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Preface

These are the proceedings of the 90th Study Group Mathematics with Industry
(Studiegroep Wiskunde met de Industrie). It was held at the Lorentz Center in Leiden
from January 28 to February 1, 2013.

The proceedings are provided in two different formats. In the current volume, the
participants provide their own rendering of the week: they present the problems,
the approach and the result, aimed at a scientific audience. A companion volume
provides a different view on the week: science journalists Ionica Smeets and Bennie
Mols describe the work for a general audience. The companion volume is written in
Dutch.

The organizers of SWI 2013
M. Heydenreich, S. Hille, V. Rottschäfer, F. Spieksma, E. Verbitskiy
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Oxygen transport and consumption in germinating
seeds

Neil Budko (Delft University of Technology)
Alessandro Corbetta (Eindhoven University of Technology)
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Oleh Krehel (Eindhoven University of Technology)
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Abstract

Three mathematical models were formulated to describe the oxygen con-
sumption of seeds during germination. These models were fitted to measure-
ment data of oxygen consumption curves for individual germinating seeds of
Savoy cabbage, barley and sugar beet provided by Fytagoras. The first model
builds on a logistic growth model for the increasing population of mitochondria
in the embryo during growth. The other two take the anatomy and physiologi-
cal properties of the seed into account. One describes the oxygen uptake during
the germination phase only. An extension of this model is capable of fitting
the complete oxygen consumption curve, including the initial ‘repair’ phase in
which the embryonic cells recover from their dormant state before extensive cell
division and growth commences.

Keywords: Modelling, seed germination, cellular respiration, oxygen trans-
port

1 Introduction

At the 90th Study Group Mathematics with Industry (SWI) held at Leiden University
from 28 January to 1 February 2013 one of the questions was formulated by the
company Fytagoras. Fytagoras is a company that is oriented on science with much
expertise in the fields of sensor technology, seed technology and plant breeding. The
question concerned the uptake and consumption of oxygen by germinating seeds. Our
study considers the seeds of three particular species among the ∼ 250, 000 species of

∗Corresponding author
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flowering plants: barley (Hordeum vulgare L.), sugar beet (Beta vulgaris) and Savoy
cabbage (Brassica olerecea var. sabauda L.).

Describing the dynamics of chemical compounds dissolved in liquid solvents (e.g.
water) one typically uses the concept of concentration to describe the state of the
system. Dealing with mixtures of gasses it is better to use the concept of partial
pressure. It is the hypothetical pressure of a particular constituent of the gas mixture
if the amount of it that is present would have occupied the total volume of the mixture
alone, at the same temperature.1 Gasses dissolve, diffuse and react according to their
partial pressures, not their concentrations.

1.1 Some biology of germinating seeds
Seeds consists of at least the following three parts: (1) the embryo, which will grow
out to become the new plant, (2) a supply of nutrients that the embryo can use in the
early stage of germination, before it can use light and photosynthesis as main source
of energy, and (3) the seed coat (or testa) that helps to protect the embryo from biotic
and abiotic injury and drying out (see Figure 1). The embryo consists of one or two
seed leaves (‘cotyledons’), the hypocotyl that consists of an embryonic stem and the
embryonic root, called the radical, and an embryonic shoot (epicotyl) above the point
where the cotelydons attach.

Figure 1: Seed anatomy of a dicotyledon.

The detailed internal structure of seeds varies highly among plant species. In
some mature seeds the initial food storage tissue that results after fertilisation, the
endosperm, is still present and contains the nutrients (mainly starch, but may also

1Recall the Gas Law: pV/T = nR, where R = 8.314J/molK is the universal gas constant.
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contain oils and proteins) and forms with the seed coat an additional layer around
the embryo. These type of seeds are called endospermic. Examples are barley and
Arabidopsis thaliana (see Figure 3). In other, non-endospermic seeds, the cotelydons
have absorbed all food in the endosperm during seed maturation. The endosperm is
almost completely degraded in the mature seeds of this type and the cotelydons serve
as sole food storage organ for the embryo. Examples of these are peas, sugar beet
and Savoy cabbage.

The cells in a dormant seed are in a dehydrated state: most water content has
been removed. Before germination can start the seed needs to get and take up wa-
ter (‘imbibition’). Its constituent cells will then take up water, restore and repair
their internal biochemical structures and proceed to support the germination process.
Typical vegetative cells consist of about 70% water, while dehydrated cells hardly
contain any water. We shall call this the repair phase of germination. It is shown
schematically in Figure 2.

Figure 2: Water uptake and cell repair.

After imbibition the seed needs oxygen to germinate, both for repair and the sub-
sequent growth phase in which the radical will start to grow first. The early stage
of germination ends when the radical reaches the seed coat and breaks through: a
germination event that is known as testa rupture. Whether and how much oxygen is
available to the embryo for repair and growth depends on several factors, most impor-
tantly: (i) on the oxygen partial pressure outside the seed, (ii) on the consumption
of oxygen of the cells inside the seed. i.e. the respiration rate, and (iii) on the oxygen
transport through the seed coat and internal structures towards the embryo. Living
seeds start respiration at the moment they start taking up water.

During the repair phase a bit of oxygen is being transported inside with the water.
This oxygen is used to produce energy to facilitate the repair process. The repair is
necessary because only cells with normal water content can divide and grow. After
the repair process is finished and the seeds are fully saturated, the growth begins and
the oxygen consumption increases.

The oxygen that the seed takes up has to be transported to the embryo in the
middle of the seed because the embryo is the growing part of the seed, and growth
can only take place when oxygen is available.

In the transport of oxygen from the seed coat to the embryo several aspects have
to be considered that influence the permeability of the oxygen into the seeds. The
specific structure of the coat affects the speed of oxygen transport into the seed. After
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Figure 3: Embryo of Arabidopsis thaliana.(M. Bayer; Max Planck Inst. for Develop-
mental Biology)

the oxygen has passed the seed coat it encounters a layer of starch or oil containing
cells, depending on the type of seed. Cabbage, for example, is an oil seed. These cells
block direct oxygen transport towards the embryo. It may be absorbed into these
cells or pass through the channels in-between. See Figure 4 where a magnification of
the layer of starch cells of two different seeds is given. The organisation of these cells
varies per type of seed hence the permeability of oxygen differs per type. Moreover,
if the space between the cells is very large and the cells lie in an orderly manner, it
is much easier for molecules to pass than when the cells are very close together. In
Figure 4 the difference in structure between poppy seed and gooseberry seed can be
seen.

Figure 4: Close-up images of the seed coat with the starch cells of poppy seed (left)
and gooseberry seed (right). The different cell structures can be seen very clearly.

After the oxygen has made its way through the layer of starch cells, it reaches
the embryo. Inside the embryo cells the oxygen enters the mitochondria, which are
membrane-enclosed organelles located in the cytoplasm of the cell. These mitochon-
dria are sometimes described as ‘cellular power plants’ because their main task is to
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produce energy that is needed for other processes inside the cell. They produce this
energy in the form of ATP molecules by breaking down glucose to carbon dioxide
using oxygen. This energy is used for growth, repair and transport in the cell. Note
that the number of mitochondria per cell can vary from a few up to hundreds.

We are interested in the connection between oxygen availability and the growth
of the embryo, so we will now take a closer look at this growth process. The embryo
consists of two parts: an ‘idle’ part where hardly any growth occurs and the embryonic
root (the radicle) that grows first to break the seed coat.

Growth of the root occurs by two processes: (1) cell division within the growing
tip or apical meristems that consists of undifferentiated cells that are typically small,
having a thin primary cell wall only and which are closely packed together. Their
primary function is to divide. For each cell that divides in the meristem, one cell
will leave the meristem. However, it need not be that one cell of a pair of daughter
cells must become non-proliferative immediately (cf. [9], p.337). Cells that leave the
proximal meristem (see Figure 5A) will differentiate into epidermal cells, cortex or
stele and (2) stretch. Stretching effectively pushes the growth tip downwards. The
newly formed cells from the distal meristem differentiate into root cap cells, that
protect the apical meristems from rocks, dirt and pathogens. Between the proximal
and distal meristems lies the so-called quiescent center. It has a much slower cell
divison rate than the proximal and distal meristems. Its primary function seems to
renew the cells in these meristems [9]. After division, the divided meristematic cell
recover to their original size and start building up energy and resources until they
have enough to divide again.

An illustration of this process is given in figure 5B. There, it can be seen that
the growth tip is being pushed down as the embryo grows. During this process,
the size of the growth tip doesn’t change, only the idle part enlarges. This process
keeps repeating itself until the root tip breaks through the seed coat and the seed has
germinated.

1.2 The Q2 machine for non-intrusive oxygen measurements

Single seed oxygen consumption measurements can be made by the so-called ‘Q2
machine’ for which Fytagoras developed the underlying measurement technology. It
satisfies the criteria that the method is non-invasive, sensitive, fast and cost-effective.
We now briefly describe this technique, see Figure 6.

Individual seeds are placed in cylindrical containers in a standard transparent
plastic wells plate. A plate with 96 containers is shown in Figure 6. A single container
is 10 mm high with a diameter of 5.0 mm, containing on one wall, on the inside, an
oxygen sensitive fluorescent coating. When closed by the lid, these containers are
almost air-tight. Not completely, because the small oxygen molecules are able to leak
slowly through the plastic by diffusion. A ‘completely’ air-tight container would be
too costly. When a light pulse in the blue range of the spectrum is shined on it, the
coating will fluoresce a light pulse in the red range with a fluorescence life-time that
is indicative of the oxygen level in the container. Outside the container a detector
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Figure 5: Schematic presentation of the root apical meristems (growth tips) and dif-
ferentiated tissues that result (Panel A - following [9]). Stretching of cells, the differ-
entiated cells in particular, pushes down the growth tip (Panel B).

is placed which measures the intensity and fluorescence life-time of the outgoing red
light pulses. In this way one is able to measure regularly and automatically the level
of oxygen within the container at high precision without opening it. The seeds are
placed on top of filter paper soaked in water or agar to start imbibition.

Figure 7 shows three typical oxygen level curves for a single seed as a function of
time. The oxygen level at each time is represented relative to the amount present in
the container at the start of the experiment. Temperature is kept constant at room
temperature (298 K) during an experiment. The volume in the container exterior
to the seed may be assumed constant. That is, the volume of the seed will not
expand substantially during early germination. Hence, the oxygen level curve can
be interpreted as either change in partial pressure, concentration or total amount of
oxygen in the exterior of the seed.

Computing from a container volume of Vc = 1.9 × 102 mm3 (see Table 1), an
atmospheric pressure of 1 bar = 100 kPa at sea level and an oxygen content of 21%
(by volume), one obtains an initial oxygen content of the container just after closing
of

n0
O2

= 0.21 · pVc
TR

= 0.21× 7.7× 10−6 mol = 1.6× 10−6 mol.

Here R = 8.315 J/mol ·K is the gas constant. With a molar mass of 32.00 g/mol, this
amounts to 52 µg of O2 in an empty container. If a seed of e.g. cabbage is placed in
the container this reduces slighly, to approximately 51 µg.
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Figure 6: A schematic presentation of the experimental set-up. A single container in
the 8× 12 well plate has a volume of approximately 1.9× 102 mm3.

Figure 7: Three typical oxygen consumption curves as measured by the Q2 machine.
Oxygen level surrounding a seed in the container is expressed as fraction of the initial
level at the start of the experiment.
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1.3 Problem description

Measured single seed oxygen consumption curves can be used to evaluate the quality
of the seed since oxygen consumption is believed to be one of the main characteristics
describing quality. However, the interpretation of the data in terms of physical, mor-
phological and physiological properties and processes within the seed is still difficult,
due to the lack of knowledge of the basic aspects of gas exchange in seeds and its role
in the germination process.

The main goal of this study is to interpret characteristics of individual seed
oxygen consumption curves as presented in Figure 7 in terms of underlying
processes and seed properties.

We focus on the first stage of germination until the point when the radical breaks
through the seed coat, because this is the stage of seed germination in which the data
curves are obtained.

1.4 Outline

During the study group we developed three mathematical models for the oxygen
consumption of seeds that takes into account current biological knowledge of these
processes. The measured oxygen consumption curves as provided by Fytagoras for
barley (Hordeum vulgare L.), Savoy cabbage (Brassica oleracea var. sabuada L.) and
sugar beet (Beta vulgaris) have been fitted to the corresponding curves predicted by
these models.

In Section 2 we present a high-level phenomenological model that is able to describe
the measured curves for Savoy cabbage and barley well. It results in a correlation
among model parameters that can be interesting to look at in more detail (see Section
2.4). In Section 3 we develop a model starting from anatomical considerations in order
to investigate the possibilities of relating characteristics of the oxygen consumption
curve to seed structure and particular seed properties. In Section 3.4 the latter model
is extended.

2 A logistic model for oxygen consumption

The experimental curves of oxygen consumption by germinating seeds of all three
different plant species (barley, sugar beet and Savoy cabbage) provided by Fytagoras
have a very characteristic ‘sigma’ shape, similar to the example shown in Figure 7.
This indicates that this aspect of the curves originates from a universal underlying
mechanism independent of the detailed seed morphology. In this section we propose a
mathematical model for respiration of germinating seeds that does not require details
on seed anatomy as input, but can reproduce the mentioned characteristic shape of
the oxygen consumption curves.
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Our central assumption is, that most of the oxygen that is taken up by the seed is
consumed by the mitochondria within the cells that constitute the seed. According to
the endosymbiotic theory, key organelles in eukaryotic cells, e.g. mitochondria, have
evolved from bacteria and still largely behave as such. Bacterial replication under
conditions of limited food/oxygen supply is well understood and is governed by the
logistic equation.

We set up a general logistic equation for our problem, obtain its analytical solution,
and fit it to the provided experimental data by tuning three independent parameters.
It turns out that for the majority of the seeds that have been investigated in this study,
two of these parameters, namely, the rate of growth of the mitochondria population
and the final relative increase in this population, are proportional to each other. We
propose a modification of the logistic equation that takes this effect into account.

2.1 Main assumptions
Let us summarize our major assumptions:

Assumption 1. Oxygen consumption happens mainly in mitochondria.

Assumption 2. Although groups of mitochondria are encapsulated inside
cells with different biological function, morphology and growth rates, taken
all together mitochondria behave as a colony of bacteria, i.e. ‘multiplying’
at a rate proportional to their number. As with usual bacterial colonies,
the population is limited by the available resources, oxygen in particular.

Assumption 3. The rate of oxygen consumption by the seed is proportional
to the rate of growth of biomass. In turn, the latter is proportional to the
rate of change in the total number of mitochondria in all cells within the
seed. There is a maximal number of mitochondria that the seed is able to
produce within the closed container.

Assumption 4. The rate of diffusion of oxygen through the cell walls is
much faster than the rate of oxygen consumption. Hence, we neglect the
(constant) difference between the internal and external concentrations of
oxygen.

2.2 Model derivation
We use the following notation:

• O0 – the initial level of oxygen in a container

• Oc – the critical level of oxygen below which no growth can occur

• m0 – the initial number of mitochondria

• mc – the maximum sustainable number of mitochondria
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If mitochondria behave as a colony of bacteria, then their number will be changing
at the following rate:

dm

dt
= αm

(
1− m

mc

)
, (1)

where α is the maximum rate of growth. This is a logistic equation with the well-
known analytical solution

m(t) =
mc

1 +
(
mc

m0
− 1
)
e−αt

, (2)

which satisfies the initial condition m(0) = m0. Assumption 3 can be written as

dO

dt
= −β dm

dt
. (3)

It leads to the following equation for the amount of oxygen present in a container at
time t:

O(t) = C − βm(t), (4)

where the constants β and C must be such that

O(0) = O0, lim
t→∞

O(t) = Oc. (5)

Solving these equations for β and C gives:

C = O0 +m0
O0 −Oc

mc −m0
, β =

O0 −Oc

mc −m0
. (6)

The final equation for the amount of oxygen is thus

O(t) = O0 +
O0 −Oc

mc −m0


m0 −

mc

1 +
(
mc

m0
− 1
)
e−αt


 . (7)

Introducing the normalized quantities,

Õ(t) =
O(t)

O0
, Õc =

Oc

O0
, m̃c =

mc

m0
(8)

we arrive at the dimensionless result:

Õ(t) = 1 +
1− Õc

m̃c − 1

[
1− m̃c

1 + (m̃c − 1) e−αt

]
. (9)

Note that the measured oxygen consumption curve as presented e.g. in Figure 7 shows
Õ(t). The functional expression (9) for the latter has three parameters that allow it
to be fitted to the experimental data.
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2.3 Fitting results

Figure 8 shows the normalized measured oxygen levels for 91 barley seeds and the
corresponding curves obtained by fitting with expression (9). To determine these
parameters we have used a standard nonlinear least squares optimization routine
with the lower bounds set as: m̃c ≥ 1, Õc ≥ 0, and α ≥ 0. Figure 9 shows the
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Figure 8: Left: Measured oxygen consumption for 91 individual barley seeds at 295 K
over a time period of 80 hours. Right: fitted logistic model.

experimental curves and the corresponding fits for 24 Savoy cabbage seeds.

2.4 Conclusions and discussion

A closer look at the mutual relation between the three fitted parameters in different
experiments reveals an interesting tendency. Namely, the growth rate parameter α
appears to depend almost linearly on the relative total population increase m̃c =
mc/m0, so that when α is plotted against 1/m̃c one gets a pronounced hyperbolic
curve – see Figure 10. In other words the ratio α/m̃c = k is close to a constant.
This behavior indicates that instead of (1) the following form of the logistic equation
should be used from the start:

dm

dt
= km

(
mc

m0
− m

m0

)
, (10)
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Figure 9: Left: Measured oxygen consumption for 24 individual Savoy cabbage seeds
at 293 K. Time samples were taken each 30 min. Right: fitted logistic model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

α vs m
0
/m

c

m
0
/m

c

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

α vs m
0
/m

c

m
0
/m

c

α

Figure 10: Apparent hyperbolic dependence of the growth parameter α on the inverse
of the relative total population growth 1/m̃c, i.e., α ≈ kmc for some constant k > 0.
Left – barley , right – Savoy cabbage.

so that the original standard logistic equation (1) is recovered under the assumption

α = km̃c. (11)
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Of course, the actual values of all fitted parameters reconstructed in our simulations
should not be taken too literally as we have used a normalized time axis. This fact,
however, does not invalidate our conclusions about the mutual relation between the
fitted parameters. In any case, further interpretation of the biological meaning of
these parameters will require a much wider statistical analysis in an absolute time
frame (say, in hours), as well as deeper understanding and an additional mathematical
model of the apparent link between the growth rate and the final relative increase in
the mitochondria population.

3 An anatomically structured model for oxygen up-
take

As mentioned in Section 1.3, the main objective is to interpret the characteristics
of the oxygen consumption curve in terms of physical, biological and morphological
properties of the seed. The logistic model that we discussed in the previous section
cannot be used for such explanatory purposes as it does not take any details of
underlying shape or processes into account in its derivation.

In this section we take a first step in developing a mathematical model for oxygen
uptake in a germinating seed that can be used to assess seed quality using oxygen
consumption measurements. We have chosen to focus on a seed with the simplest
morphology: the Savoy cabbage seed (Brassica oleracea var. sabuada L.). These
have an almost perfect spherical appearance, with a radius of approximately 1.5 mm.
Although its external shape is simple, internally the anatomy can still be quite com-
plicated. Sugar beet seeds (Beta vulgaris) for example have a much more complicated
morphology both externally and internally.

3.1 Driving processes and their time and spatial scales
We identify four processes that play a major role in the early germination stage of
the seed.

P0. The process of water uptake (imbibition), that allows the embryonic cells to
restore their water content, repair the internal molecular constitution and start
functioning ‘normally’ in the early germination stage, i.e. targeted at supporting
growth of the embryonic root (the radical).

P1. The process of oxygen diffusion: first through the seed coat and next through the
seed’s interior to reach the embryonic cells where it is finally used in metabolism.

P2. The process of celullar respiration, i.e. the oxygen uptake and consumption by
the cells in the seed.

P3. The process of asymmetric cell division of the embryonic cells in the growth
tip in the radical that results in growth. (We shall discuss this process in more
detail below).
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The initial repair process P0 is hard to describe in detail. In view of the oxygen
consumption curve it corresponds to the first 15 hour time period in Figure 7, when
oxygen consumption appears to happen at an approximately constant rate. We shall
ignore this phase and focus on capturing the increased consumption rate and later
steady decrease. Hence, we assume that P0 has been completed and only consider
P1, P2 and P3.

As a first step toward the deduction of the model it is important to assess the
characteristic time scales of processes P1–P3 (see e.g. [6]). We will use the available
experimental data as much as possible. Otherwise, assumptions will be made. Aware-
ness of these time scales motivates modelling decisions concerning its mathematical
structure: i.e. whether the model will be formulated in terms of either ordinary differ-
ential equations or partial differential equations, depending on whether the processes
involving the spatial variables can be neglected.

We now consider processes P1–P3 in further detail.

