
Proceedings of the

Study Group Mathematics With Industry

held at the TU Delft

on January 27th - January 31st, 2014



ISBN: 978-94-6186-306-5



Foreword
How to bridge the gap between mathematics in academia and problem solving relevant to
industry? In their pioneering answer, mathematicians at Oxford university organized the first
Study Group Mathematics with Industry in 1971. Since then, their idea was copied numerous
times worldwide. The hundredth edition of the European Study Group Mathematics with
Industry will be held in Oxford in April 2014. The pioneering idea currently serves as a model
for similar study groups in physics and computer science in the Netherlands.

As in recent previous editions of the Study Group Mathematics with Industry held in the
Netherlands, six external entities brought a problem to work on to the 2014 edition. In the order
in which they appear in these proceedings, these six entities are Statistics Netherlands, HZPC,
Waterlaboratorium Noord BV, Witteveen-Bos, MARIN and INCAS3. The study group saw
sixty participants from fifteen affiliations. Representatives from the external entities presented
the problem on Monday morning. The study groups worked on a problem from Monday
through Thursday and presented the results obtained on Friday morning. In the remainder of
this foreword we briefly summarize the findings for the six individual problems.

Statistics Netherlands (www.cbs.nl) is responsible for collecting and processing data in or-
der to publish statistics made available to policymakers and academics. It posed a problem on
the counting of traffic on Dutch roads. The study group working on this problem employed
graph techniques to measure this traffic independently of the amount of sensors and their loca-
tions.

HZPC (www.hzpc.com) is the largest seed potato supplier worldwide. It challenged the
study group to quantify the market value of a batch of potatoes for the french fries production
industry. To this end, the study group developed the finite fry method that allows to predict the
amount of fries cut from a single potato as well as several parameters affecting the perceived
quality of the french fry. The finite fry method can directly be incorporated in the HZPC
production process.

Waterlaboratorium Noord BV (www.wln.nl) supplies drinking water to households in the
north of the Netherlands. The need for better insight into the measurement techniques ensur-
ing sufficient quality of the drinking water motivated WLN’s participation to the SWI. The
study group developed a hybrid stochastic-continuous model for the iron concentration in the
different stages of the water purification plant. Numerical results show good qualitative agree-
ment with measurements in the field. From this agreement the group was able to formulate
recommendations on how to carry out future measurements.

Witteveen-Bos (www.witteveenbos.nl) is an engineering firm specialized in the design of
infrastructure to contain water. Its concern for the flooding of the old city of Delft caused by
heavy rain and its wish to improve existing numerical models for the water flow through the
sewage system motivated their participation in the study week. In their contribution the study
group develops a protocol for citizens to report the amount of rainfall allowing numerical
models to be calibrated. Their work has resulted in valuable insights for Witteveen-Bos.
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The Maritime Research Institute Netherlands (www.marin.nl) consults in various branches
of the ship and off-shore industry. The institute proposed a problem on the estimation of param-
eters in system of ordinary differential equations modeling ship movement. Using polynomial
interpolation on sparse grids the study group was able to find the optimal parameters for a large
range of ship motion scenarios. Numerical results indicate that the results obtained carry over
to more complex models of ship motion.

INCAS3 (www.incas3.nl) is an independent, non-profit and private consulting firm active
in cognitive systems. The institute has been looking into the notoriously difficult problem
of hearing aids for babies for a number of years. The study group formulated the problem
as a inverse problem that can be solved via an adjoint formulation. This contribution offers
INCAS3 new perspectives in developing effective hearing devices.

A promotional video on the 2014 edition of study group held in Delft will be made available
on Youtube at the end of May 2014.

The organization of the 2014 study group gratefully acknowledges the generous financial
support from NWO and STW. Additional funding was provided by the 3TU Applied Mathe-
matics Institute and the Dutch Mathematical Society. The organizers sincerely thank Marco
Puts and Erik van Bracht from Statistics Netherlands, Hans van Doorn, Jaqueline Verdijck,
Rob Klooster and Pieter-Jelte Lindenbergh from HZPC, Peter van de Maas from WLN, Hans
Korving and Rina Clemens from Witteveen-Bos, Ed van Daalen from MARIN and Peter van
Herschel from INCAS3 from for their valuable input and contributions to making the week
successful. The enthusiasm and efforts of all participants have been instrumental in making
the study group successful. The organizers would like to especially acknowledge the six cor-
responding authors of the contributions to the proceedings. The week finally would not have
been possible without the help of the support staff. Our warm gratitude in this respect goes to
Deborah Dongor, Dorothee Engering and Evelyne Sharabi.

Johan Dubbeldam
Wolter Groenevelt
Arnold Heemink
Domenico Lahaye
Corine Meerman
Frank van der Meulen

Organizers of the 2014 edition of the Mathematics with Industry Study Group held in Delft
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Abstract

Road sensors gather a lot of statistical data about traffic. In this
paper, we discuss how a measure for the amount of traffic on the roads
can be derived from this data, such that the measure is independent
of the number and placement of sensors, and the calculations can be
performed quickly for large amounts of data.

We discuss how a graph of the road sensors can be constructed, and
how the number of cars and car-kilometers can be estimated on this
graph. Further, methods for dealing with missing data are presented,
and the benefits of principal component analysis are discussed.

Keywords: traffic index, road sensor, graph construction, statistical
imputation, principal component analysis, CUR decomposition.

∗Corresponding author, email: reijer.idema@vortech.nl
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1 Introduction

This paper reports on findings regarding the traffic index problem, as posed
by the CBS (Centraal Bureau voor de Statistiek [NL], Statistics Netherlands
[EN]) at the Study Group Mathematics with Industry 2014, held at the Delft
University of Technology.

The problem posed to us was to determine a traffic index comparing the
average traffic on the highway system in the Netherlands (or a region such
as South Limburg) from a particular year to a previous year, based on traffic
measurements by road sensors (such as inductive loops, traffic cameras, etc.)
taken every minute of the day, every day of the year. We call this problem TI.
We decided to tackle an even more ambitious problem, which we call problem
C, namely estimating how many vehicles (cars) there are on a particular road,
at a given moment in time, based on the measurements of the past minute.
Solving this instantaneous estimation problem by computing the number of
cars C on the road, will also give a solution to the TI problem, by averaging
over all the minutes of the year, and adding the results for all the roads of
the network.

An advantage of tackling the more general problem C is that a solution
can give more detailed information, such as changes in traffic patterns during
the day, or differences between different days of the week, and it also enables
zooming in on certain regions, roads, or even road segments. Another advan-
tage of trying to achieve a precise estimate of an actual physically meaningful
number is that such an approach is fault tolerant and adaptable to changes,
e.g. new road sensors appearing, old sensors being removed, and some sensors
malfunctioning temporarily.

The increase in our ambitions from computing mere statistical indicators
to achieving a very precise estimate of the actual situation on the road is
possible because of the wealth of detailed data that is now available. So to
speak, Big Data is driving analysis from statistics towards detailed answers to
specific questions on the systems and subsystems studied. For this approach
to work, it is essential that computational algorithms become available that
are efficient and preferably scale linearly in the number of data entries.

To formulate our problem, we define a number of variables, where we first
consider a road segment between sensors A and B. Define dAB as the distance
between sensor A and sensor B. Let t be the current time and T the time
interval of measurement (1 minute in our data). The measurements at time
t are the intensity IA(t) of the traffic, i.e., the number of cars measured at
sensor A in time interval [t, t+ T ), and the average velocity vA(t) of the traffic
measured at sensor A (for our data, the arithmetic average during the time
interval). Furthermore, a road segment concerns one direction, see Figure 1.

In Section 2, we discuss methods to construct a graph of the road network
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A BIA, vA IB , vB
dAB

Figure 1: Road segment from sensor A to sensor B, with length dAB and at
each sensor the measured traffic intensity I and velocity v.

from the data, such that the edges are road segments as in Figure 1, and
in Section 3 methods are presented to calculate traffic indices based on car
count and on car-kilometer count, using the constructed graph of road sensors.
In Section 4, ideas are presented that can help deal with missing data, and
Section 5 discusses how Principal Component Analysis can be used to support
traffic index calculations. Finally, in Section 6 conclusions are presented.

2 Graph construction

The idea to reconstruct the road network has been devised to utilize the
maximum information provided by the data. Constructing a graph for the
full road network would require more than just the road sensor data, e.g.,
OpenStreetMap data. Here, we only construct a separate directed graph
for each road that has sensor data. This means that roads without sensors,
including all connecting roads with exits from and entrances to roads with
sensors, are ignored.

For the purpose of calculating a traffic index, we feel that this is the best
way to deal with these ‘dark roads’. First, there is no way to tell what ex-
actly happened. How many cars exited and entered a measured road between
sensors A and B? What dark road did they go on or come from, and did
they drive that entire road or were they just visiting the closest house along
that road? Second, assuming that the number of cars on dark roads is, in
approximation, a constant fraction of the total number of cars, missing data
of these roads should not significantly impact the relative traffic index.

We can roughly split the construction of the graph for a single road into two
parts: a) determining most likely neighbours of sensors, and b) determining
an order of the sensors that a car traveling on a road follows. We will need
the following three ingredients:

1. coordinates of each sensor in latitude and longitude,

2. the name of the road each sensor is on,

3. the direction of the recorded traffic at each sensor.
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The latitude and longitude coordinates of a sensor are used to locate the
sensor on the map, and to compute the distance between two sensors. If the
earth is assumed to be a perfect sphere, then the shortest distance between
two points on the sphere is the smaller arc length of the great circle passing
through these two points on the sphere. This is called the geodesic distance,
and can be calculated from:

haversin

(
dAB
R

)
= haversin(φB − φA) + cosφA cosφB haversin(λB − λA),

(1)

where dAB is the geodesic distance between points A(φA, λA) and B(φB , λB)
on a sphere of radius R, φA and φB are the latitudes, λA and λB the longi-
tudes, for A and B, respectively, and

haversin(θ) = sin2 θ

2
=

1− cos θ

2
. (2)

Note that MATLAB has a built-in geodesic distance function. The region of
South Limburg has latitudes between 50.75◦ N and 51.05◦ N and longitudes
between 5.7◦ E and 6.1◦ E.

Using the name of the road each sensor is on, the sensors can be assigned
to their respective roads, and using the direction data the lanes in opposite
directions can be separated. The main aim is to find the successor sensor for
each sensor when travelling in a certain direction, as our car traffic calculation
method requires that we know the order in which the sensors are traversed.
For this we employ a modified nearest-neighbour algorithm, processing one
direction of one road at a time.

When we have the order of the sensors for one direction of a road, we
create a pseudo-connection matrix P of size n×n, with a row and column for
each of the n sensors (the name will be explained later on). For each sensor
A in the data, we first find the sensor B that is closest to A. In the matrix
P , there will then be a 1 in the (B,A)-entry.

Except for the first and last sensor on the road, each sensor has two neigh-
bours. Rather than just looking for the sensor that is closest to A after B,
we apply a second criterion to make the result more realistic, i.e., we only
consider sensor C where the angle between AC and AB is at least 90 degrees.
We illustrate this criterion with an example. In Figure 2 the closest neighbour
to A is B, and the second closest neighbour is C. Still, because we assume
that roads do not make turns sharper than 90 degrees, we consider D the
more likely second neighbour of A, as in Figure 3.

We apply the rules for first and second neighbours to all of the sensors
involved, and fill the matrix P accordingly. This matrix will only have 0s
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Figure 2: Neighbours of A when not using the 90 degrees criterion.
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Figure 3: Neighbours of A when using the 90 degrees criterion.

and 1s, with at most two 1s per column. The reason we call this a pseudo-
connection matrix is that it is not the standard connection (adjacency) matrix
for a directed graph; it also need not be symmetric, as the connection matrix
of an undirected graph would be.

The next step is to use the direction of the road to make sure we start at
the beginning of the road and then find the successor sensors. To determine
the starting point we simply look at the raw coordinates, in combination with
the direction, e.g., if a road is eastbound we start at the westmost point.
This first sensor, with index o1, should only have a single connection to other
nodes, i.e., the o1-th column of P has a single entry at some row o2. Thus, we
have found the second sensor on the road. We then keep going by looking at
the o2-th column, which should have 2 nonzero entries, one at the o1-th row
and one at some row o3. If the sensors are placed nicely on a straight road,
we can continue this way until the end of the road (see Figure 4).

However, when the road is not straight this method may sometimes go
awry, as illustrated in Figure 5. Starting at B we go to the successor A. There
we have a problem, sinceA connects to both C andD. To fix problems as these
we choose whichever point has the largest distance to A, skipping the other
point. We may lose some sensors in the process but this will not invalidate
the traffic estimation; it only reduces the accuracy of the approximation (see
Section 3)
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A = o3

B = o2

C = o1

D = o4

Figure 4: Eastbound road constructed from sensor coordinates.

A

B

C
D

E

A = o2

B = o1

C
D = o3

E = o4

Figure 5: A problematic graph and the used solution.
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Another method to construct the graph for a single road, is to assume
that the shortest path that connects all sensors is the correct way to connect
them. This graph can be calculated by adding a dummy node with distance 0
to all other nodes, and then solving the Traveling Salesman Problem (TSP).

Solving a TSP for each road is doable as long as the number of sensors
on a single road is not too high, but using the knowledge that a road should
be mostly straight can also inspire a number of heuristics that are quick to
calculate. For instance, a linear regression line through the sensors can be
calculated, and then sensors can be ordered by projecting them onto that
line. If needed, simple local search heuristics can be used to improve on the
initial solution.

3 Calculating traffic

Given a directed graph, where the nodes represent sensors and the edges rep-
resent the road segments between these sensors, the intensity and velocity
measurements, in conjunction with the segment lengths, can be used to es-
timate traffic quantities. Here, we discuss estimating the number of cars on
the road at a given time, and the number of kilometers driven by all cars on
the road during a certain time period.

3.1 Car count

To estimate the number of cars on the road at a given time, we estimate
the number of cars on each road segment. In the simplest case, we assume
cars to be driving at constant speed for some time around the measuring
sensor. The estimated number of cars on the road segment AB, based on the
measurements at sensor A and sensor B, respectively, equals

CA(t) = IA(t)
dAB
vA(t)

, (3)

CB(t) = IB(t)
dAB
vB(t)

. (4)

Note that to be correct, the estimates CA(t) and CB(t) need the average
velocities vA(t) and vB(t) to be the harmonic mean of the velocities of the
passing cars. Unfortunately, only the arithmetic mean is available in the data.
This issue is further discussed in Section 4.

The estimate CA(t) assumes all cars that enter the road segment at sen-
sor A to drive along the entire segment. It does not take into account cars
leaving the road somewhere along the segment AB. Similarly, CB(t) does not
take into account that cars may have entered somewhere along the segment.
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Assuming that leaving and entering occurs halfway along the road segment,
these two effects can be incorporated in the car count by averaging CA(t) and
CB(t):

CAB(t) =
CA(t) + CB(t)

2
=
dAB

2

(
IA(t)

vA(t)
+
IB(t)

vB(t)

)
. (5)

Note that this formulation is independent of how many cars leave and enter
the road on segment AB. All that matters is the difference between the
number of cars that left and that entered.

For short road segments AB, specifically if dAB

vA(t) < T , equation (5) should

give a good estimate for the number of cars on the segment. For longer road
segments, the constant speed assumption may be too much of a simplication.
This problem can be alleviated by using measurements of multiple time in-
tervals. We still assume the cars to traverse the road segment with constant
speed as measured at the sensor, but the different speed of cars that arrive
within different time intervals will be taken into account.

In the time interval [t+ kT, t+ (k + 1)T ), cars are measured at a sensor
with average speed v(t + kT ). Relative to the placement of that sensor, at
time t these cars are expected to be at (−(k + 1)Tv(t+ kT ),−kTv(t+ kT )].

At sensor A only measurements before t are interesting, i.e., k < 0, because
measurements after t correspond to cars that had not entered the segment AB
yet at time t. For k < 0, if

−kTvA(t+ kT ) ≤ dAB ⇔
dAB

TvA(t+ kT )
+ k + 1 ≥ 1 (6)

then all the measured cars are within the segment AB at time t, while if

−(k + 1)TvA(t+ kT ) ≥ dAB ⇔
dAB

TvA(t+ kT )
+ k + 1 ≤ 0 (7)

then all the cars already passed the segment at time t. In all other cases,
assuming a uniform distribution of the cars within the measured time, the
fraction of the measured cars that are in segment AB at time t is equal to

dAB − [−(k + 1)TvA(t+ kT )]

TvA(t+ kT )
=

dAB
TvA(t+ kT )

+ k + 1. (8)

The number of cars on the road segment AB can then be estimated from
the measurements in sensor A by adding contributions for all k < 0,

CA(t) = T

−1∑

k=−N
IA(t+ kT ) max

{
0, min

{
dAB

TvA(t+ kT )
+ k + 1, 1

}}
. (9)
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Similarly, the number of cars on segment AB can be estimated from the
measurements in sensor B by

CB(t) = T

N−1∑

k=0

IB(t+ kT ) max

{
0, min

{
dAB

TvB(t+ kT )
− k, 1

}}
. (10)

Here, the truncation value N should be such that no contributing measure-
ments are neglected. A safe value for N can quickly be calculated from

N =
dAB

T mint,ξ∈{A,B} vξ(t)
. (11)

Again averaging to account for cars leaving and entering the road along
the segment AB, we get

CAB(t) =
T

2

( −1∑

k=−N
IA(t+ kT ) max

{
0, min

{
dAB

TvA(t+ kT )
+ k + 1, 1

}}

+

N−1∑

k=0

IB(t+ kT ) max

{
0, min

{
dAB

TvB(t+ kT )
− k, 1

}})
.

(12)

Note that the treated methods for counting traffic are essentially indepen-
dent of the number and placement of the sensors. That is, if the simplifications
assumed to model the traffic on a road segment would be exact, then using
measurements from any set of sensors would lead to the same traffic count,
provided that the same part of the roads is covered. Evidently, using more
sensors that are closer together does lead to more reliable estimates.

Many more extensions are possible to better estimate the number of cars
on a road segment at a given time. For instance, using an interpolated function
for intensity and velocity, or incorporating a typical distribution of velocities
for a certain road. However, the intended use of these statistics is a traffic
index, i.e., an aggregation over a time period and a geographical area. In this
case, the provided estimates are expected to be accurate enough, as the local
approximation effects should not significantly impact the aggregate.

