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Abstract

This paper deals with a quality engineering problem introduced by
‘Waterlaboratorium Noord’ (WLN) situated at the Netherlands. In-
terest lies in determining an optimal sampling frequency that provides
sufficient information on the water quality in a drinking water purifica-
tion plant. The water purification plant that is studied consists of two
aeration and filtration processes and a clear water reservoir where wa-
ter is saved until distribution to households. One of the main processes
during these filtration processes is iron removal.

A stochastic model is proposed that describes the decreasing effects
on iron concentration after the filtration processes by multiplicative
effects. This model is combined with an ordinary differential equation
to model the amount of iron in the clear water reservoir that fluctuates
due to the quality of the incoming filtrated water and the varying water
demand.

In this way the iron concentration levels in the different compart-
ments of a water purification plant can be simulated. Range and fluc-
tuations approximate those of the observed data. Hence a realistic
benchmark for detecting anomalies is obtained.
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1 Introduction

1.1 WLN

The quality of water has an important impact on public health. Whether
it is used for drinking, for food production or just for recreational purposes,
contaminated water can lead to severe health problems (Karanis et al., 2007).
Therefore monitoring and keeping the quality of drinking water at a safe level
is of crucial importance for our society.

The company ‘Waterlaboratorium Noord’ (WLN) takes care for the qual-
ity control of drinking water in Groningen and Drenthe. It monitors and
improves the quality of drinking water provided by the water supply compa-
nies ‘Waterbedrijf Groningen’ and ‘Waterleidingsmaatschappij Overijssel’.

Generally water is retrieved as surface water or groundwater. This water
needs to be treated in a purification plant for several reasons, to remove
harmful substances, to ensure it looks clear and to remove pathogenic micro-
organisms, to name a few. This purified clear water is then pumped through a
distribution network and finally flows clearly and steadily into the households.
Figure 1 depicts a typical treatment scheme for groundwater purification.

1.2 Outline of the problem

The main question posed by WLN is the following:

Which monitoring frequency at the various stages in the water
purification process is required for obtaining sufficient information
on the water quality to prevent contaminated water to be delivered
to households?

 

Figure 1: Illustration of a water purification process when groundwater is
used as source.
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One of the reasons this question is posed can be found in the Dutch legis-
lation concerning the water quality. This legislation prescribes very strictly
the quality control in the drinking water sources, in the clear water reservoirs
and in the distribution networks. However, for the water inside the water
purification plant there is only a rough guideline saying that the water com-
pany has to monitor the purification process for an ‘adequate process control’.
Hence the only demand is that it is being frequently monitored on several lo-
cations spread along the plant such that a sufficient overview of quality can
be obtained. At this moment only expert judgement is used to determine this
monitoring frequency.

1.3 Approach

In this paper we restrict attention to a single water treatment plant with
groundwater as a source and two filtration steps. One of the main goals is
to detect malfunctions of the purification process which can result in unac-
ceptable water quality. In an attempt to detect such anomalies a model is
introduced for predicting iron concentrations at each place in the purification
process given the iron concentrations in the groundwater. A next step would
be to monitor the differences between these predictions and the observations
to reassure the quality of Dutch water.

Figure 2 shows a schematic overview of the proposed model of the pu-
rification process. The four main locations of the purification process are
interpreted as basins where measurements are taken from. The transitions
between the first three basins are modeled using a stochastic model with a
multiplicative effect while the fluctuations of the iron in the clear water before
distribution is modeled using a differential equation. The implementation is
performed using the statistical software package R (R Core Team, 2012).

groundwater
after

first filtration

after

second filtration

clear water

before distribution

Figure 2: Schematic illustration of the water purification process

1.4 Outline of this article

In the next section we detail the data made available by WLN. In section
3 we present a model that relates the concentration of iron in groundwater
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to the concentration in the clear water basin. This model uses both ideas
from stochastic processes and differential equations for modellng conservation
laws. We then move on to the results obtained. The final section contains
conclusions, discussion and recommendations.

2 Available data

The data concern a water treatment plant that uses groundwater and basically
removes substances through aeration and filtration. There are no pathogenic
microbes in the water, because it is pumped up from deep beneath Earth’s
surface. The dataset consists of measurements of concentrations of several
ions like e.g. Fe, Mg, NH4. These measurements have been taken at four
places during the purification process:

1. in the groundwater,

2. after the first filtration,

3. after a second filtration,

4. before the distribution (clear water).

The data include measurements over a period of 5 years starting from
January 2009. The measurement frequency is about 1-2 times a week. Figure
3(a) shows the observed iron concentrations on each of the four locations
mentioned above. As one can see the iron concentration decreases after each
filtration.

