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Abstract

Model calibration is an important aspect in ship simulation. Here,
ship motion is described by an ODE which includes tuning parameters
that capture complex physical processes such as friction of the hull. In
order for the simulations to be realistic for a wide range of scenarios
these tuning parameters need to be calibrated to scale experiments. In
principle, the optimal tuning parameters can be computed for any given
scenario, but this would require a corresponding scale experiment to be
conducted. The aim is to minimize the number of scenarios that need
to be pre-calibrated while still being able to realistically model ship
motion for a wide range of scenarios. In this paper we investigate the
use of polynomial (sparse grid) interpolation to compute the optimal
tuning parameters for any scenario from a few pre-calibrated optimal
values.

Perturbation analysis of a simple model for roll damping indicates
that the optimal tuning parameter may indeed vary strongly with the
chosen scenario. Numerical experiments with this model confirm that
the optimal tuning parameters vary strongly (but smoothly!) with the
scenario and can be well approximated with polynomial interpolants.
Further numerical experiments with a more complex modelling code for
ship maneuvring are very promising.

KEYWORDS: Model calibration, Parameter estimation, Chebyshev In-
terpolation, Sparse Grid Interpolation
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1 Introduction

Ship simulators, used to train pilots, are based on simplified models for ship
motion in order to enable real-time integration of the system. In such sim-
plified models a lot of underlying physics is not explicitly modeled but is
parametrized using tuning parameters. In order for the simulator to behave
realistically, these models need to be calibrated to real-life (scale) experiments
of actual ship motion under a wide variety of scenario’s. This calibration pro-
cess is depicted in figure 1. Here, and throughout the paper, we use the
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Figure 1: Schematic depiction of the calibration process.

following notation

e u = [ug,us,...,uy| - vector with input scenario (rudder angle, propellor
rpm, wave-height etc.);

e p = [p1,p2,...,PM] - vector with tuning parameters;

e X = [r1,Z2,...,ZK]| - state vector describing actual ship movement —
in the remainder of the paper we will treat this as the solution of an
underlying complex model d;x = F(t,x,u);

® X = [T1,To,...,Tk] - state vector describing modeled ship movement —

this is the solution of the simplified model d;x = F(t,X,u,p);
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Unfortunately, there is no single setting of the tuning parameters for which
the simple model will fit the complex model for all possible scenarios. For
a given scenario, however, we can find the corresponding optimal calibration
parameters as follows. First, we define a cost function C(u, p) that measures
the mismatch between x(¢;u) and X(¢; u, p) for a given u and p. An example
of such a cost function is the least-squares mismatch between the horizontal
spatial coordinates (z1,x2)

2
Clu.p) = 3 [ar (i)~ Tt u.p))
=1

Then, the optimal p for a given scenario u is given by

p*(u) = argminC(u, p).
P

Given that the parameter space p is relatively small (M = 20), we can per-
form such a single calibration with a simple direct-search method (Kolda et al.,
2003). Note, however, that each calibration requires not only multiple evalu-
ations (by time integration) of the simple model, but also one evaluation of
the complex model (i.e. an experiment). Therefore, we would like to minimize
the number of scenarios for which this calibration is performed. The question
is: How can we efficiently calibrate the simple model for a range of scenarios
while using only a limited number of evaluations of the complex model (i.e.,
experiments).

1.1 Approach

The main idea of our approach is to calibrate the simple model for a number
of (cleverly chosen) scenarios {uk}ﬁzl, yielding optimal calibration parame-
ters {pi}L_,. For any given scenario u, we then interpolate the optimal p*
elementwise based on these values

L
pi () =Y wi it (w),
k=1

where 1, are basis functions specific to the type of interpolation used and
wy,; are the corresponding weights chosen such that p}(uy) = P~ The main
assumption here is that p* varies smoothly with u.

