
Power line route optimisation in a finite spatial grid

Nieke Aerts (TU Berlin), Emile Broeders (Utrecht University), Erik Bruin (Utrecht
University), Ross J. Kang (Radboud University Nijmegen), Pedro Munari (Federal

University of Sao Carlos)

1 Introduction

Power lines are integral to one of our most important infrastructure systems:
the power supply network. They are run all over the world, across all kinds
of landscape. While they are vital to our day-to-day life, they also have some
negative influence on the environment, the view, and on other man-made struc-
tures. Building cost-effective power lines with limited environmental and social
impact is a critical task. This paper considers a problem introduced by the
British company NM Group, which specialises in surveying and planning for
power line infrastructure. The main question which NM Group posed and
which we address in our report is the following.

“How can we find a power line route of minimum cost?”

The cost of building a power line route is determined by many factors, not
all of which are purely material. In order to specify these costs, NM Group
has identified a few main factors, all of which are later incorporated into the
mathematical model we study.

1. Occupation of an area by power line structures.

(a) SVETIG.
We assume that for each specific area of land the negative influ-
ence (cost) of existing infrastructure and landscape can be cat-
egorised. The categories, the so-called SVETIG factors, are So-
cioeconomic/Political, Vegetation, protected Environment, Terrain,
technical Infrastructure, and Geotechnical. The way that this is

56 SWI 2015 Proceedings

quantified is out of scope for this report, and for modeling purposes
we may assume these are arbitrary positive weights in the plane,
over which we integrate.

(b) Structure type.
Aside from the attributes of the area itself, the type of structure
also may be taken into account, depending on the granularity. In
particular, the area can be passed over with heavy electric cables
suspended in the air or it can be occupied by the base of a power
line support tower. Clearly the presence of a support tower is more
disruptive than that of a suspended cable.

2. Material construction costs.
The more lengthy the power line is, the more costly the materials used
for that line, in linear proportion. For costs associated with the con-
struction and placement of towers, two further (multiplicative) penalty
factors come into play.

(a) The distance between two consecutive towers. (“Stretch penalty”)
When building a power line, the cables go straight from the top of
one tower to the top of the next, i.e. along a straight line segment
in the plane. In the third dimension, however, gravity takes its toll
in terms of both the weight and sag of the suspended wire between
those towers. Therefore, the further apart two consecutive towers
are placed, the greater must be the load-bearing capacity and height
of the two towers. Extremely long distance between consecutive
towers is highly costly or impossible. Rarely is a very long span
required, when there are no other options, for instance if the power
line must cross a river or canyon.

(b) The angle between the incoming and outgoing lines of a tower. (“An-
gle penalty”)
When the power line segments supported by one tower form a
sharper angle (with respect to the plane), the weight of the cables
exerts a force on the tower roughly in the direction of the angle’s
bisector. To counteract this force, some counterbalance or rein-
forcement of the tower is necessary. For instance when the angle is
roughly 180°, only a simple tower is needed, whereas if the angle is
off by more than 10°, then a stronger type of tower must be used.

Power line route optimisation in a finite spatial grid 57

In fact, the penalty factor is more akin to a step function, due to
the need for increasingly robust types of tower.

1.1 Discretisation and macro/micro separation

For practical reasons, the problem as stated above must be discretised — that
is, the spatial region under consideration is dissected using a regular grid, each
cell of which is assigned a weight according to an amortised SVETIG factor.
Moreover, NM Group deemed it necessary to make a separation into two levels
of discretisation, the second of which may be interpreted to be a refinement of
the first. Naturally, we refer to the first as the macro scale problem and the
second as the micro scale problem. Later, the reader doubtless will notice that
the macro and micro level problems are qualitatively distinct, and as such there
could be justifiable objection about whether the combination of solutions to
these two sub-problems constitutes an overall solution to the original problem
as stated above. However, in our work we have taken this separation heuristic
as given, partly because it is justified by the limitations of data-acquisition
resources, and partly because we also propose heuristic and/or approximative
approaches due to computational difficulties inherent to the global problem.
It is worth noting that in our report we have independently chosen the type
of tessellation — be it hexagonal, triangular, square — out of convenience,
though with suitable routine modifications our methods apply to any regular
grid pattern, at either scale. In summary, we split the problem as follows:

1. Macro scale.
At this level, NM Group has indicated that the overall area of consider-
ation is typically a region of about 100 by 100 kilometres. This area is
divided into cells of approximately 2 kilometres in diameter. The desired
output of this sub-problem is a “rough” routing consisting of a connected
sequence of macro cells, which we refer to as a corridor.

2. Micro scale.
The small subset of the cells identified at the macro scale are examined
more closely for the micro scale problem. The selected macro cells are
divided according to a finer grid consisting of micro cells at most 50
metres in diameter. The desired output of this sub-problem is the overall
desired minimum cost power line route.

58 SWI 2015 Proceedings

A major reason for the two-layer separation of the problem is based on costs
incurred by NM Group for determining the SVETIG weighting factors. The
SVETIG factors applied to the macro cells are inferred from cheap or free
satellite-based imagery and mapping data. By contrast, it is assumed that,
after the specific desired macro cells are identified, special surveillance missions
are carried out over those regions, with the aid of lasers mounted on helicopters
and similar (in particular, rather costly) data-acquisition methods, in order to
determine the more detailed SVETIG factors used at micro scale.

Since the micro level data is gathered and formulated by NM Group itself, there
is some flexibility in the defined size of micro scale cells. Naturally, the quality
of the solution may improve by using a finer tessellation on input; however,
much more computation time might be required to obtain the output.

1.2 Routing costs at different scales

As alluded to above, we permit significant differences in treatment of the prob-
lem when considered at different scales.