Figures 6–8 show the estimated car count on two major roads in South
Limburg, based on equation (5), using the minute data of the road sensors.
Figure 6 shows the estimated traffic on the A76 on a Friday. The morning
and afternoon rush hours are clearly visible. There is slightly more westbound
traffic in the morning, and more eastbound traffic in the afternoon. Figure 7
shows the traffic on the A2 on a Friday. Again, the morning and afternoon
rush hours are clearly visible. Further, it is clear that there is a lot more
southbound traffic, towards the city of Maastricht, the entire day. Figure 8
shows the traffic on the A2 on a Saturday. There is still a lot more southbound
traffic, but there is no morning or afternoon rush hour.
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Figure 6: Car count on the A76 on a Friday (Feb. 1, 2013).
Horizontal: minutes past midnight. Vertical: number of cars on the road.

3.2 Car-kilometer count

We want to build a traffic index as an indicator of the traffic usage on the
infrastructure. One way of measuring this is the average number of cars on
the road, as described in the previous section. Another way would be the total
usage of the roads by car-kilometers. In this case, one is not only interested
in the current number of cars but also how far they travel. This is measured
by the total number of car-kilometers, i.e., if there is a way of recording all
cars and their whereabouts, the sum of kilometers of all car trips on the road
network. The car-kilometer approach is studied in this section.

Imagine an abstract straight road [0, A]. The road sensors (observation
points) are located at positions x1, x2, . . . , xK (assume 0 = x0 < x1 < x2 <
· · · < xK < xK+1 = A). Take ρ(x, t) as the car density at location x at time
t, such that the total number of car-kilometers on the road, in the time period
[0, τ ], is

K(τ) =

∫ τ

0

∫ A

0

ρ(x, t)dxdt. (13)

We do not know ρ(x, t) at every x, but we have traffic records at the sensors
xi. Thus, we can approximate ρ(x, t) with piecewise constant functions using
our observations ρ(xi, t), and then come up with an approximation of K.
From a numerical integral theory viewpoint, the best method is to divide the
intervals to construct the piecewise function as follows. Given ρ(xi, t), we
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Figure 7: Car count on the A2 on a Friday (Feb. 1, 2013).
Horizontal: minutes past midnight. Vertical: number of cars on the road.
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Figure 8: Car count on the A2 on a Saturday (Feb. 2, 2013).
Horizontal: minutes past midnight. Vertical: number of cars on the road.
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approximate ρ(x, t) by

ρ(x, t) ≈
K−1∑

i=1

1(
(xi−1+xi)/2,(xi+xi+1)/2

](x)ρ(xi, t). (14)

The values ρ(xi, t) can be approximated by the observations at sensor xi. We
then arrive at the following approximation of K:

K(τ) ≈
∑

i

diNi, (15)

where Ni is the number of cars passing sensor xi in the time interval [0, τ),
and di is the length of the interval around xi, i.e., for three consecutive sensors
xi−1, xi, and xi+1 take di = 1

2 (‖xi+1 − xi‖ + ‖xi − xi−1‖). Thus, di is the
estimated travel distance of a car captured by sensor i, covering half of the
interval before sensor i and half the interval after.

In terms of the provided data, an approximation CK(t) of the car-kilometer
count in the time interval [t, t+ T ) can be obtained by

CK(t) =
∑

i

diIi(t)T, (16)

where Ii(t)T is the number of cars passing sensor xi in the time interval
[t, t+ T ), and di is a length that represents the part of the road around xi,
as in equation (15).

We developed the above method for an abstract straight road. However,
the principle works for any topography. We just have to associate the correct
length to sensors. Naturally these lengths are difficult to deal with, as they
need detailed information on the geography of roads. However, this approach
has some nice properties. First, it does not care whether a car is recorded
by several sensors. If a car is recorded twice, it means the car travels more
kilometers, which means more damage to the roads. (It could also mean more
air pollution.) Second, this approach does not mind too many sensors, as it is
cheap to compute, and the more sensors the more accurate the approximation
will be.

The car-kilometer count is a fairer indicator of infrastructure usage than
the car count. It represents how widely and extensively the infrastructure
has been used for a certain time period. It is simple to calculate and easy to
implement, and robust to using more or fewer sensors.
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siteID date location roadNo lane direction flow speed

. . . . . .

Table 1: Excerpt from the sensor data.

4 Data reconstruction

In the previous sections, a detailed method for the calculation of a traffic index
has been proposed and formulated. Although theoretical considerations cover
some of the practical problems, there are still several issues with the input data
that need detailed analysis. In this section, the structure and characteristics
of actual data are discussed, the main problems are identified, and solutions
and corrections are proposed.

4.1 Data format and data problems

The data provided by CBS covers both 1 minute and day measurements.
The former are restricted to the region of South Limburg for two consecutive
days: Friday, 1 Feb. 2013 and Saturday, 2 Feb. 2013, and include 2 million
observations from 424 road sensors. The latter include observations from all
of the Netherlands for a period of 3 months, and include 900 000 observations
from 15144 sensors. The available variables describe a wide range of different
features, including flow and velocity measurements, directional information,
and location coordinates.

Table 1 presents an excerpt of the data that covers the most important
variables from the point of view of the method proposed in previous sections.

As the traffic system is constantly changing, sensitive to unpredictable
phenomena, and vulnerable to different factors, one must also expect possible
errors in the traffic data. Fortunately, the system is designed to return “−1”
if there was an error. This allows to differentiate between no traffic (zero
measurements) and malfunctioning equipment.

A preliminary analysis of the data shows several obstacles for the imple-
mentation of the proposed solution. First, we found that there is a problem
with the availability of directional data of sensors. Second, we identified also
missing and incorrect intensity and velocity data. Finally, the velocity aver-
aging method needs some investigation.

Brief comments regarding all the variables are summarized in Table 2.
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Variable Comment Problems
siteID Unique number for each sensor No problems
date Time of measurements No problems
location Geographical coordinates No problems
roadNo Exact road number No problems
lane Number of the lane No problems
direction Direction of the sensor Many missing entries
flow Measured intensity Both errors (−1) and missing

data (unexpected 0)
speed Measured velocity Averaging: arithmetic mean

Both errors (−1) and missing
data (unexpected 0)

Table 2: Summary of variables and problems in the data.

4.2 Missing data

The first step of our solution is to create a graph using the data on the
location and direction of the sensors. Therefore, it is important to be able to
match every sensor to an exact geographical point. Figure 9 shows all sensors
in the Netherlands and in South Limburg, drawn according to the provided
longitude and latitude information.

As the presented figures illustrate, the sensors represent a network of the
main roads in the Netherlands, which is compatible with our proposed ap-
proach. However, if we were to use only sensors for which directional data
is available, we would have to omit a considerable part of the Netherlands.
About 30% of the sensors lack information on the direction, see Figure 10.
Hence, having a systematic procedure to reconstruct the missing data is vital,
in order to provide a reliable calculation of the traffic index.
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Figure 9: Sensors in the Netherlands (left) and South Limburg (right).

The second problem with the data concerns missing and incorrect mea-
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Figure 10: Sensor with available direction data in the Netherlands (left) and
South Limburg (right).

surements of intensity and velocity of traffic. We distinguish between two
possible errors: ‘blind sensors’ and ‘blind time points’. The first indicate the
situation where a sensor does not give any data for any period of time, whereas
the second represents holes in the time series data for a given sensor. Table 3
shows the percentages of these two types of errors in the provided data.

Velocity Intensity
NL 6.5 4.5
SL 10.5 8.0

Velocity Intensity
NL 2.5 2.0
SL 15.5 0.0

Table 3: Percentage of blind sensors (left) and blind time points (right), for
the Netherlands (NL) and South Limburg (SL)

The percentages of errors are tolerable, as our proposed solution does not
need to be applied using all possible measurements. Problematic sensors can
be excluded with a little loss of precision.

The third identified problem concerning the data lies in the method of av-
eraging velocity measurements. For our purpose the correct way to compute
an average of speed is to use the harmonic mean of the observations. Unfor-
tunately, all the provided data give are the value of the arithmetic mean.
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4.3 Direction reconstruction

The main problem with the data is the lack of directional information in a
substantial number of sensors. We propose to retrieve this data on the basis of
the behaviour of the traffic intensity. We hypothesized that, as far as different
directions of one road are concerned, patterns of traffic should differ within a
weekday. For example, in the morning rush hours the traffic should converge
mostly to the biggest city in the neighbourhood, whereas during the afternoon
the profile should be the opposite. The same is true in the case of a significant
event in a specific place.

From the mathematical point of view, we would like to compare a set of
time series data with each other and then cluster the sensors according to
some distance function for a pair of sensors. We identified two approaches,
which can be applied to this problem:

1. Compare a whole-day time series for each sensor. One simple method
is just to use a mean square error as a distance function. This will
not take into account the possible time dependence (time lag) between
consecutive sensors. Hence, we propose to distinguish them using a
cross-covariance (cross-correlation) function, which compares two time
series and their lagged transforms1.

2. Calculate the distribution function of the intensity for each sensor in
one, chosen rush hour, i.e., either in the morning or in the evening.
In order to estimate the distribution, one can use histograms or kernel
density estimators. In the next step, the distance function would be the
difference between two histograms/densities, which can be calculated
using Kullback-Leibler divergence or just the mean square error.

The method which compares only distributions of intensities is much sim-
pler to apply and cheaper to implement, but it aggregates and loses infor-
mation included in the time series. Therefore, it has a potentially smaller
range of applicability. Nonetheless, if the hypothesis stated above is true the
distinction made in that way should be reliable.

1In the statistical software package R, this is implemented via the function ccf.
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The presented idea can be summarized in the following picture:

The steps for method 1 are:

a. Identify continuous approximation of intensities.

b. Compute how the time series differ between sensors.

c. Divide sensors into two groups according to the distance.

For method 2, the steps are:

a. Identify distribution of intensities in the rush hour.

b. Compute distance between densities (Kullback-Leibler).

c. Divide sensors into two groups according to the distance.

We believe that such an approach should be useful, when there is strong
evidence that the traffic is very different in two directions. Unfortunately, as
the provided dataset for South Limburg shows, it is not a general rule that
always holds. In particular, such an approach was not successful enough in
differentiating the direction of sensors for roads A2 and A76, where we know
most directions. We cannot assume then that the approach can be applied
for the road A79 in South Limburg. In that case, we must in addition make
use of information on the location of the sensors. Therefore we propose the
following procedure, which is a modification of the initial proposition.

Let us assume we are given a set S of sensors within a single road without
direction. Sets S1 and S2 will include sensors in different directions.

1. Choose an arbitrary sensor s0 ∈ S, add it to S1 and delete it from S.

2. Choose n (we propose n = 4) different sensors s1, . . . , sn ∈ S that are
the nearest (in the sense of location) to s0, but not farther than a fixed
tolerance distance d (we propose d = 3km). If it is not possible, go to
step 1 (with different s0).
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3. Calculate the cross covariance for the intensity time series data between
s0 and each sensor from the set {s1, . . . , sn}. The number of calculated
lags (mostly 1, 2 or 3) should be chosen according to the average veloc-
ities and distance between sensors; car-count formulas from section 3.1
can be used here.

4. Choose one sensor, sh, with the highest covariance. Add sh to S1 and
delete it from S.

5. Choose one sensor, sl, with the lowest covariance. Add sl to S2 and
delete it from S.

6. If S is empty, stop. Otherwise, go to step 2 and repeat on the current
S with s0 := sh.

The method will be most efficient, if the first chosen sensor is approxi-
mately in the middle of the set S in the sense of location. Moreover, the
algorithm will work better, if sensors are uniformly distributed in both di-
rections, i.e., the number of sensors in each direction is similar. The more
the number of sensors in each direction differs, the higher the choice of the
variable n should be. The procedure needs to be carried out only once, but
should be tested on a regular basis with newly available data.

Using this method, the identification of the directions for roads A2 and
A76 in South Limburg was at a level of 80%. We apply the method to the
data for A79, a reconstruction of which is presented in Figure 11.

Figure 11: Reconstructed directions (red/blue) for the A79 in South Limburg.
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4.4 Velocity averaging

Another issue that needs special attention, is that the velocity is given as an
arithmetic mean instead of the harmonic mean. The best method to correct
this problem is of course to get the harmonic mean from the source of the
measurements. If this is impossible, however, the suggestions below can be
used to improve the calculations.

An elementary inequality between means states that for positive x1, . . . , xn

n
1
x1

+ . . .+ 1
xn

≤ x1 + . . .+ xn
n

, (17)

i.e., the harmonic mean is less than or equal to the arithmetic mean.
In the case of the calculation of a traffic index, this means that using

an arithmetic mean of observations leads to an upper bound on the true
value. Unfortunately, there is no method to quantify the error. The difference
between the arithmetic and harmonic mean can attain any value depending
on the dispersion of observations. The higher the difference between the
observation values, the larger the error of using the arithmetic mean.

We see the following options to achieve more accurate calculations:

• aggregate different types of vehicles into one group using a harmonic
mean for the velocity,

• aggregate minute measurements into longer periods using a harmonic
mean for the velocity,

• aggregate observations with respect to location, using a harmonic mean
for the velocity.

All these proposals give better approximations to the traffic index, but
at the same time they sacrifice some details of the data, e.g., information
on different types of vehicles. This approach to correcting the dataset will
be effective especially in the case of low-traffic periods. Moreover, the pro-
posed solution in previous sections implictly assumes harmonic averaging with
respect to location, which already alleviates the problem somewhat.

A more involving method could be devised, if a typical distribution of
vehicle speeds on the road is available. The arithmetic mean could then be
used to select a likely set of velocities that realised that mean, and from this
set the harmonic mean could be calculated. The accuracy of such a method
would rely heavily on the predictability of the vehicle speeds.
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5 Principal Component Analysis (PCA)

The procedure described in the previous sections gives an approximation of
the number of cars on the roads in a specific time interval using the minute-by-
minute information collected by the sensors. However, this information could
not be available in certain scenarios where the collected dataset is reduced to
the number of cars detected by the sensors in one hour or one day.

In this case, the data show a main feature: they contain much redundant
information because one car can be detected by several sensors. In matrix
terms, it means that if we assume that the information of each sensor is in
the columns of a matrix A, then the dimension of the linear subspace spanned
by the columns of A is much smaller than the number of sensors.

In this case, describing the data using an orthonormal basis of this ‘smaller’
subspace that contains a compressed representation of A, is a good strategy.
The Singular Value Decomposition (SVD, Golub and Van Loan (2012)) of
A permits to calculate a possible set of basis vectors formed by the singular
vectors corresponding to the largest singular values of the matrix A.

This fundamental data analysis tool, known as Principal Components
Analysis (PCA), is one of the methods investigated by the CBS specialists
to know the variability of the data and calculate a traffic index.

Some recent approaches can improve the application of PCA on the traffic
data:

• Robust PCA, Ke and Kanade (2005): Techniques to recover the low-
rank matrix approximations from highly corrupted and/or missing mea-
surements.

• CUR matrix decomposition, Mahoney and Drineas (2009): Here, the
basis vectors are explicitly expressed in terms of a small number of ac-
tual columns and/or actual rows of the data matrix. In the traffic index
context, the application of the CUR matrix decomposition could detect
sets of sensors where the redundance in the information is minimized. In
contrasts with the known limitation of the classic PCA, with CUR one
can interpret the produced basis in terms of the original data. An addi-
tional advantage of PCA based on CUR decomposition is avoiding the
calculation of the Singular Value Decomposition, giving the possibility
of working with a much larger dataset.

A final observation: the calculation of a traffic index using a PCA version
on the hourly or daily data does not use the information of the velocity of the
cars on the road. This can be an advantage considering the high proportion
of missing data for this parameter.
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6 Conclusions

In this paper, the problem of calculating a measure of the amount of traffic
on the roads, based on data from road sensors, has been treated.

A method was presented for constructing a graph, based on the sensor
data, with the sensors as nodes and the road segments between sensors as
edges. Using such a graph, we presented methods for estimating the number
of cars, and the number of car-kilometers. Both estimates are more accurate
when more sensors are used, but are otherwise independent of the number
and placement of sensors used, provided that the same set of roads is covered
by the sensors.

Further, procedures were proposed that deal with missing data, focussing
on reconstructing the traffic direction for sensors that missed the direction
data field, and on dealing with the arithmetic velocity mean being given,
when our methods rely on the harmonic velocity mean.

Finally, the uses of principal component analysis for this particular prob-
lem were discussed.
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Abstract

Although the act of cutting a single potato (Solanum tuberosum)
into french fries may appear to be trivial, the questions concerning
the efficiency of this process on an industrial scale are quite daunt-
ing. Therefore, many producers are looking for a rigorous method to
evaluate the market potential of a given potato crop by predicting the
number and parameters of the fries that can be cut from it. Applying
the methods of geometry and numerical analysis our group was able to
propose several algorithms that can be directly incorporated into the
existing production process.
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1 Introduction

The HZPC Holland B.V. company is a major international supplier of pota-
toes. The question posed by HZPC could be summarized as follows:

Question: Given a set of potato tubers with approximate information
about the size of each tuber and the desired cross-section of a fry, how many
french fries of various lengths and textural quality can be obtained from this
set, and what will be the volume fraction of waste?

During the SWI week our group was able to solve the geometrical part of
the problem. Whereas, the question concerning the textural quality remains
partially open. Below we describe two methods to cut tubers into virtual
fries and estimate their number, their length distribution, and the amount of
waste. The analytical approach provides with the formula for the volume of
each tuber based on the best elliptic approximation of the surface and with a
quick and dirty way to compute the fry length histogram from experimental
data. The second approach, which we call the Finite Fry Method (FFM), has
been implemented as two separate numerical algorithms: one that is tuned
to work with the currently available experimental data, and the other that
allows generating tubers of arbitrary shape and perform Monte-Carlo studies
on the obtained ensemble. Finally, we have developed an analytical procedure
to interpolate the DMC quality trait distribution sampled in a small number
of points onto the whole volume of the tuber.

2 Geometrical modeling

The available information about the shape of each tuber consists of its maxi-
mal extent (length) and several measurements in other directions. Namely, in
nine equidistant planes orthogonal to the length direction the measurements
of the width and height are available, two in each plane. However, although it
is known that the directions of the width and height are mutually orthogonal
and consistent over all nine planes, the measurements do not provide with the
actual coordinates of the boundary points.

