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Abstract

Weather forecasting relies on mathematical models that exhibit chaotic
behavior. This renders the solution of these models very sensitive to er-
rors in the model, to choices of the initial conditions and to truncation
errors in the numerical solution procedure. Over the course of the past
decade, various meteorological institutes in Europe have developed differ-
ent atmosphere models. Each of these models has its strengths and weak-
nesses. The principle behind the so-called Super Modeling approach is to
merge these existing models into a single larger model to combine com-
mon strengths while overcoming individual weaknesses. This approach
was initially proposed and developed by the KNMI in the Netherlands
to improve the reliability of its weather forecasts. The task formulated
for this Study Group problem was to reevaluate the Super Modeling ap-
proach and to formulate recommendations for its future development.

1 Introduction

Meteorological institutes are continually seeking to improving their weather
forecasts. Research is directed towards minimizing the discrepancy between
mathematical models predicting atmospherical conditions and actual measure-
ments. These mathematical models typically require the solution of systems of
non-linear ordinary differential equations that allow for solutions with a chaotic
behavior. Thus any solution procedure is prone to errors in the modeling, in
the initial conditions and in the numerical time integration procedure. This
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has lead to the development of different models by various European institutes
with their own strengths and weaknesses. None of these models is currently
accredited of giving the best overall simulation results.

To overcome the absence of a universally best weather simulation environ-
ment, the Dutch meteorological institute KNMI in collaboration with partner
institutes pioneered an approach in which different models are combined into
a larger model. This combination aims at exploiting the strength of differ-
ent approaches while overcoming individual weaknesses. Weather models are
combined by synchronizing their outputs, i.e., by penalizing the deviation of
a single model from a common prediction of a time evolution. The guiding
principle is that the common realization agrees better with reality than each
of the individual ones. The underlying idea of synchronization [1] is known to
play an important role in e.g. social sciences (e.g. in the common start and
ending of applause for a performance) and in biology (e.g. in the migration
of flocks). The KNMI and partners coined their approach the Super Modeling
(SUMO) approach [2].

Given its recent development, the SUMO approach generates a large number
of interesting research questions. Examples include:

e weather forecasting models describe the time evolution of an n-dimensional
state vector. It is not a-priori clear how many and which components of
this state vector should be coupled in order to obtain synchronization.
Neither is clear whether this set should change in time. A mechanism to
enforce synchronization using a small (and possibly time-dependent) set
of components would be beneficial to have;

e in their studies, the KNMI and partners enforced synchronization by con-
straining the norm of the difference between state vectors corresponding
to the individual models. This mechanism is referred to as linear nudg-
ing. It is not a-priori clear whether this mechanism is optimal and what
alternative synchronization mechanism should be considered;

e it not immediately clear what value the coupling coefficient in a linear
nudging technique should have and what strategies could be developed
to obtain these values by matching with previously recorded data as in
see [3];

e it is intuitively clear that a very weak coupling of M individual models
results in a super model exhibiting the M individual dynamic behaviors.
A very strong coupling on the other hand results in a super model with
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a single dynamic that is somehow the average of the individual dynam-
ics leading to incorrect results. The idea is that intermediate coupling
strengths are most appropriate. However, KNMI and partners have ob-
served that for certain choices of intermediate coupling strength a system
with new dynamics arise. So-called ghost-attractors arise with predicted
outcome: always nice weather in Europe. The question was to find an
explanation for this.

The Study Group was asked to consider the above issues. The Lorenz-63 model
will be used as an illustrative example and guide in the numerical studies.

This report is structured as follows. This Introduction will be followed by
three main sections. In Section 2 we consider a technique based on coupling
restricted to unstable directions in the tangent space. In Section 3 we consider
the coupling of three copies of the Lorenz model. In Section 4 we study the
appearance of ghost attractors. In Section 5 we study alternative coupling
approaches. Conclusions finally are drawn in Section 6.

2 Dynamical Properties of Imperfect Models and the
Supermodel

The true state of a physical system is assumed to be given by a set of obser-
vations {t;, P(t;)}, where P(t) denotes the state vector of the truth system
at time t. Available are a set of imperfect models for which the values of pa-
rameters can be obtained by fitting the model to the observations. The study
focuses on systems with chaotic dynamics, which are described as follows by
the system of differential equations

dx
— 1
) )
in a n-dimensional state space. Let x(t) = p(t) be a chaotic solution, then

other trajectories nearby this chaotic orbit are analyzed by making use of the
tangent linear system. By substituting

(t) = p(t) +v(t)

into (1) and preserving only the linear terms one obtains the tangent linear
system

A = Pp(e)) v(t) with Flp(t)] = {0:(p(t)) /023 }cn @)
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in which v(t) denotes the perturbation from p(¢). The matrix F' has time-
dependent eigenvalues. Their averages over a full orbit are called the Lyapunov
exponents. For dissipative systems the sum of these exponents is negative. The
orbit p(t) is chaotic if at least one of the exponents is positive. It means that
in certain parts of the state space at least one eigenvalue must be positive and
that an orbit must pass such a region from time to time in order to have a
chaotic orbit.