From the macro viewpoint, one may interpret it that we are unable to “see”
precise details of the routing: we need not account for the most accurate length
of the route, the specific number of towers placed, nor the corresponding angles.
Instead, we only roughly account for the presence and SVETIG impact of
power line routing through a given macro cell. As we will see later, this macro
problem reduces to a relatively simple minimum cost path problem, solved
efficiently using Dijkstra’s algorithm.

For the micro viewpoint, we narrow in on the output of the macro scale solu-
tion, i.e. we restrict attention to the subset of macro cells identified in the first
step and divide them into smaller cells. Here, more intricate aspects of the
routing problem come into effect. Specifically, for a placement of the towers
at the centres of some micro cells, we calculate the cost of the corresponding
power line routing by incorporating all the detailed cost contributions. That
means we consider not only the (detailed) SVETIG factors, but also structure
type, inter-tower distances, and angles at support towers.

Although essentially any reasonable mathematical combination of the cost fac-
tors described above can be handled by our method, we assume for concrete-

Power line route optimisation in a finite spatial grid 59

ness and simplicity that the following cost functions apply for routing through
a given micro cell:

• The cost of placing a tower is

– the material unit cost of a support tower

– multiplied by the SVETIG factor for placing a tower in that cell

– multiplied by the stretch penalty

– multiplied by the angle penalty.

• The cost of suspending power line is

– the material cost per unit length of power line

– multiplied by the SVETIG factor for suspending power line in that
cell

– multiplied by the length of power line intersecting that cell.

We require no special assumptions about the unit costs, SVETIG factors, or
penalty functions, except merely that they are fixed or monotone (decreasing
with respect to angle or increasing with respect to stretch length) and that
they are provided to us beforehand by NM Group.

1.3 Avoidance of “rubberbanding”

As a side remark, it is worth noting that NM Group originally gave a slightly
different formulation of the power line routing problem. They had suggested
to split the problem into three sub-problems, the macro and micro layers fol-
lowed by an ad hoc “rubberbanding” protocol. Essentially, this delays all angle
penalty considerations until the end. In other words, they suggested first to
find a micro solution excluding angle considerations, and then afterwards to
run a local perturbation procedure to fix and compensate for any undesirable
angle penalties.

In our work, we have circumvented the need for (or at least limited the benefit
of) this local adjustment procedure by directly incorporating angle penalties

60 SWI 2015 Proceedings

into the mathematical model. Of course, because of discretisation, there is
still the possibility of cost saving by “rubberbanding” upon the output of our
suggested algorithms, but typically this saving will be of less interest as it will
be much smaller than it was for their original approach. In order to eliminate
as much as possible the potential “rubberbanding” savings, the discretisation
could be made as fine as possible, but this would at the same time increase
computational requirements. We in fact recommend NM Group survey accord-
ing to micro cells that are the size of a tower’s base (rather than 50 metres in
diameter).

1.4 Outline and overview

In this report, we are mainly concerned with algorithmic solution strategies for
the above discretised problem. That is, subject to pre-determined unit costs,
SVETIG factors, and penalty functions, we demonstrate how to effectively
compute the desired optimal power line route, by solving first the macro and
then the micro level sub-problem. We first show that the macro level problem
can be solved both exactly and efficiently by a relatively straightforward appli-
cation of Dijkstra’s algorithm; we describe this solution in Section 2. We then
show that the micro level problem can be solved both exactly and efficiently
using a more involved modification and application of Dijkstra’s algorithm; we
describe this solution in Section 3. The efficiency for the exact micro level
solution is of a theoretical nature (i.e. the computational problem is solvable
in polynomial time), and unfortunately our algorithm in unvarnished form is
unlikely to produce timely solutions for the problems typically encountered by
NM Group in practice. We therefore found it appropriate to propose various
potential practical approaches to solving the micro level problem which we
describe in Section 4.

2 Macro step efficient exact solution

In the macro step a corridor is to be found. Within this corridor lies the
minimum cost path that connects the start and end points of the power line
route. Afterwards, more detailed information about the corridor is gathered.
Our algorithm will find the minimum cost corridor.

Power line route optimisation in a finite spatial grid 61

First an auxiliary weighted graph is built, then a minimum cost path in this
graph is found by applying for example Dijkstra’s shortest path algorithm [2].
We describe how to construct the weighted graph such that the shortest path
output is a minimum cost corridor. Moreover, the output corridor minimises
the Euclidean length of a polygonal curve between its end cells, optimised over
all such polygonal curves whose corners lie only at the centres of cells.

The previous algorithm used by NM Group was based on finding the minimum
cost path in a graph with weight on each of the vertices. In the hexagonal grid
this graph is obtained by letting every hexagon be a vertex which is connected
to all its neighbouring hexagons (see Figure 1). A problem that arises is that
the two paths connecting the top-left and bottom-right hexagons in Figure 2
both go through the same number of hexagons. If every hexagon has the same
cost, the algorithm of Dijkstra might well select the top-right path. When the
actual power line is built it will not necessarily pass through the centers of
the hexagons. Therefore the other path turns out to be much cheaper, as the
eventual total length is shorter. Hence, our first goal is to devise an algorithm
that selects a path of minimum cost and takes into account some measure of
Euclidean length of the path.

Figure 1: Each hexagon gets one
vertex inside and every vertex is
connected with the six vertices in
the six neighbouring hexagons.

Figure 2: The two paths con-
necting the top-left and bottom-
right hexagons go through the same
number of hexagons.

62 SWI 2015 Proceedings

2.1 Hexagonal grid

Instead of changing the algorithm, a different graph is constructed. The new
graph also encodes the Euclidean distance between the two neighbours in a
path as a cost. We will first describe how the graph is obtained and then show
why a minimum cost path algorithm will output the desired path.