3.1.1 Oxygen uptake through seed coat and internal diffusion

The seed coat forms a barrier for oxygen transport. The physical and biochemical
details of oxygen uptake through the seed coat, which is part of P1, are largely
unknown. The application of artificial coatings to the seed coat are known to strongly
influence oxygen uptake. Therefore, this process is taken as an important unknown
in our model. Measurements have been performed on the permeability of the skin of
fruits like apple, pear and nectarine though, cf. [8]. Such results for the seed coats of
seeds of cabbage or sugar beet were not found in the literature.

The seeds of all species discussed in the report will have a complicated internal
structure (cf. Figure 4). It is possible that there is free intercellular space in cell
tissue through which oxygen and carbon dioxide can diffuse freely (see e.g. the free
intercellular space volumes reported for flesh tissue in fruits like apple, pear and
nectarine ranging from 17 to 2% respectively, cf. [8]). Similar structures are expected
in seeds, but quantitive information was lacking. However, imbibition may have
caused such channels to become water-filled. This makes a great difference for the
effective diffusivity of oxygen through the cell tissue from the seed coat to the tissue
where it is consumed most during germination. In fact, diffusion of oxygen in air
is four orders of magnitude faster than that in water (cf. [2, 7]). The estimated
diffusivity of oxygen in fruit flesh tissue is approximately 1.5× 10−7 m2/s on average
[8].

Diffusivity: Value: Description:
DO2−water 2× 10−9 m2/s Diffusivity of oxygen in water at 298 K

(Wilke & Chang [2])
DO2−air 1.8× 10−5 m2/s Diffusivity of oxygen in air at standard

temperature (273 K) and pressure
(1013 hPa; Massman [7], Table 8).

DO2−fruit 0.3− 2.7× 10−7m2/s Estimated diffusivity of oxygen in fruit
flesh (at 293 K, Rajapakse et al. [8]).
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Collis-George & Melville [3] computed and discussed oxygen distribution profiles
in four models for a spherical seed with specific assumptions on the properties of
cellular respiration. In these models it is assumed that all seed tissue cells respire in
the same fashion, i.e. the functional description for the local oxygen consumption rate
is the same throughout the whole seed. In our study, we assume that most of oxygen
uptake takes place in the dividing embryonic root cells. A steep oxygen gradient as
predicted by the models in [3] in the tissue between seed coat and embryonic root
is then expected to be more shallow. No measurements were available to support
the theoretically reasonable oxygen gradient from seed coat to embryonic root by
experimental data.

The time scale of convergence to a homogeneous steady state has been investigated
numerically in a one-dimensional linear diffusion problem

∂u

∂t
= D

∂2u

∂x2
on [0, 1.7]

(in units mm and s for length and time). We took D = 2× 10−3 mm2/s, the minimal
reported diffusivity for oxygen. In other cases equilibration will be faster. The initial
condition is a step-wise normalized oxygen distribution u0:

u0(x) =

{
0, x ∈ [0, 1.5],

1, x ∈ (1.5, 1.7].

Neumann boundary conditions (i.e. zero-flux) are imposed at both boundaries.
The computed evolution of the normalized oxygen concentration profile is shown

in Figure 11. The system equilibrates on a time scale

Td ≈ 700 s ≈ 12 min = 0.2 h.

The partitioning of oxygen between water and air is given by Henry’s Law,

[O2]water = kH,cp pO2 , (12)

where the Henry’s Law constant kH,cp, or oxygen solubility, equals 12 µM/kPa [5, 4]
(at 293 K). Equivalently one may use the dimensionless Henry’s Law constant kH in
terms of concentrations:

[O2]water = kH [O2]air,

where kH = 0.03 at 293 K.

3.1.2 Cellular respiration: oxygen uptake and consumption

Detailed information on cellular respiration of (different types of) cells in seeds is hard
to obtain. Rajapakse et al. [8] provide measured respiration rates for some fruits.
Detailed measurement of changes in cellular respiration as a function of external oxy-
gen pressure around mammalian cells (e.g. rat cardiomyocytes and human umbilical
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Figure 11: Convergence to homogeneous steady state for oxygen diffusing in water at
298 K. Oxygen concentration has been normalized. D = 2× 10−3 mm2/s.

vein endothelial cells) and isolated mitochondria from different types of rat cells have
been reported in [5]. The drop in oxygen partial pressure within cells (myocytes) and
a stagnant layer around cells is considered in [4].

Being aware that one cannot simply apply results for animal cells to the setting
of plant cells, we nevertheless use the results on [5] as an indication of the order of
magnitude of cellular respiration rates and a reasonable mathematical form for the
functional dependence of this rate on partial oxygen pressure pO2 . In fact, [5] finds
that the oxygen flux J into uncoupled human umbilical vein endothelial cells in cell
suspension can be fitted well by a hyperbolic curve

J =
Jmax pO2

p50 + pO2

, (13)

with maximal flux per cell of Jmax = 0.035 fmol/s and an environmental oxygen
pressure of p50 = 0.023 kPa at which the oxygen flux is at halve-maximal level (cf.
[5], Figure 3, p.591; temperature is 37◦C; single cell oxygen flux has been computed
from the data provided in loc.cit. for a cell population). Coupled endothelial cells
show a slightly increased maximal flux and 3-fold larger p50 (namely 0.068 kPa). An
increase of the latter is expected: oxygen levels in the middle of a cluster will be
lower than in cells at the outer end. Thus, a higher oxygen partial pressure is needed
outside the cluster to reach the same (average) overall respiration rate.
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3.1.3 Time scale of cell division and root growth

A central question in plant physiology is to determine the processes that regulate
their growth. Growth rate is regulated by the combined activity of cell production
by cell division and expansion of the cells that are already present [1]. Modelling
root growth in detail is a complex project in itself, see [1, 9] and the references found
there. The duration of the time between two consecutive cell divisions of the same
meristematic cell (the cell cycle, recall Section 1.1, Figure 5 in particular) has been
measured and is of the order of 10–15 hours [9].

We consider a very rudimentary model only. That is, the rate at which the root
length r increases will be assumed proportional to the amount of oxygen consumed
in the growth tip (i.e the root proximal meristem, recall Section 1.1), with propor-
tionality constant ρ.

From the experimental oxygen consumption curves for Savoy cabbage (see e.g. the
ensemble-averaged curve presented in Figure 14) one estimates that the duration Tg
of the growth phase, from start to rupture of the seed coat, is approximately 60 hours.
We assume that the radicle needs to extend over a length L equal to the diameter of
the seed to do so. That is, in the setting of cabbage seeds, L = 3 mm.

A meristematic cell has length ` of approximately 15 µm and will stretch after dif-
ferentiation with a factor σf to reach its final length. The length of the differentiated
cell is a function of its distance to the quiescent center (cf. [1], Fig. 3). We ignore
this effect and take an average value σf = 4 instead. Thus, in a time Tg, at least

N =
L

σf `
= 50

differentiated cells in a row must have been formed from the proximal meristem to
realise an extension of the radicle over length L. Consequently, each

∆t =
Tg
N

= 1.2 h

a new differentiated cell must appear in a linear array of differentiated cells in the
growing root.

3.2 Model formulation
The closed container in which the seed is placed is represented by a perfect cylindrical
domain of height h and radius Rc. The seed is modelled as a sphere of radius Rs,
which is reasonable for seeds of Savoy cabbage (Brassica oleracea var. sabuada L.) of
which we used the data provide by Fytagoras. The radical (embryonic root) inside
the seed is cylindrically shaped too, with radius Rr. The cross sectional area of the
radical, A, therefore equals πR2

r . The radical is divided into a growth tip, of volume
Vtip and the elongated, differentiated root cells, see Figure 3.2.

The oxygen partial pressure within the closed container, outside the seed, Oe, is
considered homogeneously distributed. The oxygen partial pressure inside the seed is
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Figure 12: The model geometry is axisymmetrical. Red cells: growth tip; blue cells:
elongated and differentiated root cells that appeared by cell division after start of ex-
periment (remainder of embryo is not shown).

represented by Oi. As a first modelling approach and motived by the fast equilibration
of the oxygen distribution in water on the time scale of cell division (see Section 3.1.1),
we take Oi homogeneously distributed within the seed for simplicity, because of lack
of more detailed information on oxygen gradients inside the seed.

Due to growth the radical will elongate. The elongation length of the radical at
time t is r(t). We ignore any bending in the radical when computing the additional
root volume due to radical growth. No experimental observations were available for
both elongation and shape of the radical during the early germination phase that could
support more elaborate hypotheses. Thus, in the proposed model, the seed coat is
the main oxygen barrier that separates the embryo from the free exterior oxygen in
the container.

Variable: Variable name:
External oxygen partial pressure Oe = Oe(t)
Internal oxygen partial pressure Oi = Oi(t)
Total elongation of radical due to growth r = r(t)

Changes in volume of seed (or container) are ignored. Since experiments are
performed under constant temperature, we may consider the oxygen partial pressures
in the interior and exterior domains as proportional to concentrations, with constant
proportionality everywhere. We shall do so from this point on.

The precise biophysical mechanisms of oxygen uptake through the seed coat at
microscopic scale are largely unknown. In our model we take the simplest modelling
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approach, by representing the seed coat as a barrier with unknown permeability a for
oxygen (of dimension of velocity). The total flux of oxygen from the exterior into the
seed through the seed coat is then given by

Jsc := aSΓ(R∗Oe −Oi), (14)

where R∗ is the so-called accumulation ratio and allows for modelling asymmetric
transport properties of the barrier. SΓ is the total area of the spherical seed coat:
SΓ = 4πR2

s. At steady state, i.e. when there is no flux through the barrier, Oi =
R∗Oe. We have taken R∗ = kH , Henry’s Law constant, thinking of oxygen dissolving
into water inside the seed.

The uptake of oxygen by cells in the embryo and any remaining cells in the en-
dosperm is considered to be due mainly to mitochondrial activity, which depends on
the oxygen partial pressure (see [5]). We let J(Oi) denote the average amount of
oxygen consumed by cells per unit time per unit volume. It is of the form:

J(Oi) =
JmaxOi
J0 +Oi

(15)

(see Section 3.1.2). We allow cells in the growth tip to consume a factor α more than
this average amount, because these cells are most active.

We thus arrive at the following model equations:

Vi
dOi
dt

= −J(Oi)(αVtip +Ar + Vi) + aSΓ(kHOe −Oi), (16)

Ve
dOe
dt

= aSΓ(Oi − kHOe), (17)

dr

dt
= ρJ(Oi)Vtip, (18)

with initial conditions

Oi(0) = Oi,0, Oe(0) = Oe,0, r(0) = 0. (19)

The factor ρ in equation (18) is the oxygen-to-root biomass conversion factor. It
measures the amount of oxygen needed in the growth tip to divide, differentiate and
stretch to produce root biomass in terms of increased root length.

3.3 Fit to experimental data

The model equations (16)–(18) contain 12 parameters and two initial conditions.
The dimension of this parameter space is too high to determine all of them from the
experimental data that gives detailed time series of just one component of the solution
only. The approach would be to solve an optimisation problem to minimize the
distance between the solution of the model equations and the averaged experimental
curve for a suitably chosen objective function. There may be difficulties in solving the
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optimisation problem due to this limited information. Moreover, even if a sufficiently
good solution is found, some of the parameters obtained may not be in a biologically
reasonable range, causing interpretation issues.

However, some of the parameters and initial conditions can be estimated a priori,
based on the given geometry of the experimental environment, anatomical information
on the seeds and values found in the literature (often for other organisms however).
In Section 3.3.1 we discuss these estimates that allow us to reduce the number of
unknown parameters to two: the seed coat permeability a and the excess oxygen
consumption factor α.

3.3.1 A priori estimating model parameters

Table 1 summarizes the parameter values that can be fixed by the geometric set-up
of the experiments and seed morphology. We now discuss the constraints imposed on
physiological parameter values using information found in the literature (see Sections
3.1.1–3.1.3) and the estimation of initial values.

The initial external oxygen concentration outside the seed just after the container
has been closed, O0

e can be computed using an atmospheric pressure of 100 kPa,
temperature of 293 K and oxygen content of 20%:

O0
e = 0.2× p

TR
= 0.2× 100 kPa

293 K · 8.315 L/mol K kPa

= 8.21× 10−3 mol/L = 2.6× 10−4 mg/mm3.

We assume that the initial internal oxygen concentration at that time is at equilibrium
with the external initial oxygen concentration over the seed coat barrier:

O0
i = kHO

0
e = 0.03× 2.6× 10−4 mg/mm3 = 7.8× 10−6 mg/mm3.

The model (16)–(19) describes the oxygen consumption during the growth phase,
following the repair phase. The start of the growth phase has been determined by
visual inspection of average oxygen consumption curve (i.e. the consumption curve
by averaging the individual curves of all seeds in the experimental run). It is taken at
approximately time t = 30 h after the start of the experiment (see Figure 14). At that
time, the oxygen level within the container has dropped to 79% of the initial level.
At the end of the experiment, it has dropped to 19% of the initial level. The initial
conditions Oe,0 and Oi,0 are computed from O0

e and O0
i by taking this reduction into

account:
Oe,0 = 0.79×O0

e , Oi,0 = 0.79×O0
i .

Gnaiger et al. [5] report on various values for the oxygen partial pressure within
the cells such that cellular oxygen consumption or mitochondrial oxygen consumption
is at halve-maximal value. At 298 K, these values are in a range of roughly 0.005–
0.08 kPa for mitochondria in animal cells, with a bias towards the lower values in the
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Name: Value: Unit: Description:
Geometric constants:
Rc 2.5 mm Radius of the cylindrical container
h 10 mm Height of of the cylindrical container
Rs 1.5 mm Radius of the spherical seed
Rr 0.5 mm Radius of radical (root)
` 1.5× 10−2 mm Length of cells in growth tip
σf 4 – Stretch factor
Computed geometric attributes:
Vi 14.1 mm3 Seed volume
Vc 196 mm3 Volume of container
Ve 182 mm3 Volume inside container exterior to seed
Vtip 0.0236 mm3 volume of growth tip
SΓ 28.3 mm2 Seed coat area
A 0.79 mm2 Cross sectional area of radical
Physical parameters:
kH 0.03 – Henry’s constant for oxygen in water
Estimated initial conditions (see Section 3.3.1):
O0
e 2.6× 10−4 mg mm−3 O2 concentration outside seed at closure container

O0
i 7.8× 10−6 mg mm−3 O2 concentration inside seed at closure container

Oe,0 2.1× 10−4 mg mm−3 Initial oxygen concentration outside seed
Oi,0 6.2× 10−6 mg mm−3 Initial oxygen concentration inside seed
Estimated physiological parameters (see Section 3.3.1):
Jmax 3.6× 10−3 mg mm−3 h−1 Maximal oxygen consumption per tissue volume
J0 3.2× 10−7 mg mm−3 O2 level at 1

2Jmax O2-consumption
ρ 5.9× 103 mm mg−1 Oxygen-to-root biomass conversion factor
L 3 mm Elongation of the radical at time of testa rupture
Results of fitting: (see Section 3.3.2):
a 7 mm h−1 Seed coat permeability for oxygen
α 2 – Excess oxygen consumption factor

Table 1: Parameter settings in the anatomically structured model for the growth phase
and results of fit.
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range. We take 0.025 kPa. This yields an intracellular oxygen concentration of

J0 =
pO2

RT
=

0.025 kPa

8.315 kPa L/mol K · 298 K
= 1.0× 10−5 M

= 3.2× 10−7 mg/mm3.

We ignore at this point the effects of an intracellular oxygen gradient from cell mem-
brane towards the mitochondria.

Moreover, Gnaiger et al. [5] provide values for the maximal oxygen consumption
of human umbilical vein endothelial cells of 80− 100 pmol/s per cm3 of experimental
medium that contained 2.6 × 106 cells per cm3. For the value of 100 pmol/s this
implies a maximal consumtion rate of 0.038 fmol/s per cell. For a cylindrical cell
with a length of 15 µm and diameter of 10 µm (i.e. of volume 1.2× 10−6 mm3), this
amounts to

Jmax = 3.1× 104 fmol/mm3 s = 3.6× 10−3 mg/mm3 h.

The oxygen-to-biomass conversion factor ρ can be estimated in the following man-
ner. The oxygen consumption function J(Oi) is such that it has a quite sharp switch
between maximal consumption and almost no consumption (cf. [5]). So we assume
that it operates at maximal value for most of the growth phase. Therefore,

ρ ≈ ∆r

∆t
· 1

Jmax · Vtip
=

3 mm

60 h
· 1

8.5× 10−5 mg/h
= 5.7× 103 mm/mg.

3.3.2 Fitting results

The remaining two parameters, a and α, in the model were determined by solving
an optimisation problem to fit the experimental data. As targets in the optimisation
process the following were considered:

• The ensemble-averaged time historyO∗e(t) of the measured external oxygen level;

• The final root length r∗f := r(Tg) = L.

The optimisation problem consisted of minimising the cost function

F = ‖Oe −O∗e‖22 + w|r(Tg)− r∗f |2,

where w > 0 is a weight to give more or less importance to unevenness in the final
root length. The results for parameters a and α are shown in Table 1. A simulation
result of the model for these parameter values is shown in Figure 13.

The value for a, which is 7 mm/h = 2 × 10−6 m/s, seems to have a reasonable
order of magnitude, when compared to values for the permeability of cell membranes
for plant hormones, like auxin. However, no information on seed coat permeability
for oxygen was avaible to compare this value with.
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Figure 13: Simulation result for the anatomically structured model (16)–(19) for the
growth phase with parameter settings as summarised in Table 1. The data are obtained
from Savoy cabbage.

3.4 An extended model including the initial repair phase

The model (16)–(19) does not describe the repair phase that preceeds the growth
phase. In this section we suggest an extension of the former model, which can be
used to fit the entire oxygen consumption curve, including the initial repair process.
Moreover, the experimental oxygen consumption curve is almost flat after approxi-
mately 80 hours. This fact seems difficult to account for directly with the oxygen
consumption function J(Oi) that was used in the previous model.

We suggest two modifications. Firstly, we realise that a higher oxygen level outside
the growing cells is needed to create an internal oxygen concentration at the mitochon-
dria to keep these ‘maximally’ functioning (see e.g. [4]). The simplest way to include
this into the model, is to introduce a threshold value Õi for the oxygen concentration
outside the cells: if the oxygen concentration is below this value, the intra-cellular
concentration near the mitochondria becomes so low that they stop functioning. This
is realised mathematically by replacing Oi in J(Oi) by (Oi − Õi)+, where (x)+ is the
positive part of x:

(x)+ :=

{
x, if x ≥ 0,

0, if x < 0.

Secondly, in model (16)–(19) we implicitly assumed that all cells in the embryonic
root need the same, fixed, time to complete their repair phase and start the growth
phase. A more relaxed assumption is that these times are normally distributed.

Thus, in our extended model, equations (16)–(18) remain the same except for
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Figure 14: The computed oxygen consumption curve using the extended model (blue
line), compared to the experimental values (black dots). The growth phase starts at
approximately t = 30 h, when the oxygen level has dropped to 79%. The length of the
growing tip is shown as well. The data are obtained from Savoy cabbage seeds.

replacing J(Oi) in (16) by the time-dependent function

J̃(Oi, t) := f(t)
Jmax(Oi − Õi)+

J0 + (Oi − Õi)+

, (20)

where
f(t) = 1 + ε+ erf(c1t− c2), (21)

with erf(x) the error function:

erf(x) :=
2√
π

∫ x

0

e−ξ
2

dξ.

The error function is a strictly increasing function with horizontal assymptotes at −1
and 1 when x tends to −∞ and +∞ respectively. It has a sigmoidal shape, is point
symmetric with respect to 0 and takes values in (−1, 1). As initial conditions in the
extended model we take

Oe(0) = O0
e , Oi(0) = O0

i .

The two parameters c1 and c2 are related to the standard deviation and the mean
of the normally distributed damage, respectively. Here ε is a small positive number,
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Name: Value: Unit: Description:
Physiological parameters:
Õi 1.3× 10−6 mg mm−3 O2 concentration threshold in the seed
Jmax 2.7× 10−2 mg mm−3 h−1 Maximal oxygen consumption per tissue volume
J0 3× 10−8 mg mm−3 O2 level at 1

2Jmax O2-consumption
Results of fitting:
a 25 mm h−1 Seed coat permeability for oxygen
α 1.8 – Excess oxygen consumption factor
ε 1× 10−3 –
c1 1.8× 10−2 h−1

c2 2.37 –

Table 2: Parameter settings in the extended anatomically structured model and results
of fit. Only new parameters and settings that differ from those mentioned in Table 1
are shown.

reflecting the fact that there are some mitochondria that function from the very
beginning.

The newly introduced parameter Õi can be easily estimated from the right end
of the measured oxygen consumption curve in Figure 14. The oxygen level has then
dropped to 19% of the initial level, but still has not completely saturated. We therefore
take Õi at 17% of the initial level:

Õi = 0.17×O0
i = 1.3× 10−6 mg/mm3.