For a 1D scenario space (i.e., N = 1) we use Chebyshev interpolation in
order to get high accuracy with only a few samples. In this case, the nodes
(Chebyshev points) on [—1,1] are given by

B 2k — 1
U = COS 5T ).
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For higher dimensional scenario spaces (N > 1), a simple cartesian prod-
uct approach is not very attractive since the number of samples would grow
exponentially with the dimension of the scenario space. In order to avoid this
so-called curse of dimensionality we will consider sparse grid interpolation
for N > 1 (Barthelmann et al., 2000). In sparse grids, the sampling points
are clustered near the boundary of the domain and chosen more sparsely in
the interior. Hereby the number of sampling points is considerably reduced
when compared to a regular sampling. There are different choices of sparse
grids that vary in number of grid points involved. A popular choice for the
approximation of smooth functions is the so-called Clenshaw-Curtis grid. An
example of such a grid at consecutive stages of refinement is shown in Figure
2. Table 1 shows how the number of sampling points grows with the stage
of refinement. Note that L approximately doubles for each stage, whereas
we would expect a quadrupling for a regular sampling in 2D. For more de-
tails on the accuracy and efficiency of sparse grid interpolation we refer to
Barthelmann et al. (2000).

Stage | 1 |2 |3 |4 |5 6 7
L 5113129 |65 | 145 | 321 | 705

Table 1: Number of points in the sparse 2D grid in dependence of the stage
depth. Note that L approximately doubles for each stage, whereas we would
expect a quadrupling for a regular sampling for N = 2.

1.2 Outline

The remainder of the paper is organized as follows. First, we consider a model
for roll damping. In this case, the models predict the roll motion (i.e. oscil-
lations around the longitudinal axis) of the ship for given initial angle and
forcing terms (which serve as the scenario parameters). The complex model
F' contains a non-linear damping term, while the simple model F contains
only an equivalent linear damping term (which serves as the tuning parame-
ter). For this model problem we perform a perturbation analysis and present
a closed form solution for the optimal tuning parameter. We also perform
a range of numerical experiments with both a 1D (with Chebyshev interpo-
lation) and a 2D (with sparse grid interpolation) scenario space. Next, we
present numerical experiments using a 6 degree-of-freedom model for rigid
ship motion using the FREDYN modeling code. Here, the complex model is
based on a frigate while the simple model is based on a lifeboat. We use a 1D
scenario space (rudder angle) and we incorporate 6 tuning parameters govern-
ing rotational and drift forces. We compare two different mismatch criteria;
based on horizontal spatial coordinates and based on the turning circle radius.
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Grid at stage 4

Grid at stage 6

Grid at stage 5

Grid at stage 7

Figure 2: Grids used in various stages of Sparse-Grid interpolation procedure
for N = 2. Note the clustering of the points at the boundary and sparsity in
the interior of the domain.
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Finally, we present conclusions and recommendations for further research.

2 A toy calibration problem: equivalent linear
damping
The roll motion of a ship is modelled by the following ODE

I+ A)o(t) + B(¢)o(t) + Co(t) = M(t), (1)

where I, A and C are constants, B(-) = by + b| - | is a damping term and
M(t) is a forcing term. In the remainder of the section we will consider this
equation with non-linear damping (i.e., by # 0) as the complex model, while
the simple model only includes linear damping (by = 0) and b; will serve as the
tuning parameter. The initial angle ¢(0) and the amplitude and frequency of a
periodic damping term M (t) = asin(wt) will serve as the scenario parameters.

2.1 Linear damping

For by = 0, equation (1) can be written in the form of a standard damped
oscillator ) )
¢+ 2wod + wyd =m (2)

where

We = 70 m = 7M and ¢:= 7171
T VI+a T I+A C 2 /C(I+4)

In the above equation, w, is the undamped oscillation frequency and ( is the
nondimensional damping coefficient. If 0 < ¢ < 1, the system is sub-critically
damped, and the general solution is

B(t) = ae™ %! cos(wat — B) + dp(t)

where o and § are free parameters determined by the initial conditions («
is the amplitude and 8 is the phase angle). The damped frequency is wq :=
wey/1 — (2, and ¢, (t) is any particular solution which satisfies the nondimen-
sional equation (2). For example, if M(t) = M is constant, then ¢,(t) =
m/jw2 = M/C is the simplest particular solution.

