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Abstract

The physical anatomy of cancer patients who receive radiotherapy
treatment may change over time due to e.g. weight loss and tumor de-
formation. The treatment plan for the patient is based on a CT scan
that is made approximately one week prior to treatment. However, when
the anatomy of the patient has changed, the treatment plan may no
longer be optimal. How can adjustments to the treatment plan be made
when changes in the anatomy of the patient are observed? In this paper
we report on this ‘cancer treatment’ problem posed by the Netherlands
Cancer Institute. We formulate the problem as an optimization problem.
Different deformations are investigated for a toy model and optimization
methods are tested on this model. We consider three different optimiza-
tion algorithms, with a main focus on the Gauss-Newton method. This
method turns out to work relatively well for some specific deformations
in our simple model. Other methods are also considered and their ad-
vantages and disadvantages are described, keeping in mind more realistic
situations than we consider here.

keywords: adaptive radiotherapy, dose planning, deformations, optimiza-
tion, Gauss-Newton, Particle Swarm

1 Introduction

This paper reports on findings of the ‘cancer treatment’ problem, as posed by
the Netherlands Cancer Institute (NKI) at the Study Group Mathematics with
Industry 2015, held at Utrecht University. Every year, 469 per 100.000 inhab-
itants over 18 years in The Netherlands are diagnosed with cancer. Around
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fifty percent of cancer patients are still alive five years after the diagnosis and
the number of treatment with radiotherapy increases [5|. The Netherlands
Cancer Institute (NKI) is a national center dedicated to cancer and plays an
important role as a national and international center of scientific and clinical
expertise, development and training. One of their ongoing research topics is
on improving the efficacy of radiotherapy treatment plans.

If a person is scheduled to receive radiotherapy treatment, a CT scan is made
prior to the treatment. The time between the CT scan and the actual treatment
is usually between one and two weeks. The CT scan is made to obtain detailed
information about the tumor and the surrounding area. Using this information,
an accurate though time intensive optimization method is used to acquire the
optimal settings of the machine and the corresponding dose distribution. To
explain these terms, a closer look at the treatment settings is needed.

Figure 1: Treatment settings. Image courtesy of Rene Tielenburg.

Figure 1 shows the treatment set-up. In this set-up the patient lies on the
treatment table. The radiation source is located in the LINAC (linear acceler-
ators) head. Within this head there are leaves, the settings of which determine
the shape of the beam that radiates the patient. This head rotates around the
table. At every rotation step, the settings of the leaves within this device, are
adjusted such that after a full rotation the optimal dose is delivered. An opti-
mal treatment is defined to mostly affect the tumor, whereas the surrounding
tissue, especially the vital organs, should be left alone as much as possible to
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avoid damaging healthy tissue.

The actual treatment based on the treatment plan derived from the CT scan
ideally starts one (but maximum two) week(s) after the CT scan was made.
In this period, the anatomy of the patient may have changed, causing a lot of
differences compared to when the CT scan was taken, such as changes in the
size of the tumor, weight loss of the patient, posture changes and many other
deformations and changes. Thus, applying the original treatment plan to the
patient may lead to a sub-optimal dose distribution.

To avoid large amounts of healthy tissue being targeted by radiotherapy, the
current procedure is to take another scan of lesser quality of the patient right
before the treatment starts. This scan is taken with the imaging device CBCT
(cone beam CT) which is part of the treatment device (Figure 1). If the
outcome of this scan differs substantially from the data of the CT scan, the
treatment is stopped and the entire procedure starts all over, i.e. another CT
scan and subsequently a new treatment plan is made. If the deformations are
small, the original treatment is applied to the patient.

NKI asked us to developed or propose a method that determines the optimal
settings of the leaves using the initial correct dose, the initial data from the
CT scan and the data of the CBCT. These new settings have to be obtained
within a few minutes because the treatment has to be applied directly after
the scan of the CBCT.

