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Abstract

The theory of compressed sensing (CS) promises reconstruction of
sparse signals with a sampling rate below the Nyquist criterion by taking
randomized measurements under certain assumptions about the struc-
ture of the signal. Current compressed sensing techniques applied to
magnetic resonance imaging (MRI) require measurements concentrated
heavily around the center of the Fourier space in order to yield some-
what usable results. PHILIPS Healthcare is interested in the potential
time-saving benefits of compressed sensing applied to MRI, but requires
robust and accurate reconstruction results. During the 106th European
Study Group for Mathematics and Industry, PHILIPS challenged us to
improve upon existing Fourier space sampling patterns for compressed
sensing. The patterns could, for example, include patient dependent
prior information. We demonstrate (experimentally) that current CS-
MRI techniques lack a sufficient amount of the property called incoher-
ence. Incoherence is a measure of correlation between the measurement
matrix and the basis in which the signal is sparse. A compressed sensing
method without sufficient incoherence results in sub-optimal performance
in terms of scan-time and/or image quality. By introducing the necessary
incoherence, biased sampling in the Fourier space is no longer necessary.
Increasing incoherence while keeping the similar sparsity level in a prac-
tical setting is not as straightforward. In this paper, we demonstrate
an off-line approach based on prior patient information and evaluate the
results with the structural similarity index (SSIM) as a measure of im-
age reconstruction quality. The developed strategy provides an improved
signal basis such that both scan-time reduction and good image recon-
struction are attained.
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1 Introduction

Magnetic resonance imaging (MRI) is the imaging modality of choice for diag-
nosing a vast range of diseases, including multiple sclerosis and cancer. Com-
pared to X-ray based techniques, such as computerized tomography (CT), MRI
provides superior soft-tissue contrast and does not expose the patient to ion-
izing radiation. Unfortunately, a typical MRI exam can take over 30 minutes
(as compared to 5 minutes for a CT scan). One way to reduce the scan time is
to collect fewer measurements. Current image reconstruction techniques, how-
ever, require a sampling strategy which obeys the Nyquist criterion, in order
to reconstruct a usable image. Recent developments in the field of compressed
sensing (CS) promise a dramatic reduction of the number of measurements
needed to reconstruct an image, as long as the measurement process is inco-
herent and the image can be represented in terms of relatively few basis terms
(sparsity).

PHILIPS Healthcare is one of the major MRI scanner manufacturers in the
world and it is interested in optimization of the CS-MRI paradigm. During the
SWI 2015, PHILIPS would like to investigate how the CS-MRI experiment can
be optimally performed, in the sense that an accurate image is reconstructed
from data obtained within the shortest possible scan-time. Some information
about the patient is available prior to the scan thus it can be used to achieve
this goal. As PHILIPS suggests, the approach should be patient-dependent,
that is, the existing data has to be quickly processed to determine the scanner
setup for the new scan.

In this report, we discuss how we combine CS and MRI in order to develop re-
construction algorithms that exploit previously acquired patient-specific infor-
mation. The report is organized as follows. First, we review the mathematics
behind basic MRI image reconstruction and compressed sensing and identify
a possible bottleneck for the straightforward application of CS theory to MRI
imaging. Then, we delineate a strategy to solve this problem and we show
some preliminary results we have obtained during the SWI 2015.



Patient-adaptive compressed sensing for MRI 87

2 Preliminaries

2.1 Magnetic resonance imaging

The simplest mathematical model for the MRI imaging process can be stated
as follows. We are interested in reconstructing the transverse component of
the so-called spin magnetization vector, which is tissue-dependent, and thus
reveals internal structures. We represent the transverse magnetization of a 2D
slice by a function u(x, y) with x, y ∈ [0, 1]. In practice, u is a complex function
but for simplicity, we assume u ∈ R. The work presented in this report can be
easily extended to the complex case.

In MRI, we can measure the function u only in the Fourier domain, also called
k-space. The 2D Fourier series of u is denoted by

ûkl =

∫ 1

0

∫ 1

0
dx dy u(x, y)eı2π(kx+ly),

for k, l ∈ Z. In practice, only the coefficients up to some maximum bandwidth
−B < k, l < B are measured, allowing us to reconstruct an N × N discrete
representation of the transverse magnetization uij = u(i/(N − 1), j/(N − 1))
with 0 ≤ i, j < N . Given N , the Nyquist criterion determines the value of
B which makes a correct reconstruction of u from its frequency coefficients
possible.

By organizing all the coefficients in vectors, we can state the MRI measurement
process as follows

û = Fu,

where u ∈ Rn, û ∈ Cn, F ∈ Cn×n represents the 2D discrete Fourier transform
and n = N2 denotes tot total number of pixels. A schematic depiction of the
process is shown in figure 1.