2.2 Perturbation analysis

Now consider the homogeneous perturbed nondimensional equation

¢+ 2Cwo(1 + €| + w2¢ = 0. (3)
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For convenience, we drop the absolute values and allow the sign of € to change
when the sign of ng changes !. Assuming that |¢| << 1, one can make a regular
perturbation expansion using the ansatz ¢(t) = ¢o(t) +ep1(t) +O(e?). Substi-
tuting this ansatz into (3), one finds that as before ¢g(t) = ae™¢“** cos(wqt —
Bo) and that ¢; must satisfy

D1 + 2wed1 + widr = —2C(wo(¢o)? (4)

The form of the homogeneous solution for (4) is the same as before, but
unless the initial position or velocity depend on e (which would be unusual),
this homogeneous solution is identically zero. Because of the form of the
right-hand side of (4), the particular solution must be the linear combination
of three terms:

PP (t) = APe=26%ol cog? (wyt — f1)+

BPe 2wl cos(wat — B1) sin(wat — B1) + CPe™ 29t sin®(wyt — B)

where the coefficients AP, BP and CP are determined by substituting this
linear combination into (4), and B is a shifted phase angle due to the presence
of ¢g in the right-hand side of (4), rather than just having ¢g.

2.3 Calibration

Now let us take the perturbed solution (for some ¢ and €) as the solution of the
complex system and let us try to match this to the unperturbed solution using
¢ as a tuning parameter. Specifically, let ¢(t;€1,¢1) := ¢o(t;¢1) + €107 (¢¢1)
be the solution of the complex system and let gg(t;p) = ¢o(t;p) with p being
the single tuning parameter. The question then is how should one set p so
that the simple solution matches the complex solution?

Consider the absolute difference

[6(tie1,C1) = d(tip)] = |a(e 1@t — e Pf) cos(wat — Bo) + 16 (¢, C1)|
= e wot|(1 — elC1=P)wot cog(wat — By)
+e1e” 190t (AP cos? + BP cos sin +CP sin?)|

Each of the last four trigonometric functions must be evaluated at (wat — f1).
Again the coefficients AP, BP and CP are functions of (i; they are determined
by requiring that ¢} is actually a particular solution of (4).

Because of the decaying exponentials, the above absolute difference will
decrease in time. But it is also possible to make this difference zero at a

1Because the sign of € changes with each half oscillation, one must stop and restart the
solutions to follow the motion through multiple oscillations.
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specified time, for example, if t = By/wg, then the absolute difference is zero
when
V=G o680/ VI3 poy

Bo
where DP := AP cos? (S — 1) + BP cos(fo — B1) sin(Bo — 1) +CP sin? (6o — 51))
So this is a relatively simple formula for determining the tuning parameter
p in terms of {; and €, the given parameters in the complex solution. That
is, there is an explicit expression for selecting the tuning parameter in terms
of the given parameters to minimize the absolute difference at least at one
specific time. Of course, this approach only has the two solutions matching
at one specified time, and then again for large time.

The tuning parameter of course could be chosen to minimize the absolute
difference in other ways, for example, by selecting a different time, or by
making a least squares fit across some interval of time. But since the absolute
difference already decays in time, one would likely wish to set the difference
to zero at some early time. So one could minimize

p=C —

' p(tyer, (1) — ot p) it
/( )

by finding a stationary point p for which

(i)/OT (¢(t§€17C1) - $(t§p))2dt =0.

We expect that a closed-form expression for the optimal p can be derived in
a simular manner as above but this investigation is outside the scope of the
current report.