In Section 2, we formulate the problem as an optimization problem. In sec-
tion 3 three different methods to solve this optimization problem are proposed
to solve this type of problem: the Gauss-Newton method, evolutionary al-
gorithms (with a focus on the Particle Swarm optimization algorithm), and
a gradual deformation based approach. In Section 4, four different tumor-
deformation scenarios are considered and the Gauss-Newton is used to solve
the optimization problem for these scenarios.! The Particle Swarm optimiza-
tion is applied to one of the four scenarios and compared to the result obtained
with Gauss-Newton. Finally, in Section 5 conclusions and recommendations
are presented.

L After the study week it was discovered that there was a mistake in the code that we had
worked with. We corrected this afterwards and the results presented in these proceedings
are the results for the corrected code. As a bonus, finding this mistake also greatly improved
our results.
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2 Formulation of the problem

2.1 The optimization problem

The problem put forward by the NKI is essentially an optimization problem,
so we formulated it as such. More specifically, we approached it as a non-linear
least squares problem of the form

argmin || D(#, 1) — Ds|*. (1)

Here ¢ denotes the configuration of the linear accelerator, P is a set of parame-
ters describing the patient during treatment and D(¢, Py) is the dose delivered
to this patient when the configuration ¢ is used. The dose Dg, which we try
to approximate, is similar to the dose absorbed by the undeformed patient
under the original plan, but has been transformed using the deformation of
the patient

We proceed by providing a more detailed description of the variables ¢ and P,
as well as the dose function D and the target dose Dyg.

2.2 Variables and parameters

During a treatment session, the LINAC head moves around the patient, stop-
ping at Ngiops different positions along the way. At each position, the opening
formed by the multileaf collimator can be adjusted by changing the positions
of its 2 Nieaves leaves. We denote the positions of the j-th pair of leaves while
the head is at position 7 by «;; and 3;;, and the time the head stays at posi-
tion ¢ by 7; (Figure 2). These variables are subject to the linear constraints
omin < o < Bij < Bmin and 7; > 0. For the machine used by the NKI,
Nstops = 90 and Njeaves = 40, which means that the total number of variables
is 2 Nstops Nieaves + Nstops = 7290. This number can be doubled by having the
LINAC head make two passes, so that it stops at every position twice.

For our purposes, the patient is effectively described by a density function
p(r) and an attenuation function p(r). Together with the configuration of
the device, these determine how much energy is absorbed at every point in
the patient’s body. For the sake of brevity, we write ¢ = («, 8, 7) for the full
configuration of the linear accelerator and P = (u,p) for the relevant data
concerning the patient.
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Figure 2: Overview of the leaf configuration.

2.3 The dose function

The total dose absorbed by a point = inside the patient’s body during a treat-
ment session is the sum of the contributions of all rays passing through the
multileaf collimator.

If we ignore partial transmission through the rounded edges of the leaves, the
total dose absorbed at a point 7 is given by

Nstops Nicaves

Bij i
PP =S 7 Y / / U den Py dnde,  (2)
i=1 j=1 7

ij Ni—1

where d;(&,n, P) is the dose delivered per unit time by an infinitesimally small
(conical) beam going through the point (£, n) in the collimator while the emitter
is at position ¢. The dose function is integrated over the opening formed by each
pair of leaves, subsequently a sum over all leaf pairs and all emitter positions
is taken.

The full expression for the infinitesimal dose d;(§,n, P)(r) also involves multi-
ple integrals, so finding the full dose profile D(¢, P) in this way can be quite
time consuming. Since this will need to be done at least several times during the
optimization process and time is a relevant constraint, the use of approximate
methods is in order. Two popular methods are the collapsed cone algorithm,
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which is described in detail in [1], and the analytic pencil beam kernel approach
detailed in [6].

We have employed the analytic pencil beam kernel approach, which is the
simpler of the two. This method approximates d;(£, n; P) by a simple analytic
expression. The approximation relies on a large number of assumptions, both
about the patient and the emitter: the patient is assumed to be homogeneous
and flat, and the emitter is assumed to produce a beam which is parallel,
uniform and incident normally to the patient. Nevertheless, this approach
appears to be accurate to less than 2% when applied to actual treatment plans
in regions where the dose gradient is small [6].