We estimated by hand the values of the remaining parameters. Similarly as de-
scribred in Section 3.3.1. We had to increase Jmax by a factor 7.6 and we used the
refinement J0 ≈ 3 × 10−8 mg/mm3. A summary of the modified and additional pa-
rameter settings together with the fitting results is given in Table 2. The resulting
oxygen consumption curve, plotted together with the averaged experimental data is
shown in Figure 14.
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Abstract

When a beer company replaces its returnable packaging materials, for exam-
ple when updating the design of a bottle, it needs to know in advance how much
new material will be needed. Dutch beer brewer Heineken submitted the question
of estimating the returnable packaging materials to the 2013 Studygroup Mathe-
matics with Industry. In this report, we present both stochastic flow models and a
queueing model to estimate the amount of returnable packaging material present
in the market. Furthermore, we give recommendations on what data to collect, and
how to sample this data in an unbiased way in order to increase accuracy of the
estimation.

KEYWORDS: Modelling, Markov Chain, Stochastic Differential Equation, Queue-
ing Theory

1 Introduction
Beer companies, like Heineken, use returnable packaging materials (i.e., bottles, cases
and kegs) multiple times. To simplify our terminology, we will throughout refer to
returnable packaging materials as bottles, keeping in mind that all results apply to other
types of materials as well. In some markets, for example in the Netherlands, customers
pay a deposit on bottles, which is returned to them when the bottles are returned. In
other markets, for example in many African countries, a full-for-empty system is used
instead. In this system, customers return empty bottles only when purchasing full
ones. Unlike in the deposit system, in the full-for-empty system any purchase of new
bottles is limited by the number of empty bottles available to the customers. Therefore,
customers tend to keep a much larger stock of empty bottles in a full-for-empty system
than in a deposit system.

∗Corresponding author
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Occasionally, the returnable packaging material is changed, for example because of
a new bottle design, and then the beer company needs to know how many new bottles
will be needed. This is an intrinsically difficult question, because bottles might be bro-
ken or stored away and reappear only many years after they are sold. At the moment,
the companies miss an efficient model for estimating the number of bottles in the mar-
ket, especially in the case of a full-for-empty system. In some packaging change oper-
ations, significantly more new bottles were needed than expected. Heineken requested
the 2013 Study Group Mathematics with Industry to develop a model for estimating
the number of bottles in the market more accurately, and asked for recommendations
on what data to collect for use in such a model.

The structure of this report is as follows. First, in Section 2 we introduce terminol-
ogy and notation, and explain what data is currently available. Moreover, we present an
easy way of estimating the so-called break rate, which will be an important parameter
in what follows. Then we develop two different models for the number of bottles in
the market: in Section 3, Markov Chains and stochastic differential equations are used,
while in Section 4 a queueing model is discussed. The difference of the two approaches
is discussed in Section 4. Next, in Section 5, we elaborate on how to use the sample
data to get reliable parameter estimates. Finally, we summarize our findings in Section
6.

2 Problem description

2.1 Modelling and notation
In a very simplified market model, bottles are sold at the distribution center, and arrive
at the market. After remaining there for some time, the empty bottles are returned to
the beer company. If the number of returned bottles is not sufficient to satisfy the beer
demand, new bottles have to be produced (see Figure 1).

Distribution center

The market

new production

sold (σ)

returned (µ)

Figure 1: The flow of bottles

We aim at estimating the number of bottles currently in the market. In particular,
we are interested in the number of bottles that are expected to be returned. To this end,
we differentiate between different categories of bottles:

• The returning bottles R(t)
The number of bottles at time t that will be returned even in the absence of a
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packaging change. Typically, these bottles are in the market for a relatively short
period of time before they return to the distribution center.

• The sleeping bottles S(t)
The number of bottles at time t that will only be returned after a packaging
change. These materials are temporarily stored away or used for other purposes
and will turn up after a change of bottle.

• The broken bottles B(t)
The number of bottles at time t that will never return to the distribution center.
They could be broken, lost or stored away permanently.

The sum M(t) = R(t) + S(t) + B(t) of these three numbers represents the total
number of bottles present in the market at time t. The company is especially interested
in estimating S(t) more accurately.

2.2 Available Data
2.2.1 Volumes

The company has kept track of the volumes of the sold as well as the returned bottles
for more than 20 years for different factories. These data are collected per product on
a monthly basis. We introduce the following notation:

• Sold items σ(t)
σ(t) = the number of bottles sold in month t.

• Returned items µ(t)
µ(t) = the number of bottles returned in month t.

To obtain the number of bottles accumulated in the market since the beginning of
measurements, we take the sum of the number of sold items and substract the number
of returned items, that is,

M(t)−M(0) =
t∑

s=0

(
σ(s)− µ(s)

)
.

2.2.2 Circulation Times

More recently, the company has started collecting samples of circulation times of bot-
tles. The circulation time of a bottle is the time that elapses between leaving and
returning to the distribution center. The data on the circulation times can be used to
estimate R(t), as explained in Section 3 and Section 4. As this data only represents
returned bottles, it cannot be used to differentiate between sleeping and broken bot-
tles. However, we can extract estimates for M(t) and R(t), and hence also for the sum
B(t) + S(t) = M(t)−R(t).
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Currently the data is collected in a rather biased way, which results in unreliable
estimates for the circulation time. In Section 5 we elaborate on how to improve the
sampling.

2.3 Approximation of R(t) + S(t)

We are left with the question of how to estimate the total number of returning materials
R(t)+S(t). We proceed by assuming that S(t) stabilizes for sufficiently large times t.
This is a reasonable assumption since the storage capacity for bottles in the market is
limited and hence the number of sleeping bottles cannot grow indefinitely. Moreover,
we also assume that the fraction of sold bottles that ends up broken is constant. We call
this constant β and refer to it as the break rate. Thus βM(t) ≈ B(t) for large times t.
By our assumptions, the break rate can be estimated by the number of bottles that are
not returned in a long time period [t0, t1] divided by the number of bottles sold in that
time period. That is,

β̂ =

∑t1
s=t0

(σ(s)− µ(s))
∑t1
s=t0

σ(s)
= 1−

∑t1
s=t0

µ(s)
∑t1
s=t0

σ(s)
,

for t0, t1, t1 − t0 large enough.
Now we can write

R(t) + S(t) = M(t)−B(t) = M(t)− β̂M(t) =

∑t1
s=t0

µ(s)
∑t1
s=t0

σ(s)
M(t).

Remark: The first assumption on the stabilization of the number of sleeping bottles
in the market might not be very realistic in fast growing markets.

3 Analysis based on Markov models
In this section we propose a simple Markovian model to model the ‘dynamics’ of a
single bottle while it is with a customer. It should be considered an example. More
realistic models can be constructed by introducing more states and/or more complex
dynamics (e.g., dynamics that are not homogeneous in time). The models in this section
are especially suited for the deposit system, and less so for the ‘full-for-empty’ system,
because we do not model the fact that a customer returns bottles at the same time that
he buys new ones. See also the discussion in Section 3.5.

3.1 Markov model for single unit
First let us consider an individiual bottle at a customer. Suppose it behaves according
to the following simple Markov dynamics. The bottle can be in either of four states,
FULL, EMPTY, BROKEN and RETURNED. The states BROKEN and RETURNED are
absorbing. Transitions (per unit of time) occur as in Figure 2.



Estimates on Returnable Packaging Material 35

Figure 2: A Markov model. Transition rates between the states F(ull), E(mpty),
B(roken), and R(eturned) are denoted by λFE , λFB , λER, λEB .

3.2 Markov model for quantities of bottles
From the Markov model for a single bottle we can derive a model for the flow of
bottles. Suppose, at time t there are a total number of Ft non-empty bottles and Et
empty bottles in the market. Let h > 0 be a small time step and suppose a number of
Ut+h − Ut bottles are sold during the time interval [t, t+ h). Denote the total number
of returned bottles within [t, t+h) by Yt+h−Yt. The variable names U for input and Y
for output are chosen to correspond to the usual notation in systems theory. In systems
theory, there also is the notion of state, denoted by X , corresponding in our case with
the two-dimensional vector (E,F ).

Remark: Note that the number of bottles sold per unit of time is (Ut+h − Ut)/h,
which for small h is equivalent to the time derivative of Ut. The same holds for Yt.
This ‘cumulative’ notation for U and Y is helpful in the continuous time limit, where
trajectories of U and Y will typically be non-differentiable.

If we denote by (F → B)t and (E → B)t the number of full and empty bottles
broken within [t, t + h), respectively, (F → E)t the number of emptied bottles and
(E → R)t the number of empty bottles returned within this interval, we obtain the
following balance equations:

Ft+h = Ft + Ut+h − Ut − (F → B)t − (F → E)t,

Et+h = Et + (F → E)t − (E → B)t − (E → R)t,

Yt+h = Yt + (E → R)t.

Now for all the transitions in the Markov model, assuming independent ‘behaviour’
of individual bottles, and using that h is small, we see that e.g. (F → B)t ∼
Bin(Ft, λFBh). Using the normal approximation for the binomial distribution (assum-
ing Ft and Et are large), we find that (F → B)t is approximately normally distributed
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with mean hλFBFt and variance Ft(hλFB)(1−hλFB)=̇hλFBFt. Therefore, we have
approximately the following discrete time Markov model

Ft+h = (1− h(λFB + λFE))Ft + Ut+h − Ut −
√
hλFBFtε

FB
t −

√
hλFEFtε

FE
t ,

Et+h =Et + h(λFEFt − (λEB + λER)Et) +
√
hλFEFtε

FE
t

−
√
hλEREtε

ER
t −

√
hλEBEtε

EB
t ,

Yt+h =Yt + hλEREt +
√
hλEREtε

ER
t .

where all the ε...t are normally distributed with mean 0 and variance 1. Assuming the
fluctuations in F and E to be relatively small, the following model is more straightfor-
ward to analyse.

Ft+h = (1− h(λFB + λFE))Ft + (Ut+h − Ut)−
√
hσFBε

FB
t −

√
hσFEε

FE
t ,

Et+h =Et + h(λFEFt − (λEB + λER)Et) +
√
hσFEε

FE
t

−
√
hσERε

ER
t −

√
hσEBε

EB
t , (1)

Yt+h =Yt + hλEREt +
√
hλEREtε

ER
t .

3.2.1 Diffusion limit

By taking the h ↓ 0 limit, we may write the Markov model (1) as the following system
of stochastic differential equations (SDEs),

dFt = − (λFB + λFE)Ft dt+ dUt −
√
λFBFt dW

FB
t −

√
λFEFt dW

FE
t ,

dEt = [λFEFt − (λEB + λER)Et] dt+
√
λFBFt dW

FB
t

−
√
λEBEt dW

EB
t −

√
λEREt dW

ER
t ,

dYt =λEREt +
√
λEREt dW

ER
t ,

where W ...
t are independent Brownian motions.

This (non-linear) system is rather difficult to analyse, mainly because of the pres-
ence of square roots. As before, under the assumption that the fluctuations in F and E
around their average values Faverage and Eaverage are relatively small, we could work
with the linearized system of stochastic differential equations in which the randomness
is additive:

dFt = −(λFB + λFE)Ft dt+ dUt − σFB dWFB
t − σFE dWFE

t ,

dEt = [λFEFt − (λEB + λER)Et] dt+ σFB dW
FB
t − σEB dWEB

t − σER dWER
t ,

dYt = λEREt dt+ σER dW
ER
t . (2)

Here σFB =
√
λFBFaverage, etc.
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Assuming U is sufficiently smooth, we may write dU = u(t) dt. We may write (2)
in abstract form as

dX(t) = A1X(t) dt+Bu(t) dt+ Σ1 dWt,

dY (t) = A2X(t) dt+ Σ2 dWt. (3)

where

X(t) =

[
Ft
Et

]
, Y (t) = Yt,

A1 =

[
−(λFB + λFE) 0

λFE −(λEB + λER)

]
, A2 =

[
0 λER

]
,

B =

[
1
0

]
, Σ2 =

[
0 0 0 σER

]
, and

Σ1 =

[
−σFB −σFE 0 0
σFB 0 −σEB −σER

]

and W is a four-dimensional standard Brownian motion.

3.2.2 ODE approximation / fluid limit

For the mean value behaviour of either of the models (1) or (2), we obtain the system
of ordinary differential equations





ḟ(t) = −(λFB + λFE)f(t) + u(t),
ė(t) = λFEf(t)− (λEB + λER)e(t),
y(t) = λERe(t),

where f(t) = EFt, e(t) = EEt, but y(t) = d
dtEYt. Let λF := λFB + λFE and

λE := λEB + λER. The solution to this system of ordinary differential equations is
given by

f(t) = exp(−λF t)f(0) +

∫ t

0

exp(−λF (t− s))u(s) ds,

e(t) = exp(−λEt)e(0) +

∫ t

0

exp(−λE(t− s))f(s) ds,

y(t) = λERe(t).

This equation of f tells us the following. As λF ∈ (0, 1), the first term on the right
hand side decays exponentially fast to zero. This means that the dependence on the
initial value of the number of full bottles in the system will not matter. The second
term says that the value of f(t) depends on the history of the average number of the
inflow of bottles (i.e. u(s) for s ∈ [0, t]), where the dependence is the strongest at the
most recent history.



38 SWI 2013 Proceedings

To interpret e, we need some more calculation. Just as in the interpretation of f ,
we can conclude from the first term in the right hand side of the expression for e(t)
that the dependence on the initial data decays exponentially. For the second term, we
separate 3 cases:

λF = λE , In this case, the probability that a full bottle leaves the FULL state in a
certain time period, equals the probability that an empty bottle leaves the EMPTY
state in the same period. We get

e(t)− exp(−λEt)e(0) =

∫ t

0

exp(−λE(t− s))f(s) ds

= t exp(−λF t)f(0) +

∫ t

0

(t− s) exp(−λE(t− s))u(s) ds,

from which we learn that also e(t) depends on the history of u(t), but with a
certain delay. This expression also shows that the dependence of f(0) on e(t)
vanishes exponentially fast in the long run, but at the start there is an increasing
dependence.

λF 6= λE . In this case, we obtain

e(t)− exp(−λEt)e(0) =

∫ t

0

exp(−λE(t− s))f(s) ds

=
exp(−λF t)− exp(−λEt)

λE − λF
exp(−λF t)f(0)

+

∫ t

0

exp(−λF (t− s))− exp(−λE(t− s))
λE − λF

exp((λE − λF )s) u(s) ds,

from which we see again that the influence of f(0) decays exponentially. The
second term denotes the cumulative and delayed dependence on the input stream
u(t).

The interpretation of the number of bottles that is expected to be returned per time
unit, i.e. y(t), is just a fixed fraction of e(t), of which we discussed its behaviour above.

3.3 State estimation: Kalman filtering

Let us consider the stochastic model again (see (1) for the time-discrete model and (2)
for the continuous in time model). Before stating how we can get information out of
the data by using these stochastic models, we would like to discuss the basic theory
behind Kalman filtering.

Suppose a random variable Y has a conditional distribution depending on ‘hidden
state’ X and ‘input’ U ; loosely denoted as p(Y |X,U). Furthermore suppose X and U
are distributed according to some ‘prior’ distribution p(X,U). Bayes’ formula gives
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us that, given observations of U and Y , we may compute X as

p(X = x|Y = y, U = u) =
p(X = x, Y = y, U = u)

p(Y = y, U = u)

=
p(Y = y|X = x, U = u)p(X = x, U = u)∑
x p(Y = y|X = x, U = u)p(X = x, U = u)

.

In other words, based on the conditional distribution p(Y |X,U) and the prior distri-
bution p(X,U), we may compute a ‘posterior’ distribution p(X|Y, U). This posterior
distribution enables us to estimate the hidden state X based on observations of U and
Y .

The same idea may be applied recursively to systems of the form (3), leading to
the Kalman-Bucy filter [4, 7], or, in discrete time, the Kalman filter [1, 9]. Such a
filter allows us in this example to obtain estimates F̂t, Êt of Ft and Et, based on
observations of Ut and Yt. Kalman filters appear notationally invovled, but once the
dynamic model (such as (1) or (2)) is identified, implementation of such a filter is
relatively straightforward. It gives us estimates for EEt, EFt, VarEt and VarFt,
which become more accurate for larger t. It is therefore preferable to use a data set
with a long time series.

3.4 Estimation of the model parameters

To complete our model, we need to estimate the λ... parameters. In this section we
demonstrate an estimation method based on the data of the sampling.

3.4.1 Estimation through distribution of circulation times

Conditional on the eventual return of a bottle, we have to wait time TE ∼ exp(λFE)
before a bottle is being emptied, plus a time TR ∼ exp(λER) before the empty bottle
is returned. The total waiting time T = TE + TR is then the sum of two exponential
random variables, and has a hypoexponentially distribution with parameters λFE and
λER.

For convenience, we write λ1 = λFE and λ2 = λER. Since the random variables
TE and TR are independent, the mean of T is ET = 1

λ1
+ 1

λ2
and the variance is

Var(T ) = 1
λ2
1

+ 1
λ2
2

. The distribution function of T may be computed (in case λ1 6= λ2)
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as

FT (t) = P(TE + TR ≤ t) =

∫ t

0

P(TE + TR ≤ t|Te = s)fTe(s) ds

=

∫ t

0

P(Tr ≤ t− s)λ1 exp(−λ1s) ds

= λ1

∫ t

0

(1− exp(−λ2(t− s))(exp(−λ1s) ds

= 1 +
1

λ1 − λ2
(λ2 exp(−λ1t)− λ1 exp(−λ2t)) , t ≥ 0.

The density function is then

fT (t) =
d

dt
FT (t) =

λ1λ2
λ1 − λ2

(exp(−λ2t)− exp(−λ1t)) , t ≥ 0.

In case λ1 = λ2, a similar computation gives FT (t) = 1−exp(−λ1t)−λ1t exp(−λ1t)
and fT (t) = λ21t exp(−λ1t) for t ≥ 0.

Given n i.i.d. observations t1, . . . , tn of a hypoexponentially distributed random
variable, we can estimate the parameters λ1 and λ2 in two ways:

(i) By maximizing the (log)-likelihood function

l(λ1, λ2) =

n∑

i=1

ln

(
λ1λ2
λ1 − λ2

(exp(−λ2ti)− exp(−λ1ti))
)
, λ1, λ2 > 0

with respect to λ1 and λ2. This will always provide estimates for λ1 and λ2, but
needs to be performed numerically.

(ii) By the method of moments: choose λ1 and λ2 so that the sample mean and
variance match the computed expectation and variance. Let σ̂2 denote sample
variance and µ̂ denote sample mean. Write a1 = 1/λ1 and a2 = 1/λ2. By the
above expressions for mean and variance of T , we find the conditions a21 + a22 =

σ̂2, and a1 + a2 = µ̂. This results in the expression a1,2 = 1
2 µ̂±

√
1
2 σ̂

2 − 1
4 µ̂

2,
so that

λ1,2 =
1

a1,2
=

(
1
2 µ̂±

√
1
2 σ̂

2 − 1
4 µ̂

2

)−1
.

Note that these estimates become non-sensical in case 1
2 σ̂

2 − 1
4 µ̂

2 < 0 or if√
1
2 σ̂

2 − 1
4 µ̂

2 ≥ 1
2 µ̂. This means that we require

1
2 µ̂

2 ≤ σ̂2 < µ̂2,

which will not hold in all cases. This is a limitation of the method of moments,
whereas likelihood maximization will provides an estimate for all cases. It is
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however also an indication that the proposed model does not need to be a perfect
fit for the observed data. In Figure 3, the frequency data of bottle circulation
times is compared with the best hypoexponential fit, using the method of mo-
ments.
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Figure 3: Frequency data of circulation times and the hypoexponential fit according to
the method of moments.

3.4.2 Estimation based on stationarity assumption – 2 state model

Consider (1) in a stationary regime. For simplicity assume h = 1 and all transition
probibilities λ... � 1. We assume the number of bottles sold in a time interval [t, t+1)
equals U(t + h) − U(t) ∼ N(µU , σ

2
U ). Furthermore suppose F ∼ N(µF , σ

2
F ), E ∼

N(µE , σ
2
E), and Y (t + 1) − Y (t) ∼ N(µY , σ

2
Y ). By the discrete time equations (1)

(with h = 1), we immediately find

µF =
µU

λFE + λFB
, µE =

λFEµF
λEB + λER

, µY = λERµE ,

giving

µY =
λERλFE

(λEB + λER)(λFE + λFB)
µU

and thus providing an equation for the unknown parameters λ... in terms of means µU
and µY , which can be estimated by the respective sample averages.
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3.4.3 Estimation based on stationarity assumption – 1 state model

By a more involved analysis concerning covariances, extra equations may be obtained.
We will explain this idea for a simplified model with only one recurrent state. It should
in principle be possible, but more involved, to carry out the same analysis for the two-
state model.

Consider the situation in which, within a single time step, a bottle can be broken
(rate per unit time λB) or returned (rate λR). See Figure 4.