2.4 Numerical experiments

For the numerical experiments we numerically integrate the roll damping
equation (1) with I = 6.4, A=0, C =1, M(t) = asin(wt) and initial condi-
tion ¢(0) = ¢¢ and ¢(0) = 0 for T = 80 seconds. We will use u = [¢o, a,w]
as scenario parameters. We denote the solution of the complex system (with
by = 0 and by = 15) by ¢(¢; ¢o, a,w) while g(t; ¢, a,w; p) denotes the solution
of the simple system (with b; = p and by = 0).

In these experiments we find the optimal p by minimizing the least-squares
cost function

C(pa ¢0,G,W) = Z (¢(ti;¢07aaw) _a(ti;gst?av(’U;p))Q

. 2
+ (¢(t2; ¢03 avw) - d)(tﬂ (b()vaaw;p))
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using Matlabs fminsearch. For the 1D interpolation, we use the chebfun
package (Trefethen, 2013). For 2D interpolation we use the Sparse Grid
Interpolation Toolbox package (Klimke, 2007).

2.4.1 Case 1: roll decay with varying initial roll angle

We set a = 0,w = 0 and vary only the initial condition ¢o € [7/36,7/6].
The optimal values of p as a function of ¢y, obtained through Chebyshev
interpolation with 5 points and brute-force sampling is shown in Figure 3 (a).
The solutions for the complex and simple system (using the optimal p) for
¢o = 0.1 is shown in Figure 3 (b).

2.4.2 Case 2: regular forcing with varying amplitude

In this experiment, we set ¢9 = 0,w = 0.395 and vary only the amplitude
a € [0,2]. The optimal values of p as a function of a, obtained through
Chebyshev interpolation with 5 points and brute-force sampling is shown in
Figure 4 (a). The solutions for the complex and simple system (using the
optimal p) for a = 1.3 is shown in Figure 4 (b).

2.4.3 Case 3: regular forcing with varying amplitude and fre-
quency

In this experiment we set ¢o = 0 and vary both a € [0,2] and w € [0,2].
Figure 5 (a) shows a sparse interpolant on the Clenshaw-Curtis grid of stage
5 of the optimal p. The solutions for the complex and simple system (using
the optimal p) for a particular choice of (a,w) is shown in Figure 5 (b).
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Figure 3: Case 1: (a) p* as a function of ¢y obtained through Chebyshev
interpolation with 5 points (blue) and brute-force sampling with 100 points
(red). (b) Solutions of the complex (red) and simple systems (blue) for the
optimal p obtained through interpolation, both for ¢y = 0.1.
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Figure 4: Case 2: (a) p* as a function of a obtained through Chebyshev
interpolation with 5 points (blue) and brute-force sampling with 100 points
(red). (b) Solutions of the complex (red) and simple systems (blue) for the
optimal p obtained through interpolation, both for a = 1.3.
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Figure 5: Case 3: (a) p* as a function of (a,w) obtained through sparse
grid interpolation with 145 samples. (b) Solutions of the complex (blue) and
simple systems for the optimal p obtained through interpolation (red) and by
direct optimization (black), all for a randomly chosen (a,w).
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3 FREDYN code

In this section we present experiments with the FREDYN program, (Ypma,
2014). The complex model is based on a frigate and replaces the real life
experiment. The simple model is based on a lifeboat. In these experiments
u represents the rudder angle (i.e. u is 1-dimensional) which lies within the
range [5,30] deg. As tuning parameters we use the following parameters that
govern the drift and rotational forces:

pP= [an Xr'r‘a X’UT; Yuva Y’U’U? Yur]
The default values of these parameters are given by
p = [18508,0,4117877, —82292, —201134, 3075682]. (5)

To compare the simulations, we plot both the horizontal coordinates
(21(t),z2(t)) and the turning radius which is defined as

v1 ()% + va(t)?
vy (t) ’

where v1, vy are the horizontal velocities (surge, sway) in m/s and v, is the
angular velocity (yaw) in rad/s. We stop the simulations after the ship has
completed a full turn. This means that simulations with a smaller rudder
angle will run longer.