Each hexagon gets six vertices inside which are cyclically connected forming a
new hexagon. Let v(h, e) be the vertex in the hexagon h closest to border-edge
e. Let h∗ be the neighbouring hexagon on the edge e, see Figure ?? where e is
the dashed edge between the hexagons h and h∗.

v(h∗, e)

h

h∗

e

v(h, e)

Figure 3: Left: Each hexagon (in cyan) gets a hexagon inside, where each
corner is a vertex. Each vertex is connected with an undirected edge to its
neighbours in the hexagon and with a directed edge to and from the closest
vertex in the neighbouring hexagon. Right: the vertices inside a hexagon are
labeled v(h, e) for begin in hexagon h closest to border e of the hexagon.

There is a directed edge from v(h, e) → v(h∗, e) having weight equal to the
cost of the hexagon h∗, i.e., the weight of the hexagon it enters. There is
also an edge from v(h∗, e) → v(h, e) having weight equal to the cost of the
hexagon h, again the weight of the hexagon it enters. Each interior edge in
the hexagon has very small weight. Let cmin be the cost of the hexagon with
minimal cost, and n the number of hexagons. Then every edge interior to a
hexagon is assigned a weight cmin/(3n).

A minimum cost path in this graph is a minimum cost path on the map. More-
over, for each inner polygon in this path, the distance between the centers of

Power line route optimisation in a finite spatial grid 63

its two neighbours is taken into account as a measure of the length of the path.
In Figure 4 two examples are given that illustrate how the distance measure
works. Let xh be the distance between the center points of the neighbours of
a hexagon h, that is interior to a path. The sum of xh over all inner hexagons
h of the path is less for the red paths than for the black paths. The red paths
are also of lower cost than the black paths since there are less interior edges
used.

Figure 4: The path on the left (in red) is of lower cost, as it uses fewer interior
edges.

2.2 Square grid

In a similar way as for the hexagonal grid, an auxiliary graph can be con-
structed for the square grid. A minimum cost path in this graph relates to
a minimum cost routing in the square grid. Each square gets four vertices
inside, cyclically connected. Each vertex has an outgoing edge to the vertex
in the next square. This edge gets the weight of entering the neighbouring
square. Let cmin be the cost of the square with minimal cost, and n the num-
ber of squares. Then every edge interior to a hexagon is assigned a weight
cmin/(2n).

Finding a minimum cost path in this graph gives a minimum cost path on the
map such that expensive squares are avoided and the path takes into account
some measure of Euclidean length of the path.

64 SWI 2015 Proceedings

3 Micro step exact solution

The corridor that is obtained in the macro-step is now filled in with more detail.
We assume that the grid on top of the map is fine, that is, the area covered
by one polygon (triangle, square or hexagon) is close to the area needed to
build a post. This ensures that we do not have to take into account where
in a polygon the post is placed, each post will be placed in the centre of a
polygon. For each polygon we now consider the more specific costs as defined
in Section 1.2.

In Section 3.1 we will describe how to build an auxiliary graph, with costs on
the edges, such that a minimum cost path in this graph gives a minimum cost
solution to the micro problem. Dijkstra’s algorithm can be used to find such
a minimum cost path in the auxiliary graph. In Section 3.2 we will show that
there is a bijection between the paths in the auxiliary graph and the routings
in the micro corridor. Moreover we show that the minimum cost paths in the
auxiliary graph are in bijection to the minimum cost routings in the micro
corridor. In Section 3.3 we describe how to calculate the costs on the edges of
the auxiliary graph in the case of a square grid. We conclude by discussing the
complexity of Dijkstra’s algorithm on the auxiliary graph in Section 3.4.

3.1 Preprocessing for Dijkstra’s algorithm

We assume that the maximal distance between two towers is bounded by some
value K. This is a valid assumption, as there is a value for which the cost that
comes from the distance between two consecutive posts becomes too high to be
feasible or reasonable. Recall that this cost is denoted by stretch penalty. We
will construct a directed graph such that a minimum cost path in this graph
describes a minimum cost route in the original grid.

Suppose that from a polygon we can reach k other polygons with one stretch,
i.e., the two polygons are consecutive posts in a path. Note that this includes
steps of all lengths up to the maximum length K (see Figure 5). Recall that
the posts are placed in the centre of a polygon and the maximum distance
between two posts is thus K. Therefore, the set of reachable polygons from a
polygon p is the set of polygons with centre point at distance at most K from
the centre point of p.

Power line route optimisation in a finite spatial grid 65

Figure 5: The dark square (hexagon) represents the current location, the lighter
areas represent the possible landing spots coming from the dark area.

Let A be the starting point, B be the target point and let p be any polygon.
For each polygon p let n1, . . . , nk be the reachable polygons. We introduce k
dummy vertices for p. Each dummy vertex is labeled (p, nl) for l = 1, . . . , k. A
dummy vertex (p, nl) represents that the current location is p and this location
is reached by coming from nl. For A there is only one vertex introduced,
denoted by (a, ∅), which is the starting point of the path. For B there is a
vertex (b, j) for all polygons j from which B can be reached and a vertex (∅, b)
which is the end point of the path.

The vertex (a, ∅) has only outgoing edges: (a, ∅)→ (m, a) for every reachable
polygonm = 1, . . . , k of A. The vertex (∅, b) has only incoming edges: (m, b)→
(b, ∅) for every reachable polygon m = 1, . . . , k of B. For every other vertex
(p, nl) there is a directed edge to (nm, p) for each reachable polygon m =
1, . . . , k. A small example is given in Figure 6. The weight on such an edge
between (p, i) and (j, p) represents the costs made for placing a post in p.