This limited information allows constructing only a simplified geometrical
model of a tuber. We consider the intersection of the tuber boundary surface
with each of the nine cross-sectional measurement planes to be a concentric
but not necessarily a confocal ellipse with known semi-axes.

Computing the volume of a tuber requires interpolating its boundary sur-
face between the aforementioned cross-sectional ellipses. Depending on the
chosen interpolation model the surface between the planes may or may not
have an elliptic cross-section. Without losing much precision we assume that
all cross-sections of the tuber in the direction orthogonal to its length are in-
deed elliptic. The advantage of this assumption is the ability to compute the
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Figure 1: Calculated volume of the geometric model compared with the vol-
ume estimated from the weight and density of tubers.

volume of a tuber explicitly as a sum of the volumes of eight twisted elliptic
cylinders defined by the measurement planes plus the volume of two caps that
can be modeled as elliptic cones. The result of computing the volume via this
approach is shown in Figure 1 where it is compared with the volume estimate
based on the weight and density of a tuber.

Further improvement of this geometric model may consist in a better de-
scription of the tuber caps, for example, as elliptic paraboloids instead of
elliptic cones.

3 Cutting potatoes into fries

With the model of the tuber boundary surface at hand one can proceed ‘cut-
ting’ the potato into fries and estimating the waste – fries that do not conform
to the industry standards.

Let the z-axis be along the length direction. Introduce a uniform two-
dimensional Cartesian grid in the horizontal (x, y)-plane with the grid step
h – the chosen width of a fry (h = 6, 7, 8, 9, 10, 12, 14, or 16 mm). Cut the
tuber into fries numerically by constructing finite elements that extend along
the z-axis with their vertical edges coinciding with the grid points of the
previously defined horizontal grid. The surface of the tuber is approximated
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Figure 2: Three tubers from the 40 − 50 mm class (experimental data) cut
into fries of width h = 6 mm. Only acceptable fries are indicated.

in a piecewise linear fashion at this stage. Discard all fries that do not conform
to the industry standard and compute the waste.

The result of the application of this numerical algorithm, which we call
the Finite Fry Method (FFM), to the first three tubers in the 40 − 50 mm
width class is shown in Figure 2.

Although, we were able to run this algorithm on as many as 11333 tubers,
the discretization of a large number of tubers into fries may take significant
time (about an hour on a laptop). Therefore, we have also developed an
approximate but simple method to estimate the number of fries that can be
cut from each tuber. The main idea is to count only the fries that have a square
cross-section discarding all wedge-shaped fries that are cut from the sides of a
tuber. This method detects the smallest of the cross-sectional ellipses of each
tuber, and is extremely fast (seconds) and surprisingly accurate (see Figure 3).

4 Modelling variations in tuber geometry

Another realization of the finite-fry method (FFM) was developed to relax the
current experimentally imposed limitations on the tuber geometry. Namely,
as was mentioned above, the measurements did not provide with the actual
coordinates of the boundary points and forced us to assume the concentric
elliptical geometry when working with the data. In reality, however, tubers
can have very asymmetric shapes. In this second realization of the FFM
we have implemented a more systematic finite-element approach and have
simulated a large statistical ensemble of asymmetric tubers.

As before, the potato shape is determined by a number of slices with ellip-
tic contours orthogonal to its maximal (length, vertical) dimension. However,
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Figure 3: Left: Distribution of lengths of all acceptable 6 mm wide fries
that can be cut out of 11333 tubers from the 40 − 50 mm class calculated
using a simple geometrical estimate and a more exact numerical procedure.
Also shown is the distribution of the tuber length within the class. Right:
Distribution of the volume fraction of waste.

this time not only the dimensions and orientation of the ellipses are allowed
to vary but also their centres are allowed to shift off the length axis. In
Figure 4 we show a schematic representation of tubers defined by a set of
algorithmically generated ellipses.

To get the number of fries, we use a background (horizontal) square domain
with the width and height chosen in such a way that all tubers of the simulated
ensemble can be projected onto this domain. This domain is referred to as
the reference surface. This area is divided into squares of equal size, which we
call elements. Each elliptic slice is projected onto the reference area so that
each square fits either completely, or partially, or not at all in the projected
slice.

To make the whole procedure more systematic we construct an ordered
list containing the indexes of all points in groups of four – the vertices of each
element. Such lists are usually referred to as the topology of the grid. This
list makes it easy to determine whether a fry belongs to a projected ellipse
by testing for each vertex and each element whether the coordinates (x, y) of
the vertex satisfy

(x
a

)2
+
(y
b

)2
< 1.

If that is the case, then the vertex point and thus the edge of the fry is inside
the tuber. If an element, which represents the cross-section of a fry, fits either
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Figure 4: Two examples (Case I and Case II) of computer-generated tubers
defined by ellipses with variable length, width, and center offset. Here, the
length and width are deterministic functions, whereas the coordinates of the
centres are taken from a normal distribution with zero mean and the standard
deviation of 10 mm

partially or entirely within the projection of the slice onto the reference area,
then this element is interpreted as a ‘fry’.

Among all the fries we determine the list of accepted fries by accepting a
fry if the intersection of the corresponding element with the projected ellipse
has an area of at least 0.7A, where A denotes the element area. A schematic
of accepted and rejected fries over a single slice is given in Figure 5. This
procedure is repeated for all the elliptic slices of the tuber.

The length of a fry corresponding to a certain element is determined by
adding all the distances between adjacent slices that have yielded an accept-
able intersection area with this element during the previous step. Due to the
allowed variations in the tuber geometry some fries may have to be cut into
pieces. In such cases each piece is considered to be a separate fry. As before,
fries are only accepted if their length exceeds 40 mm. All the acceptance
criteria for the fries can be changed in the model whenever necessary.

In the Monte-Carlo simulations, the tuber length, the centres, and the
orientation and length of the semi-axes of the elliptic cross-sections are all
assumed to be random normally distributed variables with adjustable means
and variances. Furthermore, the mean width and height of each ellipse change
according to a prescribed function in the length direction. We note that this
function can be adjusted to model any desired shape.

Similarly to Figure 3 we present the results by comparing the distribution
of the length of tubers (which is an input parameter) to the distribution of the
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Figure 5: A schematic representation of accepted fries over an elliptic slice of
a tuber. The red and blue dots, respectively, indicate the centres of the fries
that are rejected and accepted

length of accepted fries (output parameter). As a tuber shape, we consider
a mean tuber length of L = 150 mm, with the standard deviation of 35 mm,
that is L ∼ N (150, 352). The elliptic projections were simulated according to
the formula:

(
x− xc
a(z)

)2

+

(
y − yc
b(z)

)2

= 1,

where z is the vertical coordinate and xc, yc ∼ N (0, 102) are the center co-
ordinates taken from a normal distribution. We present the results for the
following two shape functions:

E{a(z)} =
4

L
z(L− z) = E{b(z)}, Case I; (1)

E{a(z)} =

(
4

L
z(L− z)

) 1
8

= E{b(z)}, Case II; (2)

where E{. . . } denotes the expectation used in the Monte-Carlo simulations.
Note that we also set a = b in the current simulations but we have the
flexibility to use any value.

The results are presented in Figure 6. It can be seen that, in agreement
with the experimental results of Figure 3, the average length of a fry is lower
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Figure 6: Statistical distribution of the tuber and fry lengths for two classes
of tuber shapes, see (1)–(2).

than the average tuber length. This is a direct consequence of the large
number of fries that is cut from the part of the tuber that is further away
from the main axis. Along the main axis the length of fries is (approximately)
equal to the tuber length, whereas at positions away from the main axis the
fries are shorter and more numerous. This causes the relatively large number
of fries with a length of 40 mm in the first case.

While the tuber shape is more ellipsoidal in the first case, in the second
case the shape is more cylindrical (see Figure 4). Therefore, in the second
case, the number of small fries is smaller. Thus, the proposed mathematical
models can be used to quantify the observations. In particular, it is interesting
to observe that the tuber geometry determines the shape of the probability
density function.

5 Fry texture and the DMC quality trait

Another question posed by the HZPC company was to investigate the texture
of fries after frying and the so-called DMC quality trait of raw fries. The DMC
trait is currently measured in just a few points over the volume of some of the
tubers. To interpolate the very sparse measurements of the DMC so that they
can be used to determine the DMC of each individual fry we have introduced
and computed the distance between an inner point of an elliptic slice and its
bounding ellipse. This distance is then inserted into a parametric expression
approximating the more recent fine-scale measurements of the DMC:

φ(x, y) = φc − α(dist((x, y); Γ))2, (3)
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Figure 7: The distribution of the DMC quality trait over an elliptic slice.

where (x, y), φc, α and Γ, respectively, represent any point within the ellipse,
the DMC content near the tuber surface (the maximum), and two tunable
constants. The spatial distribution of DMC is denoted by φ. The proposed
function is shown in Figure 7. We note that all tunable parameters can be
easily determined by an optimization algorithm. In the current simulation,
φ0 = 0.4, and α = 0.025. We did not move further into this direction during
the SWI-week.

6 Conclusions

The problem posed by the HZPC company was to find a mathematical tech-
nique that could help evaluate the market potential of a given set of potato
tubers. For the particular French fries market the main quality factor is the
amount and type of fries that can be cut from the tubers. As tubers vary in
shape and size even after having been sorted into several size-related classes,
the best approach appears to be the analysis of a histogram depicting the
distribution of length among the fries. In order to obtain such a histogram
we have developed an approximate and fast analytical procedure and a more
exact numerical technique, which both cut tubers into virtual fries with a
chosen cross-section. The advantage of the numerical approach stems from
the fact that it allows investigating the influence of rather arbitrary shape
perturbations on the histogram by running a Monte-Carlo simulation with a
computer generated set of tubers. Both methods were tested on the provided
experimental data and showed similar results. The analytical expression for
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the volume of each tuber based on the available spatial measurements is in
good agreement with the volume computed from the weight and density data.

The second part of the question concerned the distribution of the DMC
quality trait inside the tubers and its relation to the texture of French fries.
In this respect we have proposed a parametric expression that can be fit
to the available sparse experimental data in order to interpolate the DMC
density over the fry volume. Armed with this DMC trait distribution one
could extend the histogram approach by showing the statistics of the DMC
for each fry length.
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Abstract

This paper deals with a quality engineering problem introduced by
‘Waterlaboratorium Noord’ (WLN) situated at the Netherlands. In-
terest lies in determining an optimal sampling frequency that provides
sufficient information on the water quality in a drinking water purifica-
tion plant. The water purification plant that is studied consists of two
aeration and filtration processes and a clear water reservoir where wa-
ter is saved until distribution to households. One of the main processes
during these filtration processes is iron removal.

A stochastic model is proposed that describes the decreasing effects
on iron concentration after the filtration processes by multiplicative
effects. This model is combined with an ordinary differential equation
to model the amount of iron in the clear water reservoir that fluctuates
due to the quality of the incoming filtrated water and the varying water
demand.

In this way the iron concentration levels in the different compart-
ments of a water purification plant can be simulated. Range and fluc-
tuations approximate those of the observed data. Hence a realistic
benchmark for detecting anomalies is obtained.

Keywords: quality engineering, sampling frequency, stochastic model,
differential equation, water quality
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1 Introduction

1.1 WLN

The quality of water has an important impact on public health. Whether
it is used for drinking, for food production or just for recreational purposes,
contaminated water can lead to severe health problems (Karanis et al., 2007).
Therefore monitoring and keeping the quality of drinking water at a safe level
is of crucial importance for our society.

The company ‘Waterlaboratorium Noord’ (WLN) takes care for the qual-
ity control of drinking water in Groningen and Drenthe. It monitors and
improves the quality of drinking water provided by the water supply compa-
nies ‘Waterbedrijf Groningen’ and ‘Waterleidingsmaatschappij Overijssel’.

Generally water is retrieved as surface water or groundwater. This water
needs to be treated in a purification plant for several reasons, to remove
harmful substances, to ensure it looks clear and to remove pathogenic micro-
organisms, to name a few. This purified clear water is then pumped through a
distribution network and finally flows clearly and steadily into the households.
Figure 1 depicts a typical treatment scheme for groundwater purification.

1.2 Outline of the problem

The main question posed by WLN is the following:

Which monitoring frequency at the various stages in the water
purification process is required for obtaining sufficient information
on the water quality to prevent contaminated water to be delivered
to households?

 

Figure 1: Illustration of a water purification process when groundwater is
used as source.

Proceedings of the SWI 2014 Held in Delft

37



One of the reasons this question is posed can be found in the Dutch legis-
lation concerning the water quality. This legislation prescribes very strictly
the quality control in the drinking water sources, in the clear water reservoirs
and in the distribution networks. However, for the water inside the water
purification plant there is only a rough guideline saying that the water com-
pany has to monitor the purification process for an ‘adequate process control’.
Hence the only demand is that it is being frequently monitored on several lo-
cations spread along the plant such that a sufficient overview of quality can
be obtained. At this moment only expert judgement is used to determine this
monitoring frequency.

1.3 Approach

In this paper we restrict attention to a single water treatment plant with
groundwater as a source and two filtration steps. One of the main goals is
to detect malfunctions of the purification process which can result in unac-
ceptable water quality. In an attempt to detect such anomalies a model is
introduced for predicting iron concentrations at each place in the purification
process given the iron concentrations in the groundwater. A next step would
be to monitor the differences between these predictions and the observations
to reassure the quality of Dutch water.

Figure 2 shows a schematic overview of the proposed model of the pu-
rification process. The four main locations of the purification process are
interpreted as basins where measurements are taken from. The transitions
between the first three basins are modeled using a stochastic model with a
multiplicative effect while the fluctuations of the iron in the clear water before
distribution is modeled using a differential equation. The implementation is
performed using the statistical software package R (R Core Team, 2012).

groundwater
after

first filtration

after

second filtration

clear water

before distribution

Figure 2: Schematic illustration of the water purification process

1.4 Outline of this article

In the next section we detail the data made available by WLN. In section
3 we present a model that relates the concentration of iron in groundwater
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to the concentration in the clear water basin. This model uses both ideas
from stochastic processes and differential equations for modellng conservation
laws. We then move on to the results obtained. The final section contains
conclusions, discussion and recommendations.

2 Available data

The data concern a water treatment plant that uses groundwater and basically
removes substances through aeration and filtration. There are no pathogenic
microbes in the water, because it is pumped up from deep beneath Earth’s
surface. The dataset consists of measurements of concentrations of several
ions like e.g. Fe, Mg, NH4. These measurements have been taken at four
places during the purification process:

1. in the groundwater,

2. after the first filtration,

3. after a second filtration,

4. before the distribution (clear water).

The data include measurements over a period of 5 years starting from
January 2009. The measurement frequency is about 1-2 times a week. Figure
3(a) shows the observed iron concentrations on each of the four locations
mentioned above. As one can see the iron concentration decreases after each
filtration.

Flushes of the filters at regular times cause fluctuations in the iron con-
centration after each filtration as can be seen in figure 3(b). Immediately
after a flush the remaining fraction of iron in the water reaches a peak and
subsequently decreases rapidly back to its original value. The peaks after
first and second filtration in figure 3(b) seem to occur periodically, however
an exact flush period is not made available. Figure 4 shows some typical flush
curves describing the remaining fraction of iron in the water as a function
of time since the filter has been cleaned. These samples are taken every 10
minutes during a period of roughly 12 hours. The curve can be modeled using
non-linear regression analysis as will be discussed in the next section.

Fluctuations in the clear water are expected to be lower as the large volume
of the clear water reservoir averages out most of the fluctuations. Fluctuations
in this basin can, among other things, be caused by variations in the water
demand.

In what follows t denotes the inspection time of the measurements, ex-
pressed in hours, since the first available measurement. Note that the time
scale t is different than the one used to describe the flush curves. There, the
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Figure 3: (a) Plots of observed iron concentrations at each location. (b) Plots
with free axes scales to illustrate the fluctuations.

inspection time is expressed in hours after the last flushing. No link between
these time scales is available, in the sense that for measurements yt and zt
taken after first and second filtration respectively the time that is passed since
the last flushing is not known.

3 Modelling the water purification process

3.1 A stochastic model for the first filtration process

The iron concentration in the water just before it enters the first filter is
denoted by Xt and can be modeled using a time series model. However the
observations in the dataset are obtained with 2-4 days in between. Therefore
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the ‘incoming iron concentrations’ can assumed to be independent realizations
of a random variable X having density function fX . As a function of time s
after flushing the filter is assumed to have a multiplicative effect on the iron
concentration in the water. This means that the iron concentration in the
water measured at time s after flushing is given by

Ys = X · α(s) (1)

where s ∈ [0, 12] and the cleaning of the filter is assumed to happen every
twelve hours. As noted before, the function α(s) indicates the temporal de-
pendence of suspension in the water after the first filtration and is measured
as the remaining fraction of iron in the water as a function of time s since
the last filter cleaning. Based on the analysis of this flush curve s 7→ α(s) we
assume the following model:

α(s) = a
(

1 +
s

b

)−n
+ c, s ≥ 0. (2)

The function s 7→ α(s) has a horizontal asymptote at y = c. The parameter
n determines the shape (and steepness) of the curve whereas the parameter a
determines the intercept at (0, a+ c). The parameter b on the other hand can
be viewed as a scale parameter. Non-linear regression analyzes were performed
to show the appropriateness of the chosen model in 2, see figure 4.

An optimal fit of the parameters θ = (a, b, c, n) is found using maximum
likelihood estimation based on the measurements of the iron concentrations
in the groundwater and after first filtration. This estimation is based on the
following assumptions:

1. The ‘incoming iron concentrations’ are assumed to be independent and
identically distributed according to a normal distribution N(µX , σX).
Figure 5 indicates that the normality assumption is indeed not violated
severely.

2. As noted before, the inspection time s after filtration at which the con-
centration Ys is measured, is not known. For now this time is modelled
by an uniformly distributed random variable on [0, 12].

Assuming that the inspection times s for Ys are drawn from a uniform
distribution implies

Y = X · α(12U), (3)

where X ∼ fX and U ∼Unif(0, 1) are independent. Based on the normality
assumption it is clear that the distribution of Y will depend on the parameters
(µX , σX , θ).