2.4 The deformation

The CT scan made prior to treatment is used to determine the parameters
Py = (uo, po) that best describe the patient at this time. The attenuation
po is measured directly, and pg can be inferred from knowledge about human
anatomy. This data is used to determine a treatment plan, which in particular
involves a configuration ¢g for the linear accelerator such that the applied dose
Dy = D(¢o, Pp) is suitable for treatment of the tumor.

The problem is that this preliminary scan may no longer be accurate during
treatment because the patients will have naturally undergone some deforma-
tions of the types described in the introduction and is now described by a new
set of parameters (P, 1). A new scan can be made on the spot to determine
the new attenuation profile p1, which can in many situations be used to derive
a displacement vector field § that describes the deformation that the patient
has undergone to go from Py to the new configuration P;. This vector field as-
signs to every point 7 in the deformed patient a displacement vector d(r) such
that the corresponding point in the original patient is, at least approximately,
r+ d(r). More specifically, it is such that the set of parameters Py = (ug, ps),
with

ps(r) = po(r + 6(r)), ps(r) = po(r +6(r)),

closely approximates P;.



Adapting radiotherapy treatment to deformations in the patient 41

2.5 The objective function

Since solving the original optimization problem again for the deformed situa-
tion is unfeasible due to time constraints, another approach is called for. The
approach we took is to use the deformation field é to deform the original dose
distribution Dy = D(¢y, Py) along with the patient, and to attempt to find a
new configuration ¢ such that the delivered dose D(¢, P;) approximates the
deformed distribution Dg as closely as possible. This deformed dose distribu-
tion is defined in the same way as the deformed density and attenuation, and
is thus given by
Ds(r) = Do(r + 6(r)).

While this distribution may not be optimal for the deformed patient P, it
should be as acceptable as the original dose distribution Dg was for the unde-
formed patient F.

Formulated as an optimization problem, we look for a configuration ¢, close
to ¢p, that minimizes the distance between the corresponding dose D(¢, P;)
and the target dose Dgs. This is the solution to the non-linear least squares
problem

arg;nin ID(¢, P1) = Ds||?, (3)

which uses the square integral norm

||A|y2:///VA(r)2d3r.

The precise form of the objective function in equation (3) depends on how the
dose distribution D is discretized. If a rectangular grid A = {ry; | 4,7, k} is
used, then

ID(¢, P1) — Ds||* = 3" (D(é, Pr)(rije) — Ds(rijn)’

i7j7k

up to some (immaterial) constant factor.

3 Methods

In this section we discuss three different methods to apply to the optimization
problem described in Section 2. The three methods are compared to each
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other and pro and cons are discussed. Finally, in Section 3.4, we describe the
simplified model that we considered during the study week. This model was
used in our investigations in Section 4.

3.1 Gauss-Newton type methods

Since the optimization problem (3) is a non-linear least squares problem, one
can try to solve it using the Gauss-Newton algorithm, or similar algorithms
such as Levenberg-Marquardt. A description of these algorithms can be found
in many textbooks, such as [3] or [4]. These algorithms require the compu-
tation of the first order partial derivatives of the dose D(¢, P) with respect
to the components of ¢ = («, 3,7), but no second order derivatives. They
are fast when applied to problems which are only mildly non-linear, which
one might expect to be the case for very small deformations, but can be slow
otherwise.

Without any modifications, the Gauss-Newton algorithm is not very reliable
as it is not even guaranteed to converge to a local minimum. Damped ver-
sion of Gauss-Newton, such as the Levenberg-Marquardt algorithm, avoid this
problem by effectively taking smaller steps when necessary. Convergence to an
insignificant local minimum is an inherent possibility for all algorithms of this

type.

