysis) the number of failures r is random and the end time
is deterministic.

Type II censoring

Suppose we run n bearings on n machines and we stop the experiment once we
have k ≤ n failures. At the stopping time we have observed k failures at times
{x(1), x(2), . . . , x(k)} and we have not observed the failure of the other n− k bearings.
The joint probability density function to observe the failure times is given by:

f(x1, . . . , xn|L10, β) =
n!

(n− k)!

k∏

i=1

f(x(i)|L10, β) (1− F )n−k(x(k)|L10, β). (7)

which is defined for 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(k). Note that in this type of censoring
the number k of failed items is fixed, while the end time is random (it equals the kth

order statistic).

Hybrid censoring

An alternative censoring scheme is possible by combining the stopping criteria of Type
I and Type II censoring, i.e. we stop the experiment when either we reach the preset
time T or the preset number r of failures. In other words, we stop the experiment
at the random time min(T,X(k)). This type of hybrid censoring was introduced in
Epstein (1954). It is called type-I hybrid censoring in Balakrishnan and Kundu (2013).

Type I censoring is appealing from a practical point of view, since it fixes the duration
of the experiment. A mathematical drawback is that it is harder to analyse (one
needs to take into account the random time between T and the last failure time
before T ). Type II is appealing from a mathematical point of view since it is easy
to analyse, because the number of failures is deterministic. The practical drawback
is that one has no control on the duration of the experiment. A possible drawback
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of both Type I and hybrid censoring is that if T is chosen too small, that there are
may be too few failures and the resulting estimates are poor. In order to overcome
this drawback, Childs et al. (2003) introduced an alternative hybrid censoring scheme
based on max(T,X(k)). However, this has the same practical drawback as type II
censoring.

2.3 Parameter estimation
In this subsection we discuss estimation of the L10 and β parameters of the two-
parameter Weibull distribution under the three censoring schemes mentioned in the
previous subsection. We will assume that failed items are not replaced during a life
test. Maximum Likelihood is the preferred way of estimating parameters in reliability
theory, because it not only has well-known asymptotic optimality properties but as
exemplified by Formulas (6) and (7) it can easily deal with censored data (unlike e.g.
the method of moments). The literature mostly deals with estimation for type II
censoring, under the assumption that type I censoring can be dealt with in a similar
way by conditioning on the number of failures in the interval [0, T ] (cf. Remark 26
on page 438 of Rinne (2008)). An exception is Cohen (1965) which treats both types
of censoring.

For Type II censoring the standard approach is to take derivatives of the loglike-
lihood equation with respect to the parameters and to note that after simplification
of the equations one obtains λ̂ through the following relation (Cohen (1965)):

λ̂ =

(
n∑

i=1

xβ̂i

)β̂
. (8)

The following equation determines β̂ in case of type II censoring:

1

β̂
=

∑n
i=1 x

β̂
i log(xi) + (n− k)xβ̂(k) log(x(k))
∑n
i=1 x

β̂
i + (n− k)xβ̂(k)

− 1

k

k∑

i=1

log(x(i)) (9)

A similar relation holds in case of type I censoring. For hybrid censoring, Kundu
(2007) describes that one has basically the same procedure where the form of the
likelihood depends on which of the stopping criteria applies to the data set at hand.
Existence and uniqueness of solutions of (9) are guaranteed unless all observations are
equal (see e.g. Farnum and Booth (1997), Pike (1966)). Since the right-hand side of
(9) can be proven to be an increasing function of β (see Farnum and Booth (1997)1,
numerical procedures like Newton-Raphson quickly yield numerical solutions. There
are also exist explicit approximate ML estimators based on Taylor expansions of the
logarithm of the Weibull distribution (so transforming the Weibull distribution into
an extreme value distribution, see e.g. Kundu (2007)) for details).

1The proofs in Farnum and Booth (1997) are only written down for the uncensored case, but it
can easily be shown that a a slight adaptation make them work for the censored cases as well
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The ML estimators are biased. Corrections are possible by noting that the dis-
tribution of β̂ is a pivotal quantity for β, i.e. the distribution of β̂/β only depends
on n and depending on the type of censoring T or k (see e.g., McCool (1970) who
evaluates this distribution by Monte Carlo simulation). For a complete discussion of
pivotal quantities we refer to Bain and Engelhardt (1991)) and McCool (1970).