Note that no paired observations are available, in the sense that for a
particular input with concentration X, the corresponding concentration Y
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is measured. Such information could improve the model and would be rec-
ommended in the future. For the moment it is assumed that a number of
independent realizations of Y is observed, originating from (3). We now de-
rive the density of Y . First recall the formula for the probability density of
the product Y of two independent continuous non-negative random variables
X and Z:

fY (y) =

∫ ∞

x=0

1

x
fZ

(y
x

)
fX(x) dx. (4)

In order to use this relation to obtain the density of Y in (3), we need the
density of the random variable

Z = α(12U) = a

(
1 +

12U

b

)−n
+ c,

which is given by:

fZ(z) =
b

12na

(
a

z − c

) 1
n+1

, z ∈
[
c+

a

(1 + 12/b)n
, c+ a

]
.

Figure 4: Flush curves of the first filtration process obtained after flushing
the filter. The time s is expressed in hours after the moment of flushing. The
fitted curves are respectively given by α1(s) = 0.04 + 0.07

(1+s)1.92 and α2(s) =

0.03 + 0.07
(1+s)1.80 , where b = 1. The cross in the left plot is considered to be an

outlier and is not incorporated in the regression analysis.
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Figure 5: A quantile-quantile plot of the iron concentrations in groundwater
with respect to the normal distribution (left) and a histogram of the iron
concentrations (right).

Combined with (4), this leads to the following two-parameter model for the
observed concentrations Y1, . . . , YN of iron after the first filter:

fY (y;µX , σX , θ) =
ba1/n

12n

∫ xr

x`

x1/nfX(x, µX , σX) (y − cx)
−1−1/n

dx

where we make the dependence on the parameters (µX , σX , θ) explicit and
where the integration bounds are given by

x` = x`(y, θ) =
y

c+ a
and xr = xr(y, θ) =

y

c+ a(1 + 12/b)−n
.

Given the observed values y1, . . . , yN of Y , the log likelihood function is given
by

`(µX , σX , θ) =

N∑

i=1

log fY (yi;µX , σX , θ). (5)

This function can be maximised numerically using the so-called limited mem-
ory BFGS algorithm (Byrd et al., 1995). This optimization algorithm allows
constraints on the parameters and is implemented in R under the ‘stats’ pack-
age.

3.2 A stochastic model for the second filtration process

We feel the second filtration step can be dealt with in a similar fashion as the
first filtration. Due to time limitations, this step has not been worked out yet.
During the simulation, we simply divide the measurements after the second
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filtration step by a fixed number (chosen to match the data on average). Of
course, this is a big simplification that needs to be handled more accurately
in future work.

3.3 Modeling the concentration of iron in the clear water
basin

To examine the propagation of the compounds in the water when the water
is transferred between different basins, we developed an ordinary differential
equation model. This model describes how the amount of a contaminant in
the water, in the case under consideration this is iron, changes in the different
basins. To illustrate the method, we derive the equations for the amount of
iron in the clear water basin, but a similar procedure could be followed for
the other basins as well.

We assume that the volume of the clear water basin V (t) changes in time
according to the following equation:

d

dt
V (t) = c0(t)− f(t), (6)

where c0(t) denotes the volume influx to the clear water basin and f(t) is the
water outward flux that typically consists of a constant part and a fluctuating
part, as the water demand is a fluctuating quantity. For example, during day
time more water is used than in the night:

f(t) = 60(83 + 5 sin(2πt/24)).

The numbers in this expression designate that 83 l/s is the typical rate at
which water leaves the clear water reservoir. Furthermore the value of the
amplitude of the sine function is chosen to correspond to the size of the fluc-
tuations of iron concentrations, which we will see in the next section.

Next, we model the amount of iron, denoted by u(t) in the clear water
reservoir. The governing equation for u(t) is

d

dt
u(t) = c0(t)gin(t)− u(t)f(t)/V (t). (7)

Equation (7) describes the influx of iron with rate c0(t)gin(t) and outward
flux with rate u(t)f(t)/V (t). The function gin(t) which models the concentra-
tion of iron after the second filter is not known as a function of time. However
from measurements that were performed at random times a typical size of the
fluctuations can be inferred. Equations (6) and (7) can be solved in time
using a simple Euler forward method which works as the system considered
consists of linear equations (Xie, 2010).
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3.4 Assessing the fit of the model

To assess the fit of the model a simulation was performed. Results of this
simulation can then be compared with the given observations of the clear
water.

We propose to model the iron concentration in the groundwater by a
stationary autoregressive time series model of order 1:

Xt = µX + r(Xt−1 − µX) + εt, (8)

where {εt}t is a sequence of independent N(0, σ2
ε) distributed random vari-

able. Assuming |r| < 1 ensures that the (causal) stationary distribution of (8)
exists uniquely and is normally distributed. As no data at this time are avail-
able to fit this model, we somewhat arbitrarily chose r = 0.8. This choice
implies positive dependence of iron concentrations in the groundwater over
different lags. We simulated 106 points with a time step of dt = 0.5. This cor-
responds to a simulation of 5.7 years of data which approximates the period
over which the observed data of WLN is taken. Using our model one is able to
predict the outcome when this data is considered to be the iron concentration
of the groundwater.

The corresponding concentrations after first filtration are obtained by ap-
plying formula (1) using ratios α(s) evaluated at 106 equidistant times with
a time leap of dt starting from s = 0. The concentrations after the second
filtration were obtained in a similar way applying the same multiplicative
procedure on the iron concentration after the first filtration. This resulted in
a discrete time series consisting of 106 points that can be used as input for
gin(t) of the differential equation in (7). The initial conditions to solve the
differential equations were chosen to correspond to the stationary state values
of u(t) and V (t): {

u(0) = 0.015V (0) mg
V (0) = 7500000 l

(9)

Finally a number of 70 points are randomly chosen from the simulated 106

points and compared with the observations of WLN.

4 Results

In the non-linear regression analysis of the flush curves, the parameter b in (2)
could be set to 1 while keeping a satisfactory curve fitting. The parameters
(µX , σX , a, c, n) were estimated by maximizing the log likelihood function (5):

µ̂X = 16.62, σ̂X = 0.88, â = 0.38, ĉ = 0.01, n̂ = 1.1496307
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(a) The fitted distribution fY on the
observed data of Y .

(b) The flush curve after first fil-
tration obtained using our MLE ap-
proach.

(c) Plots of simulated time series data in each basin
for the first 1000 points simulated.

Figure 6(a) shows the fit of the density distribution fY to the observed iron
concentrations after the first filtration. A slight underestimation of the vari-
ance is noted. Figure 6(b) shows the flush curve that is obtained using the
estimated parameters (â, ĉ, n̂).

Figure 6(c) shows the simulated concentrations of iron in each basin using
the time series data generated from (8). The x-axis shows the indices of the
simulated data corresponding to some moment in time where the origin t = 0
has to be interpreted as the first inspection time available in the dataset of
WLN.

As one can see the ranges of the simulated data in the first three basins of
our model approximate those of the observed data in figure 3. Furthermore
the decrease of the iron concentrations after first and second filtration is clear.
The clear water contains an iron concentration of 0.015 at t = 0 as induced
by (9). The figure shows an initial increase of the iron concentrations.

Figure 6 shows the complete simulated time series of iron concentrations
in the clear water basin. After some time period the iron concentrations
fluctuate around a stationary value of approximately 0.02. This corresponds
with the observed data in the clear water basin shown in figure 3(b). This is,
of course, in accordance with expectations as the large volume of the reservoir
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averages out most of the flucatuations.
The observations in figure 3 are sampled at irregular moments in time and

with an irregular frequency, typically given by 1-2 times a week at different
weekdays. Because of the flush activities the sampled observations reach a
peak when taken at a moment short after flushing. This happens typically
when a sample is taken within an hour after flushing, see figure 6(b). In a
later time period, when the last flush occured more than 3 hours ago, more
steady concentrations are observed. Hence the observed fluctuations depicted
in figure 3 are inherent to the sampling method.

This sampling method can be mimicked by randomly choosing a number
of N observations from the time series obtained for the clear water basin
(figure 7). To make a consistent comparison with the observed data, N is
chosen to equal the number of observations available from the clear water
basin, i.e. N = 70. In this way we were able to simulate fluctuations in
the iron concentrations that are approximately of the same magnitude as the
measured fluctuations.

5 Discussion

In this section we first summarize the conclusions that we may draw from
our results. We then present recommendations to WLN for further actions
to address the problem at hand. Finally, we suggest some further lines of
research.

5.1 Conclusions

At this stage of research, the model as presented in section 3 may be too sim-
ple to realistically model the water purification process. This is partly due to

Figure 6: (a) Complete simulated time series of iron concentrations in the
clear water basin.
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Figure 7: (a) Plots of simulated observed data in each basin. (b) Plots with
free axes scales to illustrate the fluctuations.

time constraints for building the model, but also due to the nature of the avail-
able data right now. Presently, the data provided by WLN only allows for a
rough calibration of the model parameters. More accurate estimation may be
accomplished in the future by setting up a specific measurement scheme with
the purpose of model calibration in mind. Once such measurements have been
obtained and the model is sufficiently refined (i.e. realistically modeling the
characteristics of the water purification process), process inherent variation
can be estimated. The latter directly gives information on the required moni-
toring frequency: wildly fluctuating iron concentrations will require a relative
high monitoring frequency, whereas a process with low variability may allow
for less measurements taken over time.

To develop an effective and efficient monitoring procedure it is necessarily
to properly define the process to be monitored and the desired performance of
the monitoring procedure. These descriptions come from operational and legal
constraints, but must be translated into statistical descriptions in order to be
able to provide a sound basis for the assessment of a monitoring procedure.

A proper definition of the monitored process includes a description of
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the available data, a list of variables to be monitored, a description of an
acceptable or “in-control” situation and the sampling strategy (Hawkins and
Olwell, 1998; Kenett and Zacks, 1998). In this application the variables that
are monitored are the concentrations of ions (e.g. iron). In this case an
“in-control” situation for each variable is defined by so-called control limits.
These control limits are driven by the natural variability of the concentration
in the drinking water. For instance, in the case at hand one would desire that
the iron concentration in the clear water remains at a constant (probably low)
level while fluctuations are limited.

However it seems that the current approach performed by WLN is based
on the monitoring of univariate variables evaluated relative to specification
limits. These specification limits describe the maximal allowable deviation
from a desired value of the variable, called the target value. In contrast to the
control limits these specifications are determined externally and are not re-
lated to the natural variability of the variables. Therefore these specifications
mostly allow a variability that is larger than the variability naturally induced
by an in-control system. For instance a malfunctioning filter or a slow but
persistent increasing value of a certain concentration does not have to lead
to exceedances of the specification limits. Hence information about inherent
changes of the water quality and the filtration processes can be lost using this
approach.

The importantace of the distinction between specification and control lim-
its is widely known in the literature of statistical process control (Montgomery,
2013). To illustrate this difference further we can say that a purification pro-
cess performs within specifications when the water quality is acceptable from
a public health point of view. However at the same time the water company
may suffer from excessive costs due to an out-of-control process caused by
some malfunctioning. When one is aware of such malfunctioning preventive
maintenance actions or increasing surveillance could be performed without
interrupting purification. In this way unnecessarily costs can be avoided.

Furthermore, the performance of the monitoring procedure is mainly deter-
mined by the time that is needed to detect a malfunctioning or contamination.
Using proper inherent control limits of a process that is in a steady state one
can objectively determine appropriate sampling frequencies that assure the
desired performance (Montgomery, 2013). However, due to flushing in the
normal state after the first filtration, the process is not in a steady state. On
the contrary it rather shows cyclic behavour. Therefore, the effect of flushing
for a single location was modeled with a simple stochastic model obtaining a
reasonable agreement with actual data from iron concentrations. Monitoring
using this model is then in fact monitoring a profile (Noorossana et al., 2012).
In order to connect flows from one filter to another, we set up a system of
coupled differential equations obtained from simple conservation laws.
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Finally, remark that one should also take into account that the lab needs
time to perform analyses. Thus demanding detection of abnormal levels of
certain ion concentrations within e.g. 2 hours is not feasible when the wa-
ter quality analysis in the lab takes 1 day. Another important aspect is to
determine optimal measurement locations in the purification plant. It may
seem optimal to monitor as much as possible upstream in the purification
plant to assure on-time detection. However, in this way one may fail to detect
anomalies downstream. Thus, it is sensible to monitor at several locations.

To summarize, the main conclusions are:

(i) monitoring is now performed by checking individual specification lim-
its, and thus fails to take into account deviations from normal process
deviations

(ii) the cyclic concentration levels due to flushing may be modelled ade-
quately by a simple model so that we have a realistic benchmark for
detecting anomalies

(iii) the flows from one filter to another may be modeled by a system of
coupled differential equations obtained from simple conservation laws

5.2 Recommendations

We start with some recommendations on monitoring in general.

1. Change the monitoring procedure from checking specification limits to
checking inherent concentration fluctuations in order to obtain a more
responsive monitoring system (and thus have a well-grounded justifica-
tion for the associated sampling frequency). These statistical limits will
be more strict than the chemical/health limits, thus there is no risk for
exceeding chemical/health limits.

2. Specify detection performance for all concentrations, taking into account
processing time of analytical analyses in the lab and out-of-control sce-
narios like trends (see e.g., Frisén (2003) for a discussion of different
performance metrics).

3. Study correlations between concentrations of different ions so that one
may use the available data more efficiently.

4. Synchronize timing of measurements between compartments in a purifi-
cation plant in order to track the flow water drops and thus improve
detection performance.

5. Reduce variance in the beginning by blending the right wells.
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6. Perform a pilot study with in-line measurements on all measurement
locations in one purification plant in order to improve the models of
this paper.

The following recommendations concern modeling the effects of flushing.

1. Measure the incoming iron concentration together with corresponding
(time-aligned) iron concentration after flushing ; this allows for much
more accurate modelling.

2. Keep track of the actual mixture of incoming water sources since this
has an impact on the distribution of the incoming iron concentrations.

5.3 Future Research

The study in this paper was restricted to the monitoring of iron concentra-
tions due to time limitations. In future research other parameters could be
studied as well. Furthermore, the model has to be completed to describe
the second filtration process. As a next step simulations could be performed
where anomalies are artificially implemented. Such simulations would be use-
ful in finding an optimal monitoring frequency that enables us to detect a
small (to be determined) shift (with a certain probability). Finally, it would
be interesting to adapt our model to include correlations between different
ions. In this way an alarm system can be build to detect dangers of combined
high levels.
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Abstract

The old city centre of Delft is sensitive to flooding caused by rain-
fall. We discuss the possibility and methods of combining data from
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sack problem, de st. Venant equations
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1 Introduction

At the 98th Study Group Mathematics with Industry (SWI), held at Delft
University of Technology from 27 – 31 January 2014 one of the questions was
formulated by the company ‘Witteveen en Bos’. Witteveen en Bos (from now
on W+B) is a consultancy and engineering firm for water, infrastructure and
environment. The problem they posed considers the sewer system of the city
center of Delft. The old city centre is sensitive to flooding caused by rainfall.
These events can cause sewage to flow from the sewer system back onto the
streets and as a result the water on the streets will contain diluted (faecal)
sewage [Man et al. (2014)]. Hence, the flooding does not only cause damage
and leads to dangerous situations, with streets and buildings flooded, but also
poses health risks due to exposure to contaminated water.

Inside the sewer, data is collected by using sensors that measure the water
level. W+B already gathers data by using such sensors in the sewers in a
district of the city Utrecht: Tuindorp. Their intention is to do the same in
the city center of Delft. However, sensors are only able to measure the water
level inside the sewer up to 30 cm below the surface level. When the water
exceeds that level, there is no further information available and it is possible
that water flows out of the sewer. In that case the sensors do not provide
a accurate picture. Apart from obtaining data with sensors, W+B currently
use a theoretical model to simulate the water levels inside the sewer. As in
the case of the sensors, the theoretical model cannot predict the water level
above surface. For these reasons, W+B desires to combine the known data
below surface with data gathered above surface. W+B is interested in how
this data above the surface should be collected and how it can be combined
and compared with the data collected below the surface in the sewers. For
this second question, our main objective is to detect at which locations and
how often flooding occurs since this causes health threads. This will result
in a complete picture of the sewer system. Another aim is to locate possible
obstructions in the sewer system.

An obstruction in the sewer, such as a root intrusion or deposits, affects
the sewer performance. These obstructions can be found using a camera
survey. However, these surveys cannot be done regularly, since they are time
consuming and expensive. The obstructions are not present in the theoretical
model but they can be put in once their presence and position is known. This
should be done on a regular basis since the occurrence of the obstructions
changes over time. The data from the sensors gives more insight into the
position of the obstructions and combining the sensor-data with data from
above the surface will be very valuable.

Data that could be collected above the surface is for example photos of
water (puddles) on the streets. At the moment, flooding incidents that are
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reported by citizens are already stored in a data-base. Increasing this number
of reported incidents would improve the reliability of this data. In addition,
we consider the possibility of making and collecting photos. One option that
W+B is looking into is to use school children for this. Via these children,
their parents and other citizens can also be motivated to gather data.

In Section 2, we present ideas and a strategy for collecting data above the
surface. Considering where and when data has to be collected, we provide a
protocol for the schools to follow in order to obtain sensible data. In Section
3 we describe a strategy for placing the sensors in such a way that the most
important information is collected. Moreover, we optimise this placement by
combining data from below and above the surface. In Section 4 we describe the
theoretical model that is currently used to simulate water levels and give ideas
for improving this model. In Section 5, our recommendations are summarized.

2 Strategies for obtaining data above surface

In collecting data above the surface, we have developed several methods which
can be combined to get an accurate picture. Where possible, we would like
the citizens to collect data. One route to increase the public awareness is via
children and their schools. Previously, W+B had another program running
at primary schools of Delft. Driven by this positive experience they are coop-
erating with primary schools to set up a program that is not only educative,
but can also provide useful data about the sewer. We will discuss a way to
implement such a program. Since primary schools have a regular schedule,
this program might be missing the most important events, namely the heavy
rain events. Therefore, we suggest to combine this with another program that
can be used for just these events.

For both approaches we take into account a few aspects:
• Amount of time: How much time is available to gather and to evaluate the
data?
• Place: At which places to gather data and on how many places?
• Information of a photo: What kind of information do we want a photo to
contain?

After discussing these schemes we will give some suggestions of an app
that aims to increase the amount of data collected voluntarily by citizens.