B

R

X

Figure 4: A simple Markov model with one absorbing state, used for determination of
model parameters.

In a time interval [t, t + 1) a number of Ut+1 − Ut bottles is bought, independent
of the number of unreturned bottles Xt. Assuming stationarity of the randomness as
before, we have the following simple Markov system:

Xt+1 = (1− λB − λR)Xt + Ut+1 − Ut − σBεBt − σRεRt ,
Yt+1 − Yt = λRXt + σRε

R
t .

We further simplify this model by assuming σB = λBµX , σR = λRµX , since the
variance of a Bin(n, λ) random variable is proportional to nλ(1 − λ)=̇nλ for small
λ. This model has three unknowns λB , λR, µU . Using the same argument as before,
we can relate the empirical means µ̂Y and µ̂U of µY and µU through the equality
µY = λR

λB+λR
µU . Furthermore,

σ2
X + µ2

X = EX2
t+1 = E

[{
(1− λB − λR)Xt + Ut+1 − Ut − σBεBt − σRεRt

}2]

= (1− λB − λR)2(σ2
X + µ2

X) + σ2
U + µ2

U + σ2
B + σ2

R,

or equivalently
{

1− (1− λB − λR)2
}

(σ2
X + µ2

X) = σ2
U + σ2

B + σ2
R.
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Therefore

E(Yt+1 − Yt)2 = σ2
R + λ2REX2

t = σ2
R +

λ2R
(
σ2
U + σ2

B + σ2
R

)

1− (1− λB − λR)2

= λ2R

(
µ2
X +

σ2
U + µ2

X(λ2B + λ2R)

1− (1− λB − λR)2

)
.

Finally, by similar reasoning,

ρ = E[(Yt+1 − Yt)(Ut − Ut−1)] = λR(µ2
U + σ2

U ),

where the quantity on the lefthand side may be estimated from the data as

ρ̂ =
1

n

n∑

i=1

yiui−1,

where ui and yi are the observed sales and returns in time period i, respectively. To
summarize we have obtained three equations that relate the unknowns λB , λR and µX
in terms of σ̂2

U , µ̂U , σ̂2
Y , µ̂Y , and ρ̂.

3.5 Discussion
The above results are for illustration purposes. A more detailed analysis should be
performed to determine which simple model might adequately describe the dynamics
of the system. From such a model, equations should be derived as in the last section
which estimate system parameters from observed statistics. Then state estimation may
be performed on-line to compute actual estimates of number of full and empty bottles in
the system, using Kalman filtering, based on observations of sold bottles and returned
bottles, or perhaps using observations of circulation times.

In the full-for-empty system, in which full bottles are only sold once the same
number of empty bottles is returned, extra modelling is necessary. A simple Markov
model might than model the behaviour of a customer, who in a time period may drink
a unit, do nothing, or buy a bottle and thus also return bottles.

4 A queueing model for the number of bottles in the
market

In Section 3, we described a rather detailed modelling approach to the description of
bottles in the market. We now discuss alternative models from queueing theory that
have been thoroughly investigated in the literature and are by now well understood.
These models stem from different modelling assumptions on the demand process (a
compound Poisson process) and particularly focus on fluctuations of the demand rate
in time. Another important difference is that these models only describe bottles that
will be returned; the rate at which bottles break should be discounted in the demand
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process. That is, if the demand rate is x and a fraction p of the bottles are broken, then
(1− p)x is the effective demand rate of bottles that will be returned.

In this section we describe the infinite server model from queueing theory that
serves as a building block to model the number of bottles out in the market. The
following is required as input for this model: The effective demand rate (function) and
the distribution of dt, the circulation time (cf. the definition in Section 2). The output
is a distribution for the number of bottles that are simultaneously out in the market.

4.1 Constant demand rate, fixed circulation time distribution
We start by assuming that the demand has a constant rate and can be modeled by a
Poisson process. Specifically, we start by assuming that the number of bottles pur-
chased in an interval of t days has a Poisson distribution with an average of λt bottles,
where λ is the daily average demand rate. Letting D denote a generic random variable
having the distribution of the circulation time of a bottle we find that N –the number
of bottles out in the market (in the stationarity regime)– has a Poisson distribution with
mean λED. The distribution of D enters the calculation only through its mean; this is
usually referred to as “insensitivity” toward the circulation time distribution. The main
requirement is that the time out in the market for each bottle is independent of that of
all other bottles and shares the distribution of D. This result is standard in queueing
theory and can be found in any textbook, see for example [5].

In reality, both the demand rate and the circulation time is season-dependent and/or
may have a certain non-stationary trend. We discuss these in the following two para-
graphs.

4.2 Time varying demand rate, fixed circulation time distribution
Assume now that the demand rate fluctuates over time. At time t it is λ(t), i.e., the
demand process is a time-varying Poisson process with rate function λ(t). Still the
number of bottles out in the market has a Poisson distribution, but this is no longer
insensitive to the circulation time distribution. Now, the number of bottles out in the
market at time t has a Poisson distribution with mean

EN(t) =

∫ ∞

0

P(D > v) dv =

∫ ∞

0

(∫ t

t−v
λ(u)du

)
fD(v) dv, (4)

where fD(t) is the density of the distribution of the circulation timeD; see for example
Theorem 1 of [3]. For a constant demand rate, we recover from equation (4) that
EN(t) = λED.

4.3 Time varying demand rate, time varying exponential circula-
tion time distribution

If we restrict on the generality of the circulation time distribution and assume it has an
exponential distribution, then a rather classical paper by [2] generalizes the previous to
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the case where the mean of the circulation time distribution may fluctuate over time.
Again the number of bottles in the market at time t is Poisson with mean J(t)I(t)
where

J(t) = e−
∫ t
0
ν(u)du, (5)

with 1/ν(t) representing the mean circulation time at time t, and

I(t) =

∫ t

0

λ(u)

J(u)
du. (6)

Of course, if we choose a fixed exponential circulation time by setting ν(t) = 1
ED in

(5) and setting fD(t) = 1
ED e

− 1
ED t in (4), we obtain the same result.

For the data available from Heineken, this is probably the most useful model. In
case more is known about the characteristics of the demand function and circulation
time distribution, a useful extension to the above can be found in [6]. The model
there allows for time varying non-exponential demand and circulation time distribu-
tions (specifically, they allow for phase type distributions).

5 Sampling the circulation time

A key quantity to understand is the expectation for the circulation time of bottles (see
Section 2.2.2 for a definition of circulation time). We describe a method to obtain
this value, together with a confidence interval depending on the sample size. We also
discuss how other fluctuations in the beer market, like seasonality, can be incorporated
in the method to improve the estimations.

The statistical theory of estimation, sampling, and confidence intervals is well-
developed. In line with this theory, we consider the circulation times of individual
bottles as random variables with identical distribution. Shape or parameters of this
distribution are obtained by means of sampling, that is, computation of the circulation
time for a small number of bottles (a sample), and extrapolation of the findings for this
sample to the entire population of bottles.

The practical side of sampling is easy: When a bottle is returned, the expiry date on
the label allows calculation of the production date, which in turn gives a sound estimate
of the time of sale. Together with the time of return of the bottles, this allows a fairly
exact computation of the circulation time. However, a high-volume or even continuous
computation of circulation times in this way is expansive and impractical. Therefore,
we first discuss in this section the required sample sizes in order to guarantee a certain
confidence limit for the parameters. Subsequently, we discuss how seasonality and
other artifacts of the beer market can be incorporated in order to improve the estimation.

A standard assumption to facilitate the statistical analysis is (mutual) independence
of the circulation time of the bottles in a sample. Therefore, the choice of the sample
should be made as random as possible.
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5.1 Batch sizes

We address now the question how many bottles should be sampled in order to guarantee
a certain accuracy of the circulation time. Suppose we have a sample ofN different bot-
tles with circulation times X1, X2, . . . , XN . Under the assumption that X1, . . . , XN

are independently and identically distributed (i.i.d.), we use the sample to infer on the
(unknown) distribution of circulation time. In parametric statistics, one assumes a cer-
tain family of distributions indexed by a finite-dimensional parameter space. It is then
sufficient to estimate these parameters.

Usefulness of this approach is crucially relying on a decent choice of the family
of distributions. The often used normal family identifies a 95%-confidence interval for
the mean as all points at distance smaller than 1.96 times sample standard deviation
from the sample mean.

In light of Section 3.4, it seems most reasonable to choose as model the hypoex-
ponential distribution with two parameters. Derivation of confidence limits in closed
form, such as for the normal family, seems impossible for this model. Nevertheless,
bootstrapping provides a theoretically not very pleasing, yet very efficient, practical
method to determine confidence interval by means of Monte Carlo simulation. This
works as follows. Start by estimating the two parameters of the hypoexponential dis-
tribution by using either of the methods (i) or (ii) in Section 3.4. Use then a statistical
software package to generate a high number, say 1000, of i.i.d. random variables with
this distribution using the estimated parameters, and sort them from smallest to largest
(call them Y1, . . . , Y1000). The (1 − α)%-confidence interval for the circulation time
as given by the bootstrap is the interval

[
Yα/2×1000, Y(1−α/2)×1000

]
.

5.2 Seasonality

An artifact of the beer market is seasonality. Sales show a certain seasonal peak, typi-
cally located in summer, when people drink more beer than in other times of the year.
Particularly in full-for-empty systems for returnable packaging materials, it is tempting
to believe that customers operate with more bottles during peak time, and store some
bottles elsewhere throughout the rest of the year. If this reasoning is true, then season-
ality has an impact on the circulation time (at the start of the peak, customers bring the
stored bottles, which yields a higher circulation time).

We propose to carry out a statistical test whether the null hypothesis H0: “Sea-
sonality has no significant effect on circulation time” can be rejected in favor of the
alternative hypothesis H1: “Seasonality does have a significant effect on circulation
time”. A possible test could go as follows. Gather data at several moments in the year,
e.g. monthly, bi-monthly or quarterly. Call k the number of measurements per year,
and K the total number of measurements. Record the following data:

Yn circulation time at time n
Ȳ = 1/K

∑K
n=1 Yi mean circulation time,

Xn sales volume at time n,
n = 1, 2, . . . ,K time.
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We are now considering the general linear model in centralized form:

Yn − Ȳ = β1(Xn −Xn−1) + β2
(
Xn −

k∑

i=1

Xn−i
)

+ εn, n = 1, . . . ,K, (7)

where the error terms εn (n = 1, . . . ,K) are i.i.d. normally distributed. In this model,
β1 ‘explains’ derivation in circulation time by an upward or downward sales trend
(mimicking the beginning or end of a peak period). Further, Xn−

∑k
i=1Xn−i is large

if we are in a peak, and small otherwise. Hence, β2 simply relates circulation time to
peaks. Of course, the above model could easily be adapted to account for other effects,
for example, incorporating long-term trends in sales. Mind that the Yn itself are sample
means, which justifies our normality assumption for the εn.

With this model at hand, our earlier described null hypothesis can be sharpened as

H0 : β1 = β2 = 0.

In order to test the hypothesis, we use multilinear regression obtaining regression sum
of squares (RSS) and error sum of squares (ESS). Dividing both by their corresponding
degree of freedom (2 for RSS,K−2 for ESS), and comparing the ratio of these two with
the F (2, n−2)-distribution obtains the p-value associated with the data. This is known
in the statistical literature as ANOVA (‘analysis of variance’). Further tests could be
imposed if the null hypothesis has been rejected at the desired level of confidence.

A somewhat simpler approach would concentrate only on the ’peak’ phenomenon.
This time, we take only two samples per year, one at the beginning of the peak, and the
other one at the end of the peak. We estimate parameters for each of these two samples
separately, and compare how ’distant’ they are using the methods described in the next
subsection. This method is simpler than the one described before, but sheds no light on
other (possible) temporal dependencies.

5.3 Handling different distribution channels
Circulation time may very well depend on the distribution channel. The main differ-
ence we shall consider here are the channels bars/restaurants on the one hand, and
private customers on the other hand. Similar to the discussion in the previous subsec-
tion, we suggest a statistical test to investigate the issue. The general setup is somewhat
easier this time. We are in the situation where we have two samples, with two estimated
sets of parameters, and now we want to test whether they are “significantly different”
in order to reject the null hypothesis H0: “There is no difference in circulation time
parameters for different distribution channels.” The F -test (ANOVA) is the right one
under the assumption of normality. However, there are also generally applicable non-
parametric tests, for details we refer to Section 11.2 in [8].

5.4 Unreadable labels – an indicator for a long circulation time
A practical problem that occurs at the sampling procedure, is that the expiration date
is not readable on some bottles. This is due to damage to the label, or a completely
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removed label. It is likely that these bottles have a longer circulation time than the
bottles with readable expiration dates, so it would bias the statistics if one leaves these
bottles out of the sample. Although there are methods available to reduce the bias
compared to leaving these bottles out of the sample (for example, the EM algorithm),
we did not look into this any further.

6 Conclusion
In Section 2.3, we discussed a way of estimating the break rate of bottles from data
that is currently available. This is already an interesting result in itself, but can also be
used to identify some parameters in the stochastic flow models (see (1) and (3)) and
in the queueing model (see Section 4.3). In Section 3 and Section 4, we then studied
two different kinds of models for the number of bottles in the market. All of our
models are quite simple, and might therefore not be very accurate in practice. Further
(statistical) research is required to test their accuracy. It may be necessary to increase
model complexity by dropping some assumptions. However, we note that this may
result in a) lack of explicit solutions of the models, b) more unknown parameters that
need to be estimated and/or c) increased computational effort.

In Section 5 it is discussed how to obtain the expected circulation time of a bottle
in the market from the data, together with a confidence interval. As this value may
depend on the time in the year at which the sampling has been done, we also discussed
a method to test whether it is reasonable to assume that this seasonality is of little
importance.
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Value-at-Risk of coffee portfolios
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Abstract

Coffee is the second most traded commodity in the world, and the coffee
market can be very volatile even over very short periods of time. Nedcoffee was
looking for better ways to access Value-at-Risk of their portfolio. Additional
difficulty stems from the fact that portfolio comprises of contracts with delivery
dates in January, March, May, July, September and November of each year. Our
proposed solution was evaluated using historical market data.

Keywords: coffee, market volatility, value-at-risk, modeling

1 Introduction

With sales volume equal to 106000 metric tons in the fiscal year 2012, Nedcoffee is
a major coffee trader with headquarters located in Amsterdam, from which it trades
and controls all its green coffee from its sourcing companies in Africa, Asia and South
America. Coffee market is a volatile market with traders managing highly complex
portfolios. A problem of paramount importance in risk management in general and
for Nedcoffee in particular is estimation of a profit and loss distribution of a portfolio
over a specified time horizon and the associated risk measures. Value-at-Risk (VaR)
has become an important measure for estimating and managing portfolio market risk;
see Jorion (2007) for a detailed exposition. VaR is defined as a certain quantile of
the change in value of a portfolio during a specified holding period. While the basic
concept of VaR is simple, many complications can arise in practical use. Of these part
are statistical: VaR is not an absolute, but a model-dependent quantity. Choosing
a right probability distribution for an adequate description of the profit and loss
distribution is thus of great importance. However, models will typically depend on
parameters, which have to be inferred from the data and uncertainty in which will
propagate to estimates of VaR. A further complication is that when determining VaR,
one is estimating a quantile far in the tail of the distribution, which is a notoriously
difficult statistical task. There is also a problem of a different, conceptual nature,
that is inherent in the definition of VaR: it is an incoherent risk measure, which in
non-technical terms means that a diversified portfolio might have a higher VaR than
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prior to diversification, the fact which traders will be reluctant to accept; see Artner
et al. (1999) for details. Despite this, the use of VaR is extremely widespread in
practice.

Since trading decisions at Nedcoffee are to a considerable extent determined by
VaR considerations, the company is greatly interested in 1) constructing better models
to be used in VaR computations than currently used by the company, and 2) given a
model, using statistically efficient tools for the actual computation of VaR.

The rest of the report is organized as follows: in Section 2 we recall the definition
of VaR and introduce some notation. In Section 3 we briefly review the approach
employed by Nedcoffee and indicate its shortcomings. Sections 4 and 5 outline some
alternatives and present small scale simulation study results for one of them. Section
6 concludes with an outlook and some future work.

2 VaR
Assume a portfolio consists of positions in k different assets, and let Ni(t) and Pi(t)
denote respectively the number of contracts and the price of one contract in the ith
position, i = 1, . . . , k, at time t. The price of portfolio at time t is then

S(t) =
k∑

i=1

Ni(t)Pi(t).

Let ∆t be the the holding period of the portfolio, so that the portfolio composition
remains constant over the time period [t, t+ ∆t], i.e. Ni(t) = Ni(t+ 1). The value of
the portfolio at time t + ∆t is S(t + ∆t). The change in the portfolio value during
the holding period is

∆S = S(t+ ∆t)− S(t) =
k∑

i=1

Ni(t)∆Pi(t) =
k∑

i=1

Ni(t)Ri(t) = 〈N(t),R(t)〉, (1)

where 〈N(t),R(t)〉 is the scalar product of vectors N(t) and R(t) with components
Ni(t)’s and Ri(t)’s, respectively. The VaRα risk measure, associated with a given
level 0 < α < 1, is defined by the relation

P(∆S < −VaRα|N(t)) = α. (2)

Thus
VaRα = |F−1(α)|,

where F is the distribution function of ∆S(t) given N(t). In practice ∆t typically
ranges from one day to two weeks and α ≤ 0.05, often α = 0.01.

In the case of Nedcoffee the portfolio consists of various types of coffee futures and
some options written on them. In this paper we will for simplicity assume that the
Nedcoffee portfolio consists of futures only. Ignoring options, in principle k can be



as large as 10, which corresponds to two major coffee species, Arabica and Robusta,
and five possible contract listings per species. Nedcoffee is primarily interested in
estimating the 1-day VaR of their portfolio, so that ∆t = 1 day. The level α they aim
at is somewhat unrealistically set at α = 0.015. In our argumentation we will use a
general α.

3 Nedcoffee approach
From formulae (1) and (2) it is obvious that VaR depends on the choice of the model
for the futures price process P (t) = (P1(t), . . . , Pk(t)). A number of possibilities are
available here.

NEDCOFFEE employ currently an empirical formula for Value-at-Risk at con-
fidence level α = 0.9985 (0.15 percent) based on the assumption that underlying
Arabica and Robusta coffee prices are separately normally distributed with constant
covariance matrices over a period of 3 months (≈ 60 trading days). We are not going
to discuss precise details of the method, but will use the NEDCOFFEE VaR estimate
for benchmarking purposes.

Given the assumption of Gaussian distribution of prices holds, covariance matri-
ces can be easily estimated using the available historical data on futures prices and
then the VaR can be determined in a straightforward fashion. However, except for
simplicity of computation, there is little empirical justification for assumptions made
in this case. As an illustration of this, we produced a normal Q-Q plot based on
returns of the 2-month futures from 15 November 1993 to 7 February 1994, which
gives us in total 59 data points. Strong deviation from normality is visible in the
plot. Also a formal test for normality, the Shapiro-Wilk test, performed on the same
dataset yields the p-value equal to 0.002392, which is very strong evidence against
the null hypothesis that the data originate from a certain normal distribution. We
would reject the null hypothesis at level 0.05.

4 Possible alternatives
The results from the previous section indicate that one has to look for alternative
models and VaR computation methods than those currently employed by Nedcoffee.
Two natural options are: a continuous-time model, in which P is a solution to a (mul-
tidimensional) stochastic differential equation (SDE), or a time series model, such as
a (multivariate) GARCH model. Models based on SDEs are attractive due to the fact
that under suitable assumptions a streamlined theory for pricing financial derivatives
(e.g. options) is available for them. Furthermore, they are capable of reproducing the
mean reversion property one often sees in asset prices (this is achieved through appro-
priately choosing the drift coefficient of the equation), as well as fitting a wide range of
return distributions (this is achieved by selecting a right diffusion coefficient, or by us-
ing a general Lévy process instead of the Brownian motion as a driving process of the
equation). On the other hand a very fine level of detail provided by sample paths of
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Figure 1: Normal Q-Q plot for the returns based on the 2-month futures data
(15/11/1993 to 07/02/1994).



SDE models is not always warranted to be seen in actual financial time series; see e.g.
Carr et al. (2002). When asset prices are observed at high frequency, microstructure
noise becomes a problem. Moreover, parameter estimation in SDE models, especially
in the high-dimensional case when both the dimension of the system of SDEs and
of the parameter space are large, is computationally and statistically a very difficult
task, unless one restricts attention to simple, but often not realistic models, such as
e.g. the Black-Scholes model. In the case of the Black-Scholes asset price dynamics,
provided the model parameters have been accurately estimated, VaR can be efficiently
computed following the method described in Ortiz-Garcia and Oosterlee (2013) (an
extra technical complication in our case would be the fact that we are dealing with
futures prices). We refer to the same paper for additional references. As far as the
time series models are concerned, multivariate generealisations of traditional univari-
ate models are far from trivial due to the fact that the multivariate character of the
model greatly increases the number of parameters required for its description, while
a drastic cut of the number of parameters due to parsimony considerations might
well render the model inadequate for data description purposes; see e.g. Silvennoinen
and Teräsvirta (2009). GARCH process is not an only option here; one can e.g. also
consider the AR processes (either the classical or the semiparametric ones), but the
same remarks apply.