In view of the Invariance Principle of Maximum Likelihood estimation (Zehna
(1966)), it does not matter which parametrization of the Weibull distribution one
chooses when one is only interested in the parameter estimates. However, it does
make a difference when computing confidence intervals for the Weibull parameters.
This is because the lack of formulas for exact confidence intervals necessitates to use
asymptotic intervals for which the width directly depends on the asymptotic standard
deviation of the parameter estimator. Explicit asymptotic confidence intervals for
the Weibull parameters have been discussed in Meeker and Nelson (1976) and Kahle
(1996). Both papers used observed Fisher information, but Meeker and Nelson (1976)
do this for the logarithm of the Weibull distribution (so an extreme value distribution)
since the asymptotic sampling distribution in that case converges faster. The formulas
in both papers involve second derivatives of the incomplete gamma function, which can
be expressed in terms of other special functions (see Geddes et al. (1990)). We followed
the approach of Meeker and Nelson (1976) but used direct numerical integration to
evaluate the integrals directly since there were no convergence problems.

3 Theoretical results

If we have a single bearing, we have a continuous decision process as long as the bearing
has not failed: do we keep the experiment running or do we stop the experiment
and replace the existing bearing with a new one. Which of the two options is most
attractive depends on several factors: 1) the amount of information one is expected
to get from each choice, 2) how fast this information is obtained and 3) the cost of
replacing an existing bearing with a new one. Here we neglect the costs completely
and we focus on the first two factors.

3.1 Type I censoring

Suppose we test a single bearing and we keep running the experiment till either the
bearing fails or a fixed stopping time a has been reached. Suppose the lifetime of the
bearing is distributed according to a Weibull distribution with parameters L10 and
β. With probability S(a|L10, β) the bearing is still functioning at time a. The Fisher
information I1(a) from this experiment can therefore be calculated as:

I1(a) = −S(a|L10, β))
∂2

∂L10
2 logS(a|L10, β)−

a∫

0

(
∂2

∂L10
2 log f(x|L10, β)

)
f(x|L10, β)dx

(10)
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This can be written as:

I1(a) =
(

9
10

)( x
L10

)β ( a
L10

)β
β(1+β) log 10

9

L2
10

−
a∫
0

β−
(

x
L10

)β
β(1+β) log 10

9

L2
10

1
L10

(
9
10

)( x
L10

)β (
x
L10

)β−1
β log

(
10
9

)
dx

(11)

We do not have a closed-form expression for I1, but the numerical evaluation of this
integral is fast. If n bearings are tested with type I censoring, the Fisher information
In is

In = nI1. (12)

There are two important time measures for the duration of the experiment, 1) na, i.e.,
n times the fixed stopping time a and 2) the total time that machines are running,
denoted by T (L10, β, n, a). The first measure is relevant to the situation that the
machines on which a bearing fails before time a cannot be used for other purposes or
if one has to pay for the time use of these machines even if they are not running. The
second time measure is important if machines on which a bearing fails can be used
for other experiments.

For the first time measure, the Fisher information per time unit equals I1/a. For
the second time measure we need to calculate the expected running time of a single-
bearing experiment with type-1-censoring.

E[T (L10, β, 1, a)] =

a∫

0

xf(x|L10, β)dx+ aS(a|L10, β) (13)

and the Fisher information per time unit equals I1/E[T (L10, β, 1, a)]. For the relevant
case that β > 1, the larger a, the higher the Fisher information per time unit for the
second time measure (see Figure 7). For the first time measure, there is an optimum.
There are not many failures before time a if a is small. On the other hand, if a
is large, many machines are empty because the bearing on that machine has failed
already. The optimum as function of β is plotted in Figure 8.

3.2 Type II censoring
The Fisher information I of this experiment with respect to the parameter L10 is
given by:

I = −E
(

∂2

∂L10
2 log

(
f(n,k)(x(1), x(2), . . . , x(k)|L10, β)

))
. (14)

The second order derivative with respect to L10 of the logarithm of the probability
density function is given by:

∂2

∂L10
2 log

(
f(n,k)

)
=
k

β
+
β(1 + β)

L10
2+β

log

(
10

9

)(
(n− k)x(k)

β +
k∑

i=1

x(i)
β

)
. (15)
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Figure 7: The Fisher information per time unit for type I censoring. In Figure a) the
Fisher information is divided by na, in Figure b) the Fisher information is divided by
the total running time.
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Figure 8: Stopping time for type I censoring that maximizes the Fisher information
per time unit (I1(a)/a).

Therefore, the Fisher information is given by:

I = −
∞∫

0

dx(1)

∞∫

x(1)

dx(2) . . .

∞∫

x(k−1)

dx(k)f(n,k)
∂2

∂L10
2 log

(
f(n,k)

)
, (16)

Luckily this k-dimensional integral can also be expressed as a double integral (Park
(1996)). Let fk:n be the density function of the kth order statistic in a sample of size
n. We have the following expression for fk:n (see page 224 of Rinne (2008)):

fk:n(x) =
n!