The Lorenz-63 model is given by

dx
5 = olm—m), (3)
dx
cTtQ = m1(p—x3) — 72, (4)
dx
7; = .’El.rg—ﬁwg. (5)

From the Lorenz-63 system it is known that in the 3D state space near the
origin such a region exists. There the velocity of the trajectories has a large
component in the direction of the zz-axis, so a bundle of trajectories moves in
a direction of x3 and exhibits after passage of the origin a strong tendency to
diverge. This means that, if one wants to perturb a chaotic orbit p(t), one has
to do that in a direction perpendicular to the xs-axis. In order to synchronize
two imperfect (Lorenz-63) models, which both pass in a similar manner the
region near the origin, one has to apply a coupling of the form

% = filz)+eci(yr — 1) % =q1(y) +ci(z1 — 1) (6)
% = fo(z) + co(y2 — 12) % = go(y) + ca(w2 — 1) (7)
d.%'g . dy3 B

e f3(x) + c3(ys — x3) y 93(y) + c3(w3 — y3) (8)

where f(x) and ¢g(y) may differ in just the values of the model parameters.
Thus, for the Lorenz-63 system any vector ¢ = (¢, c2,0) may give rise to syn-
chronisation for the two coupled imperfect models. Also the size of the coupling
vector ¢ may play a role. The best coupling vector is found by composing the
super model

S(t;c) = [x(t;c) +y(t; c)]/2 9)

and find the best fit of this model to the available observations {t;, P(¢;)}.
For higher dimensional systems such computations may need too much time.
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Then one may concentrate on the eigenvector that corresponds with the largest
(positive) eigenvalue. Together with the eigenvector, that corresponds with
the eigenvalue equal to zero, it spans the most unstable manifold of the chaotic
orbit, see Figure 1. In the direction of the flow given by the vector dp/dt
a perturbation v(t) is neither damped nor does it tend to explode, so in that
direction the system is neutrally stable and yields therefore an eigenvalue equal
to zero. Thus, one may take the eigenvector that corresponds with the largest
eigenvalue as the coupling vector ¢ with the appropriate length or choose its
projection in the space perpendicular to dp/dt.

Figure 1: Dynamics of the trajectories near the chaotic orbit, being a stable
strange attractor. There the 3D state space can be decomposed in two man-
ifolds together with the vector p(t). Near a point p(¢) on the attractor these
manifolds are planes which are spanned by the eigenvector p(t) and each of
the two other eigenvectors. Depicted is the case that the two manifolds are
unstable. For chaos it suffices that only one of the manifolds is unstable.

3 First numerical exploration of a coupled Lorenz-63
system

In this section, we study the following system of two identical Lorenz models
with different initial data and linear coupling:
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i1 =0y —x1) + Cf(v2 — 1)
n=z1(p—21) -y

Z = my — Ba

iy =0(y2 — x2) + C5 (21 — 2)
Y2 = z2(p — 22) — Y2

Zy = Xay2 — B2z

where we choose 0 = 10,p = 28 and 8 = %. This is a typical choice of

parameters that is used often for the Lorenz system; chaos is found and the
famous butterfly attractor arises.

It has been shown recently, see [2], that limited information exchange between
two identical Lorenz systems can lead to synchronization of the model states
even when the systems are initialized from very different initial conditions and
differ slightly in parameter values. The ability to synchronize with the truth
measures the quality of the model.

Through trial and error, it has been found that often just a part of the state
space vectors need to be exchanged between the models in order for the models
to synchronize on a common solution.

A first question is whether the coupling should be symmetric in the phase space
variables. For us symmetric coupling for a system means that the coupling
constant for one variable in the first model must be the same as the coupling
constant for the same variable in the second model. In terms of the system
(10) it means that CT = C§. For three systems with different parameters it
was demonstrated in [2| that couplings need not be symmetric.