Flushes of the filters at regular times cause fluctuations in the iron con-
centration after each filtration as can be seen in figure 3(b). Immediately
after a flush the remaining fraction of iron in the water reaches a peak and
subsequently decreases rapidly back to its original value. The peaks after
first and second filtration in figure 3(b) seem to occur periodically, however
an exact flush period is not made available. Figure 4 shows some typical flush
curves describing the remaining fraction of iron in the water as a function
of time since the filter has been cleaned. These samples are taken every 10
minutes during a period of roughly 12 hours. The curve can be modeled using
non-linear regression analysis as will be discussed in the next section.

Fluctuations in the clear water are expected to be lower as the large volume
of the clear water reservoir averages out most of the fluctuations. Fluctuations
in this basin can, among other things, be caused by variations in the water
demand.

In what follows t denotes the inspection time of the measurements, ex-
pressed in hours, since the first available measurement. Note that the time
scale t is different than the one used to describe the flush curves. There, the
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Figure 3: (a) Plots of observed iron concentrations at each location. (b) Plots
with free axes scales to illustrate the fluctuations.

inspection time is expressed in hours after the last flushing. No link between
these time scales is available, in the sense that for measurements yt and zt
taken after first and second filtration respectively the time that is passed since
the last flushing is not known.

3 Modelling the water purification process

3.1 A stochastic model for the first filtration process

The iron concentration in the water just before it enters the first filter is
denoted by Xt and can be modeled using a time series model. However the
observations in the dataset are obtained with 2-4 days in between. Therefore
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the ‘incoming iron concentrations’ can assumed to be independent realizations
of a random variable X having density function fX . As a function of time s
after flushing the filter is assumed to have a multiplicative effect on the iron
concentration in the water. This means that the iron concentration in the
water measured at time s after flushing is given by

Ys = X · α(s) (1)

where s ∈ [0, 12] and the cleaning of the filter is assumed to happen every
twelve hours. As noted before, the function α(s) indicates the temporal de-
pendence of suspension in the water after the first filtration and is measured
as the remaining fraction of iron in the water as a function of time s since
the last filter cleaning. Based on the analysis of this flush curve s 7→ α(s) we
assume the following model:

α(s) = a
(

1 +
s

b

)−n
+ c, s ≥ 0. (2)

The function s 7→ α(s) has a horizontal asymptote at y = c. The parameter
n determines the shape (and steepness) of the curve whereas the parameter a
determines the intercept at (0, a+ c). The parameter b on the other hand can
be viewed as a scale parameter. Non-linear regression analyzes were performed
to show the appropriateness of the chosen model in 2, see figure 4.

An optimal fit of the parameters θ = (a, b, c, n) is found using maximum
likelihood estimation based on the measurements of the iron concentrations
in the groundwater and after first filtration. This estimation is based on the
following assumptions:

1. The ‘incoming iron concentrations’ are assumed to be independent and
identically distributed according to a normal distribution N(µX , σX).
Figure 5 indicates that the normality assumption is indeed not violated
severely.

2. As noted before, the inspection time s after filtration at which the con-
centration Ys is measured, is not known. For now this time is modelled
by an uniformly distributed random variable on [0, 12].

Assuming that the inspection times s for Ys are drawn from a uniform
distribution implies

Y = X · α(12U), (3)

where X ∼ fX and U ∼Unif(0, 1) are independent. Based on the normality
assumption it is clear that the distribution of Y will depend on the parameters
(µX , σX , θ).

Note that no paired observations are available, in the sense that for a
particular input with concentration X, the corresponding concentration Y
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is measured. Such information could improve the model and would be rec-
ommended in the future. For the moment it is assumed that a number of
independent realizations of Y is observed, originating from (3). We now de-
rive the density of Y . First recall the formula for the probability density of
the product Y of two independent continuous non-negative random variables
X and Z:

fY (y) =

∫ ∞

x=0

1

x
fZ

(y
x

)
fX(x) dx. (4)

In order to use this relation to obtain the density of Y in (3), we need the
density of the random variable

Z = α(12U) = a

(
1 +

12U

b

)−n
+ c,

which is given by:

fZ(z) =
b

12na

(
a

z − c

) 1
n+1

, z ∈
[
c+

a

(1 + 12/b)n
, c+ a

]
.

Figure 4: Flush curves of the first filtration process obtained after flushing
the filter. The time s is expressed in hours after the moment of flushing. The
fitted curves are respectively given by α1(s) = 0.04 + 0.07

(1+s)1.92 and α2(s) =

0.03 + 0.07
(1+s)1.80 , where b = 1. The cross in the left plot is considered to be an

outlier and is not incorporated in the regression analysis.
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Figure 5: A quantile-quantile plot of the iron concentrations in groundwater
with respect to the normal distribution (left) and a histogram of the iron
concentrations (right).