The costs involved in placing a post in p between i and j are:

• the material unit cost of a support tower;

• multiplied by the cost of the placement at p (the SVETIG factor);

• multiplied by the cost of the angle structure needed at p;

• multiplied by the stretch penalty, which depends on the maximum of the
two distances between p and i and between p and j.

There are also costs of suspending the power line. On an edge (p, i) → (j, p)

66 SWI 2015 Proceedings

1 2 3

4 5 6

7 8 9

10 11 12

(5,2) (5,4) (5,6) (5,8)

(2,5) (4,5) (6,5) (8,5)

Figure 6: Part of the graph that is built: the square labeled 5 can stretch to any
of its direct neighbours 2, 4, 6 and 8, therefore the vertices (5, 2), (5, 4), (5, 6)
and (5, 8) are introduced. From each of these there is a directed edge to all
the reachable neighbours: (2, 5), (4, 5), (6, 5) and (8, 5).

we incorporate the suspending costs between p and j. The suspending costs
between i and p will be taken into account in the edge that ends in (p, i).

Recall that the suspending costs per polygon are:

• the material cost per unit length of power line;

• multiplied by the SVETIG factor for suspending the power line in this
polygon;

• multiplied by the length of the power line intersecting this polygon.

All the relevant information for the placing costs in p and the suspending costs
between p and j is known at the time of selecting the edge (p, i) → (j, p).
Therefore, all the costs can be incorporated on this edge.

The outgoing edges of (a, ∅) are charged in the same way, the placing of the
post in A and the suspending costs between A and the target. The incoming
edges of (∅, b) are only charged with the placing cost of the tower in B. In
Section 3.3 we will describe in detail how to calculate the costs on an edge in
the case of a square grid.

The directed graph has at most k dummy vertices for each polygon in the grid.
The polygons on the boundary will give rise to strictly less than k dummy
vertices. Suppose the grid has m polygons. Then the graph will have approx-

Power line route optimisation in a finite spatial grid 67

imately k ·m vertices. Each vertex has at most k outgoing edges. Therefore
the resulting graph will have approximately k2 ·m edges.

On the resulting directed graph, Dijkstra’s algorithm or any other shortest
path solver can be applied to obtain the minimum cost route in the original
grid. We will discuss the running time of this algorithm later in Section 3.4.
First we will show that there is a bijection between a minimum cost path in
the directed graph and a minimum cost routing in the grid.

3.2 Validation

Let A and B be the points that need to be connected by a power line. Let
P be the collection of paths that connect A and B, such that the distance
between two neighbouring posts is at most K. Let k be the maximum number
of polygons at distance at most K. Let D be the directed graph obtained as
described in the previous section, where (a, ∅) and (∅, b) represent A and B
and D is such that at most k polygons are at distance at most K. Let Q the
set of directed paths from A to B in D.

Claim. There is a bijection φ between P and Q such that for every pair p ∈ P
and φ(p) = q ∈ Q the costs of p and q are equal.

Proof. Let p ∈ P be a path fromA toB using the polygonsA = i0, i1, . . . , im, im+1 =
B. We show how to obtain q = φ(p). Start with q = ((a, ∅), (i1, a)). For every
step between two polygons ij and ij+1 in p, the distance is at most K. There-
fore, the directed edge (ij , ij−1) → (ij+1, ij) must exist in D and we can add
(ij+1, ij) to q. Last, we add (∅, b) to q and we have q ∈ Q.

On the other hand, every path q ∈ Q is mapped to a path φ−1(q) = p ∈ P.
Let q be the path:

(a, ∅)→ (i1, a)→ . . .→ (ij , ij−1)→ (ij+1, ij)→ . . .→ (b, im)→ (∅, b) .

The path p can be obtained from q by selecting the path in P that consecutively
visits the polygons A, i1, . . . , im, B. This path must exist in P since all steps in
q imply that the consecutive posts are at most at distance K from each other.

Let p ∈ P and φ(p) = q ∈ Q. The costs of the polygons used (with placing a
post or by suspending over it) in p are the same as in q. The distances between

68 SWI 2015 Proceedings

two subsequent posts and the angles at the posts are also the same in p as in
q. Therefore, the cost of p must be equal to the cost of q.

It follows that if p is a minimum cost path in P then φ(p) = q must be a
minimum cost path in Q. Therefore, the solution that a minimum cost path
algorithm will give when applied to the directed graph, is a minimum cost path
within the macro corridor for the original problem.

3.3 Calculation of costs

In this section we will describe how to calculate the cost of an edge in the
directed graph. We will consider the case of a square grid, the calculations can
be done for a hexagonal grid as well, if necessary. In the square grid we let the
topleft corner be the origin. We start by introducing some notations.

• p, q, r, . . . generally denote points in the Euclidean plane, which are the
center point of the squares sp, sq, sr, . . . respectively.

• i, j generally denote the horizontal respectively vertical distance from the
origin, and therefore also indicate a column (i) and a row (j).

• cS(p, q) is the cost function of the wires going over the area between p
and q, say the suspension costs.

• cP(p, q, r) is the cost of placing a post in q coming from p and going to
r, which is the landing cost of the tower for the given angle.

We consider the edge (sq, sp)→ (sr, sq), this denotes that we have subsequent
post in p then q and then r. The weight of this edge is:

cS(q, r) + cP(p, q, r) .

When (sq, sp)→ (sr, sq) is chosen, the costs of everything that has to do with
the post in sq is charged as well as the cost of the wiring on top of the squares
between q and r.

For the incoming edges to (∅, sB), there is only the costs of placing a post in
B:

(sB, sq)→ (∅, sB) has cost cP(q,B, ∅) .