2.1 A program at primary schools.

Primary schools have a weekly timetable. For that reason, it is most likely
that the sewer-program will included at a fixed time in the week. The idea
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is that the children spread over the city and take photos of puddles of water.
However, it does not make sense to let them take photos if it has not rained
lately. Therefore, we suggest to develop an alternative program as part of the
sewer-program in case there is no water on the streets.

In case it has been raining lately, the photos should be taken at places ran-
domly distributed over the city center. Since time and children are limited we
do not expect to cover all of the city in one day. Therefore, there are multiple
ways of choosing places, or, more specifically streets. Practical details, such
as number and location of the schools, will point out whether it is possible
to distribute the streets of interest uniformly or to have a circulating system
over the schools such that different parts of the city at different moments are
covered during the week.

Once the children have arrived at the (predetermined) streets they should
take pictures of puddles of water on the street, and assign a measure of size to
the puddle. In order to reduce the amount of data generated in this program
– someone has to evaluate the pictures – a photo should only then be taken if
there is water on the street. Even when puddles are not close to a manhole,
the photos still contain useful information for the local government. To be
able to link the photo to a particular manhole (or position), GPS information
must also be included in the data. This program is summarised in the flow
chart shown in Figure 1.

2.2 The approach in case of heavy rain events.

The method described above provides useful information on a rather regular
base. However, the rain events that are very important, those of heavy rain
or storms, might not be covered. These storm events could give the most
valuable information, since flooding is most likely to occur during such an
event. Therefore, the above school program should be complemented by an-
other method for collecting information from these events. For this, one or
more persons should be readily available.

Weather predictions can be used to determine the moments at which data
should be collected. Data has to be gathered from the moment it starts raining
until the moment that the water has disappeared from the streets.

We select streets where data should be collected. We select the streets with
the use of the sensor data, for example, by choosing streets where the sensors
indicated that the water level gets to a high level. Furthermore the places
where an incident was reported will be visited. Then if there is a puddle, the
person will take a photo and/or assigns a measure of size to the puddle and
repeatedly come back until the water has disappeared.

Similar to the previous approach, GPS coordinates must be included.
Moreover, in case an estimate of the amount of water on the street can be

Proceedings of the SWI 2014 Held in Delft

57



Is it wet
outside?

Other action

Go to some (randomly
chosen) streets

Water on
street?

Take picture &
register GPS

No action

yes

no

no

yes

Figure 1: Flowchart of the program for school children.

given, this information should be added. The outline for this program is
summarised in the flow-chart shown in Figure 2.

2.3 Suggestions for an app/website

At the moment, people can contact the local government by phone for in-
cidents. We suggest that, apart from this, people should be able to report
incidents via other media like internet. Incidents reported by phone-calls are
already useful in order to detect possible defects or obstructions in the sewer
system. However, information of phone-calls is rather subjective. More objec-
tive information can be obtained via a website or app that enables the persons
to add extra information to the street name where the incident is mentioned,
like pictures with GPS data and other observations. In such a way, one can
also provide a guideline of how the person should include the data. By pre-
senting such a guideline and an easy way to report incidents (without having
to make a phone-call), we expect the number of reports to increase and to
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Do the following steps
at Str 1, . . . , Str n+m
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yes

yes

no no

yes

no

Figure 2: Flowchart of the program for heavy rain events.

be of better use. For this approach, the citizens should be made aware that
their reports are very valuable and that they can help to reduce flooding in
the future.

3 Placing of the sensors

In order to monitor the behavior of the sewer system below the surface effi-
ciently, we want to place sensors at those manholes which are most likely to
overflow. These sensors measure the level of the water in the sewer once every
minute. Moreover, every sensor has a threshold up to 30 below the surface
level. This threshold is known by W+B. The sensor data is not only useful for
showing when and where a manhole has flooded, it can also be used to find
obstructions in the sewer system. The method for finding these obstructions
based on sensor data is also known by W+B [Bijnen et al. (2012)].

Next to the measurements with sensors, data is also available from re-
ported incidents and photographs by citizens. We want to combine these
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data with the sensor data to determine those manholes which are most likely
to be flooded; the problem spots.

A maximization problem is set up to find the optimal placement of the
sensors. The sewer network can be seen as a graph G = (V,E), where the
set of vertices V corresponds to the manholes and the set of the edges E
corresponds to the pipelines. Let us define n := |V |. The main assumption
will be that the sewer network contains no obstructions. We start with a clean
network which, besides containing no obstructions, also has no sensors placed
yet. W+B has a theoretical model of the sewer network, which can accurately
simulate the level of the water below the surface in a clean network. Using
this theoretical model, a well-educated guess is made for the initial placement
of the sensors. Several simulations are done with the model, using different
values of rainfall as an input. A sensor will be placed at those vertices where
flooding is most likely to happen. If the well-educated guess requires placing
less sensors than we have, we can place the remaining sensors at random
locations.

3.1 Setting up the problem

The idea is to determine a placing of the sensors such that only the measure-
ments of the sensors can give us an accurate view about the places of the
incidents. We expect that the placement at the start is not suitable enough
for this, so we want to replace certain sensors. We assume that the sensors are
working properly, since malfunctioning sensors can be detected through data
validation. If a placed sensor indicates that the threshold has been reached
and at the same time there is observed data about an incident, then the sensor
should not be removed. If the observed data shows no incident, then it does
not matter whether the sensor is removed or not. If a vertex does not have a
sensor and observed data shows an incident, a sensor should be placed there.
If the observed data does not show any incidents, it does not matter whether
the sensor is placed or not.

Each vertex will be given a value, which depends on whether or not the
corresponding manhole has a sensor and also on the data available about this
manhole. The value of a vertex indicates how likely it is that the corresponding
manhole overflows; the higher the value, the more likely it is to happen.
The value of a vertex will be denoted by αt,l, where t stands for the day of
the measurement and l represents the corresponding manhole. The value is
determined as follows. First, assume that the corresponding manhole l has
a sensor. Then, for each day t, the value αt,l equals 1 if the sensor reaches
the threshold on day t as well as there is an incident reported on day t for
this manhole. Otherwise, the value is 0. Now, assume that the corresponding
manhole l has no sensor. Then, for each day t, the value αt,l equals 1 if
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either there is an incident reported on day t for this manhole, or if there is an
incident reported for some other manhole nearby in the network and at the
same time a simulation of the rainfall in the theoretical model indicates that
this manhole has flooded as well.

We assign, to each vertex l, a variable xl which can only attain the values
0 and 1. The expression xl = 1 means that we want to place a sensor at
the manhole corresponding to vertex l. The expression xl = 0 means that
we do not want to place a sensor there. The variables xl are subject to some
constraints which arise from practical considerations. For example, sensors
should be maintained regularly, which comes with a cost. Moreover, these
maintenance costs might be different depending on the location of the sensor.
To include this constraint, we define, for each vertex l, the variable wl which
is the average maintenance cost per day (or any other timespan) for a sensor
at the manhole corresponding to vertex l. The sum

∑
l wlxl then equals

the average maintenance cost per day to place or remove sensors, which is
likely required to be smaller than some predetermined constant W , the daily
budget. Another constraint is given by the limited number of sensors. Since∑

l xl equals the number of sensors we want to place, we require this sum to
be smaller than some other predetermined constant C, the maximal amount
of sensors we can place.

In order to determine the problem spots, that is, the vertices corresponding
to those manholes which are most likely to overflow, we use the data gathered
over a certain time frame, for example a year. For each vertex l, the sum∑

t αt,l is the total value of the vertex l in this timeframe. The quantity∑
l∈V

∑
t αt,lxl now represents the total value of the vertices where a sensor

should be placed. Since we want to place the sensors as efficient as possible,
this total value needs to be as high as possible. The maximisation problem
can now be written as:

max




∑

l∈V

∑

t

αt,lxl

∣∣∣∣∣∣

xl ∈ {0, 1}, l = 1, · · · , n∑
l∈V wlxl ≤W∑
l∈V xl ≤ C



 . (1)

3.2 Solving the problem

The optimisation problem stated in expression (1) is equivalent to the 0/1
knapsack problem, which is a known problem in combinatorial optimisation.
The 0/1 knapsack problem with one constraint is formulated as follows. Sup-
pose we have n objects, each with a value vl and a weight wl. The objective
is to choose objects in such a way that the total weight of the chosen objects
does not exceed some predetermined constant W and, moreover, that there is
no other selection of objects satisfying the same weight constraint which has a
higher total value. The difference between the general knapsack problem and
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the 0/1 knapsack problem is that, in contrast to the general knapsack prob-
lem, each object can be chosen either once or not at all. The 0/1 knapsack
problem with one constraint is mathematically formulated as follows:

max

{
n∑

l=1

vlxl

∣∣∣∣
xl ∈ {0, 1}, l = 1, · · · , n∑n

l=1 wlxl ≤W

}
. (2)

The general 0/1 knapsack problem, that is, the 0/1 knapsack problem
with any number of constraints, is an optimisation problem that is known
to be NP -complete [Garey and Johnson]. All NP -complete problems are
characterised by the fact that there is no known algorithm that solves these
problems quickly. However, there are several heuristic methods known which
find a solution close enough to the optimal solution. In the case of the general
0/1 knapsack problem, the most commonly used method is dynamic program-
ming [Salkin and Kluyver (1975)]. In the specific case where the 0/1 knapsack
problem is of the form in equation (2), with all weights equal and, without
loss of generality, all equal to 1, the problem belongs to class P and can be
solved exactly. The solution is xl = 1 for the bW c objects with the highest
values, with bW c the largest integer smaller than W . So the maximisation
problem in (1) coincides with this specific case if the average maintenance
costs per day for all sensors are equal, as the two constraints can be reduced
to one.

4 Mathematical modelling of sewer networks

In this section we give a brief summary of a model that describes the dynamic
behaviour of the water level in a sewer system. For a detailed description the
reader is referred to [Cunge et al.]. We also discuss the possibility to use
the data that will be collected above the surface and by the sensors in the
sewer system to improve this model. Furthermore we will suggest a method
to identify locations where obstructions might be located.

A model for open channel flow (developed originally for river systems) is
based on the so-called “de st. Venant equations”, also referred to as the “1D
shallow water equations”. This model can also be used for sewer systems.
The equations are respectively derived from conservation of momentum and
conservation of mass:

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
+ gSl − µSf = 0,

∂h

∂t
+

1

b

∂(uA)

∂x
= S,
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Theoretical Model

Detect Prob-
lem Spots

Move Sensors

Collect data
(photo, sensor)

Detect Problem
spots with data

Compare Data
with Model

Detect
Obstruction

Figure 3: Flowchart summarising the recommendations about moving the
sensors to a more optimal position and also about finding possible obstructions
in the sewer network.

where x is the spatial coordinate (in one dimension along the sewer pipe), t
is the time and

g = acceleration of gravity,

u(x, t) = water velocity,

h(x, t) = water level,

Sl(x) = slope of the channel,

Sf (x, t) = friction term,

µ(x) = friction coefficient,

b(x, h) = width of the channel,

A(x, h) = cross sectional area,

S(x, t) = water source or sink.

The sewer system consists of pipes that are connected at junctions. The
velocity and level of the water in each of these pipes are described by the
above model. At the network junctions the amount of water that flows in has
to be equal to the amount of water that flows out. In other words the total
inflow is equal to the total outflow at a junction. This leads to one boundary
condition for the partial differential equations described above. Since we still
need one other boundary condition at the junction we could in addition assume
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that the water level is continuous at the junction. This boundary condition
does however not take into account the complicated flow pattern that may
occur at a junction in case of a sharp curve. Therefore one often assumes
continuity of the quantity

h+ α
u2

2g
.

Here the second term is introduced to account for local effects at the junction
due to the bulk motion of the fluid. This effect creates small differences of
the water levels in the various pipes at the junction: The higher the velocity
at the entrance of the pipe, the lower the water level at this location will be.
The empirical factor 0 ≤ α ≤ 1 is a tuning parameter. In order to obtain a
numerical model for the sewer network, the well-known Preissmann scheme
[Cunge et al.] can be used. This scheme is very attractive for networks since
it can deal easily with non-equidistant grids and is also capable to include the
boundary conditions just described.

In the model S is the water source or sink and it represents the amount of
water that enters or leaves the sewer network at the pipe (when S is negative,
water flows out of the sewer network). If S is 0, then the total amount of
water in the system is preserved. One of the difficulties in using this model is
that there is hardly any information available about the water source or sink
S. In the sewer system the water level can exceed the level of the street and
then water will flow out of the system. But generally the amount of water
that flows out of the sewer system is not known. Hence a good estimate of S is
desirable. We suggest to explore the possibility to use the information that is
gathered on street level (like pictures) together with the model simulations to
estimate the parameter S(x, t) in various sections of the sewer network model.
This calibration procedure can be formulated as an optimisation problem by
defining a cost function that measures for a given parameter the difference
between the model results and the available measurements. Here usually the
least squares criterion is taken as cost function. One value of this cost function
for a given parameter (for S) can be computed by running the model with this
parameter value and by comparing the results of the model at the sensor lo-
cations with the measurements. Using an optimisation scheme the parameter
can be improved step by step and finally the best estimate of the parameter is
the parameter for which the cost function is smallest and therefore for which
the model simulation is as close as possible to the measurements available.

As we indicated before, water level measurements with sensors combined
with information from photos can also indicate possible locations for obstruc-
tions. The available data can be combined with the model simulations in
order to estimate the friction coefficient µ(x) at various locations in the net-
work by means of the calibration procedure just described. If the estimated
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value for the friction coefficient is significantly larger than the original value
in the model at a certain location in the network, this is an indication that
there might be an obstruction.

5 Recommendations

Here, we give a summary of the recommendations regarding collecting data,
moving sensors and adjusting the theoretical model.

To collect data above street level we suggest to implement a program for
the primary schools in Delft to collect photos of puddles of water in the streets
(see also Figure 1). Apart from that, we suggest to use a complementary
program to collect data in case of heavy rain events, described by the flowchart
in Figure 2. Additionally to the two programs, we suggest to develop an easy
app and/or website on which citizen can report their observations of a flooding
incident.

We suggest to use the theoretical model as the basis for the initial place-
ment of the sensors. This is done by simulating many different rainfall events
and by choosing problem spots which are most likely to overflow. Once the
sensors are placed, data can be collected from above the surface as well as
from below the surface. After a certain, not necessarily predetermined, time
frame, we use all the gathered data to optimize the positions of the sensors
according to the reduced knapsack problem. This procedure can be repeated
at any time. The flowchart in Figure 3 summarizes our recommendations.

For the theoretical model we suggest that the amount of escaping water
could be estimated using the data from above the surface. Furthermore via an
estimate of the friction coefficient that fits the measured data, one might be
able to locate the obstructions by comparing this estimated friction coefficient
to the normal friction coefficient.
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Abstract

Model calibration is an important aspect in ship simulation. Here,
ship motion is described by an ODE which includes tuning parameters
that capture complex physical processes such as friction of the hull. In
order for the simulations to be realistic for a wide range of scenarios
these tuning parameters need to be calibrated to scale experiments. In
principle, the optimal tuning parameters can be computed for any given
scenario, but this would require a corresponding scale experiment to be
conducted. The aim is to minimize the number of scenarios that need
to be pre-calibrated while still being able to realistically model ship
motion for a wide range of scenarios. In this paper we investigate the
use of polynomial (sparse grid) interpolation to compute the optimal
tuning parameters for any scenario from a few pre-calibrated optimal
values.

Perturbation analysis of a simple model for roll damping indicates
that the optimal tuning parameter may indeed vary strongly with the
chosen scenario. Numerical experiments with this model confirm that
the optimal tuning parameters vary strongly (but smoothly!) with the
scenario and can be well approximated with polynomial interpolants.
Further numerical experiments with a more complex modelling code for
ship maneuvring are very promising.

Keywords: Model calibration, Parameter estimation, Chebyshev In-
terpolation, Sparse Grid Interpolation
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1 Introduction

Ship simulators, used to train pilots, are based on simplified models for ship
motion in order to enable real-time integration of the system. In such sim-
plified models a lot of underlying physics is not explicitly modeled but is
parametrized using tuning parameters. In order for the simulator to behave
realistically, these models need to be calibrated to real-life (scale) experiments
of actual ship motion under a wide variety of scenario’s. This calibration pro-
cess is depicted in figure 1. Here, and throughout the paper, we use the

dtx(t) = F (t, x, u)

dt�x(t) = �F (t, �x, u, p)

Figure 1: Schematic depiction of the calibration process.

following notation

• u = [u1, u2, . . . , uN ] - vector with input scenario (rudder angle, propellor
rpm, wave-height etc.);

• p = [p1, p2, . . . , pM ] - vector with tuning parameters;

• x = [x1, x2, . . . , xK ] - state vector describing actual ship movement –
in the remainder of the paper we will treat this as the solution of an
underlying complex model dtx = F (t,x,u);

• x̃ = [x̃1, x̃2, . . . , x̃K ] - state vector describing modeled ship movement –

this is the solution of the simplified model dtx̃ = F̃ (t, x̃,u,p);
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Unfortunately, there is no single setting of the tuning parameters for which
the simple model will fit the complex model for all possible scenarios. For
a given scenario, however, we can find the corresponding optimal calibration
parameters as follows. First, we define a cost function C(u,p) that measures
the mismatch between x(t;u) and x̃(t;u,p) for a given u and p. An example
of such a cost function is the least-squares mismatch between the horizontal
spatial coordinates (x1, x2)

C(u,p) =

2∑

i=1

∫
dt (xi(t;u)− x̃i(t;u,p))

2
.

Then, the optimal p for a given scenario u is given by

p∗(u) = argmin
p
C(u,p).

Given that the parameter space p is relatively small (M ≈ 20), we can per-
form such a single calibration with a simple direct-search method (Kolda et al.,
2003). Note, however, that each calibration requires not only multiple evalu-
ations (by time integration) of the simple model, but also one evaluation of
the complex model (i.e. an experiment). Therefore, we would like to minimize
the number of scenarios for which this calibration is performed. The question
is: How can we efficiently calibrate the simple model for a range of scenarios
while using only a limited number of evaluations of the complex model (i.e.,
experiments).

1.1 Approach

The main idea of our approach is to calibrate the simple model for a number
of (cleverly chosen) scenarios {uk}Lk=1, yielding optimal calibration parame-
ters {p∗

k}Lk=1. For any given scenario u, we then interpolate the optimal p∗

elementwise based on these values

p∗i (u) =

L∑

k=1

wk,iψk(u),

where ψk are basis functions specific to the type of interpolation used and
wk,i are the corresponding weights chosen such that p∗i (uk) = p∗k,i. The main
assumption here is that p∗ varies smoothly with u.