Combined with (4), this leads to the following two-parameter model for the
observed concentrations Y1, . . . , YN of iron after the first filter:

fY (y;µX , σX , θ) =
ba1/n

12n

∫ xr

x`

x1/nfX(x, µX , σX) (y − cx)
−1−1/n

dx

where we make the dependence on the parameters (µX , σX , θ) explicit and
where the integration bounds are given by

x` = x`(y, θ) =
y

c+ a
and xr = xr(y, θ) =

y

c+ a(1 + 12/b)−n
.

Given the observed values y1, . . . , yN of Y , the log likelihood function is given
by

`(µX , σX , θ) =

N∑

i=1

log fY (yi;µX , σX , θ). (5)

This function can be maximised numerically using the so-called limited mem-
ory BFGS algorithm (Byrd et al., 1995). This optimization algorithm allows
constraints on the parameters and is implemented in R under the ‘stats’ pack-
age.

3.2 A stochastic model for the second filtration process

We feel the second filtration step can be dealt with in a similar fashion as the
first filtration. Due to time limitations, this step has not been worked out yet.
During the simulation, we simply divide the measurements after the second
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filtration step by a fixed number (chosen to match the data on average). Of
course, this is a big simplification that needs to be handled more accurately
in future work.

3.3 Modeling the concentration of iron in the clear water
basin

To examine the propagation of the compounds in the water when the water
is transferred between different basins, we developed an ordinary differential
equation model. This model describes how the amount of a contaminant in
the water, in the case under consideration this is iron, changes in the different
basins. To illustrate the method, we derive the equations for the amount of
iron in the clear water basin, but a similar procedure could be followed for
the other basins as well.

We assume that the volume of the clear water basin V (t) changes in time
according to the following equation:

d

dt
V (t) = c0(t)− f(t), (6)

where c0(t) denotes the volume influx to the clear water basin and f(t) is the
water outward flux that typically consists of a constant part and a fluctuating
part, as the water demand is a fluctuating quantity. For example, during day
time more water is used than in the night:

f(t) = 60(83 + 5 sin(2πt/24)).

The numbers in this expression designate that 83 l/s is the typical rate at
which water leaves the clear water reservoir. Furthermore the value of the
amplitude of the sine function is chosen to correspond to the size of the fluc-
tuations of iron concentrations, which we will see in the next section.

Next, we model the amount of iron, denoted by u(t) in the clear water
reservoir. The governing equation for u(t) is

d

dt
u(t) = c0(t)gin(t)− u(t)f(t)/V (t). (7)

Equation (7) describes the influx of iron with rate c0(t)gin(t) and outward
flux with rate u(t)f(t)/V (t). The function gin(t) which models the concentra-
tion of iron after the second filter is not known as a function of time. However
from measurements that were performed at random times a typical size of the
fluctuations can be inferred. Equations (6) and (7) can be solved in time
using a simple Euler forward method which works as the system considered
consists of linear equations (Xie, 2010).
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3.4 Assessing the fit of the model

To assess the fit of the model a simulation was performed. Results of this
simulation can then be compared with the given observations of the clear
water.

We propose to model the iron concentration in the groundwater by a
stationary autoregressive time series model of order 1:

Xt = µX + r(Xt−1 − µX) + εt, (8)

where {εt}t is a sequence of independent N(0, σ2
ε) distributed random vari-

able. Assuming |r| < 1 ensures that the (causal) stationary distribution of (8)
exists uniquely and is normally distributed. As no data at this time are avail-
able to fit this model, we somewhat arbitrarily chose r = 0.8. This choice
implies positive dependence of iron concentrations in the groundwater over
different lags. We simulated 106 points with a time step of dt = 0.5. This cor-
responds to a simulation of 5.7 years of data which approximates the period
over which the observed data of WLN is taken. Using our model one is able to
predict the outcome when this data is considered to be the iron concentration
of the groundwater.

The corresponding concentrations after first filtration are obtained by ap-
plying formula (1) using ratios α(s) evaluated at 106 equidistant times with
a time leap of dt starting from s = 0. The concentrations after the second
filtration were obtained in a similar way applying the same multiplicative
procedure on the iron concentration after the first filtration. This resulted in
a discrete time series consisting of 106 points that can be used as input for
gin(t) of the differential equation in (7). The initial conditions to solve the
differential equations were chosen to correspond to the stationary state values
of u(t) and V (t): {

u(0) = 0.015V (0) mg
V (0) = 7500000 l

(9)

Finally a number of 70 points are randomly chosen from the simulated 106

points and compared with the observations of WLN.