5 Present approach

Below we propose an approach to VaR computation that in our opinion strikes a good
balance between being computationally easy and still beter than the one currently
employed by Nedcoffee.

Assume that the underlying asset prices are jointly normally distributed with a
constant covariance matrix over a period of 3 months. In this case, the returns R(t)’s
have normal distribution with unknown variance and the standard VaR estimate can
be applied.

Time series analysis of the returns suggests that the Student’s t-distribution is a
better fit than the normal distribution. The standard Student distribution is given
by the density

f(x) =
1√
νπ

Γ(ν+1
2 )

Γ(ν2 )

(
1 +

x2

ν

)− ν+1
2

,

where ν is the number of degrees of freedom (shape parameter). For our purposes the
non-standardized Student’s t-distribution with the density

f(x|µ, σ, ν) =
1

σ
√
νπ

Γ(ν+1
2 )

Γ(ν2 )

(
1 +

(
x−µ
σ

)2

ν

)− ν+1
2

,

where µ is the mean (location), σ is the scale parameter, ν is the the number of
degrees of freedom (shape parameter).



Note that for ν → ∞, the the non-standardized Student’s distribution Fµ,σ,ν
approaches the normal distribution N (µ, σ2). Therefore, the application of Student’s
t-distribution has an advantage over the normal law when the distribution of the
returns has lighter tails, and can recover the normal law, when necessary.

Again, we assume that µ = 0, the corresponding VaR value is the product of the
scale parameter σ and the appropriate quantile of the distribution.

The VaR models described above have been evaluated (backtested) for a number
of different fictitious portfolios in the following fashion: for each trading day the
corresponding VaR value has been computed, and the number of trading days when
the loss exceeded the predicted VaR has been computed. Ideally, the fraction of such
days should be close to the chosen confidence level α.

Here are the results for several portfolios and confidence levels α. We have tested
two types of portfolios. For the first type, positions in Arabica and Robusta are
long, and for the second type, one is long in Robusta, and short in Arabica. This
choice corresponds to test the performance of NEDCOFFEE’s estimator, since it is
constructed differently for long/long and long/short portfolios. Secondly, we tested
the length of the past period used in estimation of the parameters M = 60 days and
M = 90 days. Finally, we performed backtesting for confidence levels α = 0.15, 1.5,
and 5 percent.

Tables below give the performance of the estimators, most accurate in bold.

N=[3000,2000,100, 2000, 600, 200], M=60
Confidence Level NEDCOFFEE GAUSS STUDENT
0.15 0.33 0.66 0.25
1.50 0.66 2.40 1.74
5.00 2.23 5.21 5.87

N=[3000,2000,100, 2000, 600, 200], M=90
Confidence Level NEDCOFFEE GAUSS STUDENT
0.15 0.34 0.51 0.17
1.50 0.76 2.46 1.61
5.00 2.12 5.09 5.85

N=[3000,2000,100, -2000, 600, 200], M=60
Confidence Level NEDCOFFEE GAUSS STUDENT
0.15 0.83 0.58 0.41
1.50 2.15 1.65 1.49
5.00 5.77 4.58 5.00

N=[3000,2000,100, -2000, 600, 200], M=90
Confidence Level NEDCOFFEE GAUSS STUDENT
0.15 0.76 0.59 0.42
1.50 2.29 1.53 1.44
5.00 5.77 4.58 5.00



6 Conclusions and outlook
The current VaR estimator for low α severely overestimates the true VaR for long/long
portfolios, and underestimates the VaR for mixed portfolios. Suggested extensions
demonstrate better performance. In particular, Student’s t-distribution offers signifi-
cant improvement. We also have found that Nedcoffee should consider various levels
of confidence, e.g., 1 or 5 percent. The current level of 0.15 percent seems too small
to provide accurate risk assessment.

In this report we primarily discussed construction of VaR estimators based on
univariate time series S(t) or ∆S(t). Multivariate modelling of the returns R(t) might
provide a better insight into the dynamics of underlying assets. Moreover, multivariate
modelling opens a possibility for portfolios optimisation. Another important direction
for future work is incorporation of options in the analysis similar to the one performed
above.
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Abstract

We describe a number of approaches to a question posed by Philips Research,
described as the “random disc thrower” problem. Given a square grid of points
in the plane, we cover the points by equal-sized planar discs according to the
following random process. At each step, a random point of the grid is chosen
from the set of uncovered points as the centre of a new disc. This is an abstract
model of spatial reuse in wireless networks. A question of Philips Research asks
what, as a function of the grid length, is the expected number of discs chosen
before the process can no longer continue?

Our main results concern the one-dimensional variant of this problem, which
can be solved reasonably well, though we also provide a number of approaches
towards an approximate solution of the original two-dimensional problem. The
two-dimensional problem is related to an old, unresolved conjecture ([6]) that
has been the object of close study in both probability theory and statistical
physics.

Keywords: generating functions, Markov random fields, random sequential
adsorption, Rényi’s parking problem, wireless networks

1 Introduction
Various algorithms have been developed for effectively and efficiently maintaining and
updating network information in wireless sensor networks. In order to analyse the
performance of certain stochastic gossiping algorithms, Philips Research has posed
the following two questions.

The first question is related to the maintenance of network information in wireless
sensor networks. Consider an n × n grid of evenly spaced points (with spacing 1).
A disc thrower sequentially distributes (closed) discs of fixed radius r, so that each
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disc is centred on a grid point randomly and uniformly chosen from grid points that
were not covered by one of the previous discs. (Discs are allowed to overlap.) The
disc thrower continues throwing discs until every grid point is covered by at least one
disc. The question is, how many discs is the disc thrower expected to throw? More
specifically, what is the probability distribution for the number of discs thrown?

A second question is related to the propagation of new network information in
wireless sensor networks. Again consider an n×n grid. The disc thrower now throws
discs in phases. Again he throws discs sequentially. During each phase though he is
only allowed to throw discs so that each disc is centred on a grid point that he covered
during the previous phase. Once he cannot throw any more discs, he starts his next
phase. During the first phase he is only allowed to throw a disc on one of the corner
points. The question of interest here is, what are the expected number of phases until
the disc thrower covers the entire grid?

We will primarily focus on the first problem. As such, let us precisely define the
parameters that we are interested here. Let us first note that there is a natural d-
dimensional generalisation of the (first) random disc thrower problem. Consider a
d-dimensional n×· · ·×n grid with nd equally spaced points with spacing 1. A sphere
thrower sequentially distributes (closed) d-dimensional spheres of radius r such that
each sphere is centred on a grid point chosen uniformly at random from grid points
not contained within a previously thrown sphere. Let Nd(n, r) be the number of
spheres thrown by the end of this process. We are most interested in the coverage
ratio

θd(n, r) :=
E[Nd(n, r)]

nd
.

Since our first interest is in the case d = 2 that corresponds to discs, we often drop
the subscript and write N(n, r) (= N2(n, r)) and θ(n, r) (= θ2(n, r)).

The structure of the report is as follows. We start by discussing some of the related
background literature, then present some simulation results that give us insights on
how the expected number of thrown discs is related to the grid size n and the discs’
radius r. This is followed by an analysis of the one-dimensional disc thrower problem,
where exact results can be obtained. We also propose two approximation methods
based on Markov chains and enumeration of all possible fillings of the grid and discuss
them for the one-dimensional case. We then discuss the possibility of extending these
methods to the two-dimensional grid, in the specific case of discs having radius r =

√
2.

We leave the extension to larger discs for later work. At the end, we briefly look at
the second problem and discuss how it can be solved in the one-dimensional case.

1.1 Random sequential adsorption and Rényi’s parking prob-
lem

The (first) disc thrower problem is closely related to some models of physical chem-
istry. Perhaps the most relevant is that of random sequential adsorption (RSA) which
we describe now. Suppose we have some surface and a sequence of particles land at
random locations on the surface. Each particle adheres to the surface, or is “adsorbed”,
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if it lands at an exposed portion of the surface. In particular, each adsorbed particle
covers a region of the surface, which prevents the adsorption of any particle that lands
there afterwards. The process is irreversible, meaning that the system will eventually
arrive at a jammed state, after which no new particles may be adsorbed. The standard
models that incorporate these kinds of stochastic and geometric elements are known
as random sequential adsorption (RSA). For a comprehensive overview of RSA, the
reader is referred to [4]. Most of the research done in this field is about determining
the coverage ratio θ in the eventual jammed state: for adsorption onto lattices, θ is
the ratio of adsorbed particles to the number of lattice points; in continuous space, θ
is the density of points of adsorption in the surface. Clearly, the random disc thrower
problem is captured by an appropriate lattice RSA model.

Although Philips is mainly interested in the lattice version of the problem, we
mention here that the continuous RSA may be viewed as a useful limiting case. In
lattice RSA, discs of small radius correspond to regions of the lattice that are jagged
and far from round. On the other hand, taking r large and n even larger, the shapes
more closely approach perfectly circular shapes in a continuous square. In particular,
the random disc thrower problem can in this case be approximated by the contin-
uous disc thrower problem, in which perfectly circular (closed) discs of radius r are
randomly and sequentially thrown into the plane, so that their centres land inside a
square of side length x, but do not land on a previously covered point, continuing
until no area of the square is uncovered. Let us denote the analogously defined cov-
erage ratio by θ̃(x, r) and write θ̃(r) = limx→∞ θ̃(x, r). This problem is also known
in the literature as continuous RSA with hard discs of radius r/2. Figure 1 depicts a
jammed state in this model.

Figure 1: RSA with hard discs of radius r/2 in jammed state.

This leads us to another very relevant but older model, one that is related to
the random car parking problem solved by [9]. Consider the d-dimensional cube
[0, x]d for some x ≥ 1. First we place a random unit-length d-dimensional cube so
its centre point is uniformly distributed in [1/2, x − 1/2]d. Subsequently, we place
a new d-dimensional cube randomly and independently within [0, x]d in such a way
that it does not intersect any previously placed d-dimensional cube. We repeat this
until no more cubes can be placed. The question is, what is the expected eventual
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density of cubes placed in [0, x]d? This model may be referred to as the (continuous)
random sequential packing of d-dimensional cubes, and such problems are discussed
more generally in [3].

The random sequential packing problem for d-dimensional cubes is quite natural
and is related to a wide variety of problems in statistical physics. By a suitable simple
rescaling and ignoring boundary effects in the asymptotic limit, one may consider the
d = 2 case as equivalent to a continuous and “square” version of our random disc
thrower problem. Since the objects are simpler, one might expect that this problem
is somewhat easier than the disc thrower problem; however, the process retains the
same irreversibility property, which seems to be a fundamental difficulty. [9] solved
the d = 1 case, known best as the random car parking problem, by proving that the
expected density in the limit as x→∞ has the form

C1 :=

∫ ∞

0

exp

(
−2

∫ t

0

1− e−u
u

du

)
dt ≈ 0.748.

The evocative name of this model comes from imagining the intervals as cars of
unit length that are parked randomly in a street of length x. [6] considered the
d-dimensional problem in general and conjectured that the density should converge
to C1

d. From simulation results, this conjecture is widely believed to be false for
every d > 1. Nonetheless, it remains open after more than half a century! Even the
existence of the d-dimensional limit density was not proven until [7].

Following on that work, [8] proved a law of large numbers and central limit theorem
for a general class of lattice RSA models, of which the random disc thrower problem
is a member. Those results imply the following.

Theorem 1.1 ([8]). For all r ∈ R+ there is a constant θ = θ(r) ≥ 0 such that for all
p ∈ [1,∞)

N(n, r)

n2

Lp

→ θ as n→∞.

Theorem 1.2 ([8]). For all r ∈ R+ there is a constant σ = σ(r) ≥ 0 such that

Var[N(n, r)]

n2
→ σ as n→∞

and
N(n, r)− E[N(n, r)]

n

D→ N (0, σ) as n→∞.

Hence for n large enough the distribution ofN(n, r) is approximately Gaussian. More-
over, the coefficient of variation tends to zero as n−1. Thus a good approximation for
grids of moderate size is E[N(n, r)] ≈ n2θ(r).

1.2 Simulation estimates of θ(r)
In this subsection, we discuss heuristic and simulation estimates for the coverage ratio
θ(r) in terms of r. Let us consider first the case r = 1. A disc thrown on a grid point
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Figure 2: A disc with radius r = 1 or with radius r =
√

2.

will then cover four neighbouring nodes, see Figure 2, left. Hence, in this case, the
problem is equivalent to randomly selecting grid points in sequence, subject to the
restriction that each selected point does not neighbour a previously selected point.
This problem is known as RSA of monomers on a square lattice with nearest-neighbour
exclusion. An approximation for θ(1) derived from series analysis has been obtained
(cf. [10]) with the estimate θ(1) ≈ 0.36413. Ignoring effects of the grid boundary, or
taking n sufficiently large, we can then estimate E[N(n, 1)] ≈ 0.36413n2. Next let us
consider the case r =

√
2. A disc thrown on a grid point will then cover eight nearby

nodes, see Figure 2, right. This problem is known as RSA of monomers on a square
lattice with next-nearest-neighbour exclusion. One can deduce that this problem
corresponds to RSA of hard unit squares on a square lattice ([4], page 1310). The
coverage for the latter problem is estimated as θ ≈ 0.7476. However, since a square
covers four points and a square corresponds to one disc, we find for our problem
θ(
√

2) ≈ 0.7476/4 = 0.1869, giving the estimate E[N(n,
√

2)] ≈ 0.1869n2.
We are not aware of published analysis to approximate the coverage ratio for other

disc sizes. Simulations could help to determine the coverage. Moreover, methods using
rate equations to estimate the coverage are discussed in [4] and [10].

Using continuous RSA as an approximation however, we can develop asymptotic
estimates of θ(r) for large r. The continuous RSA problem has been studied exten-
sively and the coverage has been estimated by θ̃(1/

√
π) ≈ 0.5479 (cf. [10]). Since

each disc has area πr2/4, we deduce that θ(r) ≈ 0.5479/(πr2/4) ≈ 0.6976r−2 as r
grows large. This approximation and some simulation results are plotted in Figure 3
for n = 128 against r, where for each r we average over 100 simulations. The ap-
proximation becomes more accurate for larger r as the discrete discs become more
circular.

We end this section with a short remark about the effect of the grid boundary
on the covering ratio, i.e. the difference between θ2(n, r) and θ2(r). (The boundary
effect is also the essential difference between RSA and random sequential packing.)
Points near the boundary are more likely to be covered than points in the inte-
rior of the grid. However, in [4] it is noted that in the one-dimensional case these
boundary effects decay superexponentially. Furthermore, simulations suggest that
for the two-dimensional case boundary effects tend to decay even faster than in the
one-dimensional case. Thus, in moderate size grids, the boundary has only a small
influence on the actual coverage ratio, when compared with the coverage ratio for
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Figure 3: Asymptotic behaviour of E[N ].

large n. In Figure 4, simulation results are shown for the coverage ratio with respect
to the position of grid points. We average over 105 simulations on a 30×30 grid and
discs with radius r = 5. We indeed see that the boundary effects decay rapidly, af-
ter approximately one radius length. It also appears as though the boundary effects
propagate like waves to the interior of the grid.

2 One-dimensional disc throwing

In this section, we analyse the one-dimensional restriction of the random disc thrower
problem. This amounts to throwing equal-sized line segments on a line with n grid
points. For simplicity, we shall usually assume that the segments all have radius
r = 1, that is they each cover exactly three points of the line.

2.1 Recurrence

We now describe a recursive approach to the one-dimensional random disc thrower
problem. Each time a disc is thrown, the problem naturally splits into two smaller
subproblems which are independent of one another. See Figure 5. This leads to the
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Figure 4: Simulation results of boundary effects.

Figure 5: A depiction of the decomposition of the one-dimensional problem into two
smaller independent subproblems.

following recursion:

θ1(n, 1) = 1+
1

n

n−2∑

k=3

(θ1(k − 2, 1) + θ1(n− k − 1, 1))+

+
2

n
(θ1(n− 3, 1) + θ1(n− 2, 1)). (1)

We note that the last term on the right hand side corresponds to the case where the
disc has been thrown close to one of the endpoints of the line. Though the above
recurrence is written only for r = 1, this relation can be extended to arbitrary r.
Hence for reasonably small n (and r) we can use the recurrence to compute θ1(n, r)
exactly.

To compute the limit of θ1(n, 1), we require analytical tools. This is done explicitly
in Dutour Sikirić and Itoh [3, Chapter 2] for a closely related one-dimensional discrete
random sequential packing problem, referred to as the Flory model. This process is
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defined as follows: place at random a left-closed, right-open interval of length r in
{0, . . . , n}, with the left endpoint of the interval chosen uniformly from {0, . . . , n−r};
then each subsequent interval (of length r) is chosen uniformly at random so that it
intersects with no previously chosen interval. Here the problem is to study vr(n), the
number of intervals that have been packed by the end of the process, and in particular
to determine Evr(n)/n.

The relationship between the one-dimensional random disc thrower problem and
the one-dimensional discrete random sequential packing is, for instance for r = 1, that

lim
n→∞

Ev1(n)

n
= lim inf

n→∞
θ1(n, 1). (2)

It is possible to derive from a recurrence relation similar to ours in (1) a differential
equation for the generating function

F (x) :=
∞∑

n=1

Ev1(n)

n
xn.

By solving the differential equation, we can then obtain an analytic expression for
F (x). Then reading off the coefficient of xn in the Taylor series of F (x), we obtain

lim
n→∞

θ1(n, 1) =
1

2

(
1− 1

e2

)
≈ 0.432

where we used (2).

2.2 A Markov chain approximation
The following approach is suitable for the coverage for a very large grid compared to
the size of the disc. Consider the one-dimensional case and a new random process
with the following three building blocks, named a, b and c. Linking two building
blocks we require the endpoints to overlap and to be either both occupied or both
empty. The following pictures illustrate the building blocks, how to link them, and
give an example of an admissible configuration.

three building blocks:
a b c

linking two blocks:
a b

In order to approximate the one-dimensional random disc thrower problem, we
would like to exclude on one hand the possibility of two centres being neighbouring
points, and on the other hand the appearance of three (or more) unoccupied neigh-
bouring grid points. Therefore, we consider the following transition matrix:
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example of an admissible configuration:

M := (Mij)1≤i,j≤3 =




0 q 1− q
1 0 0
0 1 0




a b

c

p

1− p 1
1

q

q

for 0 < q < 1, q being the only parameter that determines the Markov chain. Which
value of q should we choose? Our Ansatz is the following: we choose the value of q
to maximise the entropy of the system.

The entropy of the Markov chain with transition matrix M is given by the entropy
rate

H = −
∑

i,j

πiMij logMij = − 1

3− q
(
q log q + (1− q) log(1− q)

)
, (3)

where Π = (π1, π2, π3) with π1 + π2 + π3 = 1 is the stationary distribution, i.e. it
satisfies the equation ΠM = Π. The latter two equations imply Π =

(
1

3−q ,
1

3−q ,
1−q
3−q
)
.

Note that 1
3−q is an approximation for the coverage ratio θ1(1).

Let us heuristically explain our Ansatz: the system is very likely not to be in an
extreme event. A likely event is a steady state, i.e. a configuration that does not
change much under small fluctuation. Entropy is the measure of the multiplicity of
a configuration. So we can reformulate our task as to extremise the entropy. This
Ansatz is consistent with the Second Law of Thermodynamics. The concept of entropy
and the entropy maximisation principle also plays an essential role in information
theory, see Cover and Thomas [1].

The mathematical justification is based on large deviations. Morally, we say that
a sequence of random variables Yn taking value on a (Polish) space Y satisfies a large
deviation principle with a rate function I : Y → [0,+∞] if for any event A

P(Yn ∈ A) ≈ exp[−n inf
x∈A

I(x)] as n→∞.

The rate function I characterises the probability of observing an event: for an
event A, the smaller values of infx∈A I(x) yield higher probabilities of observing A.
The value of I is always non-negative and attains its minimum at the most probable
event. Thus the large deviation principle explains that in order to have the most
likely event, we need to extremise the rate function.

Now we consider the empirical pair measure of an irreducible Markov chain X =
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{Xi} where Xi ∈ Γ, i = 1, · · · , k,

Ln =
1

n

n∑

i=1

δ(Xi,Xi+1).

Sanov’s Theorem (cf. den Hollander [2]) states that Ln satisfies a large deviation
principle with the rate function

IM(ν) =
∑

ij

νij log

(
νij

νiMij

)

for any probability measure ν on Γ × Γ, where νi =
∑

j νij . Since the empirical
measure counts the (average) number of realisations of an event, the theorem says
that in order to have a maximum number of realisation of a Markov chain, we should
extremise the relative entropy. Note that we can rewrite I as a relative entropy

IM(ν) = R(ν||ν ⊗M), (4)

where ν ⊗M is defined by (ν ⊗M)ij = νiMij . Now we can rewrite the function H
in (3) in the form of (4). Let uij = 1

|Γ|2 be the uniform measure on Γ× Γ.