For a 1D scenario space (i.e., N = 1) we use Chebyshev interpolation in
order to get high accuracy with only a few samples. In this case, the nodes
(Chebyshev points) on [−1, 1] are given by

uk = cos

(
2k − 1

2L
π

)
.
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For higher dimensional scenario spaces (N > 1), a simple cartesian prod-
uct approach is not very attractive since the number of samples would grow
exponentially with the dimension of the scenario space. In order to avoid this
so-called curse of dimensionality we will consider sparse grid interpolation
for N > 1 (Barthelmann et al., 2000). In sparse grids, the sampling points
are clustered near the boundary of the domain and chosen more sparsely in
the interior. Hereby the number of sampling points is considerably reduced
when compared to a regular sampling. There are different choices of sparse
grids that vary in number of grid points involved. A popular choice for the
approximation of smooth functions is the so-called Clenshaw-Curtis grid. An
example of such a grid at consecutive stages of refinement is shown in Figure
2. Table 1 shows how the number of sampling points grows with the stage
of refinement. Note that L approximately doubles for each stage, whereas
we would expect a quadrupling for a regular sampling in 2D. For more de-
tails on the accuracy and efficiency of sparse grid interpolation we refer to
Barthelmann et al. (2000).

Stage 1 2 3 4 5 6 7
L 5 13 29 65 145 321 705

Table 1: Number of points in the sparse 2D grid in dependence of the stage
depth. Note that L approximately doubles for each stage, whereas we would
expect a quadrupling for a regular sampling for N = 2.

1.2 Outline

The remainder of the paper is organized as follows. First, we consider a model
for roll damping. In this case, the models predict the roll motion (i.e. oscil-
lations around the longitudinal axis) of the ship for given initial angle and
forcing terms (which serve as the scenario parameters). The complex model

F contains a non-linear damping term, while the simple model F̃ contains
only an equivalent linear damping term (which serves as the tuning parame-
ter). For this model problem we perform a perturbation analysis and present
a closed form solution for the optimal tuning parameter. We also perform
a range of numerical experiments with both a 1D (with Chebyshev interpo-
lation) and a 2D (with sparse grid interpolation) scenario space. Next, we
present numerical experiments using a 6 degree-of-freedom model for rigid
ship motion using the FREDYN modeling code. Here, the complex model is
based on a frigate while the simple model is based on a lifeboat. We use a 1D
scenario space (rudder angle) and we incorporate 6 tuning parameters govern-
ing rotational and drift forces. We compare two different mismatch criteria;
based on horizontal spatial coordinates and based on the turning circle radius.
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Grid at stage 4 Grid at stage 5

Grid at stage 6 Grid at stage 7

Figure 2: Grids used in various stages of Sparse-Grid interpolation procedure
for N = 2. Note the clustering of the points at the boundary and sparsity in
the interior of the domain.
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Finally, we present conclusions and recommendations for further research.

2 A toy calibration problem: equivalent linear
damping

The roll motion of a ship is modelled by the following ODE

(I +A)φ̈(t) +B(φ̇)φ̇(t) + Cφ(t) = M(t), (1)

where I, A and C are constants, B(·) = b1 + b2| · | is a damping term and
M(t) is a forcing term. In the remainder of the section we will consider this
equation with non-linear damping (i.e., b2 6= 0) as the complex model, while
the simple model only includes linear damping (b2 = 0) and b1 will serve as the
tuning parameter. The initial angle φ̇(0) and the amplitude and frequency of a
periodic damping term M(t) = a sin(ωt) will serve as the scenario parameters.

2.1 Linear damping

For b2 = 0, equation (1) can be written in the form of a standard damped
oscillator

φ̈+ 2ζωoφ̇+ ω2
oφ = m (2)

where

ωo :=

√
C

I +A
, m :=

M

I +A
and ζ :=

b1

2
√
C(I +A)

.

In the above equation, ωo is the undamped oscillation frequency and ζ is the
nondimensional damping coefficient. If 0 < ζ < 1, the system is sub-critically
damped, and the general solution is

φ(t) = αe−ζωot cos(ωdt− β) + φp(t)

where α and β are free parameters determined by the initial conditions (α
is the amplitude and β is the phase angle). The damped frequency is ωd :=

ωo
√

1− ζ2, and φp(t) is any particular solution which satisfies the nondimen-
sional equation (2). For example, if M(t) = M is constant, then φp(t) =
m/ω2

o = M/C is the simplest particular solution.

2.2 Perturbation analysis

Now consider the homogeneous perturbed nondimensional equation

φ̈+ 2ζωo(1 + ε|φ̇|)φ̇+ ω2
oφ = 0. (3)
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For convenience, we drop the absolute values and allow the sign of ε to change
when the sign of φ̇ changes 1. Assuming that |ε| << 1, one can make a regular
perturbation expansion using the ansatz φ(t) = φ0(t)+εφ1(t)+O(ε2). Substi-
tuting this ansatz into (3), one finds that as before φ0(t) = αe−ζωot cos(ωdt−
β0) and that φ1 must satisfy

φ̈1 + 2ζωoφ̇1 + ω2
oφ1 = −2ζωo(φ̇0)2 (4)

The form of the homogeneous solution for (4) is the same as before, but
unless the initial position or velocity depend on ε (which would be unusual),
this homogeneous solution is identically zero. Because of the form of the
right-hand side of (4), the particular solution must be the linear combination
of three terms:

φp1(t) = Ape−2ζωot cos2(ωdt− β1)+

Bpe−2ζωot cos(ωdt− β1) sin(ωdt− β1) + Cpe−2ζωot sin2(ωdt− β1)

where the coefficients Ap, Bp and Cp are determined by substituting this
linear combination into (4), and β1 is a shifted phase angle due to the presence
of φ̇0 in the right-hand side of (4), rather than just having φ0.

2.3 Calibration

Now let us take the perturbed solution (for some ζ and ε) as the solution of the
complex system and let us try to match this to the unperturbed solution using
ζ as a tuning parameter. Specifically, let φ(t; ε1, ζ1) := φ0(t; ζ1) + ε1φ

p
1(t; ζ1)

be the solution of the complex system and let φ̃(t; p) = φ0(t; p) with p being
the single tuning parameter. The question then is how should one set p so
that the simple solution matches the complex solution?

Consider the absolute difference

|φ(t; ε1, ζ1)− φ̃(t; p)| = |α(e−ζ1ωot − e−pωot) cos(ωdt− β0) + ε1φ
p
1(t, ζ1)|

= αe−ζ1ωot|(1− e(ζ1−p)ωot cos(ωdt− β0)
+ε1e

−ζ1ωot(Ap cos2 +Bp cos sin +Cp sin2)|

Each of the last four trigonometric functions must be evaluated at (ωdt−β1).
Again the coefficients Ap, Bp and Cp are functions of ζ1; they are determined
by requiring that φp1 is actually a particular solution of (4).

Because of the decaying exponentials, the above absolute difference will
decrease in time. But it is also possible to make this difference zero at a

1Because the sign of ε changes with each half oscillation, one must stop and restart the
solutions to follow the motion through multiple oscillations.
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specified time, for example, if t = β0/ωd, then the absolute difference is zero
when

p = ζ1 −
√

1− ζ21
β0

ln(1− ε1e−ζ1β0/
√

1−ζ21Dp)

where Dp := Ap cos2(β0−β1)+Bp cos(β0−β1) sin(β0−β1)+Cp sin2(β0−β1))
So this is a relatively simple formula for determining the tuning parameter
p in terms of ζ1 and ε1, the given parameters in the complex solution. That
is, there is an explicit expression for selecting the tuning parameter in terms
of the given parameters to minimize the absolute difference at least at one
specific time. Of course, this approach only has the two solutions matching
at one specified time, and then again for large time.

The tuning parameter of course could be chosen to minimize the absolute
difference in other ways, for example, by selecting a different time, or by
making a least squares fit across some interval of time. But since the absolute
difference already decays in time, one would likely wish to set the difference
to zero at some early time. So one could minimize

∫ T

0

(
φ(t; ε1, ζ1)− φ̃(t; p)

)2
dt

by finding a stationary point p for which

d

dp

∫ T

0

(
φ(t; ε1, ζ1)− φ̃(t; p)

)2
dt = 0.

We expect that a closed-form expression for the optimal p can be derived in
a simular manner as above but this investigation is outside the scope of the
current report.

2.4 Numerical experiments

For the numerical experiments we numerically integrate the roll damping
equation (1) with I = 6.4, A = 0, C = 1, M(t) = a sin(ωt) and initial condi-
tion φ(0) = φ0 and φ̇(0) = 0 for T = 80 seconds. We will use u = [φ0, a, ω]
as scenario parameters. We denote the solution of the complex system (with

b1 = 0 and b2 = 15) by φ(t;φ0, a, ω) while φ̃(t;φ0, a, ω; p) denotes the solution
of the simple system (with b1 = p and b2 = 0).

In these experiments we find the optimal p by minimizing the least-squares
cost function

C(p, φ0, a, ω) =
∑

i

(
φ(ti;φ0, a, ω)− φ̃(ti;φ0, a, ω; p)

)2

+
(
φ̇(ti;φ0, a, ω)− ˙̃

φ(ti;φ0, a, ω; p)
)2
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using Matlabs fminsearch. For the 1D interpolation, we use the chebfun

package (Trefethen, 2013). For 2D interpolation we use the Sparse Grid

Interpolation Toolbox package (Klimke, 2007).

2.4.1 Case 1: roll decay with varying initial roll angle

We set a = 0, ω = 0 and vary only the initial condition φ0 ∈ [π/36, π/6].
The optimal values of p as a function of φ0, obtained through Chebyshev
interpolation with 5 points and brute-force sampling is shown in Figure 3 (a).
The solutions for the complex and simple system (using the optimal p) for
φ0 = 0.1 is shown in Figure 3 (b).

2.4.2 Case 2: regular forcing with varying amplitude

In this experiment, we set φ0 = 0, ω = 0.395 and vary only the amplitude
a ∈ [0, 2]. The optimal values of p as a function of a, obtained through
Chebyshev interpolation with 5 points and brute-force sampling is shown in
Figure 4 (a). The solutions for the complex and simple system (using the
optimal p) for a = 1.3 is shown in Figure 4 (b).

2.4.3 Case 3: regular forcing with varying amplitude and fre-
quency

In this experiment we set φ0 = 0 and vary both a ∈ [0, 2] and ω ∈ [0, 2].
Figure 5 (a) shows a sparse interpolant on the Clenshaw-Curtis grid of stage
5 of the optimal p. The solutions for the complex and simple system (using
the optimal p) for a particular choice of (a, ω) is shown in Figure 5 (b).
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Figure 3: Case 1: (a) p∗ as a function of φ0 obtained through Chebyshev
interpolation with 5 points (blue) and brute-force sampling with 100 points
(red). (b) Solutions of the complex (red) and simple systems (blue) for the
optimal p obtained through interpolation, both for φ0 = 0.1.
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Figure 4: Case 2: (a) p∗ as a function of a obtained through Chebyshev
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optimal p obtained through interpolation, both for a = 1.3.
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3 FREDYN code

In this section we present experiments with the FREDYN program, (Ypma,
2014). The complex model is based on a frigate and replaces the real life
experiment. The simple model is based on a lifeboat. In these experiments
u represents the rudder angle (i.e. u is 1-dimensional) which lies within the
range [5, 30] deg. As tuning parameters we use the following parameters that
govern the drift and rotational forces:

p = [Xvv, Xrr, Xvr, Yuv, Yvv, Yur].

The default values of these parameters are given by

p = [18508, 0, 4117877,−82292,−201134, 3075682]. (5)

To compare the simulations, we plot both the horizontal coordinates
(x1(t), x2(t)) and the turning radius which is defined as

R(t) =

√
v1(t)2 + v2(t)2

vr(t)
,

where v1, v2 are the horizontal velocities (surge, sway) in m/s and vr is the
angular velocity (yaw) in rad/s. We stop the simulations after the ship has
completed a full turn. This means that simulations with a smaller rudder
angle will run longer.

Figure 6 shows the behaviour of the complex and simple model for a rudder
angle of 5 deg using the default p. This clearly illustrates the need to fit the
tuning parameters.

3.1 Finding an optimal p

We consider two different cost functions. The first cost function measures the
misfit between the horizontal coordinates (x1, x2):

C1(u,p) =

∫
dt (x1(t)− x̃1(t))

2
+ (x2(t)− x̃2(t))

2
. (Method 1)

The second cost function measures the misfit between the turning radii (cf.
equation (3)),

C2(u,p) =

∫
dt
(
R(t)− R̃(t)

)2
. (Method 2)

We use a direct-search method (Matlab’s fminsearch) to find the optimal p.
Figure 7 shows the simulations for the optimal p as obtained via Method 1

and Figure 8 shows the simulations for the optimal p as obtained via Method
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2, both for a rudder angle of 5 deg. Comparing these to Figure 6 we see a
dramatic improvement in the fit.

The 6th component of the optimal p (Yur) as a function of the rudder
angle using 5 and 10 Chebyshev points is shown in Figure 9. We observe that
the optimal p does not vary as smoothly with u as in the case of roll damping.
In particular, we see a staircase effect that we do not fully understand. Still,
the Chebyshev interpolation is able to capture the general trend. Figures 10
and 11 show how the interpolated optimal p for a rudder angle of 15 deg is
able to produce a very good match between the simple and complex models.
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Figure 6: Simulation for the simple and complex model with a rudder angle
of 5 deg using the default values for p. The red and blue lines represents the
complex and simple model respectively.
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Figure 7: Simulation for the simple (blue) and complex (red) model with a
rudder angle of 5 deg and the optimal p found by Method 1.
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Figure 8: Simulation for the simple (blue) and complex (red) model with a
rudder angle of 5 degrees and the optimal p found by Method 2.
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Figure 10: Simulation for the simple and complex model with a rudder angle
of 15 degrees. The red and blue lines represents the complex and simple model
respectively. Here the first method was used to determine the optimal value
for p with Chebyshev interpolation of order 5.
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Figure 11: Simulation for the simple and complex model with a rudder angle
of 15 degrees. The red and blue lines represents the complex and simple model
respectively. Here the second method was used to determine the optimal value
for p with Chebyshev interpolation of order 5.
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4 Conclusions

We have presented a method for model calibration with application to ship
simulations. The goal is to find the optimal tuning parameters p such that
the solution of a simple system, x̃(t;u,p), matches the solution of a more
complex system, x(t;u), for a range of scenarios u. For a single scenario,
this calibration can by done by minimizing a cost function that measures the
difference between x̃ and x. There are only a few (≈ 20) tuning parameters
so that this minimization can be done with so-called direct-search methods.
Such methods are very suitable for black-box optimization problems since
they do not require gradient calculations of the cost function w.r.t. the tuning
parameters.

However, each calibration requires an evaluation of the complex system
(i.e., a scale experiment). In order to minimize the number of scale experi-
ments that need to be done, we calibrate the simple model only for a small
number of well-chosen scenarios {uk}, giving us the corresponding tuning pa-
rameters {pk}. We assume that the optimal tuning parameters vary smoothly
with u and use polynomial interpolation to compute the optimal p for any
given u from these points. When there is only one scenario parameter we use
Chebyshev interpolation. This approach does not generalize well to higher
dimensional scenario space as the required samples would grow exponentially
with the dimension. To avoid this curse of dimensionality we resort to sparse-
grid interpolation techniques.

Perturbation analysis of a model-problem (roll-damping) indicates that it
is possible to obtain closed-form solutions for the optimal tuning parameter
(the equivalent linear damping) in some specific cases. Numerical experi-
ments indicate that the optimal p varies smoothly with u. Both Chebyshev
and sparse-grid interpolation perform well in this setting, as is confirmed by
numerical experiments. Numerical experiments with a more complex sys-
tem of ODEs that models full ship motion (using the FREDYN code) show
promising results.

5 Recommendations

• The perturbation analysis and numerical experiments on the roll damp-
ing equation give some insight in how to choose the optimal equivalent
linear damping term. It would be very insightful to verify the findings
from the perturbation analysis numerically. The analysis might also be
extended by considering other mismatch criteria and include a driving
term. Such analysis should be able to predict the observed smooth de-
pendency of the optimal p w.r.t. u and may even tell us how smooth
the function is, allowing us to compute a-priori error estimates for the
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interpolation.

• Further numerical testing with the FREDYN code with time-varying
rudder setting, using the optimal tuning parameters appropriate for each
rudder setting. This requires the ability to vary the tuning parameters
with time.

• An alternative avenue – not tested in this report – is to try to find a p
that is optimal over a range of scenarios u

p∗ = argmin
p

∫
du C(u,p)π(u),

where π(u) is a weighting function used to emphasize scenarios that are
deemed more important 2. A first step would be to use a brute force
approach to compute the integral (i.e., by dense sampling of the scenario
space). If the results are satisfactory, a generalized Polynomial Chaos
expansion (gPC) can be employed to efficiently estimate the expecta-
tion (Xiu, 2010). The basic ideas are very similar to the ones discussed
above; we need to sample a number of scenarios according to a quadra-
ture rule (which will depend on π) and sparse grid techniques can be
used to generalize to higher dimensions. Note that we cannot employ
Monte-Carlo sampling methods to estimate the integral, as this would
require evaluation of the misfit for many scenarios, which in turn would
mean doing many experiments to evaluate the complex model for those
scenarios.

• The optimization problem for a single scenario is very likely to have mul-
tiple minima (local and global) and suffer from ill-conditioning. This
means that the variability of the optimal p as a function of u we ob-
served may to some extent be artificial, in particular for the FREDYN
examples. A sensitivity analysis of the problem (for example through
the Jacobian of p∗) may give some insight.

2Alternatively, we can interpret π(u) as a probability, in which case we are aiming to
find a p∗ that minimizes the expected misfit over all possible scenarios.
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A Matlab code

We give a short overview of the scripts and functions related to the generation
of the above described results. We restrict to describe the dependencies and
short explanations of the functionalities. Additional comments can be found
in the files themselves.