Power line route optimisation in a finite spatial grid 69

3.3.1 Calculation of suspension costs

The function cS depends on the material cost, the SVETIG factors of the
polygons over which the suspending takes place and the length of the power
line over such a polygon. To capture this in the definition of cS we introduce
some notation.

• lpq is the line on which p and q lie.

• crosV(pq, x) is the crossing of the line lpq with the vertical at coordinate x,
crosH(pq, y) is the crossing of the line lpq with the horizontal at coordinate
y.

• Sij , Sp represent the SVETIG factor of the squares sij and sp respectively.

• len(pq) is the length of the line-segment between p and q and len(sij , pq)
is the length of the line lpq in the square sij .

• W represents the cost of the wire per length factor.

The value cS(p, q) is calculated by summing over all columns in which the line
segment appears (i), then over the rows in which the line segment appears in
the i-th column (j). The sum then consists of the length of the line segment
within square sij (len(sij , qr)) times the weight of the square sij . If necessary,
the additional costs of the wires of length len(p, q) can be added. Formally, we
have the following expression:

cS(p, q) = len(pq) ·W +

dqxe∑

i=bpxc

crosV (pq,i+1)∑

j=crosV (pq,i)

Sij · len(sij , pq) .

We will now explain how to calculate the crossing points and the length of the
line-segment in a particular square. Any point on the line that goes through p
and q is described with:

lpq(t) = (q − p)t+ p .

The line segment between p and q is given by varying t from 0 to 1. To obtain
a value for crosV(pq, i), we use the time t∗ such that the x-coordinate of lpq(t)

70 SWI 2015 Proceedings

is i. Here êy denotes the vertical unit vector.

crosV(pq, i) =





py if t∗ ≤ 0
qy if t∗ ≥ 0
lpq(t

∗) · êy otherwise

For every square sij the point of entry (en) and the point of exit (ex) of the
line lpq are computed. The length of the line-segment in the square is then
equal to the Euclidean distance between en and ex, that is,

len(sij , pq) = ||en − ex||2 .

3.3.2 Calculation of tower costs

The function cP depends on the material cost of a support tower, the SVETIG
factors of the polygon in which the tower is built, the angle structure that is
needed for this tower and the stretch penalty. To capture this in the definition
of cP we introduce some notation.

• P (q) represents the cost of placing a post in sq.

• L(p, q, r) represents the stretch penalty, that is, the extra costs at q
induced by the maximum distance between q and its two neighbours.

• A(p, q, r) represents the angle penalty that depends on the angle at q.

Using this notation, we calculate the cost of placing a post in q coming from p
and going to r as:

cP(p, q, r) = P (q) · L(p, q, r) ·A(p, q, r) .

Both L and A are step functions.

The function L depends on the maximum of len(pq) and len(qr). There is a
table that contains the value of L(p, q, r) given max(len(pq), len(qr)) < ` for
different values of `.

The angle at q can be computed using the coordinates of p, q and r. Consider
the two vectors ~a = (px − qx, py − qy) and ~b = (rx − qx, ry − qy). The angle

Power line route optimisation in a finite spatial grid 71

at q is the same as the angle between the two vectors. The angle between two
vectors, denoted by θ, can be computed using the default dot product

~a ·~b = ||~a||2||~b||2 cos(θ)

where ~a ·~b represents the dot product between two vectors. Let px, py (respec-
tively qx, qy and rx, ry) represent the coordinates of p (respectively q and r)
then the angle at q is given by:

cos(θ) =
~a ·~b

||~a||2||~b||2
=

(px − qx)(rx − qx) + (py − qy)(ry − qy)√
(px − qx)2 + (py − qy)2

√
(rx − qx)2 + (ry − qy)2

.

The function A depends on the angle at q. There is a table that contains the
value of A(p, q, r) given that the angle at q is at most α for different values of
α.

3.4 Complexity of solving shortest path problems

In the previous section we have described how the problem can be formulated
as a minimum cost path problem in a directed graph. This is equivalent to a
weighted shortest path problem in a directed graph. There are several algo-
rithms known that solve this problem in polynomial time. An example is the
famous algorithm of Dijkstra [2]. Dijkstra’s original algorithm has a running
time of O(|V |2) where |V | denotes the number of vertices in the graph.

The implementation due to Fredman and Tarjan [3] is asymptotically the
fastest known shortest-path algorithm for directed graphs with non-negative
weights. This algorithm has time complexity O(|E| + |V | log(|V |)) and space
complexity O(|V |2), where |E| is the number of edges. Consider the graph we
have built in the previous sections. The graph has k2m edges and km vertices,
where k is the number of reachable neighbours andm is the number of polygons
in the micro corridor. This relates to a running time of O(k2m+ km log(km))
and space requirement of O(k2m2).

Let us briefly consider the rough boundaries of a problem that could arise in
practice (as we were informed by NM Group). Suppose that the grid consists of
squares and each square covers 20×20 square metres. The distance between A
and B is approximately 50 kilometres and the micro corridor is approximately

72 SWI 2015 Proceedings

50 kilometres long and 4 kilometres wide. This yields m ≈ 2500 × 200 =
500, 000. Suppose the distance between two posts is at most 2 kilometres.
Recall that k is the number of squares whose centre point lies within distance
K = 2 kilometres, from the centre point of some chosen square. For a square
grid k can be found using the solution to the so-called Gauss circle problem:
“How many lattice points are there in a circle with radius r that is centred at
the origin”. For bounded radius this number can be found using the following
formula [7]:

N(r) = 1 +
∞∑

i=0

(⌊
r2

4i+ 1

⌋
−
⌊

r2

4i+ 3

⌋)
.