4 Results

In the non-linear regression analysis of the flush curves, the parameter b in (2)
could be set to 1 while keeping a satisfactory curve fitting. The parameters
(µX , σX , a, c, n) were estimated by maximizing the log likelihood function (5):

µ̂X = 16.62, σ̂X = 0.88, â = 0.38, ĉ = 0.01, n̂ = 1.1496307
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(a) The fitted distribution fY on the
observed data of Y .

(b) The flush curve after first fil-
tration obtained using our MLE ap-
proach.

(c) Plots of simulated time series data in each basin
for the first 1000 points simulated.

Figure 6(a) shows the fit of the density distribution fY to the observed iron
concentrations after the first filtration. A slight underestimation of the vari-
ance is noted. Figure 6(b) shows the flush curve that is obtained using the
estimated parameters (â, ĉ, n̂).

Figure 6(c) shows the simulated concentrations of iron in each basin using
the time series data generated from (8). The x-axis shows the indices of the
simulated data corresponding to some moment in time where the origin t = 0
has to be interpreted as the first inspection time available in the dataset of
WLN.

As one can see the ranges of the simulated data in the first three basins of
our model approximate those of the observed data in figure 3. Furthermore
the decrease of the iron concentrations after first and second filtration is clear.
The clear water contains an iron concentration of 0.015 at t = 0 as induced
by (9). The figure shows an initial increase of the iron concentrations.

Figure 6 shows the complete simulated time series of iron concentrations
in the clear water basin. After some time period the iron concentrations
fluctuate around a stationary value of approximately 0.02. This corresponds
with the observed data in the clear water basin shown in figure 3(b). This is,
of course, in accordance with expectations as the large volume of the reservoir
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averages out most of the flucatuations.
The observations in figure 3 are sampled at irregular moments in time and

with an irregular frequency, typically given by 1-2 times a week at different
weekdays. Because of the flush activities the sampled observations reach a
peak when taken at a moment short after flushing. This happens typically
when a sample is taken within an hour after flushing, see figure 6(b). In a
later time period, when the last flush occured more than 3 hours ago, more
steady concentrations are observed. Hence the observed fluctuations depicted
in figure 3 are inherent to the sampling method.

This sampling method can be mimicked by randomly choosing a number
of N observations from the time series obtained for the clear water basin
(figure 7). To make a consistent comparison with the observed data, N is
chosen to equal the number of observations available from the clear water
basin, i.e. N = 70. In this way we were able to simulate fluctuations in
the iron concentrations that are approximately of the same magnitude as the
measured fluctuations.

5 Discussion

In this section we first summarize the conclusions that we may draw from
our results. We then present recommendations to WLN for further actions
to address the problem at hand. Finally, we suggest some further lines of
research.

5.1 Conclusions

At this stage of research, the model as presented in section 3 may be too sim-
ple to realistically model the water purification process. This is partly due to

Figure 6: (a) Complete simulated time series of iron concentrations in the
clear water basin.
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Figure 7: (a) Plots of simulated observed data in each basin. (b) Plots with
free axes scales to illustrate the fluctuations.

time constraints for building the model, but also due to the nature of the avail-
able data right now. Presently, the data provided by WLN only allows for a
rough calibration of the model parameters. More accurate estimation may be
accomplished in the future by setting up a specific measurement scheme with
the purpose of model calibration in mind. Once such measurements have been
obtained and the model is sufficiently refined (i.e. realistically modeling the
characteristics of the water purification process), process inherent variation
can be estimated. The latter directly gives information on the required moni-
toring frequency: wildly fluctuating iron concentrations will require a relative
high monitoring frequency, whereas a process with low variability may allow
for less measurements taken over time.

To develop an effective and efficient monitoring procedure it is necessarily
to properly define the process to be monitored and the desired performance of
the monitoring procedure. These descriptions come from operational and legal
constraints, but must be translated into statistical descriptions in order to be
able to provide a sound basis for the assessment of a monitoring procedure.

A proper definition of the monitored process includes a description of
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the available data, a list of variables to be monitored, a description of an
acceptable or “in-control” situation and the sampling strategy (Hawkins and
Olwell, 1998; Kenett and Zacks, 1998). In this application the variables that
are monitored are the concentrations of ions (e.g. iron). In this case an
“in-control” situation for each variable is defined by so-called control limits.
These control limits are driven by the natural variability of the concentration
in the drinking water. For instance, in the case at hand one would desire that
the iron concentration in the clear water remains at a constant (probably low)
level while fluctuations are limited.