A.1 1D Interpolation for damped oscillator

• compareP: computes two numerical approximations of θ0 7→ p∗ (θ0),
where θ0 is the parameter to be varied in an interval specified by the
user. One approximation is determined by brute-force sampling and the
other by Chebyshev interpolation. Moreover, θ0 = φ0 in the absence of
an external force, and θ0 = a in the presence of an external force. This
subroutine calls interpolateP and optimizeP.

• interpolateP: computes the Chebyshev interpolant of the function
θ0 7→ p∗ (θ0) by using the Chebfun-package developed in [reference to
homepage of Chebfun]. This subroutine calls optimizeP.

• optimizeP: computes an optimal value for the damping coefficient p,
such that the error between the solutions of the nonlinear and linear
model is minimized, by applying the Matlab-subroutine fminsearch to
the function-handle difference.

• difference: computes the error in the Euclidian norm between the
time series of the nonlinear and linear model for a given value of p. This
subroutine calls integrateF.

• integrateF: numerically integrates the ODE

(I +A)
d2θ

dt2
+

(
b1 + b2

∣∣∣∣
dθ

dt

∣∣∣∣
)

dθ

dt
+ θ = M(t) (6)

by using the Matlab-subroutine ode45. This subroutine calls F.

• F: implements the first-order vector field associated to (6).

A.2 2D Interpolation for damped oscillator

• interpolant script: main script implementing above described com-
parison. Used to produce Figure 5 (Note the randomized input a and ω
hence output will not be the same). Calls optimal p in the construction
of the sparse interpolant
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• optimal p: implements optimization procedure, calls difference in
the optimization using fminsearch

• difference: implements the least-squares misfit, calls
compute timeseries.

• compute timeseries performs the simulation of the complex and simple
system by writing the as first order systems, calls nonlinear osc rhs

within ode45

• nonlinear osc rhs: implements the right hand side of the first order

systems. Notation used: Iθ̈ +
(
b1 + b2|θ̇|

)
θ̇ + θ = M(t)

A.3 1D Interpolation with FREDYN code

The m-files should be places in a folder which must contain two copies of the
./examples/manoeuvring/leander folder, one called leander simpel and the
other leander complex3. This is used to run both the complex fregat model
and the simpel lifeboat model at the same time while keeping the results
seperated.

In both folders the leander ship.xmf file should be changed. The
RandomRudder script must be removed or commented out and be replaced by
the line

scripting::Scripting "ConstantRudder" {};

Some remarks:

• In all the m-files dir is short for directory and normaly this will be the
string leander simpel or leander complex.

• The m-file ReadData loads the content of the leander.dat file into
Matlab. This is usually refered to as OutputC for the complex model
and OutputS for the simpel model one.

• Some of the m-files use the argument Mode. This is either 1 or 2 and
refers to the way the variable p is optimized. For more details we refer
to section 3.

3e.g. we placed them in ./examples/manoeuvring/
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M-Files

These first few m-files are functions that are used to change and run the
simulation of the complex and simple model in various ways, as well as to
determine the optimal value for the parameter p for a certain rudderangle.

• WriteTweaking: Used to change the value of the variable p in the
mo leander hull.xmf file in the directory denoted by dir, which is
either leander simpel or leander complex. All 26 components can be
changed, but in the other m-files only the first six in the leander simpel

folder have been modified.

• WriteParameters: In order to easily change the rudderangle from
within Matlab this m-file creates a python script ConstantRudder.py

in the directory pointed to by dir (again, either leander simpel or
leander complex). This is done by adding a line to the
ConstantRudderTemplate.py defining the rudderangle and copying this
to the chosen directory.

• RunSimulation: Runs the simpulation of the simple
(dir = leander simpel) or complex (dir = leander complex) model
and deletes the created ∗ leander.out files.

• ReadData: Reads the leander.dat file in the directory denoted by dir

and loads it into Matlab.

• PlotTraces: Makes a plot of the data in OutputC and OutputS. Top
left: the path in the xy-plane of both models. Top right: the radial
distance R of both models. Botom left: timetrace of x of both models.
Botom right: timetrace of y for both models.

• OptimalP: Given a Mode and a rudderangle (argument u) this runs
the complex model and then searches for an optimal value for p (only
the first six components are changed) by using the Matlab function
fminsearch (only 20 iterations are used). Using this optimal p the
simple model is computed. The function returns the output of both
simulations (OutputC and OutputS) and the optimal value for p OptP

(corresponding to this rudderangle u!).

• NormDiff: This function is used to determine how closely the simple
model matches the complex one, e.g. it is used by OptimalP

The following m-files where used to create a.o. the results shown in the
presentation. The can be seen as an example how the previous m-files can be
used.
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• Example0: Runs the complex and the simple model with the default
value of p for three different rudderangles (5, 15 and 30) to show that
this is not always a good choice of parameters. The results are saved.

• Example1: Determines the optimal value of p for an oversampling of
the range [5, 30] which is used as a reference value for the Chebychev
interpolation. The results are saved.

• Example2 5: Determines the 5 Chebychev points in [5, 30] and calcu-
lates the optimal value of p for them. The results are saved.

• Example2 10: Idem for 10 Chebychev points.

• MakePlots: Using the data calculated by the Example m-files, this
m-files makes plots of the results and calculate the Chebychev interpo-
lation. The plots are all saved in a subfolder ./Plots
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1 Introduction

INCAS3 posed the problem of modeling the human hearing system in the
Study Group of Mathematics with Industry held at TUDelft. More specifi-
cally, the company brought to our attention a model describing the part of the
ear called cochlea as a series of coupled oscillators. Each oscillator is modelled
by a second order linear ordinary differential equation with a delay term. The
questions that mainly concerned us were the following:

1. Is it possible to improve this model?

2. Is it possible to estimate the parameters of this model using experimen-
tal data?

In the course of four days, we attempted to answer these questions as accu-
rately as possible. In addition, the company was interested in a mathematical
description of how a damaged ear works in comparison to a healthy one. While
this proved to be an impossible task, we were able to suggest a method for
locating the frequencies that are affected in a damaged ear.

This article is organised as follows: in section 2, we present the model used
and the theoretical background it is based upon. In section 3, we analyse the
model and attempt a physical interpretation of it. Section 4 deals with the
mathematics of hearing loss diagnosis, while in section 5 we propose methods
to estimate the parameters of the model. Finally, we present conclusions of
our investigations as well as future directions of research.

2 Theoretical background

The model presented in this section is described in more detail in a paper of
Zweig (1991).

Before analyzing the model that describes how the human ear works, let
us first consider the anatomy of the human ear and, more specifically, the
cochlea. It has been known for quite some time that the cochlea is a nonlinear,
active system that converts sound into neural stimuli. In addition, the cochlea
not only responds to the sound it receives, but emits sound as well. These
OtoAcoustic Emissions (OAEs) can be accurately measured however, due to
the nonlinearity of the cochlea, their use in revealing how the cochlea responds
to certain (controlled or not) stimuli is non-trivial.

In his paper, Zweig considers a simplified model of the human ear by ‘un-
coiling’ the cochlea, a model already existent in the literature. He notes that
discrepancies appear between this theory and some experiments, which might
be caused by deficiencies of the model, namely the possibility of oversimplify-
ing what actually happens in the cochlea. However, relaxing the assumptions
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Figure 1: Simplified model of the inner ear with uncoiled cochlea. Reproduced
from wikimedia.com

the model uses does not lead to any improvements. One of the assumptions,
for instance, is that the geometry of the cochlear model is excessively sim-
plified by the uncoiling of the cochlea. In addition, the fluids in the scalae
are considered incompressible and inviscid. Relaxing these assumptions, i.e.
assuming the cochlea is coiled and allowing the fluid to be compressible and
viscous, only slightly changes the output of the model, which still does not
fit the experimental data. Furthermore, the author questions the assumption
that the scala media should be interpreted as an array of oscillators, coupled
only through the fluid inside the ear. However, adding additional coupling
between adjacent oscillators also fails to improve the output of the model.

Instead of relaxing the initial assumptions, the author uses a different
approach. He considers the initial model as correct in a number of cases but
acknowledges it is too simple to fully capture the correct behavior. Then, he
proceeds to replace the harmonic oscillators of the model with more complex
oscillators. Using the data available it is possible to approximate the form of
the refined transport function and use it to obtain the more complex oscillator
equation. We will now describe this approach in more detail, as there are
parts of this procedure that could be altered, possibly resulting in a further
improvement.

To get an oscillator equation from the transport equation, let us consider
the latter as an integral equation for λ and suppose that T can be obtained
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from experimental data:

T (s) ' C s

λ3/2(s)
exp

(
−
∫ s

s0

ds′

λ(s′)

)
(1)

We can now get the oscillator equation by Fourier transforming λ2V ∝ sP
using the form of λ from the simple harmonic oscillators model:

λ2 =
s2 + δs+ 1

(4N)
2 ,

where N is approximately equal to the number of wavelengths of the wave
on the membrane. This will give us an inhomogeneous oscillator equation for
the velocity v of a point on the basilar membrane, where v = F(V ) and F
denotes the Fourier transform, namely

v̈(θ) + δv̇(θ) + v(θ) =
ṗ(θ)

ωc0M0
,

where θ(x) = ωc(x)t and ( ˙ ) = ∂/∂θ(x). We can now differentiate the transfer
equation to solve for λ:

λ = −
(

1 +
3

2

dλ

ds

)(
d ln(T/s)

ds

)−1
. (2)

Because the derivative of λ is small, we can get an approximation for λ as

λ ' − ds

d ln(T/s)
. (3)

As λ is heavily influenced by the derivative of T , it is important to get an
approximation for T as smooth as possible. To this end, a data fitting is
performed by maximizing a modified likelihood function of the form χ2 + ξk2

where

k2 =

∫ ∣∣∣∣
T (s(Ω))

dΩ2

∣∣∣∣ dΩ

and ξ plays the role of a Lagrange multiplier. This form of likelihood function
is preferred over the usual χ2 as s depends on a number of variables and this
will cause T to be non uniformly distributed with respect to χ2.

Let us now assume that the linear equation for the shunt impedance Z is
correct but incomplete because it fails to capture all the mechanical properties
of the cochlea. To correct it, we add an extra term that will account for these
mechanical properties. The equation now is

Z =
ωc0M0

s

(
s2 + δs+ 1 +m(s)

)
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which can also be expressed as an equation for λ:

λ2 =

(
s2 + δs+ 1 +m(s)

)

(4N)2
.

To gain some insight into the form of the function m(s), we fix N and δ and
iteratively calculate λ from equations (2) and (3). We then plot the imaginary
versus the real part of m(s) for varying s. The author approximates the
resulting points by a circle of the form m(s) = ρe−2πµs, ρ and µ being real
constants. Substituting into the equation for the shunt impedance gives

0.3 I i i i , of the organ of Corti missing from the earlier description. 
The corresponding expression for X2(s) is 

X2(s) = [s 2 + tSs + 1 + m(s) ]/(4N) 2. (130) 
In order to obtain insight into the functional form of 

m(s), consider the frequency dependence of the real and 
imaginary parts of (4N•)2 as shown in Fig. 11, where N is 
set to 5, a value approximately equal to that previously ob- 
tained 23 (recall that N is a constant approximately equal to 
the total number of wavelengths on the basilar membrane of 
the wave created by sinusoidal stimulation). Note that the 
imaginary part of (4NX)2, which is equal to 6f/fc plus the 
imaginary part of m, is negative over almost the entire fre- 
quency region where X has been determined. If we take 
6• --0.1 and fc •7.4 kHz, then re(s) assumes a remark- 
ably simple form, as may be seen in Fig. 12, where 

Re(m (s)) = Re([4NX(s) ]2) _ s 2 _ 1 (131) 
is plotted versus 

Im(m(s)) = Im( [4NX (s) ]2) + i 6s (132) 
for different values of s. To a first approximation the result- 
ing curve (dashed line) is an elongated circle where equal 
steps in -- is = f/f• near f/f• = 1 result in approximately 
equal steps along the curve. Approximating the curve by a 
circle that is traced out uniformly as -- is changes uniformly 
means that m (s) has the form 

m(s) •pe- 2rc•s, (133) 
where p and p are real constants representing the radius of 
the circle and the rate at which it is traversed. It is convenient 
to define a constant fi by 

fi---- 2•rp. (134) 

3. Theoretical X and the corresponding Z 
It is now natural to make the theoretical assumption 

that 

X2(s) = (s 2 + 6s + 1 + pe- •s)/(4N)2 (135) 
and explore the consequences. The constants 6, p, p = •p/2rr, 
and N are adjusted to give a best fit to the empirically deter- 
mined X. The resulting m (s) is shown in Fig. 12 as a dotted 
line. The corresponding transfer function T(s) predicted 
from Eq. (77) is shown as a dotted line and compared with 
experiment in Fig. 10. The fit to the data yields 

(5 = -- 0.1217, p = 0.1416, p = 1.742, 
N = 5.24, and f• = 7.89 kHz. (136) 

The fit to the amplitude and phase of the transfer function is 
very good everywhere except at 2 kHz where the model pre- 
diction for the amplitude is somewhat higher than the mea- 
sured value. That discrepancy may be due to a breakdown of 
scaling symmetry at low frequency, the lack of low-frequen- 
cy data to constrain the fit, a small frequency variation of 
parameters that have been taken to be constant, or statistical 
fluctuation. 

Note that the damping constant (5 of the oscillator is 
negative, indicating that the oscillator would be unstable 

0.2 

0.1 

0.0 

-0.1 

-0.2 

-0.3 

1 

).3 -0.2 -0.1 0.0 0.1 0.2 0.3 

Re Im($)l 

FIG. 12. The real versus imaginary part of rn(s) for varying s--_--if/f•. The 
dashed curve is obtained from the transfer function Twhile the dotted curve 
is a circular approximation corresponding to re(s) - pe - •,s, where param- 
eter values are given in the text. The solid circle corresponding tof/• - 1 is 
labeled by 1. The other points correspond to values off/• differing from 1 
by multiples of 0.05. Thus the dashed curve starts atf/• = 0.6 and ends at 
f/• = 1.15. fc has been set equal to 7.4 kHz. 

without the additional pe- •s term. Values ofp slightly less 
than 1.25 and 2.25 also lead to stable transfer functions that 

approximate T, but p • 1.75 provides the best fit. In all cases, 
a negative value of t5 is required. Otherwise the negative val- 
ues of Im([4NX(s)]2) shown in Fig. 11 cannot be repro- 
duced. The value found for Nindicates that a harmonic trav- 
eling wave contains approximately five spatial cycles, as 
drawn in Fig. 1. 

The shunt impedance corresponding to the theoretical 
wavelength given in Eq. (135) is 

Z -- icoM(x) + R(x) + K(x)/ico 

+ K(x)pe-ieø•/ø•(x)/ico, (137) 
where icoM(x), R(x), and K(x)/ico scale [Eq. (70)]. In 
terms of s, 

Z = lZ•oXs2/S = Co•oMo (s 2 + tSs + 1 + pe- eS)/s. 
(138) 

The agreement between theory and experiment for both 
the amplitude and phase of T, as shown in Fig. 10, indicates 
that the form ofZ(s) [Eq. (138) ] is essentially correct. 

4. Interpretation of the missing term m 
In order to interpret the expression pe- es that must be 

added to the old form of Z(s), recall Eq. (109) which im- 
plies 

F( (s 2 + 5s + 1 -I- pe- ,)s) V} oc F(sP}, 
or, performing the indicated Fourier transform F{ }, 

(139) 

1244 J. Acoust. Soc. Am., Vol. 89, No. 3, March 1991 George Zweig: Finding the impedance of the organ of Corti 1244 
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Figure 2: The dashed curve is the measured values of m(s) obtained from the
transfer function T whereas the doted line is a circular approximation. The
dots represent an equally spaced partition of the frequency domain.

Z =
ωc0M0

s

(
s2 + δs+ 1 + ρe−2πµs

)
.

Now using the Fourier transform as above yields the new oscillator equation
for the velocity v of a point:

v̈(θ) + δv̇(θ) + v(θ) =
ṗ(θ)

ωc0M0
− ρv(θ − ψ),

where ψ = 2πµ. Therefore, a section of the organ of Corti at position x
behaves like a harmonic oscillator with angular frequency 1 and damping
δ. It is also driven by two forces: one proportional to the derivative of the
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pressure difference and one proportional to that section’s velocity at the earlier
time θ− ψ. This delayed force is necessary to stabilize an otherwise unstable
oscillator (recall that the damping is negative) and can be considered the
active influence of the cochlea. An estimate of the time delay is given by

ψ

ωc(x)
= 220µs,

where an approximation for µ (and therefore ψ as well) was obtained by fitting
the model to experimental data. Zweig’s model undoubtedly has a number
of advantages. It describes the physical phenomenon much better than the
simple harmonic oscillator model while at the same time remaining relatively
simple for analysis and solution. However, an obvious point of improvement
lies in the approximation of the form of the unknown function m by a circle.
It is clear from the plot that an ellipsoid or a spiral would better fit the
experimental data and result in a more accurate oscillator equation, without
changing the assumptions of the original model or excessively complicating
the calculations involved. We strongly believe that this point needs to be
examined and reassessed in the future.

3 Physical interpretation

The processes involved in the perception of sound from a pressure wave are
numerous. The most important process occurs in the cochlea, which makes
the crucial transformation of a pressure wave into an electric signal, which can
then be interpreted by the brain as sound. This transformation is a two-step
process. First a small membrane inside the cochlea is made to oscillate by
a propagating pressure wave. Then, the oscillation is registered by hair cells
that activate the firing of an electric signal.

This oscillatory behavior of the cochlea was modeled by considering the
cochlea as a tubular resonance cavity which encloses a membrane of oscillators
that lies on the central horizontal plane. This plane divides the resonance
cavity in two cavities, which are only connected at the far end of the cochlea.
Research has shown that the oscillators responding to a pressure wave of
a certain frequency have a position on the membrane which increases with
decreasing frequency. In other words, higher frequencies are processed near
the outer part of the cochlea and lower frequencies near the inner part. As
we saw above, this frequency dependency of position was modeled with a
delay differential equation. The model assumed a one-dimensional position
x with domain [0, 1], a total transversal pressure p(x, t) and a transversal
displacement ξ(x, t) of the oscillators. The pressure p is actually the difference
in pressure between the two cavities in the cochlea. The delay differential

Proceedings of the SWI 2014 Held in Delft

99



equation in the paper is written in a slightly more general form as

p = mψ̈ + dψ̇ + sψ + s′ψt−τ , (4)

where ψt−τ = ψ(t − τ) for some specific time τ > 0. The differential equa-
tion without delay is that of a driven harmonic oscillator. There is extensive
theory about this type of differential equation that leads us to expect certain
parameter dependencies. INCAS3 provided the following parameter depen-
dencies

d = c0
√
sm, s′ = c1s, τ = c2

√
m

s
, (5)

where c0, c1 and c2 are dimensionless constants.
Using these parameter dependencies we can transform equation (4) into a

dimensional differential delay equation

P(x, t) = ξ̈(x, t) +
c0c2
τ
ξ̇(x, t) +

(c2
τ

)2
ξ(x, t) + c1

(c2
τ

)2
ξ(x, t− τ) (6)

where a dot denotes partial differentiation with respect to time and P is
defined as p/m, which has the same dimensions as acceleration.