In our case the lattice points are the centres of the squares, therefore one unit
relates to 20 metres. The radius in units is 2000/20 = 100 and N(100) =
31, 417. In this example the directed graph will have approximately 500, 000×
31, 417 ≈ 15.8 billion vertices and even more edges.

Although we have shown that the micro level problem can be solved efficiently
in theory, the above rough calculation suggests that in practice it may be
prohibitively expensive, both in terms of computational time and memory
storage requirements, to obtain an exact solution. In the next section, we
will describe some heuristic algorithmic strategies which could be efficient in
practice.

4 Heuristics and metaheuristics

In this section, we propose a set of simple heuristics that have the purpose
of quickly providing solutions to the micro level problem. First, we present
the main ideas and the algorithmic description of constructive heuristics that
try to build initial paths. Then, we propose several improvement heuristics
based on quick perturbations of paths. Finally, we describe ways of combining
the proposed heuristics by using a metaheuristic, namely the Tabu Search
strategy.

To describe the heuristics, we use the following nomenclature and notation.
Let N be the number of polygons used in the micro step, so that H =
{h1, h2, . . . , hN} is the set of polygons. We assign each polygon to a unique pair
(i, j) that corresponds to its grid position. This way we may conveniently refer

Power line route optimisation in a finite spatial grid 73

to a polygon hk ∈ H as h(i,j) by using this map. We assume the grid is given
by nR rows and nC columns, such that nR × nC = N . We denote by hS and
hE the starting and ending polygons of the problem, respectively. In addition,
(iS , jS) and (iE , jE) are the grid positions of hS and hE , respectively.

4.1 Constructive heuristics

The first heuristic we propose is a greedy algorithm that starts from hS and
iteratively selects other polygons as landing points until hE is reached. This
constructive heuristic, called CH1, is detailed in Algorithm 1. Note that we
use the function movecostij(p, q) to compute the total cost of jumping from
any polygon h(i,j) to another reachable polygon h(p,q). Such cost can be im-
plemented as described in Section 3.3. This heuristic goes from one polygon
to another only if there are no obstacles between them. There is no guarantee
of finding a feasible path at the end of the heuristic (we provide some ways of
getting rid of this disadvantage ahead in this section).

A tentative way of improving heuristic CH1 would be to allow infeasible jumps,
i.e. going from one polygon to another even though there are obstacles be-
tween them. To be consistent with the optimisation objective, such infeasible
jumps should incur penalisation costs. With this in mind, we propose a second
constructive heuristic, called CH2, which is similar to CH1 except for allow-
ing infeasible paths. CH2 is presented in Algorithm 2. Note that we use the
function movecostinfeasij(p, q) to compute the cost of jumping from a poly-
gon h(i,j) to a reachable polygon h(p,q). This function is similar to that used
in Algorithm 1, but has to incorporate additional costs to penalise infeasible
jumps.

The third constructive heuristic, CH3, works in a different way in relation to
the two previous ones. It starts with the path (iS , jS)→ (iE , jE) even though
this may be infeasible (due to obstacles or a large number of jumps). Then,
new polygons are inserted in the path iteratively, in order to improve the total
cost of the path. The heuristic is defined in Algorithm 3.

In all the algorithms presented above, we can introduce randomness with the
aim of improving their performance. This can be done in many different ways
and we mention a few in the following, without going into details. One first
idea is to insert random perturbation costs in the computation of the moving

74 SWI 2015 Proceedings

PATH = {(iS , jS)};
(i, j) = (iS , jS);
end_reached = 0;
while i ≤ nR and j ≤ nC and end_reached = 0 do

set h(i,j) as the current landing point;
w = 3;
candidates = 0;
while candidates = 0 and w ≤ nR do

for r = 1 to w do
for s = -w to w do

if i+ r ≤ nR and 1 ≤ j + s ≤ nC and move is feasible then
if i+ r = iE and j + s = jE then

ars = −1;
end_reached = 1;

else
ars = movecostij(i+ r, j + s);

end
candidates = 1;

end
end

end
w = w + 1;

end
if (candidates = 0) then

STOP: no solution found;
end
(r̂, ŝ) = argminr,s{ars};
update total costs;
i = i+ r̂;
j = j + ŝ;
add (i, j) to PATH;

end
return PATH as solution;

Algorithm 1: Constructive heuristic 1 (CH1).

Power line route optimisation in a finite spatial grid 75

PATH = {(iS , jS)};
(i, j) = (iS , jS);
end_reached = 0;
w = 3;
while i ≤ nR and j ≤ nC and end_reached = 0 do

set h(i,j) as the current landing point;
for r = 1 to w do

for s = -w to w do
if i+ r ≤ nR and 1 ≤ j + s ≤ nC then

if i+ r = iE and j + s = jE then
ars = −1;

else
ars = movecostinfeasij(i+ r, j + s);

end
candidates = 1;

end
end

end
(r̂, ŝ) = argminr,s{ars};
update total costs;
i = i+ r̂;
j = j + ŝ;
add (i, j) to PATH;

end
return PATH as solution;

Algorithm 2: Constructive heuristic 2 (CH2).

76 SWI 2015 Proceedings

PATH = {(iS , jS), (iE , jE)};
set total cost as movecostinfeasiSjS (iE , jE);
candidates = 1;
w = 3;
while i < nR and j < nC and candidates = 1 do

candidates = 0;
best_cost =∞;
foreach two neighbour pairs (i1, j1) and (i2, j2) in PATH do

i = (i1 + i2)/2;
j = (j1 + j2)/2;
for r = -w to w do

for s = -w to w do
if 1 ≤ i+ r ≤ nR and 1 ≤ j + s ≤ nC then

if i+ r 6= i1 or i+ r 6= i2 or j + s 6= j1 or j + s 6= j2 then
ars = insertioncostinfeas(i+ r, j + s);
candidates = 1;

end
end

end
end
(r̂, ŝ) = argminr,s{ars};
if (best_cost > ar̂ŝ) then

î = i+ r̂;
ĵ = j + ŝ;

end
end
if (candidates = 0) then

STOP: no solution found;
end
update total costs;
add (̂i, ĵ) to PATH;

end
return PATH as solution;

Algorithm 3: Constructive heuristic 3 (CH3).