In the Gauss-Newton method the dose function D(¢, P;) is approximated
around the initial guess ¢ by its first order approximation D(¢g, Pi)+Jp (o, P1)(d—
¢0) and solving the linear least square problem

arg;nin ID(¢0, P1) + Jp(¢o, P1)(¢ — ¢o) — Ds||>- (4)

This process is repeated, taking the solution from the previous iteration as the
new initial guess.

Fortunately, the derivatives required for these algorithms are relatively easy to
compute, as the parameters o;; and 3;; only appear in the boundaries of the
integrals in equation (2) and the dose is manifestly linear in 7;. The partial
derivatives with respect to ;; and f3;; are given by

0D(¢, P)

i
=0 — g di(cvij,m; P)d
aaij Ti /771-_1 Z(aZ]aT/a ) n
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and

ner) "
=T di(Bij,m, P)d
8,313 _— (B] 77 ) 77

respectively. Computing these should be significantly less costly than com-
puting D(¢, P) itself as the domain of integration in these expressions is 1-
dimensional, rather than 2-dimensional.

The derivatives with respect to the variables 7; are given by

Nl Vi
D ea es Bi;
UG // (&, P) diyde.
oT; i

Note that these do not need to be computed separately, as these integrals
should already have been evaluated to determine the dose D(¢, P).

The Jacobian matrix Jp(¢, P) which contains all of these partial derivatives
has 2 Nstops Nieaves + Nstops columns (which is 7290 for the NKI set-up), while
the number of rows depends on the discretization of D. It will have one row
for every voxel if a grid is used, and most of its entries will be zero in this case
since 8— D(¢, P)(r) is only non-zero if the ray from the emitter to r passes
near to the edge of the leaf corresponding to the variable a;; (and similarly
for 8—” D(¢, P)(r)). This sparsity can be used to speed up the computation
of Jp(¢, P), as well as any matrix operations applied to it.

Closed leaf pairs should be given extra attention, since the point at which
they are closed does not affect the dose and is thus rather arbitrary. When it
becomes necessary to open a pair of leaves that was previously closed, these
algorithms will only discover this if the point at which an opening should be
created is already close to the (arbitrary) leaf edge positions. Closed leaf pairs
should therefore always be positioned such that their edges project onto a point
in the patient where a high dose is required, or close to neighboring leaf pairs
which are already open. It may be necessary to consider different positions for
such leaf pairs while running the algorithm and opening them where doing so
would produce the greatest improvement to the objective function.

Since the derivatives of D with respect to «;; and 3;; add up to zero whenever
a;j = [, the Jacobian Jp(¢, P1) will not have full column rank for configura-
tions with closed pairs of leaves. While this is not hugely problematic, it can
lead to the Gauss-Newton algorithm prescribing large (unnecessary) changes
to the position of closed leaf pairs. One way to avoid this is by keeping the
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center %(Oéij + () fixed (and only varying the size of the opening) whenever
aj; = fBi; at any particular iteration step.

Newton’s method, which works by repeatedly making a second order approxi-
mation of | D(¢o+®, P1)— Dsl||? in ®, might also be worth considering. Unlike
the Gauss-Newton algorithm, Newton’s method is guaranteed to converge lo-
cally and this convergence is significantly faster (quadratic, rather than linear).
The major disadvantage to this approach is that it requires taking derivatives
of D up to second order. In our situation, at least when using the analytic
pencil beam kernel approach, the second order derivative of D should still
be manageable. While there are in principle (2 Ngops Nicaves + Nstops)2 mixed
second order partial derivatives, almost all of these are again zero. Note in
particular that 8‘972D(¢, Py) = 0 for all pairs (4,7) and (i, j') and that

52 0t OBy 51 e g
WD(d)’ Py) can be non-zero only if (7,7) = (¢, 7).

3.2 Evolutionary algorithms

The wide variety of tissues in a patient causes inhomogeneities with respect
to attenuation properties and the pencil beam function may be not accurate
enough. As a result of these complexities, the surface of the objective function
may be very irregular, which may cause methods based on Gauss Newton
to end up in local minima. This may lead to inappropriate settings for the
treatment. Whether this is the case needs to be investigated.