Equation (6) fails to fully describe the ongoing process. All the oscillators
are behaving independently and the pressure is known only at x = 0, since
we only know the sound that enters the ear canal. The missing link are the
cavities, which allow the existence of standing waves. However the Navier-
Stokes equation for an incompressible, inviscid cochlear fluid with pressure
differences only implies that an oscillator can influence these standing pressure
waves. Therefore the Laplacian equation of standing waves becomes a Poisson
equation

∂2P(x, t)

∂x2
= γ ξ̈(x, t) with γ =

ρ bBM
A/2

(7)

and with constants ρ denoting the density of the cochlear fluid, bBM the width
of the membrane and A the diameter of the cochlea. The initial and boundary
conditions for these differential equations are





ξ(x, 0) = 0 , ξ̇(x, 0) = 0

∂P
∂x

(0, t) = P (t) , P(1, t) = 0

(8)

for a known bounded function P (t) with P (t) = 0 for t < 0. Together, equa-
tions (6) and (7) form a system of coupled ODEs describing how the cochlea
responds to sound input. A comparison between the simulations generated
using the model and the actual OAEs can be seen in figure 3.

Proceedings of the SWI 2014 Held in Delft

100



Figure 3: Comparison of OAEs of normal hearing, damaged cochlea and esti-
mated damage.

3.1 The Fourier transform of the ODE

The incoming pressure wave is a representation of sound. It is therefore
natural to use the frequency domain by means of the Fourier transformation
in space. Let us use G̃(x, ω) to denote the Fourier transform of a function
G(x, t) with angular frequency ω. Then equations (6) and (7) are transformed
into the system





P̃(x, ω) =
[
−ω2 + iω c0c2τ +

(
c2
τ

)2 (
1 + c1e

−iωτ)] ξ̃(x, ω)

∂2P̃(x, ω)

∂x2
= −ω2γ ξ̃(x, ω).

(9)

This system can be restated as





γP̃(x, ω) =
[
1− i c0c2ωτ −

(
c2
ωτ

)2 (
1 + c1e

−iωτ)] ∂2P̃(x, ω)

∂x2

∂2P̃(x, ω)

∂x2
= −ω2γ ξ̃(x, ω).

(10)

The first identity of this system has sufficient boundary conditions from the
Fourier transformed boundary conditions of P in (8). The second identity

Proceedings of the SWI 2014 Held in Delft

101



is satisfied by the first without imposing the boundary conditions of ξ in
(8). Hence the unused boundary conditions must be satisfied automatically
from the differential equation for P̃. We can investigate this by solving the
characteristic equation of the differential equation, which is

γ =

[
1− i c0c2

ωτ
−
( c2
ωτ

)2 (
1 + c1e

−iωτ)
]
λ(ω)2. (11)

The solution for P̃(x, ω) and the boundary conditions ξ(x, 0) and ξ̇(x, 0) are
then equal to

P̃(x, ω) = − P̃ (ω)

λ(ω)

sinh[(1− x)λ(ω)]

cosh[λ(ω)]
(12)

ξ(x, t) =
1

γ
√

2π

∫ ∞

−∞
λ(ω)

P̃ (ω)

ω2

sinh[(1− x)λ(ω)]

cosh[λ(ω)]
eiωtdω (13)

ξ̇(x, t) =
i

γ
√

2π

∫ ∞

−∞
λ(ω)

P̃ (ω)

ω

sinh[(1− x)λ(ω)]

cosh[λ(ω)]
eiωtdω (14)

These identities imply that the cochlea has no spontaneous excitation modes
without a forcing pressure P̃ (ω) 6= 0. Hence the condition P (t) = 0 for t < 0
guarantees the remaining boundary conditions due to causality, which is the
property used in the Zweig paper to justify the delay term in equation (4)
from data.

An advantage of the introduction of λ(ω) in equation (11) is the possibility
to extend it to the form λ(x, ω) in a more general model where the constants
c0, c1 or c2 become functions of x. The function ξ is then still given by
equation (13) by substituting λ(x, ω) instead of λ(ω). A second advantage of
equation (11) is the existence of real and imaginary parts of λ, which allow not
only oscillations, but decay as well. This decay will depend on the frequency,
which reflects the frequency-position relationship of the oscillator response in
the cochlea.

4 Input Functions

The physical model given in the introduction, derived in the theoretical back-
ground and explained in the physical interpretation is that of a resonance
cavity, which resembles the cochlea and resonates due to an input pressure
function. This input pressure is a representation of a sound wave. The rea-
son INCAS3 is interested in this model is to improve the current methods of
diagnosing hearing loss. In these methods, a certain sound pulse is created
and used with a certain procedure to determine the hearing loss. The quality
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of the diagnosis is therefore highly dependent on the input sound pulse, mea-
surement accuracy and measurement precision. Therefore, we tried to tackle
the following problem. Is it possible to improve the input pulse to obtain a
result faster without decreasing the accuracy or precision of the diagnosis?

Due to finite time measurements, the input function must be a pulse, which
implies that it must be a function with compact support. Furthermore the
Fourier transform of the input pulse may not have any zeros. This condition
is necessary since hearing loss could occur at any frequency. Furthermore,
hearing loss is determined as a spectral response loss, which implies that
accuracy requirements need non-zero spectrum. Finally, we can observe only
an interval of the frequency domain. It is therefore desirable that the Fourier
transform of the input pulse is rapidly decaying in a known way outside the
measurable interval of the frequency domain. A second desirable property
would be the ability to modify the pulse such that a certain interval in the
frequency domain can be examined. Hence, an input pulse must satisfy the
following:

1. Compact support in the time domain.

2. Fourier transform without zeros.

3. Rapidly decaying Fourier transform.

4. Adjustable for having values above a given threshold for a given fre-
quency interval.

A simple family of functions G(t) which satisfy the requirements above
are sums of a finite, symmetric interval part of the sech(t). Is is obvious that
these functions have compact support. Additionally, their Fourier transform
does not have zeroes due to the invariance of the sech under Fourier trans-
form, which smoothes out all the zeroes due to the window. It is easy to see
that they are rapidly decaying due to the properties of the sech by using the
Riemann-Lebesgue lemma. Finally, we can adjust them at will since the sech
is symmetric in the frequency domain and therefore sums of a symmetric finite
interval part can cut away small frequency intervals for a given threshold.

Let us define by rect(a)(t) the unit function on the interval [−a, a] and
zero elsewhere. Then the function G and its Fourier transform G̃ are given
by

G(a)(t) =

√
π

2
sech(t)rect(a)(t),

G̃(a)(ω) = arctan
(
ea/(2π)−ω

)
− arctan

(
e−a/(2π)−ω

)
.

Using the function G as a building block one obtains a new function S which
has the property of selecting an interval in the frequency for which S̃ is a
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threshold.

S(a, b)(t) = G(a)(t)− 1

|b|G(a)(t/b),

S̃(a, b)(ω) = G̃(a)(ω)− G̃(a)(b ω).

If the threshold is equal to ε, then the interval endpoints are the positive

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

Figure 4: Red line: plot of sech(t) multiplied with rect(1)(t). Notice the com-
pact support, the discontinuity at ±1 and the absense of roots inside the win-
dow. Blue line: Fourier transform of the function above. This function also
does not have any zeroes and is rapidly decaying.

zeros of

tan(ε) =
sinh(a/π) cosh(ω)− sinh(a/π) cosh(b ω)

sinh2(a/π) + cosh(ω) cosh(b ω)
.

We can always find two positive zeroes for small enough ε. Hence S satisfies
the properties of a desirable input pulse.

The existence of such a simple function that satisfies the properties needed
is very important, as it will allow a relatively simple design and execution of
experiments to locate where the damage lies in the frequency spectrum of
the ear. Further research would help in refining the definition and use of the
input function, thus drastically improving the way hearing damage diagnosis
is performed.

Proceedings of the SWI 2014 Held in Delft

104



5 Parameter estimation

5.1 Toy problem

Determining the value of a set of parameters using some experimental data
about the solution of a problem is usually called the inverse problem. When
experimental data are not available, numerical simulations may also be used.
We will describe two different methods that are commonly used to attack in-
verse problems, namely the finite differences method and the adjoint method.
Both share a common foundation, as in both cases we try to minimize an
objective function that usually calculates the difference between the current
set of parameters and the ‘perfect’ one. To illustrate these methods let us
consider a simple example:

D(x)
d2T (x)

dx2
= 1, x ∈ [0, 1] (15)

with boundary conditions T (0) = 1, T (1) = 0.
Suppose we have a given T̃ which satisfies (15), for some unknown D(x).

The inverse problem is to calculate the function D(x) that corresponds to T̃ .
We define an objective function, F , which measures the difference between the
exact solution T̃ and our approximation T ; minimizing this function is now
our goal, and the value of the parameter D corresponding to the minimum
of the error function will be the best estimation, at least locally. The inverse
problem is therefore tackled using an optimization procedure.

We will make use of gradient-based optimization algorithms, a subset of
the class of line search methods, an optimization strategy based on two steps:

1. Find a direction along which F decreases rapidly.

2. Compute a step size which determines how far we should move along
that direction.

It is obvious that successful use of a line search method requires the determi-
nation of both the direction and the step length.

Both strategies illustrated here, the finite differences method and the ad-
joint method, assume the gradient direction as the decreasing line, namely

D(k+1) = D(k) − γ︸︷︷︸
step

dDF (T,D)︸ ︷︷ ︸
direction

,

with dD denoting the derivative with respect to D. However, these methods
differ in the way they calculate the gradient. A first approach is to approxi-
mate it by finite differences over D. However, this includes the integration of
n differential equations at each step, where n is the dimension of D. A more
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sophisticated approach is to calculate the gradient using the adjoint method,
which is significantly cheaper computationally, since at most two differential
equations have to be integrated.

Using the procedure discovered above, starting from an initial guess D0,
we obtain a sequence F (Dn) that satisfies

F (D0) ≥ F (D1) ≥ · · · ≥ F (Dk) ≥ F (Dk+1) ≥ . . .

and converges to a minimum. A significant disadvantage of this method, as
in every hill-climbing method, is the risk of getting stuck in a local minimum.
Every minimum found is guaranteed to be a global minimum only if F is
convex, which is usually either not true or difficult to prove.

5.2 Finite differences

The idea underlying this approach is the discretization of the problem with
respect to the spatial variable. A second order approximation of the derivative
of the objective function is calculated and used in the gradient descent method
in order to find a local minimum. A discrete objective function is defined,

F (D) =

n∑

j=1

(T (xj ;D)− T̃ (xj))
2

where T is a vector containing the evaluation of the approximate solution
(corresponding to the approximated parameter D) in each node of the dis-
cretisation and T̃ is a vector containing the evaluation of the exact solution
in the same points.
At each step we compute the gradient using the formula

dDF
(k) =

F (D(k) + ε)− F (D(k) − ε)
2ε

and we then update our parameter value according to

D(k+1) = D(k) − γ · dDF (k).

Since the convergence speed of this method can be very slow for a constant
step, it is possible to add an iterative method to better adapt the step length
γ. One such possibility is through the backtracking line search, which is a
good compromise between the two opposite goals of obtaining a step size γ
which substantially reduces F and decreasing computational cost. A sample
algorithm which geometrically reduces γ is the following:
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choose γ0 > 0 (generally = 1); ρ, c ∈ (0, 1);
set γ = γ0;

while F (D(k+1)) ≥ F (D(k)) + c · γ · dDF (k) do
set γ = ργ;

end

5.3 Adjoint method

The adjoint method is a way of significantly decreasing the computational
cost of calculating the gradient. An introduction to it will be presented here,
more details can be found in the book of Vogel (2002).

Let T =

(
T1
T2

)
=

(
T1
Ṫ1

)
. Equation (15) can then be written as Ṫ =

(
T2
1
D

)

and the inverse problem can be stated as follows:

minimize
D

F (T ;D) =

∫ 1

0

f(t,D, x)dx, where f(T,D, x) =

∫ 1

0

(T̃ (x)− T (x))2dx

subject to h(T, Ṫ ,D, x) = Ṫ −
(
T2
1
D

)
= 0,

g1(T (0), D) = T (0)−
(

1
T2(0)

)
= 0,

g2(T (1), D) = T (1)−
(

0
T2(1)

)
= 0.

HereD is a vector of unknown parameters, T is a function of x, h(T, Ṫ ,D, x) =
0 is an ODE in implicit form and g1(T (0), D) = 0, g2(T (1), D) = 0 are the
boundary conditions, which are functions of some of the unknown parameters.
Being a gradient-based optimization algorithm, the gradient

dDF (T,D) =

∫ 1

0

[∂T fdDT + ∂Df ]dx

has to be calculated. Unfortunately, it is often expensive to compute dDT .
The first step in solving this problem is to introduce the Lagrangian corre-
sponding to the optimization problem defined above,

L =

∫ 1

0

[f(T,D, x) + λTh(T, Ṫ ,D, x)]dx+ µT1 g1(T (0), D) + µT2 g2(T (1), D).

Here λ is a vector of Lagrange multipliers depending on x, and µ1 and µ2

are vectors of multipliers corresponding to the boundary conditions. Since
h, g1, and g2 are zero everywhere by definition, λ, µ1 and µ2 can be chosen
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freely and we have dDL = dDF. The main idea is to choose the values of the
multipliers in such a way that the total derivative dDL is easy to compute.
Thus, the derivative of the Lagrangian is

dDL =

∫ 1

0

[∂T fdDT + ∂Df + λT (∂ThdDT + ∂ThdDṪ + ∂Dh]dx

+µT1 (∂T (0)g1dDT (0) + ∂Dg1) + µT2 (∂T (1)g2dDT (1) + ∂Dg2).

(16)

The integrand contains the terms dDT and dDṪ , which are both hard to
calculate. For the second term, we apply integration by parts

∫ 1

0

λT∂ṪhdDṪ dx = λT∂ṪhdDT
∣∣1
0
−
∫ 1

0

[
λ̇T∂Ṫh+ λT dx (∂Ṫh)

]
dDTdx.

Substituting this in (16) we obtain the expression

dDL =

∫ 1

0

[
∂T f + λT

(
∂Th− dx∂Ṫh− λ̇T∂Ṫh

)]
dDT

+∂Df + λT∂Dhdx

+µT1
(
[∂T (0)g1 + λT∂Ṫh]0dDT (0) + ∂Dg1

)

+µT2
(
[∂T (1)g2 + λT∂Ṫh]1dDT (1) + ∂Dg2

)
.

Since we are free to choose the multipliers λ, µ1 and µ2, let us take

µT1 = λT∂Ṫh|0(∂T (0)g1)−1

µT2 = λT∂Ṫh|1(∂T (1)g2)−1.

This ensures that the first parts of the last two terms vanish. Furthermore,
we choose λ such that

∂T f + λT (∂Th− dx∂Ṫh)− λ̇T∂Ṫh = 0, (17)

which saves us from having to calculate dDT . With this choice of values for
the multipliers we obtain

dDL =

∫ 1

0

[∂Df + λT∂Dh]dx+ µT1 ∂Dg1 + µT2 ∂Dg2. (18)

The first order linear ODE h from the optimisation problem stated above can
be rewritten as

h(T, Ṫ ,D, x) = Ṫ −A(D)T − b(D),
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where A(D) =

(
0 1
0 0

)
and b(D) =

(
0

D−1

)
. It follows easily that ∂Th =

A(D) and ∂Ṫh = I, and ∂Dh =

(
0

D−2

)
. Furthermore, ∂Df , ∂Dg1 and ∂Dg2

are zero. Substituting these information into (18) leads to

dDL =

∫ 1

0

λT∂Dhdx =

∫ 1

0

λ2(x)D(x)−2dx.

and the adjoint equation becomes ∂T f − λTA(D)− λ̇T = 0.

6 Conclusion

6.1 Summary of results

We have investigated several different ways to attack the problem of modelling
hearing damage. They all show promise for further investigation.

Regarding the analysis of the given model, it is obvious that Fourier trans-
forming the differential equations has several advantages. For instance, anal-
ysis in the frequency domain is often more natural when working with sound.
Furthermore, solving the system is now easier, which can be very helpful for
implementing a parameter estimation scheme. It is also worth noticing that
parameter estimation may not be needed at all. This is because the motiva-
tion behind trying to estimate where the cochlea is damaged is to allow us to
alter the sound entering the ear in a controlled way, by means of a hearing
aid, so that the ear processes an input that is as close to normal as possible.
Therefore, instead of trying to locate where the damage lies, it might be more
fruitful to be able to calculate this corrected input signal directly. This may
be a significantly hard problem in the time domain, perhaps harder than the
parameter estimation itself, but using the frequency domain we showed there
are ways to attack it.

The gradient descent method discussed in section 5 is one of the simplest
ways of solving an inverse problem. Regardless whether the gradient itself
is obtained through finite differences or the adjoint method, the choice of al-
gorithm itself is also very important. Simple methods like gradient descent
can have problems such as slow convergence or getting stuck at a local min-
imum. There exist however more sophisticated methods that may be used
to remedy these problems. For example, the conjugate gradient method that
keeps track of previous step directions could be tried. Additionally, atten-
tion should be paid to quasi-newton methods like BFGS that determine the
objective function’s Hessian.
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6.2 Recommendations for future work

• Investigate whether choosing another function m to fit the experimental
data leads to a better model of a damaged cochlea.

• Add the calculation of the OAE to the Fourier-based approach.

• Check whether the input function proposed in section 4 works as ex-
pected for real OAE measurements.

• Perform parameter estimation with the current cochlear model using
the framework laid out in this paper.
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