(k − 1)!(n− k)!
F (x)(k−1)S(x)(n−k)f(x) (17)

If we define g(w) := g(L10, β, w) as

g(L10, β, w) :=

∞∫

w

(
∂

∂L10
log

(
f(x|L10, β)

S(w|L10, β)

))2
f(x|L10, β)

S(w|L10, β)
dx (18)
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we can write the Fisher Information as:

I = n

(
β

L10

)2

− (n− k)

∫ ∞

0

g(w)fk:n(w)dw (19)

It can be shown, e.g., by performing the substitution y =
(
w
L10

)β
−
(

x
L10

)β
, that the

function g(w) does not depend on w. We obtain that g(w) =
(

β
L10

)2
. Therefore we

obtain as result that the Fisher information for Type II censoring has the following
form:

I = k

(
β

L10

)2

, (20)

i.e., each observed failure time provides the same amount of information, independent
of the sample size or the order of the failure.

There are again two important time measures for the duration of the experiment,
1) the time till the kth failure, which is given by the kth order statistic x(k) and 2)
the total time that machines are running, denoted by T (L10, β, n, k).

The total running time is given by:

T (L10, β, n, k) =
k∑

i=1

x(i) + (n− k)x(k) (21)

and the expected total running time can be calculated once we know the expected
time of the kth order statistic, i.e.,

E (T (L10, β, n, k)) =

k∑

i=1

E(x(i)) + (n− k)E(x(k)) (22)

The probability density function of the jth order statistic is given by:

fj:n(x) =
n!

(j − 1)!(n− j)! F (x|L10, β)(j−1)(1− F (x|L10, β))n−jf(x|L10, β) (23)

and the expectation of the jth order statistic is given by (see Formula (5.34) of Rinne
(2008)):

E(x(j)) = j

(
n

j

)
Γ(1 + 1

β )

(log 10
9 )

1
β

L10

j−1∑

i=0

(−1)i
(
j−1
i

)

(n− j + i+ 1)1+
1
β

. (24)

We propose as a measure to compare several test strategies the Fisher information
per time unit, i.e., the Fisher information divided by the expected total running time
of the machines, or the Fisher information divided by the time until the kth failure.

If the total running time is relevant, the higher k the more information is obtained
(see Figure 9(a)), simply because every failure gives the same amount of information
and failures occur more rapidly when the bearing are ageing. If the time until the kth

failure is relevant, there is an optimal value of k, as can be seen in Figure 9(b). This
optimal value of k can also be interpreted as an optimal value of the ratio k/n and
this optimal ratio depends on β (see Figure 10).
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Figure 9: The Fisher information per time unit for Type II censoring with 30 ma-
chines. In Figure a) the Fisher information is divided by the total running time, in
Figure b) the Fisher information is divided by the time of the kth failure multiplied
with the number of machines.
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4 Numerical results

In this section we study by simulation different test strategies in the simplified case
when there is only one type of bearing and failed items are not replaced. The test
strategies all involve hybrid censoring. In order to have practical relevance, all test
strategies should meet the condition that Rβ10;0.90 < 12. The optimality criterion is
to minimize to 80%-percentile of the TTT (Total Time on Test) statistic, i.e. the
sum of failure times for the failed items and the testing period for the items that did
not fail before the end of the test. The failure times were sampled from a Weibull
distribution with L10 = 100 and shape parameter β = 1.1. In the hybrid censoring
testing strategies we varied the number of items on test between 20 and 30, the
number of failed items between 4 and 10 and the maximum testing period between
400 and 600 (with steps of size 25). In order to obtain accurate values, we used
30, 000 replications for each setting. The irregular shapes in the contour plots are
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interpolation artifacts caused by the integer values for the number of bearings.

4.1 Results Type I Censoring
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Figure 11: Type I censoring.

bearings 20 21 22 23 24 25 26 27 28 29 30
trunc 850 725 625 550 475 425 375 325 275 275 250

Table 1: Minimum required number of failures under type I censoring.

For type I censoring we see in Figure 11 that the condition Rβ10;0.90 < 12 is met by
combinations of stopping times and number of bearings that are to the right of the
straight line that goes from 23 bearings and stopping time 475 to 25 bearings and
stopping time 425. It follows from Table 1 that the required stopping time decreases
linearly with the number of bearings (approximately 50 to 75 hours per bearing). It
follows from Figure 11 that the optimal choice is to stay exactly on the straight line
to obtain a minimal TTT value.