Since all the Fourier samples need to be measured sequentially, the time needed
to acquire them scales quadratically with the required resolution. In the next
section we will discuss an alternative sampling paradigm that promises a more
favorable scaling assuming that u exhibits some additional structure.
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2.2 Compressed sensing

The basic idea behind compressed sensing is that we can uniquely solve an
underdetermined system Ax = b given that the solution we seek is sparse
(i.e., has only a few non-zero elements) and the matrix A satisfies the so-called
restricted isometry property (RIP).
Definition 2.1. A vector x ∈ Rn is k−sparse when it has at most k non-zero
elements.
Definition 2.2. A matrix A ∈ Rm×n satisfies the restricted isometry property
RIP(k,δk) if for every k-sparse vector x there exists a constant δk such that

(1− δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2.

When the measurement matrix A satisfies the RIP and the solution x is sparse,
or well approximated by a sparse solution, then one can solve the so-called basis
pursuit denoise (BPDN) problem

min
x
‖x‖1 s.t. ‖Ax− b‖2 ≤ σ.

Here, σ ≥ 0 is the noise level of the measurement b.

With these definitions we can now state the following theorem by Candès [3]
regarding the recoverability of a sparse signal from noisy measurements.
Theorem 2.1. Let the matrix A satisfies RIP(2k,δ2k) with δ2k <

√
2− 1, and

b = Ax + n for given signal x and ‖n‖2 ≤ ε. Then, the error between the
solution x of the BPDN problem and the true signal x is bounded as follows:

‖x− x‖2 ≤ C0‖x− xk‖1/
√
k + C1ε,

where C0 and C1 are positive constants and xk is the best k-sparse approxima-
tion to x. Thus, if the given signal x is k-sparse, we have ‖x− x‖2 ≤ C1ε

With overwhelming probability, certain types of random matrices (e.g., ma-
trices whose elements are i.i.d. Gaussian) satisfy the required RIP property
when

m ≥ Ck log(n),

where C is a problem-specific constant [3]. For our MRI problem, this would
mean that the number of measurements is no longer driven by the resolution
but by the sparsity of the signal. It is in practice not feasible to check whether a
given matrix satisfies RIP. Instead, one typically considers the coherence.
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In practical applications, the signal of interest is not sparse itself, but admits
a sparse representation in some orthonormal basis Ψ ∈ Cn×n. Modelling the
measurement process as taking inner products of the signal with m rows of an
orthonormal basis Φ ∈ Cn×n, we can express the sensing matrix as A = RΦΨ,
where R ∈ Rm×n selects m rows at random. The resulting matrix A is a
suitable RIP when the mutual coherence between Ψ and Φ is low.
Definition 2.3. The mutual coherence of two orthonormal bases Ψ and Φ is
defined as

µ(Ψ,Φ) = max
1≤i,j≤n

|(ΨTΦ)ij |,

Generally, the lower the coherence, the lower the RIP constant and the fewer
measurements we expect to need in order to recover a given sparse signal. Note
that for orthonormal bases we have 1 ≤ µ ≤ √n. In the remainder of the paper
we will use the coherence as a heuristic to gauge how well a given pair (Ψ,Φ)
is expected to perform.

2.3 Sparse recovery

There are a number of algorithms for solving the BPDN problem, most of
which are based on one of two equivalent reformulations. The first is quadratic
formulation of the problem:

min
x
‖x‖1 + λ‖Ax− x‖2,

and the second is the Lasso problem

min
x

1

2
‖Ax− x‖22 s.t. ‖x‖1 ≤ τ.

For a given σ, there exists a unique λ and τ such that the solutions of all three
problems coincide [5, 2]. The relation between these parameters is given by
the Pareto curve. This is illustrated in figure 2.

Finding these parameters λ or τ is not trivial, however, and typically relies
on some sort of continuation method. A very elegant way of finding a τ cor-
responding to a given σ is described by [5]. Essentially, they develop a root-
finding method to traverse the Pareto curve. The Lasso subproblems are solved
via a projected gradient algorithm and is suitable for large-scale problems and
complex data.
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3 Approach and results

We have seen that the two important ingredients in CS are sparsity and coher-
ence. The image needs to be as sparse as possible while the coherence needs
to be as low as possible. The goal is to leverage these results to reduce the
number of measurements needed to recover the image u from Fourier measure-
ments

b = RFu,

where R ∈ Rm×n with m < n is a restriction matrix that subsamples the full
Fourier measurements. Since we are interested in taking as few measurements
as possible, we want m to be as small as possible. Introducing the subsam-
pling ratio ρ = n/m, the potential speedup of the measurement process is
proportional to ρ.