H = −
∑

i,j

πiMij logMij

= −
∑

ij

πiMij log
πiMij

uij
+ log |Γ|2 +

∑

i

πi log πi

= −R(π ⊗M||u) + log |Γ|2 +
∑

i

πi log πi.

Hence, up to sum of a constant and entropy of the stationary distribution, H can
be written as the (negative) relative entropy. The argument above explains why it is
reasonable to maximise the function H.

Therefore, we are finding the value q that satisfies

dH
dq

= 0.

Using (3), we can calculate explicitly

dH
dq

= −3 log q − 2 log (1− q)
(3− q)2

,

that yields the equation q3−q2 +2q−1 = 0. Solving this equation, we find q = 0.5698
and θ1(1) ≈ 1

3−q = 0.4115.
This is close to the actual value (≈ 0.432, as we saw in the last subsection). We

have hope to find better estimates of the coverage ratio by including longer building
blocks and consequently studying larger transition matrices. This is a task for future
research.
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2.3 Configurations and weights

A final approach to understand the disc throwing problem is by an analysis of the
direct calculation. Such a direct calculation of all possible disc throwings quickly
becomes unfeasible when the number of grid points n is large compared to the disc
size r. However, when we approach the problem from the end result of a random disc
throwing, we see that the disc throwing process can be separated into two problems:

1. determine all possible configurations ci of covering the grid.

2. determine the relative weight, i.e. the probability Pi of reaching a given config-
uration ci by the disc throwing process.

Here i ∈ {1, . . . , l} runs over all possible configurations of covering the grid. If both
problems are solved exactly, the expected value for the number N1(n, 1) of discs to
cover the grid equals

EN1(n, 1) =

l∑

i=1

kiPi, (5)

where ki is the number of discs in configuration ci.

The advantage of separating the original disc throwing process in this way, is that
the two subproblems might be easier to calculate or estimate than the disc throwing
process itself.

2.3.1 Configurations

Determining all possible configurations of a completely covered grid of length n − 1
(n grid points) by discs of size r = 1 is not hard in the one-dimensional situation.
For this, we have to fill an interval of length n− 1 or n− 2 or n− 3 with intervals of
length 2 or 3 and add 0, 1 or 2 intervals of length 1 at the boundary respectively to
end up with a combined length equal to n− 1. These intervals represent the possible
distances between neighbouring centers of discs. The following example with n = 21
grid points (Table 2.3.1) should clarify the methodology.
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C kC similarity class of configurations aC
1 11 10 · 2

(
10
0

)

2 10 1 + 9 · 2 + 1
(

9
0

)

3 10 1 + 8 · 2 + 1 · 3 or 8 · 2 + 1 · 3 + 1 2·
(

9
8

)

4 10 7 · 2 + 2 · 3
(

9
7

)

5 9 1 + 6 · 2 + 2 · 3 + 1 2·
(

8
6

)

6 9 1 + 5 · 2 + 3 · 3 or 5 · 2 + 3 · 3 + 1 2·
(

8
5

)

7 9 4 · 2 + 4 · 3
(

8
4

)

8 8 1 + 3 · 2 + 4 · 3 + 1
(

7
3

)

9 8 1 + 2 · 2 + 5 · 3 or 2 · 2 + 5 · 3 + 1 2·
(

7
2

)

10 8 1 · 2 + 7 · 3
(

7
1

)

11 7 1 + 0 · 2 + 6 · 3 + 1
(

6
0

)

Table 1: List of all possible similarity classes. n = 21 and r = 1.

In the enumeration of possible configurations, we can restrict ourselves to enumer-
ating different similarity classes C, due to the symmetry of the ci. A similarity class
C contains aC configurations ci, for which the analysis of the disc throwing process
does not depend on the precise ordering of the different intervals of length 2 and 3.
kC stands for the number of discs used for each configuration in the similarity class
C. As an example, the 5th similarity class consists of configurations with 6 intervals
of length 2 and 2 intervals of length 3. A representative configuration from this class
is presented in Figure 6. Since the probability Pi of one representative ci in a similar-

Figure 6: Representative configuration for C = 5.

ity class C equals the probability of any other representative in that class, the total
probability of ending up in any configuration in a certain similarity class is aCPi.

2.3.2 Weights

First approximation The probabilities of occurrence for intervals of length 2 and
3 are not the same. From Monte Carlo simulations, we know that the probability of
an interval of length 2 is higher than 0.5 and is length-of-grid-dependent. However,
we can conclude that the error we make when we do not use the exact Pi, but rather
assume that each configuration ci is equally probable, is not large. In Figure 7, one
can see the distribution of N1(100, 1) under assumption that each configuration ci is
equally probable.
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Figure 7: Distribution of discs needed to cover n = 100 grid points.

We obtained EN1(100, 1) ≈ 41.8370, V ar N1(100, 1) ≈ 1.7773 and
∑N=51

i=1 ai =
2066337330754. This result is not far from 10000 Monte Carlo simulations where
we obtained EN1(100, 1) ≈ 43.5225, V ar N1(100, 1) ≈ 1.9155. It would be useful
to improve our results by approximating the Pi. The following section covers this
subject.

Approximation of Pi Finding the probability Pi of ending up in a given con-
figuration ci brings us back to the original problem. If the number of discs in the
configuration ci is denoted by ki, then there are ki! ways of ending up in this con-
figuration. At this stage, we want to emphasise that the probability is not given by
the ratio of multiplicities of the different configurations, Pi 6= ki!∑l

i ki!
. Rather, to find

Pi one has to consider each j ∈ {1, . . . , ki!} of the ki! possible ways to end up in ci.
Each of these disc throwings depends on the order of the discs being thrown and how
many grid points were covered in previous steps,

Pij =

ki∏

m=1

1

n−∑m−1
s=0 zijs

, (6)

where zijs is the number of additional grid points covered by the s’th disc thrown in
the j’th process of covering configuration ci and zij0 = 0. Note that

∑ki

s=1 zijs = n,
since the grid is fully covered after all discs have been thrown.
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Calculating Pij for all these different disc throwing processes is exactly what makes
the disc throwing process hard. Therefore, in this method we suggest to approximate
the additional coverings zijs in a sensible manner, based on what typically happens
in a disc throwing process. As evidenced by Figure 8, the values for zijs are typically
2r + 1 = 3 for the first discs thrown. Over the course of the disc throwing process,
some discs only cover 2 additional points, while at the end, most newly thrown in
discs cover only a single additional point. On average, 0.5 of the discs cover 3 points,

100 200 300 400
Disk ð

0.5

1.0

1.5

2.0

2.5

3.0
New coverings

Figure 8: Additional points covered by newly thrown in discs, for an n = 1000
simulation.

0.31 of the discs cover 2 points and 0.19 of the discs cover 1 point.
As an approximation for Pij we assume that all initial discs cover 3 points, all

next discs cover 2 additional points and all remaining discs cover a single point. Then,
Pij = Pi1 for all j and we do not have to worry about different throwing processes.
Denote with pki the number of discs that cover p previously uncovered points, then
from

3ki + 2ki + 1ki = ki, 33ki + 22ki + 1ki = n, (7)

we can solve 2ki and 1ki in terms of 3ki. As a further approximation, we assume that
2ki

1ki
= 0.31

0.19 . This then fixes 3ki and allows us to write an approximate value for Pi as

Pi = ki!
3ki∏

m=1

1

n− 3(m− 1)
×

3ki∏

m=1

1

n− 33ki − 2(m− 1)

×
1ki∏

m=1

1

n− 33ki − 22ki − (m− 1)
. (8)

As a result of approximating the probabilities, we are not guaranteed to have a total
probability equal to unity. These Pi should therefore be seen as relative probabili-
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ties and, to find the expectation EN1(n, 1), one should use the rescaled probabilities
P̂i = Pi/

∑l
i=1 Pi. By this method, we find approximations EN1(21, 1) ≈ 9.0749

and V ar N1(21, 1) ≈ 0.24479, which are in reasonable but not excellent agree-
ment with 10000 Monte Carlo simulations that suggest EN1(21, 1) ≈ 9.3769 and
V ar N1(21, 1) ≈ 0.43549.

3 Two-dimensional disc throwing

In this section, we analyse the original two-dimensional random disc thrower problem.
We have chosen to restrict our attention to discs of radius r =

√
2. This in fact

corresponds to discs which are squares each covering 9 points of the grid.

3.1 Recurrence approach

In Subsection 2.1, we outlined an explicit recurrence for the one-dimensional restric-
tion of the problem. This recurrence relied on the fact that we could split into smaller
independent subproblems. Here we would like to discuss the difficulties of extending
this approach to the two-dimensional problem.

A natural idea is to split the problem at each stage into the four subproblems
corresponding to the four regions of the grid determined by the randomly thrown
disc, as depicted in Figure 9, left. Solving these as independent subproblems and
then combining them provides a lower bound to a related disc throwing problem. We
can solve this related problem by writing the corresponding recurrence relation, one
that is similar to (1) but with four terms rather than two. As in Subsection 2.1,
such a recurrence allows us to write down exact answers for small values of n, or to
potentially solve it asymptotically using analytic methodology.

Figure 9: A depiction of the problem with decomposition of the two-dimensional
problem into smaller subproblems.
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Unfortunately, in attempting to decompose the problem in this way, there are
possible long-range dependencies between the four regions, as depicted in Figure 9,
right. Though it may be possible to generate high quality solutions for the related
problem, it would require further investigation to determine if such solutions are at
all related to the original problem. In particular, it would be worthwhile quantifying
the error due to long-range dependencies. Perhaps they are negligible when n is large.

3.2 Markov chain approach
In two dimensions the Markov chain approach could be extended to the consideration
of Markov fields, see e.g. [5]. Let us first recall the definition of a Markov random
field on a regular two-dimensional grid.

Let S = {1, · · · , n}×{1, · · · , n} be the grid of n2 points, which we call sites. For a
fixed site s define its neighborhoodsN(s). For instance, for the site s = (i, j), that is in
the interior, the neighborhood could be N(s) = {(i−1, j), (i+1, j), (i, j−1), (i, j+1)}.
For a site on the boundary, there are less neighbors.

A Markov random field X(S) on S is defined via local conditionals

P(X(s) = xs | X(S \ s) = xS\s) = P(X(s) = xs | X(N(s)) = xN(s)).

In other words, the full conditional distribution of X(s) depends only on the neighbors
X(N(s)).

To generalise our Markov approach to the two-dimensional case, we observe that
the probability of a point in the lattice chosen to be a centre given all other outcomes
is the same as the probability of being a centre conditioned only on the outcome of the
neighbors. We see that the space of configurations as well as the above requirement in
the two-dimensional disc thrower problem resemble with the definition of the Markov
random field on the grid. For this reason, we believe that the Markov random field
would be a good model for the two-dimensional disc thrower problem. The study of
this model is out of the scope of this report and is a topic for future research.

3.3 Configurations and weights approach
Extending the approach of Subsection 2.3 to more than one dimension introduces
additional complications. The feasibility of that method is determined by how well
one can recover from the complications in each of the two subproblems.

Configurations Finding all configurations in a two-dimensional grid is hardly as
straightforward as it is in the one-dimensional case. At least the separation of the
disc throwing process into the two subproblems (finding configurations and weights)
allows us to first only consider the problem of finding all possible configurations rather
than all disc throwing processes. In principle, all configurations can be algorithmically
enlisted by the following method: for a grid covered by r =

√
2 discs, we know that

exactly one of the 4 upper left grid points should be covered. Depending on which
grid point happens to be covered, there are again 4 possibilities for the disc to the
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right of it. By continuing this process also in the vertical direction, one finds all
configurations. However, for an n × n grid, there are a maximum of dn/2e2 discs,
each with at most 4 possible center points, giving an upper bound for the number of
configurations equal to 22dn/2e2 . To get a feeling for the number of configurations,
taking square discs covering 25 grid points on a 30 × 30 lattice, there are about
9d30/3e2 ≈ 1095 configurations.

Weights Extending our approximation of the probability Pi of a given configuration
to the two-dimensional case does not seem to be the weakest link in this approach.
Once the method has been fine tuned in the one-dimensional case, one can generalise
easily to the two-dimensional situation. The probability Pi only depends on the
number of discs ki in the configuration, leading to only a small number of required
calculations. The difficulty is how to find reasonable values for the pki. In the
one-dimensional situation discussed above, only 3ki had to be determined by the
assumption that 2ki

1ki
= 0.31

0.19 . In two dimensions, there are many more pki and still
only two constraint equations

∑
p pki = ki and

∑
p ppki = n2. However, this is

not a problem inherent to the two-dimensional situation, as it also occurs in the
one-dimensional case for r > 2. Therefore, an analysis of the applicability of our
approximation for the probabilities in this more general one-dimensional situation,
should also be conclusive for the two-dimensional system.

3.4 Hexagonal approach

One can consider other lattices than the square one. One of the most common lat-
tices in nature is the hexagonal one. While in a square lattice every point can be
covered up to four times, in the hexagonal lattice every disc (with r = 1) covers up to
seven points and every point can be covered at most three times. This may simplify
matters. Figure 10 depicts one of the possible configurations for a hexagonal lattice.
Determining the expected number of randomly thrown discs needed for coverage of a
given region is a problem that remains out of reach for the hexagonal lattice, yet we
can still make some comparisons.

We have compared the square and hexagonal lattices directly, by performing 10000
Monte Carlo simulation on a 20× 20 grid. Table 2 presents the outcomes.

Lattice EN2(20, 1) V ar N2(20, 1) θ area
square 149.1485 22.6434 0.3729 400
hexagonal 97.8310 7.4639 0.2824 ≈ 346.41

Table 2: Comparison of characteristics of N2(20, 1) for a square and hexagonal lattice
for a 20× 20 grid.

On the one hand, with 400 points in a hexagonal lattice we can cover an area
which is approximately 12.5% smaller than an area covered in a square fashion. On
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Figure 10: One realisation of a coverage process for a hexagonal lattice in a 20 × 20
grid.

the other hand, we need 34% fewer discs and the coverage is 24% smaller, which
makes the hexagonal approach interesting for further investigations.

4 The second problem of Philips

As a second question, we shortly discuss a related but different disc throwing process
that models information propagation on a lattice. We restrict ourselves to a one-
dimensional grid with n grid points. In this second problem, at a given intermediate
stage, the first m grid points serve as possible locations for the centre of a disc.
Let us call these m grid points the base for disc throwing. During 1 uts (unit time
step) the usual disc throwing process is applied to this base for disc throwing. After
all discs have been thrown, m′ discs will be covered, where m′ ≥ m depending on
the position of the (right) boundary disc. For the next uts the usual disc throwing
process is applied to the new base for disc throwing, consisting of the m′ grid points
that were covered in the previous phase. The process continues until all n grid points
are covered. The question is: how long, i.e. how many unit time steps, will it take on
average to cover a grid of n grid points when one starts by throwing a disc centred
on the first (left) grid point?

We consider discs of radius r = 1. At an intermediate stage — when the base
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for disc throwing consists of m points — the signal is only propagated when the
disc throwing process produces a configuration in which there is a disc centred on
the last allowed grid point m, thereby expanding the base for disc throwing for the
next phase to m + 1. Instead, if there is a disc centred at m − 1, there will be no
additional points covered and the signal will not have propagated during this unit
time step. With P (k,m) we denote the probability that at the end of the usual
disc throwing process on the base of m points, there is a disc centred at the k’th
point. Note that P (m − 1,m) + P (m,m) = 1. The average speed of propagation is
v(m) = (0 · P (m − 1,m) + 1 · P (m,m))/(1 uts) = P (m,m)/(1 uts) when the base
for disc throwing has size m. Hence, on average the time it takes to expand to a
base of size m+ 1 is t(m) = 1

1−P (m−1,m) uts and the total time it takes to propagate

information along a grid of size n is T (n) =
∑n−1

m=1 t(m) uts.
For small values ofm, the probability P (m−1,m) is quickly calculated: P (0, 1) :=

1−P (1, 1) = 0, P (1, 2) = 1
2 , P (2, 3) = 1

3 . To find a closed expression for P (m− 1,m)
for arbitrary m, we refer to ([4], page 1286) in which a problem isomorphic to the one
presented here is studied. A recursive formula for P (m− 1,m),

P (m−1,m) =
1

m

(
P (m−3,m−2)+P (m−4,m−3)+ . . . P (2, 3)+P (1, 2)+1

)
, (9)

follows from adding probabilities corresponding to the grid sizes to the right of the
first disc thrown. This recursive relation is solved by P (m − 1,m) =

∑m
r=0

(−1)r

r! ,
which approaches e−1 for large m. Hence, the average time of propagating through a
lattice of n grid points is

T (n) =
n−1∑

m=1

1

1−∑m
r=0

(−1)r

r!

uts, (10)

which is easy to compute for small n, e.g. T (10) = 14.007 uts. Furthermore, because
P (m − 1,m) approaches e−1 rapidly for large m, we can find a linear propagation
formula, T (n) ≈ 14.007 + 1.582(n− 10) uts, for n ≥ 10.

In this analysis, we have only considered discs of radius r = 1. Our methods can
be generalised to larger discs, r ≥ 2. The average propagation velocity is then given
by v(m) = (P (m−r+1,m)+2P (m−r+2,m)+ . . .+rP (m,m))/(1 uts) and each of
the P (k,m) are given in terms of a recursive formula. Extending the one-dimensional
situation to a two-dimensional setup requires more care, however. In two dimensions,
more exotic topologies are possible and the expansion rate is a more subtle notion to
define. Nevertheless, the one-dimensional situation described in this section is already
interesting by itself for its corridor or street/highway applications.
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Abstract

Climate change is expected to cause higher discharge levels in the river Rhine
at the Dutch-German border. In this study group project that was commissioned
by Rijkswaterstaat, we investigate the possibility of flooding the Rijnstrangen
area as a protective measure. We identify three subproblems. We first analyze
the data recorded by Rijkswaterstaat and estimate the likelihood and the dura-
tion of extremely large discharges at the German border into the river. Next,
we investigate how a change in discharge levels affects the water height in the
first 35 kilometer section in the Netherlands. Finally we study the design of
weirs and floodgates to allow diverting a sufficiently large amount of water flow
from the river into the retention area. Our statistical analysis shows that an
extreme discharge level is expected to occur once every 1250 years and to last for
about three and a half days. Our numerical flow model shows the water height
reaches equilibrium on a time scale that is much smaller than the one on which
flooding occurs. The flow can thus be considered quasi-stationary. Passive weirs
finally are shown to be too long to be feasible. Actively controlled floodgates
are therefore recommended.
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1 Introduction

The Netherlands is a low-lying country that hosts the estuaries of various rivers,
among which the river Rhine. As a large number of people live and work in this
delta, the protection of its population and its economic assets are administered at a
national level. Rijkswaterstaat, part of the Dutch Ministry of Infrastructure and the
Environment, is responsible for building and maintaining Dutch infrastructure.

Due to climate change, higher discharge volumes and higher water levels are expected.
Certain safety standards specified by Dutch legislation might be violated. Rijkswater-
staat therefore has to take action. In this report we focus on the river Rhine. Just
downstream from the border with Germany, this river (Upper Rhine or Bovenrijn)
splits into the Waal and the Pannerdens Canal (Pannerdens Kanaal), the latter of
which again splits into the Lower Rhine (Nederrijn) and the IJssel (see Figure 1 for
a sketch). The ratios of the discharges in the final three branches are regulated by
national policy..

The Netherlands has very little influence on the amount of water that enters the
country. This is partly due to the uncontrollability of rainfall in upstream parts
of the river. Moreover, Germany decides which measures are to be taken (or not)
on German territory. The control of flooding of Dutch territory consequently must
be achieved in the Netherlands. This SWI group was asked to study one of the
possibilities to do so.

Near the cities of Nijmegen and Arnhem and adjacent to the river there is an area
called Rijnstrangen that potentially serves as a retention area. A retention area is
a region surrounded by dikes, intended to serve as a buffer to moderate extremely
high discharge volumes. Under normal circumstances, this land is home to people
who live and work there with the knowledge that in exceptional cases, they may have
to evacuate due to flooding. The Rijnstrangen area could accommodate a maximum
capacity of 150 million m3.

Obviously, turning a region into a retention area has serious consequences. Before
this decision can be made, the following issues need to be addressed:

• What is the minimum required capacity of the retention area given the uncer-
tainty in the discharge of the Rhine entering the Netherlands? How does the
minimum capacity depend on the peak discharge? Rijkswaterstaat would like
the discharge peak to be reduced by 500 m3/s. The retention area should not
be completely filled before the extreme discharge event has passed.