A possible way to deal with such complexities and avoid local minima, if they
occur, is by applying other types of optimization algorithms. One could for
instance think of evolutionary computation as a class of optimization methods
that are metaheuristic with stochastic elements [2]. These methods can be ap-
plied to any type of objective function, since they are used as a black box: no
derivatives are needed. Examples of these type of methods are evolutionary al-
gorithms or swarm type algorithms. Evolutionary computation generally con-
sists of a set of individuals, where for each individual the fitness (objective func-
tion value) is evaluated. The algorithm then selects/replaces/moves/breeds
from (depending on the algorithm) these individuals iteratively, to eventually
close in on the optimal solution. In the study week we considered one such evo-
lutionary algorithm in more detail, the so-called Particle Swarm optimization

(PSO).

The PSO considers a group of individuals, uniformly distributed around an
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initial guess of parameter values. For each individual, the objective function
is calculated. Then in each iterative step, the position (parameter values) of
each individual is updated. An individual moves in the direction of its current
velocity, the best position this individual found so far and the best position
the complete group found so far, with some randomness included.

3.3 Gradual deformations

In this project, we also designed another method based on the Gauss-Newton
method that might avoid drifts to inappropriate solutions and be nearly as fast
as the Gauss-Newton method. The idea is based on the fact that there are
two scans of the patient: the first CT scan used for the treatment plan and
one obtained directly before treatment. So, between those two time points,
the patient has deformed slowly. During the optimization procedure, we can
artificially deform the original patient situation Py = (po, po) to the deformed
situation Ps = (us, ps), in Ny steps by using P; = (u;, p;), with

pi(r) = po(r + 3-6(r))
pi(r) = po(r + 7-6(r))

for n € {1,2,..., Ng}. The desired dose distribution D,, at step n is defined as
the goal dose distribution at deformation step n:

Dy, = Do(r + f-6(r)).

Now, every deformation step n, we may use Gauss-Newton (or any another
optimization algorithm) iteratively to find the settings ¢,, that minimize:

HD((men)_DnHZ (5)

Subsequently, these settings are used as an initial guess for the next deforma-
tion step n + 1. The concept behind this algorithm is that finding optimal
settings for small deformations might be much easier and faster, and we can
better take the correct path from original settings to optimal settings, avoiding
drifts to an inappropriate solution.

3.4 Toy model

In the study week we focused on a simple model of the optimization problem to
test our different methods, in particular the Gauss-Newton algorithm described
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in Section 3.1. In this model we assume the following. First of all, the patient is
assumed to be a 2D square lattice with a convex-like tumor. The beam is fixed
at one point and the beam direction is orthogonal to the patient plane, i.e. the
beam is right above the patient. So, we ignore that the LINAC head can travel
around the patient with different durations at each stop. The optimization
problem then reduces to the optimization of the leaf configuration only. This
specific setting that we chose for the problem is visualized in Figure 3 below.

- FaHen t

Figure 3: Model setting

Here, for a specific dose requirement D there is a leaf configuration ¢ which
ensures that the patient gets the required dose. The goal is then to deform the
tumor in a simple way and check whether the algorithm outputs a configuration
which gives the same dose distribution, but modified according to the tumor
deformation. For example, by simply shifting the tumor to the right as seen in
Figure 4, we expect the optimization algorithm to output a configuration for
the leaves such that the dose profile follows the same shift.

Aside of the qualitative behavior of the solution, we were also interested in
computing the error with respect to some measure. For simplicity, we chose a
relative error defined in the following way

~ S S (D) - DG g))
Err(D, D) = Ef\il Z]]\il Diij)? (6)

where D is the desired dose, D is the dose corresponding to a configuration
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patient porient

Figure 4: Simple deformation and desired dose profile

given by the optimization algorithm and both N and M correspond to the
dimensions of the patient computational domain.