A typical image is not sparse in the natural pixel basis. Instead, we need to
find a basis in which the image can be sparsely represented. A common choice
is wavelets, denoted here by a matrix W . The sparsity is illustrated in figure
3.

The recovery problem now is to find wavelet coefficients z = Wx such that
RFW T z ≈ b. A problem with this approach is that the mutual coherence
µ(F,W T ) is quite high, as illustrated in figure 4. A remedy to this is to
insert a random ±1 diagonal matrix in the measurement process and collect
measurements as b = RFSu. Here, S = diag(s) where the si ∈ {+1,−1} are
i.i.d. Rademacher random variables [1, 4]. The mutual coherence µ(FS,W T )
is much lower, as illustrated in figure 4.

Reconstructions with and without S for homogeneous random sampling are
presented in figure 5. We clearly see that incorporating the matrix S spreads
the information more evenly over the Fourier space so that uniform random
sampling makes more sense. Comparing the reconstruction quality in terms of
the Structural Similarity Index Measure (SSIM) [6] for different subsampling
ratios in figure 6 we see that incorporating S allows for a higher subsampling
factor.

Unfortunately, it is not feasible in practice to incorporate S in the sampling as it
would entail randomly perturbing the object prior to taking the measurement.
Therefore, we will take a slightly different view on the problem.
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3.1 Breaking the coherence

Instead of changing the measurement process, we will aim to find a basis W̃
that reduces the mutual coherence. An obvious candidate is W̃ = SW , how-
ever, typical images are much less sparse in this new basis as illustrated in
figure 7.

This leads us to two extreme cases: for s = 1 we have a very sparse repre-
sentation and a high coherence while for uniformly random si ∈ {−1,+1} we
have a low coherence and insufficient sparsity. This is shown in figure 8. The
question is whether there exists a mask s that achieves an “optimal” trade-off
between the two extremes. To investigate this we take the si to be correlated
Rademacher variables or random checkerboard patterns and vary the scale to
obtain a natural continuation from one extreme to the other. A few exam-
ples are shown in figure 9. For these matrices, we compute the coherence and
the sparsity and plot them. Figure 10 shows that they indeed trace out a
trade-off curve as argued earlier. Figure 11 shows the reconstruction quality
for these various masks. Unfortunately, the partially coherent masks perform
only marginally better for small subsampling ratios than the other two.

3.2 Experimental design

The goal of this section is to see if we can de better when we explicitly design S
to minimize the coherence while maintaining the sparsity of a reference image
u. We could formulate this problem as

min
S
µ(F, SW T ) s.t. ‖WS−1u‖1 ≤ (1 + κ)‖Wu‖1,

with κ small. The inequality constraint ensures that the application of the
new transform WS−1 to u gives a sparse representation.

If we take S to be a diagonal matrix S = diag(s) we can formulate this problem
as

min
s
‖As‖∞ s.t. ‖U(s)‖1 ≤ (1 + κ), (1)

where A is the matrix representation of the linear operation F Tdiag(s)W T

(i.e., As = vec(F Tdiag(s)W T )) and U(s) = 1
‖Wu‖1Wv where vi ≡ 1/si.

To asses the feasibility of this approach, we solve this optimization problem
for a 16×16 reference image, shown in figure 12 and denoted by True image.
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We use a black-box non-linear optimization routine in Matlab (fmincon) to
solve the optimization problem. The starting value for s is the vector whose
components follow a Rademacher distribution as introduced above, that is:
si ∈ {1,−1}. This is shown in figure 12. The algorithm is manually halted
after 40 iteration, when the convergence reaches a plateau. The convergence
history is shown in figure 13.

The resulting solution is shown in figure 12 and it is denoted by Optimized S.
Interestingly, the result has a similar structure as the reference image. This can
be understood as follows. The reference image is multiplied point-wise with s.
If we take si ≈ u−1i , the resulting normalized image will be almost constant,
thus allowing for a very sparse approximation using only the coarsest scale
wavelets.

We perform CS reconstructions of the test image with N = 16 and reduc-
tion factor 2 for the sparsity transforms W (standard approach) and WS−1,
respectively. To appreciate the improvement obtained by the experimental de-
sign algorithm, we also consider the reconstruction with the starting value for
S, that is, the Rademacher distributed values.

The reconstructed images are shown in figure 12, bottom row. We consider
the relative error given by ‖u − ur‖2/‖u‖2 × 100% where the superscript r
denotes the reconstructed image and we report the error value under the cor-
responding plots. Note the drastic reduction in the error when the optimized
S is used.

4 Discussion

We have seen that the coherence between the Fourier transform and wavelets
leads to suboptimal performance of CS-type reconstructions and we have de-
lineated a strategy to modify the Wavelet transform by means of the S matrix.
The resulting transform maintains the sparsity and at the same time minimizes
the coherence with the sampling operator RF . This trade-off solution gives
excellent results in terms of CS reconstructions.