Indeed, we could experimentally show that the solutions of two identical Lorenz
models with different initial condition need to be coupled only in the z-variables,
and the coupling does not have to be of the same strength in both equations.
For the above coupled model (10), a total coupling strength of at least 9 was
necessary, and synchronisation happened both when this coupling strength was
imposed in only in one of the models, so either CT > 9 and C3 =0, or CT =0
and C3 > 9, or when the coupling strength was achieved cumulatively, i.e.
with C7 +C3 > 9

An important question is: given two identical Lorenz Models with different
initial conditions, which are the coupling strengths that lead to synchronization
without essentially changing the dynamics?
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Using a straight-forward implementation of two identical Lorenz models in
Mathematica, we verified the following values: Synchronization happens for a
cumulative coupling strength of above 9, with the critical values being CT = 8
and C5 = 1, where a long time has to pass until the solutions synchronize: Only
after t = 60 do we observe a sufficiently small error in the z-coordinates, which
is then still several orders of magnitude bigger than in the symmetric case. For
example, for CF = 10 = C%, the error falls below 1076 for ¢ > 20.
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Figure 2: Error for Cf =10 = CF
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Figure 3: Error for C¥ = 20 and C5 = 10

In terms of an upper bound on the coupling constants, we observed an unex-
pected robustness of the dynamics: Even for quite high values like CT = 20
and C3 = 10, synchronization seems to happen for times ¢ > 30, but sudden
spikes in the error |x1(t) — x2(¢)| of order 107¢ keep appearing in irregular
intervals.

These results are stable and not sensitive even to significant changes of the
initial conditions (i.e. of values of +20 per phase space coordinate).

We observed experimentally that the achieved synchronization is lost even
when the parameters of the Lorenz models are changed slightly. For exam-
ple, choosing 8 = 3 instead of 8 = % in one model destroys the effect com-
pletely.
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4 Stability analysis of ghost attractors

4.1 Introduction

It has been observed [4] that coupling multiple models to form a super model
may lead to the super model getting “stuck" in a certain part of phase space
(such that it is always nice weather in Europe). In the context of a number of
coupled Lorenz models, this can lead to all models being fixed at two points
close to the unstable fixed points in the Lorenz butterfly [4]. In this case some
models will be in a point on one wing, some others will lie on the other wing.
The precise position of the points where they are fixed depends on the exact
formulation of the super model.

We analyse this behaviour by considering a simpler model in which we couple
identical models. We then analyse the fixed points and their stability. In case
a fixed point is stable we can conclude that there is a set of initial conditions
for which the supermodel converges to this fixed point solution.

4.2 The model and our simplifying ansatz

We consider N 4+ M coupled Lorenz63 models all with the same choice of the
coefficients, with linear and uniform coupling and standard parameters, leading
to the following equations (with i =1,2,.... N + M)

N+M
T; = lO(yi — SCZ) + C Z (l‘j — $z)
j=1

N+M
gi= w28 —z) —yi + C > (yj — i) (11)
=1

3 N+M
Zi = Tilfi — 3% + C Z (v — vi)-
j=1

Since we know from [4] that these oscillators may get stuck into a situation
in which there are IV oscillators in some fixed point and M other oscillators
also together in one (possibly different) point, our approach now consists of
finding all possible fixed points under the assumption that the oscillators are
stuck in at most two points, for given C, N and M. If we label one fixed point
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by (:L'Sk ), yi ), zil)) and assume that M oscillators are stuck in this point, and

the other by (at,(k ), y>(k2), z,(k )) where N oscillators are stuck. Then the equations
simplify to
;= 10(y; — x;) + CM(a:il) —x;) + CN(:USE) —x;)
g = (28— z) —yi + OM@Y —y) + NG —y)  (12)
@:m%—§%4—0M@9—w0+%ﬂWAm—%)
An important remark is that these equations are only consistent in case the

oscillators lie actually exactly in these points. Hence, at these fixed points our
system of equations reduces to M copies of

)) + ON(a! (2) _$SK1))
)~y + NP — ) (13)
— 32,(‘1) + C’N(zg) — z£1))

o:ﬁ”:m(? x9)+oM(“ 2?)
N =y + oM@ - y?) (14)
8
0= zSP) = xg)yg) §z£2) + CM(ZS) — z£2)).
We can now consider the system consisting of (one copy of each of) (13) and
(14). The solutions of this combined system and the Jacobian at these fixed

points can be found using Mathematica. From the eigenvalues of this Jacobian
conclusions about the stability of the fixed points van be determined.

4.3 Stability analysis

We did the stability analysis for (13) and (14) for the parameter values C' = 0.6,
N =8 and M =12 and also for C =0.2, N =1 and M = 19.

For the first parameter set, C' = 0.6, N = 8 and M = 12, we find 9 fixed
points, of which 2 are stable. The fixed points can be categorized as follows: 3
unstable fixed points at the unstable fixed points of the original single system
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(i.e. at the origin and wings)!. There are also emergent fixed points that arise
through the interactions between the oscillators. These can be separated into
a pair of stable fixed points on the wings and two pairs of unstable fixed points
with one group of oscillators on a wing and another group close to the origin.
The stable fixed points on the wings also emerged in the simulations done in
[4]. In figure 4 we depict all fixed points, together with a sample trajectory of
one Lorenz63 model for reference.