4 Results

In this section we mainly consider the Gauss-Newton algorithm for the opti-
mization problem described in Section 3.4. For the purpose of this project,
we chose a 40-by-40 pixels computational domain and a beam emitter with
10 pairs of leaves. Then we assumed for each scenario that at the beginning
of the treatment, the patient presents a diamond-shaped tumor. Four qual-
itatively different deformations of the tumor were considered: vertical shift,
lateral shift, diagonal shift, and a shrinkage of the tumor. For each setting, we
considered the classical Gauss-Newton algorithms over 20 steps and at each
step we recorded the error defined through Equation (6).

Finally, we applied the PSO to the vertical shift of the tumor. For this algo-
rithm we used a matlab code? with 10 individuals and 50 iteration steps.

2 ParticleSwarm_ Optimization.m®©  Pramit  Biswas. Downloaded  from
http: //www.mathworks.com/matlabcentral /fileexchange



48 SWI 2015 Proceedings

4.1 Vertical shift deformation

Figure 5 shows the results for a downward shift of the tumor by 4 pixels. A
good solution was found after about seven iterations, which took about 46
seconds to run. After that no further improvements were observed, and the
relative error between the desired dose and the dose that is actually realised
stabilises at about 19.7%. It is uncertain whether the final solution is a global
minimum for the objective function. The speed of convergence definitely seems
promising for real-life applications.
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Figure 5: Gauss-Newton algorithm for the vertical shift case of the tumor. The
first plot shows the original dose profile, the target profile after the shift, the
profile after the last Gauss-Newton step and the configuration of the leaves.
The second plot presents the error evolution throughout the iteration steps.

4.2 Lateral shift deformation

For a lateral deformation, we considered a 4 pixel movement to the right. A
decent solution is found after about 10 iterations, after a runtime of about
80 seconds. The final error is about 21.9%, as shown in Figure 6. What is
interesting to note is that the bottom part of the opening is missing in the final
dose leaf configuration because this pair of leaves was closed in the first iteration
step at a point which was too far away from the shifted tumor. By moving
the closed leaf pair to a point inside the tumor and resuming the algorithm
a relative error of about 6.9% is obtained. (This lower error is explained by
the fact that a lateral shift of the tumor can be precisely compensated by a
corresponding shift of all leaf positions.)
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- " Relative error for classical Gauss-Newton Method
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Figure 6: Gauss-Newton algorithm for the lateral shift case of the tumor. The
first plot shows the original dose profile, the target profile after the shift, the
profile after the last Gauss-Newton step and the configuration of the leaves.
The second plot presents the error evolution throughout the iteration steps.

4.3 Diagonal shift deformation

The case of a diagonal shift correspond to a combination of both vertical and
lateral changes of the tumor. In our case we chose a 4 pixel deformation in
both rightward and downward directions. As expected from the lateral and
the vertical case (Figure 7) we see a similar but slightly higher error of 23.8%
at the last iteration step after a total runtime of 157 seconds and 20 iterations
(the error does not decrease significantly after that). The sudden decrease at
the end is due to closed leaf pair that is suddenly opened and could have been
found at an earlier stage.

4.4 Size deformation

For the last deformation, we considered a different scenario. Before we only
focused on directions in which the tumor can move during the treatment,
but in this case we are looking at a size deformation. This particular type
of deformation can be justified through the fact that one expects, or hopes,
the tumor to shrink during the treatment and thus, the leaf configuration
should change accordingly. More precisely, we considered a 50% decrease in
size without any lateral or vertical movement involved. After about 7 iterations
and 48 seconds of simulation we see the outcome presented in Figure 8. This
time the error was about 27.1%.
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Figure 7: Gauss-Newton algorithm for the diagonal shift case of the tumor.
The first plot shows the original dose profile, the target profile after the shift,
the profile after the last Gauss-Newton step and the configuration of the leaves.
The second plot presents the error evolution throughout the iteration steps.