Power line route optimisation in a finite spatial grid 77

and insertion costs. This would force the algorithm to choose jumps that are
not the best at the moment, but which may contribute to a better global
solution (as the algorithm becomes less greedy). Another idea would be to
restrict the jumps only to randomly chosen polygons in a small neighbourhood
of the current one, instead of considering all the reachable polygons. When
included in the previous algorithms, these ideas (and many others) have the
potential to construct better routes, especially when used in a metaheuristic
context.

4.2 Path perturbation heuristics

The heuristics proposed so far have the purpose of quickly providing an initial
solution of the problem. On the other hand, the quality of the solution may
be poor and in the worst case no path is obtained. Therefore, we propose
some perturbation heuristics, also known as improvement heuristics, with the
purpose of improving the paths obtained by the constructive heuristics. These
are also simple and quick heuristics and they work by changing an existing
path by means of adding, removing or replacing one or more polygons. Hence,
we assume that an initial path of K polygons is available, which we denote
by the ordered set PATH = {(i1, j1), (i2, j2), . . . , (iK , jK)}. The heuristics are
described as follows:

1. Add polygons to path. For each k = 1, . . . ,K − 1, select the pair of
polygons h(ik,jk) and h(ik+1,jk+1), with (ik, jk) and (ik+1, jk+1) in PATH.
Then, compute the cost of inserting a reachable polygon h(i,j) between
those two such that (i, j) /∈ PATH. After computing all these insertion
costs, carry out only one insertion, namely that one with the minimum
insertion cost. This will increase the path by one polygon, which may
reduce the total cost (e.g. if a penalisation for crossing an obstacle in the
original path is removed after the insertion). Even when the total cost
of the resulting path becomes worse, this path can be stored as an alter-
native solution with the purpose of being useful e.g. in a metaheuristic
environment, as we describe later in this section.

2. Remove polygon from path. Compute the new total cost of removing
one polygon at a time from the current path. Then, the resulting path
is obtained by removing the polygon that corresponds to the best total
cost among all the others. Again, even if the total cost of the resulting

78 SWI 2015 Proceedings

path is worse than that of the original path, it can be useful to store the
resulting path to be later used in a metaheuristic environment.

3. Replace polygons in path. For each (i, j) ∈ PATH, compute the change
in the total cost given by replacing the corresponding polygon h(i,j) by
one of its neighbours in the grid, namely h(i+r,j+s) for −w ≤ r ≤ w,
−w ≤ s ≤ w and w > 0, such that 1 ≤ i+ r ≤ nR and 1 ≤ j + s ≤ nC .
Then, after computing all the changing costs, replace the polygons that
lead to a new path with the best total cost among all the others.

We can introduce randomness to these heuristics in a similar way as previously
proposed for the constructive heuristics. This can be useful to provide better
solutions, especially if we are able to call the heuristics several times. Indeed,
to get the best of these heuristics we can combine all them together and use
a metaheuristic algorithm to coordinate their interaction, as described in the
next section.

4.3 Metaheuristics

There are many metaheuristics proposed in the literature, such as Tabu Search,
Genetic Algorithms, Ant Colony Optimisation and Simulated Annealing [4].
These methods have been widely used in the last decades to find feasible solu-
tions for many hard combinatorial optimisation problems [1], especially when
modeling practical situations. Although having different motivations, meta-
heuristics have a common basic idea: they start with one or more initial so-
lutions and then use a set of simpler heuristics to iteratively perturb these
solutions, with the aim of obtaining better quality solutions at the end. These
perturbations are important not only to improve the quality of the initial solu-
tions, but also to get rid of local optima. This way, a metaheuristic is able to
exploit several neighbourhoods of the feasible set, which increases its chances
of finding an optimal solution of the problem (or getting closer to it) in relation
to a standard heuristic.

All the constructive and perturbation heuristics described earlier in this sec-
tion can be used to build a metaheuristic method. The constructive heuristics
proposed in Section 4.1 can provide initial solutions to the method, especially
when randomness is incorporated, so that many different solutions may be
provided. Then, at each iteration of the metaheuristic, the path perturba-

Power line route optimisation in a finite spatial grid 79

tion heuristics proposed in Section 4.2 may be used to try to get paths that
are better than those found so far as well as to diversify the current search
space.

To exemplify the use of a metaheuristic in this context, we describe a Tabu
Search (TS) method [5] that relies on the previously defined heuristics. There
are different variants of TS and furthermore the algorithm described below may
be implemented in different ways. The most appropriate variant/implementation
depends on the type of the problem, heuristics used to construct and perturb
solutions, data structures, computer environment, and many other character-
istics. This way, to obtain a TS implementation that works well in practice,
it is important to test with different strategies and parameter choices first and
then stick to the best setting.

The main idea of TS is to keep a tabu list to indicate which changes are prohib-
ited when the perturbation heuristics are called. This tabu list is dynamically
updated through iterations, so that some prohibited changes remain in the list
for a given number of iterations. After a change is removed from the tabu list,
it becomes allowed again. This is the way that TS algorithms try to get rid of
local optima.