Figure 6 shows the behaviour of the complex and simple model for a rudder
angle of 5 deg using the default p. This clearly illustrates the need to fit the
tuning parameters.

R(t) =

3.1 Finding an optimal p

We consider two different cost functions. The first cost function measures the
misfit between the horizontal coordinates (x1,x2):

Ci(u,p) = /dt (z1(t) — T1(8)) + (22(t) — o (1)) (Method 1)

The second cost function measures the misfit between the turning radii (cf.
equation (3)),

Co(u,p) = /dt (R(t) - }NB(t))2. (Method 2)

We use a direct-search method (Matlab’s fminsearch) to find the optimal p.
Figure 7 shows the simulations for the optimal p as obtained via Method 1
and Figure 8 shows the simulations for the optimal p as obtained via Method
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2, both for a rudder angle of 5 deg. Comparing these to Figure 6 we see a
dramatic improvement in the fit.

The 6" component of the optimal p (Y,,) as a function of the rudder
angle using 5 and 10 Chebyshev points is shown in Figure 9. We observe that
the optimal p does not vary as smoothly with u as in the case of roll damping.
In particular, we see a staircase effect that we do not fully understand. Still,
the Chebyshev interpolation is able to capture the general trend. Figures 10
and 11 show how the interpolated optimal p for a rudder angle of 15 deg is
able to produce a very good match between the simple and complex models.
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Figure 6: Simulation for the simple and complex model with a rudder angle
of 5 deg using the default values for p. The red and blue lines represents the
complex and simple model respectively.
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Figure 7: Simulation for the simple (blue) and complex (red) model with a
rudder angle of 5 deg and the optimal p found by Method 1.
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Figure 8: Simulation for the simple (blue) and complex (red) model with a
rudder angle of 5 degrees and the optimal p found by Method 2.
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Figure 9: Chebyshev interpolation of the 6th component of p* for the two
methods. The first and second row use 5th and 10th order Chebyshev inter-
polation respectively. The values of p§ are scaled with the default value pg

(see (5)).
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Figure 10: Simulation for the simple and complex model with a rudder angle
of 15 degrees. The red and blue lines represents the complex and simple model
respectively. Here the first method was used to determine the optimal value
for p with Chebyshev interpolation of order 5.
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Figure 11: Simulation for the simple and complex model with a rudder angle
of 15 degrees. The red and blue lines represents the complex and simple model
respectively. Here the second method was used to determine the optimal value
for p with Chebyshev interpolation of order 5.
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4 Conclusions

We have presented a method for model calibration with application to ship
simulations. The goal is to find the optimal tuning parameters p such that
the solution of a simple system, X(t;u,p), matches the solution of a more
complex system, x(t;u), for a range of scenarios u. For a single scenario,
this calibration can by done by minimizing a cost function that measures the
difference between X and x. There are only a few (= 20) tuning parameters
so that this minimization can be done with so-called direct-search methods.
Such methods are very suitable for black-box optimization problems since
they do not require gradient calculations of the cost function w.r.t. the tuning
parameters.

However, each calibration requires an evaluation of the complex system
(i.e., a scale experiment). In order to minimize the number of scale experi-
ments that need to be done, we calibrate the simple model only for a small
number of well-chosen scenarios {uy}, giving us the corresponding tuning pa-
rameters {py }. We assume that the optimal tuning parameters vary smoothly
with u and use polynomial interpolation to compute the optimal p for any
given u from these points. When there is only one scenario parameter we use
Chebyshev interpolation. This approach does not generalize well to higher
dimensional scenario space as the required samples would grow exponentially
with the dimension. To avoid this curse of dimensionality we resort to sparse-
grid interpolation techniques.