4.2 Results Type II Censoring
For Type II censoring we see artifacts in the plots in spite of the 30, 000 replications in
the simulation. Therefore we also present the minimum number of failures to ensure
Rβ10;0.90 < 12 in Table 2. Note the sharp drop when going from 22 to 23 bearings.
We note that the TTT value does not change much for a fixed number of failures
when we increase the number of bearings. This means that the increase in TTT for a
fixed number of bears is fairly constant in the range of bearings that we considered:
every extra failure in the stopping criterion causes an increase of 1000 in the TTT
value.
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Figure 12: Type II censoring.

bearings 20 21 22 23 24 25 26 27 28 29 30
r 11 9 8 4 4 4 3 3 3 3 3

Table 2: Minimum required number of failures under type II censoring

4.3 Results Hybrid Censoring

As discussed in Subsection 2.2, the idea of hybrid censoring is to have a beforehand
fixed maximum testing time (due to the type I censoring mechanism) which is very
important from a practical point of view (scheduling of testing facilities), but at the
same time have the option to stop the testing earlier if the test results allow sufficiently
precise estimates (due to the type II censoring mechanism). However, this is more
complicated than it looks at first sight. For example with type I censoring and 20
bearings we need a stopping time of 850. If we add any corresponding type II censoring
stopping criterion, then this means that the value of Rβ10;0.90 will increase since we
may stop too early. For example, if we perform hybrid censoring by naively combining
the type I stopping time of 850 with the type II criterion for 20 bearings (i.e., stop
after 11 failures), then Rβ10;0.90 = 12.1. In order to meet the Rβ10;0.90 < 12 condition
we need to increase either the type I or the type II criterion. For 20 bearings, this
means we could choose the stopping time to be equal to 850 and number of failures
to be equal to 12 (with TTT approximately 5900) or choose stopping time 875 and
number of failures 11 (with TTT approximately 6150). It is thus better to fix the
type I criterion and increase the type II criterion when applying hybrid censoring.



118 SWI 2015 Proceedings

13

14

15

16

17

R10,0.90
β

4 5 6 7 8 9 10 11 12 13 14 15

400

425

450

475

500

525

550

575

600

625

650

675

700

725

750

775

800

Hybrid Censoring − 20 bearings

max number of failures

st
op

pi
ng

 ti
m

e

2000

2500

3000

3500

4000

4500

5000

5500

TTT0.80

4 5 6 7 8 9 10 11 12 13 14 15

400

425

450

475

500

525

550

575

600

625

650

675

700

725

750

775

800

Hybrid Censoring − 20 bearings

max number of failures

st
op

pi
ng

 ti
m

e

Figure 13: Hybrid censoring - 20 bearings.

5 Discussion

In this section we first summarize the conclusions that we may draw from our results.
We then present recommendations to SKF for further lines of research.

5.1 Conclusions

In this paper we studied a simplified case of the testing problem posed by SKF. The
simplification consisted of considering only one type of bearing and no replacement of
failed items. We approached the problem through both a theoretical approach based
on Fisher information and a numerical approach based on simulation.

A key insight of the approach based on Fisher information is to continue testing
as long as there is a positive rate of contributing information. Information per test
time leads to optimal values for the stopping time (Type I censoring) or the number
of failures (Type II censoring) expressed as a function of β.

Simulations help to minimize tests time along the Pareto front of strategies. For
Type I censoring there seems to be a linear dependence of Rβ10 on the truncation
time. For Type II censoring we see drastic changes for smaller values of bearings in the
number of required failures in order to satisfy a constraint on Rβ10. The corresponding
values for the TTT, however, seem to be fairly constant as a function of the number
of bearings. For hybrid censoring one cannot simply combine the criteria of Type I
and Type II censoring. In order to get optimal TTT values, one should fix the Type
I criterion of a given number of bearings and increase the Type II criterion.
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Figure 14: Hybrid censoring - 30 bearings.

5.2 Recommendations for Future Research
Future research is needed to extend the results of the current paper to more realistic
situations with different types of bearings and more complex replacement strategies
(not only replacement of failed items individually, but also in pairs as testing devices
usually combines bearings in groups of 2 or 4 bearings).

For the simulations we recommend to use larger simulations or develop variance
reduction techniques like importance sampling in order to obtain more stable results.
Since the simulations were performed for only one set of values of the Weibull param-
eters L10 and β, it is recommended to study the influence of L10 and β.

The approach based on Fisher information should be extended to include tests
with more than one type of testing as well as hybrid testing. It is also recommended
to perform a sensitivity analysis.

A final idea is to explore the idea of approximation the Weibull distribution with
an exponential distribution when β ≈ 1.
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