Let S = {PATH1, PATH2, . . . , PATHP } be an ordered set of solutions, using
the total cost of each path as its ranking value. We denote by TL the tabu
list that contains the perturbations (moves) that must be prohibited in the
current calls to the path perturbation heuristics. This can be implemented as
a simple circular list so that old entries are replaced by new ones through the
iterations (which makes this tabu list dynamic). Finaly, we define an ordered
set C that contains the paths that result from the path perturbation heuristics.
Using this notation, the TS method is presented in Algorithm 4. The stopping
criterion of the algorithm is not particularly defined, as it depends on the
implementation. The usual criteria are given by reaching a maximum running
time or a maximum number of iterations of the algorithm.

There are several open steps in Algorithm 4. One of them is how to choose
index i in line 5. For instance, by choosing i = 0 we take the path with
the currently best total cost. This may be a good choice for getting better
solutions in the improvement heuristics, but other choices may be useful to
generate solutions that allow to exploit other neighbourhoods of the feasible
set. Hence, an implementation of the algorithm should consider different ways

80 SWI 2015 Proceedings

Initialise set S by calling the constructive heuristics;
TL = ∅;
while stopping criterion is not reached do
C = ∅;
Choose an index i such that PATHi ∈ S;
Apply the improvement heuristics to PATHi allowing only the
perturbations that are not in TL;
Add to C all the paths resulting from the perturbation heuristics;
Select K paths from C, add them to S and add the perturbation moves
that originated them to TL;

end
if (S = ∅) then

STOP: no solution found;
end
Return PATH1 as the best solution found for the problem;

Algorithm 4: Tabu search method (TS).

of carrying out this step. These comments apply to other parts of the algorithm
as well, such as the size of K and how to select the paths from C.

5 A probabilistic viewpoint for further study

A classic topic in probability theory is first passage percolation, cf. Hammers-
ley and Welsh [6]. This topic is generally concerned with the following basic
question. Given some growing sequence of graphs — think of regular struc-
tures such as the two-dimensional grid or the complete graph — whose vertices
or edges are given a random distribution of weights, what is a good asymp-
totic description of the lowest weight path (geodesic) between two specified
vertices?

As an offshoot of the SWI problem, it could be natural and novel to consider
a variant of first passage percolation that incorporates some aspects of power
line routing. Although interesting, this is beyond the scope of this project and
report. We only sketch a simplistic model problem which might be considered
along these lines. The following is a variant of first passage bond percolation.
(Note that more complex variants of first passage site percolation might model

Power line route optimisation in a finite spatial grid 81

the original problem more faithfully.)

The underlying graph is an n × n grid, embedded in the plane, whose nodes
are given some random weights, according to a given probability distribution.
Here we define a power line route to be a sequence of mutually distinct points
of the grid, every consecutive pair of which is within distance k, according to a
given norm. The calculation of the cost of a power line route takes into account
two components, weighted separately. First, it incorporates the length of the
polygonal curve (which accounts for the cost of the power line). Second, it
includes the cumulative cost of all the nodes in the sequence (which accounts
for the cost of the tower construction). The cost of each node is calculated as
a product of the weight at that node and some given function of the lengths
and angle θ of the incident line segments. (A particularly simple example of
the last-mentioned function is, say, the product of the incident line lengths and
|π−θ|, though other simple choices could be more interesting or realistic.) The
problem is to determine the asymptotic behaviour (as n → ∞) of the lowest
cost power line routing between (1, 1) and (n, n).

As far as we are aware, this type of model, particularly with the penalty cost
for acute angles in the polygonal curve, has not been studied in the literature
before.

6 Conclusion

In this report, we have addressed a real-life problem faced by the company NM
Group, a problem called power line routing. We considered the problem at two
different scales of discretisation, namely macro and micro levels. For macro
level routing, we proposed a new algorithm that overcomes an issue faced by a
previous algorithm used by the company. We also comprehensively addressed
the more detailed micro level routing problem. We proposed several different
algorithmic solution strategies, one of which is exact, the others of which are
heuristic or approximate. In particular, we have encoded the problem in an
auxiliary weighted directed graph, the shortest path of which corresponds ex-
actly to a minimum cost solution for the micro level routing problem. This
leads to an exact algorithm for determining the optimum that, while theoreti-
cally efficient, is unlikely to be computationally practical. So we also proposed
several heuristics including path perturbation and metaheuristics, all of which

82 SWI 2015 Proceedings

have decent hope of producing reasonable candidate solutions in reasonable
time/space.

Acknowledgments

This research was done during the Study Group Mathematics with Industry
2015 (SWI) in Utrecht. We would like to thank the organisers of the study
group for creating the wonderful atmosphere.

The authors thank NM Group representatives Paul Richardson and Chris
Williams for presenting the problem and readily answering all of our ques-
tions about power line routing and mapping.

We gratefully acknowledge Aleksandra Stojanova, Dusan Bikov, Giorgi Khimshi-
ashvili, Natasha Stojkovikj and Zlatko Varbanov for pleasant conversations
during the study group and for their valuable comments and suggestions.

References

[1] C. Blum and A. Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys (CSUR),
35(3):268–308, 2003.

[2] E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959. doi: 10.1007/BF01386390.

[3] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithms. J. ACM, 34(3):596–615, 1987.
doi: 10.1145/28869.28874.

[4] F. Glover and G. A. Kochenberger. Handbook of metaheuristics. Springer
Science & Business Media, 2003.

[5] F. Glover and E. Taillard. A user’s guide to tabu search. Annals of Oper-
ations Research, 41(1):1–28, 1993.

[6] J. M. Hammersley and D. J. A. Welsh. First-passage percolation, subad-
ditive processes, stochastic networks, and generalized renewal theory. In

Power line route optimisation in a finite spatial grid 83

Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, CA,
pages 61–110. Springer-Verlag, New York, 1965.

[7] D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. AMS
Chelsea Publishing, 1999.

84 SWI 2015 Proceedings