Figure 4: The fixed points for the parameters C = 0.6, N = 8 and M =
12. The single system fixed points are in black, the unstable emergent fixed
points where N oscillators can be are green, the unstable emergent fixed points
where M oscillators can be are red, the stable emergent fixed points where
N oscillators can be are blue, the unstable emergent fixed points where M
oscillators can be are orange and a sample trajectory of one Lorenz63 model
is depicted in purple.

For the second parameter set, C' = 0.2, N =1 and M = 19, we find only 5
fixed points, none of which are stable. We retain the fixed points of the single
system (which should not be too surprising) and we also retain two emergent
unstable fixed points, where there are 19 oscillators close to the origin and

'This corresponds to all systems being synchronized at an identical fixed point, such that
the couplings terms are all zero.
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one oscillator in a wing. Since there are no stable fixed points here, it is not
surprising that configurations in which 19 oscillators balance out one have not
been observed in the simulations [4]. In figure 5 we again depict all fixed points
and a sample trajectory of one Lorenz63 model for reference.

Figure 5: The fixed points for the parameters C' = 0.2, N =1 and M = 19.
The single system fixed points are in black, the unstable emergent fixed points
where N oscillators can be are green, the unstable emergent fixed points where
M oscillators can be are red and a sample trajectory of one Lorenz63 model is
depicted in purple.

Our analysis can in principle be applied to any values of C, N and M in
order to find any possible ghost attractors. We have found that for more
balanced values of N and M there are more fixed points and they may be
stable. We observed that for very skewed distributions (all stable and some
unstable) fixed points disappear. This analysis could possibly be extended to
more complicated configurations of oscillators than a division into two groups.
An extension to more complicated models could also be of practical use. An
interesting open question that remains is how the unstable emergent fixed
points influence the dynamics of the coupled system.
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Figure 6: Simulation results for a Lorentz '63 based supermodel. a. Integra-
tion lines of the synchronised supermodel and two families of critical points
that were obtained for various values of coupling strength C': stable (magenta)
and unstable (blue). b. Time dynamics of z-variables depicts the synchroni-
sation process leading to a steady state solution that is not featured by the

original Lorentz 63 model.
5 A search for improved coupling mechanisms

Let a supermodel

(1) = Li(wi g (1) = Y Cinlwig(t) —ip(t), i=1,...,m, j=1,...,n;

k#j
(15)
be composed of n instances of autonomous basic models,
.’L‘Z(t) :Li(wi(t)), izl,...,m. (16)

Here Cj > 0, are constants, that define the strength of connection for each
couple of models. It is known that in some cases the dynamics of the synchro-
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Figure 7: Time dynamics of z-variables of Lorenz '63 based supermodel with
Gaussian kernel coupling, The synchronisation process leads to a chaotic but
synchronous solution

nised supermodel (15) may be different from the dynamics of the basic model
(16). For instance, numerical analysis show extra stable critical points appear
in Lorentz’63 based supermodel as in Figure 6. One possible way to overcome
the issue is to define the coupling mechanism to be active only locally, when
a pair of submodels are close enough in the state space. This can be done by
redefining (15) as

&i4(t) = Lilwig(8)) = Y Ciandin(|@ig(t) — win(®)])(@iy(t) — wix(0)),
k#j (17)
1=1,....m, j=1...,n;

where ¢(x), x > 0 is a smooth function with a maximum at = = 0 that is
finite supported or decays on 1nﬁn1ty as o(z™!). A good candidate for ¢(z) is

a Gaussian kernel, ¢(z) = e * */75x. Numerical simulations for a supermodel
containing 10 identical Lorenz’63 models coupled with the Gaussian mecha-
nism (17) reveal that although synchronisation process takes more time, the
synchronised solution is not a steady state one, as can be seen in Figure 7.
Note, the price to pay for using this approach is an extra parameter o that
together with Cj;, should be estimated by an optimisation/machine learning
process.

6 Conclusions

Meteorological institutes are keen to increase the reliability of their weather
forecasts. They are faced with the challenge that the underlying mathemat-
ical models exhibit chaotic behavour and are therefore hard to analyze and
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solve. To overcome this challenge, the KNMI and partners have developed the
super-modeling approach in which a set of models with different strengths and
weaknesses are coupled. We were asked to look into this approach and for-
mulate recommendations for its future development. We found that coupling
the state space variables in the hyper plane perpendicular to the orbit can be
sufficient to obtain synchronization of the different models. The new dynamics
of the super model was briefly looked into. Coupling mechanisms that differ
from linear nudging were studied and coupling by Gaussians was found to be
effective in particular circumstances. Overall, more research is required to ob-
tain a better understanding of the super modeling approach to obtain more
reliable weather forecasts.
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