Perturbation analysis of a model-problem (roll-damping) indicates that it
is possible to obtain closed-form solutions for the optimal tuning parameter
(the equivalent linear damping) in some specific cases. Numerical experi-
ments indicate that the optimal p varies smoothly with u. Both Chebyshev
and sparse-grid interpolation perform well in this setting, as is confirmed by
numerical experiments. Numerical experiments with a more complex sys-
tem of ODEs that models full ship motion (using the FREDYN code) show
promising results.

5 Recommendations

e The perturbation analysis and numerical experiments on the roll damp-
ing equation give some insight in how to choose the optimal equivalent
linear damping term. It would be very insightful to verify the findings
from the perturbation analysis numerically. The analysis might also be
extended by considering other mismatch criteria and include a driving
term. Such analysis should be able to predict the observed smooth de-
pendency of the optimal p w.r.t. u and may even tell us how smooth
the function is, allowing us to compute a-priori error estimates for the
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interpolation.

e Further numerical testing with the FREDYN code with time-varying
rudder setting, using the optimal tuning parameters appropriate for each
rudder setting. This requires the ability to vary the tuning parameters
with time.

e An alternative avenue — not tested in this report — is to try to find a p
that is optimal over a range of scenarios u

p* = argmin /duC(u, p)r(u),
p

where 7(u) is a weighting function used to emphasize scenarios that are
deemed more important 2. A first step would be to use a brute force
approach to compute the integral (i.e., by dense sampling of the scenario
space). If the results are satisfactory, a generalized Polynomial Chaos
expansion (gPC) can be employed to efficiently estimate the expecta-
tion (Xiu, 2010). The basic ideas are very similar to the ones discussed
above; we need to sample a number of scenarios according to a quadra-
ture rule (which will depend on 7) and sparse grid techniques can be
used to generalize to higher dimensions. Note that we cannot employ
Monte-Carlo sampling methods to estimate the integral, as this would
require evaluation of the misfit for many scenarios, which in turn would
mean doing many experiments to evaluate the complex model for those
scenarios.

e The optimization problem for a single scenario is very likely to have mul-
tiple minima (local and global) and suffer from ill-conditioning. This
means that the variability of the optimal p as a function of u we ob-
served may to some extent be artificial, in particular for the FREDYN
examples. A sensitivity analysis of the problem (for example through
the Jacobian of p*) may give some insight.

2 Alternatively, we can interpret 7(u) as a probability, in which case we are aiming to
find a p* that minimizes the ezpected misfit over all possible scenarios.
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A

Matlab code

We give a short overview of the scripts and functions related to the generation
of the above described results. We restrict to describe the dependencies and
short explanations of the functionalities. Additional comments can be found
in the files themselves.

Al

1D Interpolation for damped oscillator

compareP: computes two numerical approximations of 6g — p* (6p),
where 6 is the parameter to be varied in an interval specified by the
user. One approximation is determined by brute-force sampling and the
other by Chebyshev interpolation. Moreover, 6y = ¢¢ in the absence of
an external force, and 6y = a in the presence of an external force. This
subroutine calls interpolateP and optimizeP.

interpolateP: computes the Chebyshev interpolant of the function
0o — p* (6y) by using the Chebfun-package developed in [reference to
homepage of Chebfun]. This subroutine calls optimizeP.

optimizeP: computes an optimal value for the damping coefficient p,
such that the error between the solutions of the nonlinear and linear
model is minimized, by applying the Matlab-subroutine fminsearch to
the function-handle difference.

difference: computes the error in the Euclidian norm between the
time series of the nonlinear and linear model for a given value of p. This
subroutine calls integrateF.

integrateF: numerically integrates the ODE

d2e

dé|\ dé

dtht—l-G:M(t) (6)

by using the Matlab-subroutine ode45. This subroutine calls F.

F: implements the first-order vector field associated to (6).