• What should the outlets to the retention area look like? Important characteris-
tics are: length, height, location and number. Three types of outlets have been
distinguished. The first is a dike that is (partly) demolished in the event of
a flood and that needs to be rebuilt afterwards. The second type uses a more
sophisticated system of floodgates. For the first two types an authority deciding
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on the opening of the outlets needs to be installed. The third type is just to have
lower dikes locally, acting as a weir. If the water level exceeds the threshold,
the retention area will start to fill automatically. In all cases Rijkswaterstaat is
also interested in having estimates for the water velocities at the outlet;

• What are the consequences of the design of the retention area and the outlets
on the discharge ratio in the final three branches of the river?

• How can the retention area be emptied following a flooding event?

• How can people be kept aware of the risks of living and working in the retention
area over the course of several centuries? The retention area is only to be
flooded under extreme conditions, i.e. very rarely. Most of the inhabitants will
eventually perceive the situation to be less serious than it actually is.

These are the issues that the SWI group was asked to consider.

Figure 1: Rhine river system.

2 Solution approach

The following three subproblems were considered:

1. What is the likelihood and expected duration of an extreme flooding event
and what is the total capacity needed to be retained in the Rijnstrangen area?
Using statistical analysis of the data provided by Rijkswaterstaat, we attempt
to estimate these numbers. Methods and results are discussed in Section 3.
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2. What are the transient effects, within the Rhine region, of a change in dis-
charge? This question was addressed using a PDE-based shallow water model
and numerical simulations. The method and results are presented in Section 4
and Section 5 of this report. The main conclusion is that considering the time
scales upon which flooding occurs, the transient effects are negligible.

3. What options exist for the design of the outlets such that the desired retention
capacity is attained? These consist of passive flooding, floodgates and inflow
from the bottom of the river. Demolition of a dike was not considered as an
outlet option. Models are presented and analysed in Section 6.

3 Basic data analysis

Rijkswaterstaat provided us with a data set of daily discharge measurements at Lobith
where the Rhine enters the Nethertlands. We want to derive from this data a model
to describe and, more importantly, to predict extreme events. The extreme event in
which we are interested is the occurrence of a very high discharge. In this section we
will treat two approaches: a more theoretical investigation of extreme events (Section
3.1) and a hands-on interpretation of the data (Section 3.2).

3.1 Distribution of extreme events

In this section we will elaborate the theory of extreme events. We will first introduce
a distribution that can be used to describe extreme events. Using this distribution
and the available data we will be able to comment on the likelihood of an extreme
event to occur.

3.1.1 Generalized extreme value distribution

Discharge Q in m3/s at Lobith is recorded daily. The available data set of daily
measurements of Q contains values from 1 January 1989 to 21 July 2012. To analyse
the extreme discharge values we use the 23-year data from 1 July 1989–30 June
2012.

Now we define the vector Q̂max as the vector of length 23 containing the maximum
discharge values at Lobith of each of the given 23 years.

We want to model the yearly maximum discharge at Lobith. This can be done, as
described in [2], with the Generalized Extreme Value distribution (GEV distribution),
which is defined as

G(x) = exp

[
−
(

1 + γ
x− µ
σ

)− 1
γ

+

]
, (1)
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where the notation F (x)+ must be interpreted as

F (x)+ =

{
F (x) if F (x) > 0,
0 otherwise. (2)

In this work we will assume that γ ↓ 0. In the limit the GEV distribution converges
to the Gumbel distribution. It is also called the Type I extreme value distribution
and it is given by

F (x;µ, σ) = e−e
−z
, where z =

x− µ
σ

, (3)

as is stated in [2] and the references therein. To this cumulative distribution function
(cdf) belongs the probability density function

f(x;µ, σ) =
1

σ
e−z−e

−z
, where again z =

x− µ
σ

. (4)

Other distributions are for example the Generalized Pareto Distribution (GPD) which
is used together with the Peaks Over Threshold (POT). However, we will not work
with these distributions for the following reason. In order to work with independent
extreme values, [2] proposes that the distance between two peaks above some threshold
should be at least 100 days. Assume that we extract from our relatively small amount
of data a set of peaks that are at least a distance of 100 days apart. It then follows that
these peaks nearly all coincide with the annual maxima. Therefore, due to our small
data set, the GPD and the GEV distributions can be used almost interchangeably. In
this paper we have chosen to work with the GEV distribution, considering only the
yearly maxima, since the extreme values are those we are interested in.

To obtain a reliable estimate of the parameters it is important that the maximum
values are independent and a sufficiently large number of extremes is used. We assume
in this paper that the maximum values in Q̂max are independent, since these maximum
values are taken over the period of a year. Seasonal trends, for example, will therefore
have no influence on the maximum values. It is also important that we defined a year
from July to June, since therefore the winter—the season in which extreme values
are typically observed—is in its entirety contained in a single year. Notice that our
analysis is based on a small set of extreme values as a consequence of a limited
amount of available data. We observe here that our estimates are based on a small
set of measurements and that they therefore might lack accuracy.

We use this data taking into account that our estimates are based only on a small set
and therefore might not be as accurate as desired.

We fitted the Type I extreme value distribution to our measurements. We obtain the
following estimates of the mean (the location parameter µ) and standard deviation
(the scale parameter σ) from the fitted distribution

σ = 1 625.4 m3/s and µ = 5 965.3 m3/s. (5)
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Figure 2: Empirical and theoretical (fitted) cumulative Type I distribution function
for the yearly maximum discharge values of 23 years.

The estimates here are maximum likelihood estimators.

In Figure 2 we plotted the empirical cumulative distribution function for the vector
Q̂max containing the yearly maximum discharge values. The empirical cdf is defined as
the proportion of the yearly maximum discharge values Qi in Q̂max less than or equal
to a certain Q. We plotted also the theoretical cdf (3), using the approximate values
µ and σ we obtained. Taking Rijkswaterstaat ’s proposed threshold value Q∗ = 17500
m3/s, we also can calculate the probability that the yearly maximum discharge value
exceeds Q∗:

P(Q > 17500) = 8.2763 · 10−4. (6)

Yet, this does not really tell us something practically. In the sequel, we will introduce
the return period which will give a more explicit expression for the probability of the
the occurrence of an extreme event.

As for now it can be seen that the empirical distribution nicely coincides with the the-
oretical distribution. Taking into account the limited amount of data, the agreement
between the empirical cdf and the theoretical distribution is satisfactory.

However, plotting the corresponding probability density function (4) of the Type I
extreme value distribution gives a less satisfactory outcome. In Figure 3 and Figure
4 we show the distribution of Q̂max in the form of a histogram together with the pdf
scaled to our data vector Q̂max of length 23 and to the histogram intervals.

We already stated that the amount of data we use might not yield estimates of
the satisfactory accuracy. In fact, the blocks of the histogram corresponding to the
empirical data in Figure 3 follow the fitted and scaled pdf and can be considered
acceptable, but the histogram in Figure 4 with interval lengths 1000, does not follow
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Figure 3: Histogram intervals of length 2000 and the probability density function
scaled to our data vector Q̂max and the histogram intervals.

Figure 4: Histogram intervals of length 1000 and the probability density function
scaled to our data vector Q̂max and the histogram intervals.

the fitted and scaled pdf in a way we would like. In order to obtain more satisfactory
results we need more data.

3.1.2 Return level and return period

Other interesting information we can extract from our data relates to the return
period. Let 0 < p < 1. The return period 1

p is an estimate of the likelihood of a
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flood event. The return level zp associated with the return period is the value that
the annual maximum will exceed with probability p. The return level zp is defined
as

zp = µ− σlog(−log(1− p)). (7)

Remark: this zp corresponds to the case in which γ = 0, i.e. to the case of the
Type I extreme value distribution. For the exact derivation see [2] and the references
therein.

Figure 5: The return level zp = 5965.3− 1625.4 · log(−log(1− p)) associated with the
return period 1

p . With probability p = 1
1250 , i.e. once every 1250 year, the discharge

value zp = 17 555 m3/s will be exceeded (red star).

In Figure 5 the return level is plotted against the return period with a logarithmic
scale. According to statistical calculations of Rijkswaterstaat, the Dutch dikes have
been constructed such that they can deal with exceptional discharges that occur once
in 1250 years. The threshold value is recalculated every five years, based on currently
available statistical data. In the last decades extreme discharges have become more
frequent, and thus the the threshold was increased several times. In 2001 the level
was adjusted to 16000 m3/s (which is the current standard). Due to climate changes,
it is expected that this exceptional water level will increase even more. Our model
(based on data until 2012) predicts that the return level for the choice of p = 1

1250
equals zp = 17 555 m3/s, as indicated in the figure. This means that with probability
p = 1

1250 , i.e. once every 1250 years, this discharge value zp = 17 555 m3/s will be
exceeded. Our prediction thus confirms that the threshold value will probably need
to be adapted more in the coming years.

Up to now our starting point was the underlying theory for extreme events. In the
following section, we explore what information can be deduced from the data in a
more ad hoc manner.
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3.2 Ad hoc data analysis

In the previous section we considered extreme events (i.e. high discharge) and their
return times. In this section we ask the question: if such an extreme event occurs,
what can we say about the amount of time the discharge remains above a certain
threshold level Q∗? This information is very useful if at a certain moment we decide
to influence the natural discharge. We can do this by allowing water to flow into
the retention area Rijnstrangen. Now, consider the situation that we do not want
the discharge to exceed some Q∗. This means we need to remove the excess of water
effectively. Our aim in this section is to predict how much water the retention area
must be able to contain.

3.2.1 Interval length and water volume above threshold

Here, we formulate more precisely what was said in the introduction of this sec-
tion.

We fix a threshold Q∗ and we open the outlets to the retention area if the current
discharge Q exceeds Q∗. Let us assume that our actions work effectively enough to
make sure that the discharge (in the river) directly downstream of the outlet to the
retention area is min(Q,Q∗).

As said before, we use the daily discharge measurements at Lobith. After Q∗ has been
fixed, the data set contains a number of intervals in which the measured discharge
exceeds Q∗. As in the previous section, we want to consider independent extreme
events and to achieve this we only consider those intervals for which the correspond-
ing maximum Qmax is also an annual maximum. The intervals we consider are of
maximal length. By this we mean that the last measurement before the start of the
interval and the first measurement after the interval are smaller than Q∗. In Figure
6 we show an example of such an interval. We determine its boundaries by calcu-
lating the intersection of the horizontal line Q = Q∗ with the linearly interpolated
continuation of measurement data. The interval length L follows from these interval
boundaries.

Linear interpolation of the measurements determines a graph (t, Q). The area under
this graph but above the line Q = Q∗ equals the excess amount of water carried by
the river during the period in which Q > Q∗. This is exactly the amount of water
that needs to be stored in the retention area. We calculate this area by applying the
trapezoidal rule to the measured data. In Figure 6 this is the shaded grey area.

Note that this integration procedure has to be executed with some care, since the
units of Q (m3/s) and t (days) do not match.

Now, consider those peaks for which the maximum corresponds to an annual max-
imum. Let us focus on one such peak (with maximum value Qmax), and define
Q̃ := Qmax − Q∗. From the measured data, we calculate L(Q̃) and V (Q̃) by the
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Q∗

Qmax

t

Q

L

V

Figure 6: Schematic illustration of how we derive information about the interval
length L and total volume V from the measurements. Measured data is indicated by
the black circles.

procedure described above. By varying Q∗ one can investigate the relation between
Q̃ and L or V , respectively. In Figure 7 we collect this data for all peaks corresponding
to annual maxima.

Let τ = 86400 be the number of seconds in a day. One can show that theoretically
L(Q̃) and V (Q̃) are related by

V (Q̃) =

∫ Q̃

0

τ L(Q̄)dQ̄, (8)

or, as a result,
dV (Q̃)

dQ̃
= τ L(Q̃). (9)

This implies that we can derive from the data relations (Q̃, L(Q̃)) and (Q̃, V (Q̃)),
but these relations are not mutually independent. A first attempt might be to fit
a parabola to the data in Figure 7, right. Then (9) implies that a linear relation
should hold in Figure 7, left. The resulting (least squares) fits are indicated in Figure
8.

The linear fit in Figure 8, left, seems justifiable for large Qmax − Q∗. However, for
Qmax −Q∗ near zero the fit is poor. Note that from a practical point of view, we are
mostly interested in obtaining information around Qmax−Q∗ ≈ 500. This is because
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Figure 7: Left: Scatter plot of the length L of an interval in which the discharge Q is
above a certain threshold Q∗. The values are given as a function of Q̃ = Qmax −Q∗.
The aim is to draw conclusions that are independent of the peak height Qmax. Data
points corresponding to the same peak have the same colour. Right: Scatter plot of
the volume V of water in a flood wave above a certain threshold Q∗. The values are
given as a function of Q̃ = Qmax −Q∗. Data points corresponding to the same peak
have the same colour.
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Figure 8: Left: A linear relation fitted to the data of Figure 7, left-hand side. Right:
A parabolic relation fitted to the data of Figure 7, right-hand side. Note that slightly
negative values occur in the graph due to the fitted parabola, not due to the data
(cf. Figure 7, right-hand side).

Rijkswaterstaat has in mind a situation where Qmax = 18000 m3/s and Q∗ = 17500
m3/s.

There is more to criticize about these fitted relations. From a physical point of view it
is clear that L(Q̃) = 0 and V (Q̃) = 0 should hold if Q̃ = 0. This is clearly not the case
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in the fitted line in Figure 8, left. Moreover, (9) is violated. We have fitted:

L = a Q̃+ b, (10)

V = c Q̃2 + d Q̃+ f. (11)

The fitted parameter values are

a = 0.0018, (12)
b = 1.8533, (13)
c = 60.7973, (14)

d = 1.8422 · 105, (15)

f = −1.7661 · 107. (16)

It follows from (9) that 2c = τ a and d = τ b should hold. The fitted coefficients
satisfy

2c

τ a
= 0.7944, (17)

d

τ b
= 1.1505, (18)

which both do not really convince us that the above fits are appropriate.

In Figure 9 we show that using double logarithmic axes are of help here. The repre-
sented data is the same as in Figure 7.
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Figure 9: Left: The data of Figure 7, left, plotted in double logarithmic axes. A linear
relation is added (i.e. linear in double logarithmic scaling). Right: The data of Figure
7, right, plotted in double logarithmic axes. A linear relation is added (i.e. linear in
double logarithmic scaling).

In these axes the correlation between Q̃ on one hand and L or V on the other hand,
is much clearer. To emphasize this, in both cases a linear fit is added. To show that
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these fits are much better than the previous ones, we add them to Figure 8, the result
of which is shown in red in Figure 10. Especially, we see in Figure 10, left, that the
issues that arose for the linear fit are resolved. Both for small and for large Qmax−Q∗
the fit resembles the data. Moreover, these fits pass the origin by definition. We have
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Figure 10: Left: The data of Figure 7, left, with fitted a linear relation (blue, cf. Figure
8, left) and an exponential relation (red, cf. Figure 9, left). Right: The data of Figure
7, right, with fitted a linear relation (blue, cf. Figure 8, right) and an exponential
relation (red, cf. Figure 9, right).

fitted

logL = A log Q̃+B, (19)

log V = C log Q̃+D, (20)

or, equivalently,

L = eB Q̃A, (21)

V = eD Q̃C , (22)

which are positive for positive Q̃. The fitted parameter values are

A = 0.6646, (23)
B = −3.2929, (24)
C = 1.6708, (25)
D = 7.5011, (26)

for which (9) implies that C eD = τ eB and C − 1 = A should hold. The fitted
coefficients satisfy

C eD

τ eB
= 0.9423, (27)

C − 1

A
= 1.0093. (28)
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This is more satisfying than our earlier attempt. Note that comparing these numerical
values quantitatively to (17)–(18) does not make sense, since the coefficients in (17)–
(18) and (27)–(28) have different meanings.

We use the exponential fit to make some predictions about what to expect for Qmax =
18000 m3/s andQ∗ = 17500 m3/s. These numbers are the reference situation provided
by Rijkswaterstaat. They serve as an illustration here, as similar computations can
be made for other thresholds.

For Q̃ = 500 m3/s our fitted relations (21)–(22) predict the following values:

L = 2.3107 days, (29)

V = 5.8502 · 107 m3. (30)

This means that the outlet to the retention area needs to be opened roughly two and
a half days, and that in total nearly 59 million m3 needs to be stored. According to
these predictions, the Rijnstrangen area (capacity: 150 million m3) would be more
than sufficient as a retention area.

Two remarks about these predictions need to be made:

1. No data is available for discharges as large as 18000 m3/s. This is because these
values are currently not reached, but they are expected in the future due to
climate change. Our predictions are only based on historic data. Extrapolation
to changing situations in the future therefore requires caution. A positive point
is however that the data used does contain information about 23 annual extreme
events (represented by Qmax values). By introducing the translated coordinate
Q̃, we account for the fact that the value of Qmax is different every year. As a
result, the predicted value at Q̃ ≈ 500 in some sense contains information from
the whole data set.

2. Our fitted relations reflect more or less the average trend of the data. It might
be of more interest to know about the extremes (e.g. extremely high Qmax and
simultaneously rarely high L(Q̃)). We wish to state explicitly that these cases
are not treated here.

3.2.2 An alternative approach

There is also an alternative approach to which there are some disadvantages. These
will be commented on later in this section. In fact these negative aspects drove us to
the approach described in Section 3.2.1.

The alternative approach is based on the assumption that a peak can be approximated
locally by a parabola.1 If its maximum Qmax is attained at time t0, then the discharge

1This is a strong assumption, but still the results turn out to be useful.
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Q as a function of time t is assumed to be given by

Q = Qmax −
1

2
α (t− t0)2. (31)

Note that
d2Q

dt2
= −α, (32)

where α is a parameter still to be identified. The second derivative is (a measure for)
the curvature of the graph at the peak. Again we have to be careful about the units
here. The second derivative d2Q/dt2 should have the unit of volume/(time3). Since
Q is measured in m3/s and t in days, the unit of d2Q/dt2 is m3/(s · days2). At first
sight this might seem a bit artificial. In the sequel, we write Q′′ instead of d2Q/dt2,
keeping well in mind this issue about the units.

An encouraging observation in this approach is the following. There appears to be
a correlation between the value of Qmax and the second derivative Q′′ in that point.
In short: higher peaks are more narrow. This is shown in Figure 11 where we plot a
numerical (second-order) approximation of Q′′ against Qmax for all local maxima from
July 1989 to June 2012. A linear fit is added to emphasize the correlation. We use all
local maxima, instead of just annual maxima, since our fit would otherwise depend on
only 23 data points. From this fit we are able to extrapolate (e.g. to Qmax = 18000)
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Figure 11: Scatter plot of the (numerical) second derivative in the top, against the
discharge value in the top Qmax. The linear correlation is indicated by the blue line.
The units are: [Q] = m3/s, [t] = days. To base the fit on a sufficiently large data set,
all local maxima are used; not just the annual maxima.

and find the corresponding value for Q′′. Moreover, exact calculations lead to the
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following expressions

L =

√
2
Qmax −Q∗

α
, (33)

V =
4

3

√
2

α
τ (Qmax −Q∗)3/2, (34)

for the interval length L and volume V , respectively. From these expressions pre-
dictions for L and V are easily made, once we provide e.g. Qmax = 18000 m3/s,
Q∗ = 17500 m3/s and the extrapolated value of Q′′ = −α. We find:

L = 0.8028 days, (35)

V = 4.6241 · 107 m3. (36)

These predictions imply that Rijnstrangen area (capacity: 150 million m3) is suffi-
ciently large to contain the amount of water that needs to be stored. Compared to
the prediction of Section 3.2.1, the value of L is very low.

The latter statement about L indicates that we should be cautious here. In Figure
12 we have a closer look at the quality of the fits provided by (34). We can see
that sometimes (e.g. for 27 March 2001) the fit very poorly represents the actual
data. For other peaks (e.g. 17 February 2005) the fit is appropriate. We emphasize
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Figure 12: Left: Data, in red, and fit (34), in blue, for V corresponding to the annual
maximum discharge which was attained on 27 March 2001. The fit deviates signifi-
cantly from the data. Right: Data, in red, and fit (34), in blue, for V corresponding
to the annual maximum discharge which was attained on 17 February 2005. The fit
agrees quite well with the data.

that we should concentrate on the error for relatively small Q̃, since Q̃ = 500 is the
reference situation. Figure 12 strongly suggests to have a closer look at how well the
approximations (33)–(34) perform, and especially for Q̃ ≈ 500.

Let Lm and Vm denote the actual measured quantities. The quantities fitted according
to (33)–(34) are Lf and Vf. We consider the relative errors |Lm−Lf|/Lf and |Vm−Vf|/Vf
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in Figure 13. Intentionally, only relatively small Q̃ = Qmax − Q∗ are shown, since
our predictions are for Q̃ = 500. In the graphs we see no particular trend, but it is
important to note that the order of magnitude of the error in L is 3.5 and of the error
in V is 0.9. We wish to use these estimates for the error to improve our predictions
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Figure 13: Left: Relative error in the prediction (33) of L, compared to the actual
data, as a function of Q̃. Right: Relative error in the prediction (34) of V , compared
to the actual data, as a function of Q̃.