- " Relative error for classical Gauss-Newton Method
Original dose profile

Gauss-Newton Method dose profile

09t

08t

07t

06t

10 20 30 40 10 20 30 40

05t

Target dose profile Leaf configuration

03t

o2t

o1t

10 15
Gauss-Newton step

Figure 8: Gauss-Newton algorithm for the shrinking case of the tumor. The
first plot shows the original dose profile, the target profile after the shift, the
profile after the last Gauss-Newton step and the configuration of the leaves.
The second plot presents the error evolution throughout the iteration steps.



Adapting radiotherapy treatment to deformations in the patient 51

4.5 Partical Swarm: vertical shift

Figure 9: PSO applied to downward shift. Shown is dose profile before opti-
mization (old), after optimization (solution) and shifted dose (goal).

Figure 9 shows that the PSO algorithm works quite well for this shift. However,
the solution seems to be less accurate then the one obtained by the Gauss-
Newton method (Figure 5). The PSO algorithm with these setting also took
approximately half an hour to run, much longer than Gauss Newton. This
long duration is caused by the large number of expensive function evaluations,
namely for each individual and each iteration. However, it might be profitable
to use such black box algorithm, because one does not need to compute more
derivatives when the number of parameters increases, but then again, one
might need more individuals in PSO. Fortunately, PSO, and other evolutionary
computations, can be sped up by employing parallel computing. However, this
was outside the scope of the study week.

5 Discussion, conclusions and recommendations

We formulated the problem posed to us by the NKI as an optimization problem.
We considered a simplified model: a two-dimensional rectangular patient and
tumor and used the pencil beam approach to calculate the dose distribution.
Obviously, this is unrealistic but it is a good starting point from a mathematical
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point of view. Instead of considering all possible machine settings we only
focused on the settings of the leaves. In the model, the deformations that
were considered were simple so that the optimal settings were known. We
tested several algorithms to see how good they were at finding these optimal
settings.

We considered three numerical optimization methods. First we examined the
Gauss-Newton method which we applied to four different scenarios: vertical,
lateral, diagonal shifts, and tumor shrinkage. As discussed in Section 4, the
Gauss-Newton method already appears to work rather well for all types of
deformations that were considered. It may nevertheless be advisable to switch
to a similar, but more robust, algorithm such as Levenberg-Marquardt. The
position of closed leaf pairs is a potential problem for such algorithms.

Another algorithm that we discussed were evolutionary-type algorithms, in
particular the PSO. We applied the PSO to the scenario of a vertical shift of
the tumor. For our particular test case, the solution obtained through the PSO
was less accurate than that of the Gauss-Newton method (compare Figure 5
to Figure 9). It also took a much longer running time, which is not feasible for
real life situations. On the other hand, the PSO has the advantage that it can
escape from local minima, unlike to the Gauss-Newton method. Faster and
eventually more accurate results with the PSO algorithm might be obtained if
parallel computing is used (this was outside the scope of the study week).

Finally, we also proposed a method, which we call a gradual deformation
method. This method might be much easier and faster than the PSO. An
additional advantage of this method is that it might avoid drifts to inappropri-
ate solutions (local minima). Testing this approach was unfortunately outside
the scope of the study week.

One of the ideas that came up during the study week was on adding a penalty
term to the minimization problem. The rationale behind this is that deforma-
tions will typically not be very large and therefore the optimal settings should
be somewhat close to original settings as well. More specifically, one could
try to add a penalty term 7 ||¢ — ¢o||? to the objective function, changing the
optimization problem (1) to

arg;nin ID(¢, P1) — Ds||* + 7 ll¢ — ¢oll*-

for some number v > 0 (where one should normalize both terms so that they
become unitless). Doing this will ensure that ¢ does not stray too far from the
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original configuration ¢y during the optimization process. Unfortunately there
was no time during the study week to work this out further. We considered
the minimization problem with v = 0, i.e. no penalty term was included in our
results. This penalty term deserves further investigation.

Further investigations can be directed at the improvements of our approach by
considering a more realistic model than the toy model discussed in Section 3.4.
This model should take into account all settings of the machine (such as the
larger number of leaves, the rotation steps and the time spent at each angle)
and a description of the patient which is more faithful to reality.
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