2D Interpolation for damped oscillator

interpolant_script: main script implementing above described com-
parison. Used to produce Figure 5 (Note the randomized input a and w
hence output will not be the same). Calls optimal_p in the construction
of the sparse interpolant
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e optimal p: implements optimization procedure, calls difference in
the optimization using fminsearch

e difference: implements the least-squares misfit, calls
compute_timeseries.

e compute_timeseries performs the simulation of the complex and simple
system by writing the as first order systems, calls nonlinear_osc_rhs
within ode45

e nonlinear osc_rhs: implements the right hand side of the first order
systems. Notation used: I6 + (b1 + b2|9|) 0+ 0= DM(t)

A.3 1D Interpolation with FREDYN code

The m-files should be places in a folder which must contain two copies of the
./examples/manoeuvring/leander folder, one called leander_simpel and the
other leander_complex3. This is used to run both the complex fregat model
and the simpel lifeboat model at the same time while keeping the results
seperated.

In both folders the leander_ship.xmf file should be changed. The
RandomRudder script must be removed or commented out and be replaced by
the line

scripting::Scripting "ConstantRudder" {};
Some remarks:

e In all the m-files dir is short for directory and normaly this will be the
string leander_simpel or leander_complex.

e The m-file ReadData loads the content of the leander.dat file into
Matlab. This is usually refered to as OutputC for the complex model
and QutputS for the simpel model one.

e Some of the m-files use the argument Mode. This is either 1 or 2 and
refers to the way the variable p is optimized. For more details we refer
to section 3.

3e.g. we placed them in ./examples/manoeuvring/
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M-Files

These first few m-files are functions that are used to change and run the
simulation of the complex and simple model in various ways, as well as to
determine the optimal value for the parameter p for a certain rudderangle.

WriteTweaking: Used to change the value of the variable p in the
mo_leander_hull.xmf file in the directory denoted by dir, which is
either leander_simpel or leander_complex. All 26 components can be
changed, but in the other m-files only the first six in the leander_simpel
folder have been modified.

WriteParameters: In order to easily change the rudderangle from
within Matlab this m-file creates a python script ConstantRudder.py
in the directory pointed to by dir (again, either leander_simpel or
leander_complex). This is done by adding a line to the
ConstantRudderTemplate.py defining the rudderangle and copying this
to the chosen directory.

RunSimulation: Runs the simpulation of the simple
(dir = leander_simpel) or complex (dir = leander_complex) model
and deletes the created *_leander.out files.

ReadData: Reads the leander.dat file in the directory denoted by dir
and loads it into Matlab.

PlotTraces: Makes a plot of the data in OutputC and OutputS. Top
left: the path in the xy-plane of both models. Top right: the radial
distance R of both models. Botom left: timetrace of x of both models.
Botom right: timetrace of y for both models.

OptimalP: Given a Mode and a rudderangle (argument u) this runs
the complex model and then searches for an optimal value for p (only
the first six components are changed) by using the Matlab function
fminsearch (only 20 iterations are used). Using this optimal p the
simple model is computed. The function returns the output of both
simulations (OutputC and OutputS) and the optimal value for p OptP
(corresponding to this rudderangle w!).

NormDiff: This function is used to determine how closely the simple
model matches the complex one, e.g. it is used by OptimalP

The following m-files where used to create a.o. the results shown in the
presentation. The can be seen as an example how the previous m-files can be

used.
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e ExampleO: Runs the complex and the simple model with the default
value of p for three different rudderangles (5,15 and 30) to show that
this is not always a good choice of parameters. The results are saved.

e Examplel: Determines the optimal value of p for an oversampling of
the range [5,30] which is used as a reference value for the Chebychev
interpolation. The results are saved.

e Example2 5: Determines the 5 Chebychev points in [5,30] and calcu-
lates the optimal value of p for them. The results are saved.

e Example2_10: Idem for 10 Chebychev points.

e MakePlots: Using the data calculated by the Example m-files, this
m-files makes plots of the results and calculate the Chebychev interpo-
lation. The plots are all saved in a subfolder ./Plots
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