However it seems that the current approach performed by WLN is based
on the monitoring of univariate variables evaluated relative to specification
limits. These specification limits describe the maximal allowable deviation
from a desired value of the variable, called the target value. In contrast to the
control limits these specifications are determined externally and are not re-
lated to the natural variability of the variables. Therefore these specifications
mostly allow a variability that is larger than the variability naturally induced
by an in-control system. For instance a malfunctioning filter or a slow but
persistent increasing value of a certain concentration does not have to lead
to exceedances of the specification limits. Hence information about inherent
changes of the water quality and the filtration processes can be lost using this
approach.

The importantace of the distinction between specification and control lim-
its is widely known in the literature of statistical process control (Montgomery,
2013). To illustrate this difference further we can say that a purification pro-
cess performs within specifications when the water quality is acceptable from
a public health point of view. However at the same time the water company
may suffer from excessive costs due to an out-of-control process caused by
some malfunctioning. When one is aware of such malfunctioning preventive
maintenance actions or increasing surveillance could be performed without
interrupting purification. In this way unnecessarily costs can be avoided.

Furthermore, the performance of the monitoring procedure is mainly deter-
mined by the time that is needed to detect a malfunctioning or contamination.
Using proper inherent control limits of a process that is in a steady state one
can objectively determine appropriate sampling frequencies that assure the
desired performance (Montgomery, 2013). However, due to flushing in the
normal state after the first filtration, the process is not in a steady state. On
the contrary it rather shows cyclic behavour. Therefore, the effect of flushing
for a single location was modeled with a simple stochastic model obtaining a
reasonable agreement with actual data from iron concentrations. Monitoring
using this model is then in fact monitoring a profile (Noorossana et al., 2012).
In order to connect flows from one filter to another, we set up a system of
coupled differential equations obtained from simple conservation laws.
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Finally, remark that one should also take into account that the lab needs
time to perform analyses. Thus demanding detection of abnormal levels of
certain ion concentrations within e.g. 2 hours is not feasible when the wa-
ter quality analysis in the lab takes 1 day. Another important aspect is to
determine optimal measurement locations in the purification plant. It may
seem optimal to monitor as much as possible upstream in the purification
plant to assure on-time detection. However, in this way one may fail to detect
anomalies downstream. Thus, it is sensible to monitor at several locations.

To summarize, the main conclusions are:

(i) monitoring is now performed by checking individual specification lim-
its, and thus fails to take into account deviations from normal process
deviations

(ii) the cyclic concentration levels due to flushing may be modelled ade-
quately by a simple model so that we have a realistic benchmark for
detecting anomalies

(iii) the flows from one filter to another may be modeled by a system of
coupled differential equations obtained from simple conservation laws

5.2 Recommendations

We start with some recommendations on monitoring in general.

1. Change the monitoring procedure from checking specification limits to
checking inherent concentration fluctuations in order to obtain a more
responsive monitoring system (and thus have a well-grounded justifica-
tion for the associated sampling frequency). These statistical limits will
be more strict than the chemical/health limits, thus there is no risk for
exceeding chemical/health limits.

2. Specify detection performance for all concentrations, taking into account
processing time of analytical analyses in the lab and out-of-control sce-
narios like trends (see e.g., Frisén (2003) for a discussion of different
performance metrics).

3. Study correlations between concentrations of different ions so that one
may use the available data more efficiently.

4. Synchronize timing of measurements between compartments in a purifi-
cation plant in order to track the flow water drops and thus improve
detection performance.

5. Reduce variance in the beginning by blending the right wells.
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6. Perform a pilot study with in-line measurements on all measurement
locations in one purification plant in order to improve the models of
this paper.

The following recommendations concern modeling the effects of flushing.

1. Measure the incoming iron concentration together with corresponding
(time-aligned) iron concentration after flushing ; this allows for much
more accurate modelling.

2. Keep track of the actual mixture of incoming water sources since this
has an impact on the distribution of the incoming iron concentrations.

5.3 Future Research

The study in this paper was restricted to the monitoring of iron concentra-
tions due to time limitations. In future research other parameters could be
studied as well. Furthermore, the model has to be completed to describe
the second filtration process. As a next step simulations could be performed
where anomalies are artificially implemented. Such simulations would be use-
ful in finding an optimal monitoring frequency that enables us to detect a
small (to be determined) shift (with a certain probability). Finally, it would
be interesting to adapt our model to include correlations between different
ions. In this way an alarm system can be build to detect dangers of combined
high levels.
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