Note that the steps (experiment design and CS reconstructions) can be per-
formed off-line, that is, after the end of the MRI exam. In this way, there is
no surcharge of time for the clinical protocol, a major drawback for on-line
design methods.
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Our approach relies on the knowledge of a reference image. The question is,
of course, how this approach will perform when the reference image is not
the same as the true image. We expect minimal problems when the reference
image is a previously acquired scan, a set of reference images, or other prior
information. Alternatively, we could perform a first reconstruction by standard
CS and use the resulting image as reference for designing S. This step could
be repeated until no improvement is obtained with respect to the previously
reconstructed image.

5 Conclusions

We have analyzed the pitfalls of CS applied to MRI and we have presented
an innovative approach to improve the reconstructions. The large scale op-
timization problem can be performed off-line, making the way to the clinic
potentially short.
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(1) Object (4) Reconstruction

(2) full Fourier spectrum (3) Bandlimited measurements

Figure 1: Schematic depiction of the MRI process. The ground object (1) is
sampled in the Fourier domain (2), yielding a set of bandlimited measurements
(3) from which we can reconstruct using a discrete inverse Fourier transform
(4). Note the slight loss in resolution caused by the bandlimited nature of the
measurements.
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Figure 2: Schematic depiction of the Pareto curve, which relates the optimal
solutions to the LASSO, BPDN and QP formulations of the sparse recovery
problem. At a give (τ, σ), the derivative of the curve is proportional to λ.
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Figure 3: Sparsity in wavelets. (a) original image, (b) image using only 10%
of the largest Wavelet coefficients, (c) magnitude of the Wavelet coefficients,
the vertical line indicates the cut-off used to produce image (b).

(a) (b)

Figure 4: Coherence of (a) F and W T and (b) FS and W T . We see that
the second matrix is much less coherent and hence is better suited for CS
reconstruction.
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(a) (b) (c)

Figure 5: (a) original image, (b) reconstruction with ρ = 8 without S, (c)
reconstruction with ρ = 8 with S. The latter clearly gives a much better
reconstruction, illustrating the importance of including the matrix S.
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Figure 6: Reconstruction quality (in terms of the SSIM) for various subsam-
pling ratios.
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Figure 7: Sparsity in modified wavelets WS. (a) original image, (b) image
using 20% of the largest Wavelet coefficients, (c) magnitude of the Wavelet
coefficients. The dotted line indicates the magnitude of Wu while the solid
line indicates the magnitude of WSu. The vertical line indicates the cut-off
used to produce image (b). We see that the original image is less sparse in the
modified wavelets.
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Figure 8: Schematic depiction of the tradeoff between sparsity and coherence.

scale = 0 scale = 0.05 scale = 0.1 scale = 1

Figure 9: Examples of partiall coherent masks, ranging from completely inco-
herent (left) to completely coherent (right).
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Figure 10: Tradeoff between sparsity and coherence for various image masks,
ranging from completely incoherent (scale = 0) to completely coherent (scale
= 1).
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Figure 11: Reconstruction quality using modified wavelets with various image
masks, ranging from completely incoherent to completely coherent. We see
that the partially coherent masks with scales 0.05 and 0.1 perform slightly
better than the other two.
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Figure 12: Experimental design. Top row: The ground truth image, the start-
ing and optimized S, respectively. Bottom row: The three reconstructions,
obtained without S, with the starting S and with the optimized S. Note the
drastic improvementin the obtained image when the optimized S is employed.
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Figure 13: Experimental design. Convergence history for the design algorithm
(Eq. 1).
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A Matlab framework for rapid prototyping

To test the proposed algorithms, we used the SPOT toolbox, which allows us
to define matrix-free linear operators. This toolbox allows us to use standard
Matlab matrix-vector notation and manipulation while avoiding explicitly stor-
ing dense matrices. A 2D Fourier transform of a 2D signal u, for example, can
be defined as follows.

F = opDFT2(n,n);
ut = F*u;

Here, the Fourier operator F acts like a matrix, but upon multiplication it calls
fft2. We can construct new operators by simply multiplying them together.
The MRI measurement process, for example, is implemented as follows.

F = opDFT2(n,n);
I = randperm(n);
I = I(1:m);
R = opRestriction(n,I);
y = R*F*u;

For the sparse reconstruction we use spgl1. A complete reconstruction then,
is done as follows.

F = opDFT2(n,n);
I = randperm(n);
I = I(1:m);
R = opRestriction(n,I);
y = R*F*u;
W = opWavelet2(n,n,'Haar');
z1 = spgl1(R*F*W',y,[],sigma);
u1 = W'*z;