(35)–(36). Note that if e.g. |Lm − Lf|/Lf < β, then Lm < (1 + β)Lf. By multiplying
our predictions by “1 + O(error)" we thus get an upper bound for the quantity we
want to predict.
We multiply the predictions in this case by 1+3.5 = 4.5 and 1+0.9 = 1.9, respectively.
What we obtain are the improved predictions:

L = 3.6126 days, (37)

V = 8.7859 · 107 m3. (38)

Note that these values still imply that the retention area is large enough.

For comparison, we also show the error plots for the approach of Section 3.2.1. The
relative errors of L and V are given in Figure 14. An important point is that there is
a trend. The relative error decreases for increasing Q̃ as indicated by the blue dashed
line (which estimates the maximum error). It levels off to approximately 0.5 for L
and 0.6 for V .

Again, we use these estimates of the relative error to improve our predictions. We
thus multiply (29)–(30) by 1.5 and 1.6, respectively. Our new predictions are

L = 3.4661 days, (39)

V = 9.3603 · 107 m3. (40)

We remark that the predictions for L are, after correction, more in agreement: com-
pare (37) and (39). Moreover, the improved prediction (40) remains lower than the
capacity of the Rijnstrangen area.
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Figure 14: Left: Relative error in the prediction (21) of L, compared to the actual
data, as a function of Q̃. The blue dashed line is an indication of the maximum error.
Right: Relative error in the prediction (22) of V , compared to the actual data, as a
function of Q̃. The blue dashed line is an indication of the maximum error.

3.3 Summary

We summarize the results of Section 3:

• The annual maxima of our data set obey a Type I extreme value distribution
(or: Gumbel distribution), whose parameters are µ = 5965.3 m3/s and σ =
1625.4 m3/s; cf. (5). Knowing this distribution we can e.g. estimate that P(Q >
17500) = 8.2763 · 10−4; cf. (6).

• According to the aforementioned distribution, statistically, once every 1250
years a discharge level of 17 555 m3/s will be exceeded; see Section 3.1.2.

• We expect a peak with maximum discharge 18000 m3/s to remain above the
level of 17500 m3/s for about three and a half days. In this prediction we have
taken into account a correction for the error in our approximation; see (39) and
(37). The capacity of the Rijnstrangen area is large enough to contain the excess
of water if we open the outlet at Q∗ = 17500 m3/s and a maximum discharge
of 18000 m3/s is eventually attained; cf. (40) and (38).

The following remarks need to be made:

• Our predictions and claims are based on data, and as such describe the current
situation. We are not able to account for future changes in climate and the
consequences thereof.

• The fitted probability distributions and relations between quantities more or
less describe the typical behaviour of extreme events. One could imagine that,
given the fact that a certain peak discharge has an extreme value Qmax, its other
characteristics (like duration L) are also variable. Our claims are then about the
average duration of the extreme event, and we do not have information about
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the distribution of L (i.e. the conditional distribution, given the maximum value
Qmax) or its dispersion. Thus, we cannot predict anything about how probable
it is (for example) that such extreme event also lasts extremely long.

• We have shown that the retention area will have to be used only very rarely.
Having two such events one shortly after the other is therefore (even more)
unlikely to occur. From this point of view, there is no need for emptying Ri-
jnstrangen very quickly after inundation, in order to be able to use it again.
We do not address the issue of emptying in this report. However, due to the
above arguments we believe that it is a minor factor in the overall decision pro-
cess. Of course, we understand there might be other reasons (social, economic,
geological,. . . ), but these are beyond the scope of the present study.

4 Rhine system discharge model

One option to be considered for peak discharge retention relies on static weirs installed
in the winter dikes that permit runoff of extreme discharge peaks into the Rijnstrangen
region. Because the height of these weirs is only a few centimeters lower than the
channel free surface height at extreme flood level, and to attain the desired retention
rate of ∆Q = 500m3/s, the static weirs must extend over several kilometers atop the
winter dike. For the design of the weirs we must estimate the extreme flood level free
surface height in the Rhine within the model region. To this end we construct a 1D
hydrological model in this section. The spatial domain of the model consists of a 35
km section of channel beginning 5 km upstream from Lobith and extending along the
Upper Rhine, Pannerdens Canal and IJssel. The bifurcations at the Waal and Lower
Rhine are modeled as geometric discontinuities at which outflow occurs.

Denote by x the distance downstream from Lobith, x ∈ [x0, x0+L], where x0 = −5km
(location of the German border) and L = 35km. The channel is assumed to have
vertical walls with width given by w(x), which is a piecewise continuous function
with jump discontinuities at bifurcation points xA and xB . The free surface height
h(x, t) is defined with respect to a mean bottom orography. The fluid model is given
by the St. Venant or shallow water equations for flow in a channel

wht = −(whv)x + q, (41)
vt = −vvx − ghx + g(S − Sf ), (42)

where v(x, t) is the mean cross-sectional velocity, q(x, t) represents the lateral inflow
per unit length (i.e. negative for outflow over a weir), g is the gravitational accelera-
tion, S(x) is the slope of the bottom, and Sf (x) is the friction slope, which encodes the
combined forces of friction. For future reference we also introduce the cross-sectional
flow area A(x, t) = h(x, t)w(x)

The St. Venant equations can be simplified using scaling assumptions [1]. The most
appropriate of these are the kinematic wave approximation, for which the momentum
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equation (42) is replaced by the balance relation

Sf = S, (43)

and the diffusion wave approximation in which (42) is replaced by

Sf = S − hx. (44)

The friction slope is defined as

Sf =
n2

k2

Q2

A2R
4/3
h

, (45)

where k = 1 for SI units, n is the Gauckler-Manning coefficient, Q = Av = hwv is
the flow rate, and Rh is the hydraulic radius:

Rh =
hw

w + 2h
≈ h

These equation express a depth-averaged flow in a thin, incompressible fluid layer [1].
Inserting (45) in (43) and solving for v yields the flow speed

v =
1

n
h2/3S1/2, (46)

from whence the kinematic wave model is reduced to

wht = −(κ(x)w(x)h5/3)x + q, (47)

where κ(x) = S(x)1/2/n(x). The Gauckler-Manning coefficient has been estimated for
flow over surfaces of different roughnesses. We take n(x) ≡ 0.03 uniformly here.

Similarly, the diffusion wave approximation (44) can be solved for v to yield

v =
1

n
h2/3(S − hx)1/2 ≈ 1

n
h2/3(S1/2 − 1

2
S−1/2hx),

which in turn gives a nonlinear advection-diffusion equation for h.

The kinematic wave model (47) assumes the form of a hyperbolic conservation law for
the height h(x, t). To specify a unique solution, it must be equipped with appropriate
initial and boundary conditions. We will assume that all characteristics are monotone
in the downstream direction, meaning that it is only necessary to specify the inflow at
the upstream boundary. Given an inflow discharge Q0 = Q(x0, t), we can determine
the inflow layer depth h0(t) from

h0v0 =
Q0

w(x0)
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by substituting (46) in the above expression and solving for h0. An initial condition
can be obtained by solving

−(κ(x)w(x)h5/3)x = 0

with this initial condition:

h(x, 0) = h0(0)−
∫ x

x0

κ(s)w(s)h(s)5/3 ds.

Numerically, one can simply choose a constant layer depth h(x, 0) = h0(0) and solve
with constant inflow until steady state is reached.

Note that the velocity in the Rhine system is on the order of 1 m/s. This means that
any given fluid parcel passes out of the system within about 8 hours. If variations
in the inflow h0(t) are slow on this time scale, then the system is quasi-steady state,
with height given by the previous expression. In this case too, the differences between
the kinematic wave and diffusive wave models will be small.

5 Numerical unsteady flow computation

In this section we present a simple numerical code to solve the 1D model developed
in the previous section, with the goals of (1) providing a tool that can be used for
studying more complex retention scenarios, such as the placement of outlets at strate-
gically chosen points around Rijnstrangen (not considered in this report), and (2) to
show that for the flooding scenario predicted in §3, with excess peak discharge lasting
more than 72 hours, the flow can be assumed to be in quasi-equilibrium state. At the
end of the section, two computational scenarios reflecting these goals, are included,
the first illustrating that the code can be used for transient calculations if so de-
sired, and the second illustrating that even for a flooding scenario lasting < 48 hours,
quasi-equilibrium is a good approximation.

Since our model includes only that part of the total discharge that flows through the
trajectory Upper Rhine, Pannerdens Canal, IJssel, it is crucial for the numerical model
to properly treat the outflows into the Waal and Lower Rhine, to avoid reflected waves
or other numerical artifacts. We consider a class of finite volume methods with the
necessary properties. We define grid points xi = x0 + i∆x, i = 0, . . . , N , N∆x = L.
The channel width at grid point i is denoted wi. We allow the width to change
discontinuously at a grid point, and denote the upstream and downstream values by
w−i and w+

i , respectively. The bottom slope Si and the Gauckler-Manning coefficient
ni are also specified at grid points. The outflow per unit length q is approximated at
the midpoint of the interval qi+1/2 ≈ q(xi+1/2).

To determine the layer depth hi(t) at grid point i, we discretize (47) using a compact
one-parameter class of finite volume schemes. This class of discretizations has the
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Figure 15: Discrete geometry. Left: one-dimensional grid in x, with channel widths
wi specified at grid points xi and indicating discontinuities at bifurcation points xA
and xB . These are the points A and B indicated in Figure 1. Right: a discontinuity
in channel width wi at grid point xi, modelling outflow at a bifurcation.

property that it preserves the dispersion relation of the underlying PDE, in the sense
that sign of group velocity is always correct. This means that information always
flows downstream when it should, allowing us to model outflow at bifurcation points
and at the end of the domain without incurring numerical side effects like reflected
waves. The discretization is defined for a generic grid interval (xi, xi+1):

θw+
i

∂hi
∂t

+ (1− θ)w−i+1

∂hi+1

∂t
= − 1

∆x
(Q−i+1 −Q+

i ) + qi+1/2, (48)

where the discrete fluxes are defined by

Q±i =
S

1/2
i

ni
w±i h

5/3
i .

The parameter θ may take values in (0, 1/2). For θ > 1/2 the scheme is unstable for
flow in the positive x direction. The scheme is implicit for θ > 0 due to the weighted
average on the left side. The choice θ = 0 corresponds to upwind differencing, which
is first order accurate, monotone, and highly diffusive. The choice θ = 1/2, which is
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symmetric and the only second order choice, yields the Preissman box scheme, well
known in hydrology. However it is implicit, so for efficiency we have only implemented
the case θ = 0 here.

It can be checked by summing both sides of (48) that total mass
∑

i hiwi is conserved
locally when there is no inflow or outflow (qi+1/2 = 0, w+

i = w−i , for all i).

To model a bifurcation (points A and B in Figures 1 and 15), we choose the grid point
closest to the bifurcation point, say xi. Define w−i to be the width of the channel
directly upstream of the bifurcation, and w+

i to be the width of the branch whose
flow is to be included in the model. Let wout

i = w+
i − w−i , then balance of flux at xi

requires Q−i = Q+
i +Qout

i . Hence a specific outflow-to-inflow ratio requires

γ =
Qout

i

Q−i
=
Q−i −Q+

i

Q−i
= 1− w+

i

w−i
=
wout

i

w−i
.

Consequently a discontinuous change in channel width of ratio γ yields a correspond-
ing change in discharge of ratio γ.

For θ = 1/2 it is recommended to integrate (48) in time with the implicit midpoint
rule. In this paper, we choose θ = 0 and integrate in time with the well-known fourth
order explicit Runge-Kutta method.

It is a straightforward matter to adapt the 1D Matlab code, given accurate geometrical
channel data from the Upper Rhine region, as well as discharge data for Lobith.
During the Study Group Week, a geometrically simple scenario was computed, using
uniform channel widths between each bifurcation point, with the widths chosen to
achieve the correct relative discharge rates in each branch of channel model.

We take domain parameters x0 = −5km (German border) and L = 35km, such that
Lobith is at x = 0. Moreover, we take ∆x = 100m and uniform canal segments of
width w0 = 1500m in the Upper Rhine, dropping discontinuously to 0.36w0 at the
Pannerdens Canal bifurcation point and to 0.15w0 at the IJssel bifurcation point. We
assume uniform values of n = 0.03 and S = 1 × 10−4. In all simulations, the time
step was taken to be ∆t = 50s, and the initial condition was taken to be a stationary
flow with discharge at Lobith corresponding to 5000 m3/s.

We considered two flooding scenarios, based on the current peak discharge design
capacity of 16000 m3/s and the proposed new design capacity of 17500 m3/s. In
both cases a Gaussian (in time) discharge profile was defined with peak flow rate
Qmax = 18000 m3/s. It is assumed that all discharge exceeding the design capacity is
removed instantly at Lobith (x = 0), meaning the inflow profiles are capped at 16000
and 17500 m3/s, respectively. In the first scenario, the peak was attained in 2 days
to illustrate transient effects. In the second scenario the peak was reached in 11.5
days.

Figure 16 illustrates the results for the transient case with design discharge capacity
16000 m3/s. We observe a rapid increase in flow rate, especially in the Upper Rhine
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segment, at 30 and 40 hours, but a steady state has been reached at the peak flow
after 50 hours. The total retention in the Rijnstrangen area is between 60 and 70
million cubic meters.
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Figure 16: Flooding scenario reaching 18000 m3/s in 2 days at current design peak
discharge of 16000 m3/s. Top left: discharge scenario at Lobith. Top right: flowrates
throughout the domain at sequential times; discontinuities occur at channel bifur-
cation points. Bottom left: free surface height in the domain at sequential times;
discontinuity at x = 0 due to removal to Rijnstrangen retention area. Bottom right:
volume of water retained in Rijnstrangen area as a function of time.

Figure 17 illustrates the results for the longer event with peak after 11.5 days. In
this case the flow may be assumed to be quasi-steady state, with the levels being
nearly stationary at any given time. For the proposed design discharge capacity of
17500 m3/s, the required retention in the Rijnstrangen area is 45 million cubic meters.

We stress that these computations are illustrative only! An accurate computation of
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Figure 17: Flooding scenario reaching 18000 m3/s in 11.5 days at proposed design
peak discharge of 17500 m3/s. Top left: discharge scenario at Lobith. Top right:
flowrates throughout the domain at sequential times; discontinuities occur at channel
bifurcation points. Bottom left: free surface height in the domain at sequential times;
discontinuity at x = 0 due to removal to Rijnstrangen retention area. Bottom right:
volume of water retained in Rijnstrangen area as a function of time.

transient flow would require correct measurements of the outer dike geometry. Fur-
thermore the effects of sloping dike walls and the inner dike geometry have been
neglected in the model. In general, the bottom slope S(x) and Gauckler-Manning
coefficient n(x) should be properly estimated, and generally vary in x. Finally, the
precise transient dynamics depend on the inflow discharge profile Q0(t) and Rijn-
strangen outlet configurations.
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6 Outlet configurations

We restrict ourselves to a single outlet before the first bifurcation of the river Rhine.
The advantage is that a single outlet could suffice, while this would not be possible for
an outlet after the first bifurcation without affecting the discharge ratio at the first
bifurcation. For this case the following values for the discharge are relevant.

Let Qbefore and Qafter denote the discharge of the river before and after the outlet.
Also let Qoutlet be the discharge through the outlet so that the following conservation
law holds: Qafter + Qoutlet = Qbefore. To prevent flooding downstream it is required
that Qafter ≤ 17500. Here Q is measured in units of m3/s, as in the rest of this section.
Unnecessary use of the retention area comes at a high cost and may also limit uptake
in the near future, so the preferred outlet has the property that:

Qafter = min(Qbefore, 17500). (49)

We analyse several ideas for constructions of the outlet to the reservoir. After intro-
ducing our simple model we first study the construction of a weir, where water flows
over the weir into the reservoir. A weir is a passive construction: water only flows if it
has reached a critical level. Second we study the construction of a floodgate, by which
we mean that a gate has to be lowered to reach the required outflow of water. In
both cases, we investigate which size the outlet should have. Third we study an outlet
where the water flows underneath a floodgate or through a pipe near the bottom of
the river. Our analysis leads to estimates on the size of the constructions involved
and gives insight into various other characteristics that need to be taken into account.
These are all collected in the discussion at the end of this section.

6.1 A model for the flow of water over a weir

To calculate the flow over a weir, we use a so-called ‘dam-break’ model from [3, Section
10.5]. In this model the one-dimensional flow of water due to pressure is calculated
on each location x ∈ R at time t ≥ 0, where we assume the initial condition in Figure
18. That is, we assume that a dam is instantaneously removed at x = 0 and time
t = 0 and water starts flowing from right to left.

In [3, Section 10.5] an analytical solution is found using the method of characteristics.
The model only depends on the initial height of the water above the weir, which we
denote by η. The height of the water as a function of x at some time t is sketched in
Figure 19. It turns out that the height η0 at x = 0 is constant for all time t > 0 and
is given by η0 = 4

9η. The velocity of the water u at x = 0 is also constant (over time
and height) and is given by

u =
2

3

√
gη, (50)
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x
0

η

Figure 18: The initial condition at t = 0 in the dam-break model. The initial height
of the water along the x-axis is denoted by η.

where g is the gravitational constant. So the flux through x = 0 is

q = uη0 =

(
2

3

)3√
gη

3
2 .

We obtain the total flow over the weir Qoutlet by multiplying with the length of the
weir, which we denote by l:

Qoutlet =

(
2

3

)3√
gη

3
2 l. (51)

Figure 19: Dam-break model: the height of the water is sketched against the one-
dimensional spatial variable x at time t. This figure is from [3, page 313], with
adjusted variables.

We now apply this model to the situation where a weir is built alongside a river. We
take a cross-section of the river and assume that this section moves with the velocity
of the river, see Figure 20. If this cross-section arrives at the weir, then—from the
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perspective of the cross-section—the dike is instantaneously lower, and we apply the
dam-break model.

x = 0

river flow

x

weir

l

Figure 20: Depiction of the river from above with the cross-section (red) mentioned
and the weir (blue). With this perspective we argue that we can apply the dam-break
model.

If we denote the height of the weir by d, then the initial height of the water in the
river is h = d + η. This situation is sketched in Figure 21. The x-axis in Figure 21
corresponds to the x-axis in Figures 18, 19 and 20. We take the weir to be flat in both
the x-direction and the direction of the river flow. We neglect the effects of water in
the river deeper than the top of the weir. We also neglect any effects resulting from
the flow of water perpendicular to the cross-section (e.g. in the direction of the flow
of the river).

Since d is fixed, the model depends on the height of the water in the river h which we
obtain from the model derived in Section 4:

h =

(
nQ

w
√
S

) 3
5

, (52)

where n is a constant depending on the river bed, Q is the discharge of the river (the
flux in m3/s), w is the width of the river and s is the slope of the river.

It follows from (51) that the power law Qoutlet ∝ η
3
2 holds with proportionality

constant
(

2
3

)3√
gl. In hydrology this power law is well-established. For instance

in [4] section 5.1 the same power law is acquired from rough estimates for water
flowing over a weir like in Figure 21. Assuming subcritical (laminar) flow before and
supercritical (turbulent) flow after the weir, it is reasoned that at the weir the flow
must be critical. Applying Bernoulli’s principle (see equation (56) below) yields the
same power law (but with a different proportionality constant).

6.2 Constructions with water flowing over a weir

We first consider the situation of water flowing over a weir where d is constant over
the length l of the weir. A weir with length l is constructed with a fixed height d,
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d

η
x

Figure 21: Cross-section of the river, with indication of the variables used. We assume
the slope of the weir to be horizontal, so in contrast to what the picture suggests, the
top of the weir continues to the left following the dotted line. This figure is from [4].

such that:

Qoutlet = 0, if Qbefore = 17500, and Qoutlet = 500, if Qbefore = 18000. (53)

This weir is in essence a place where the dike is lowered, see also Figure 20 and Figure
21. We also require that water starts flowing over the weir only when Qbefore > 17500
and investigate the implications of this requirement.2.

The height d can be explicitly calculated from (52) and the first part of (53). It
follows that the weir should be 7.10m. When Qbefore = 18000, the height of the water
level is h = 7.22m by (52). Consequently, we know the height of the water above the
weir: η = h− d. Using (51) we can determine the length of the weir from the second
part of (53). It follows that the weir has to be approximately 13 kilometers long.
This is a disadvantage since there is no place in the Netherlands where it is possible
to construct such a long outlet.

Suppose that there would be an area long enough for this weir, then there is another
disadvantage. One requirement of Rijkswaterstaat is that Qafter has to remain be
below 17500 to avoid flooding downstream. From (52) and (51) an expression can be
given of Qafter as a function of Qbefore by:

Qafter =Qbefore −Qoutlet

=Qbefore −
(

2

3

)3√
g

((
nQbefore√

Sw

) 3
5

− d
) 3

2

l. (54)

2This assumption ensures that the weir is no longer (and thus higher) than necessary.
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In Figure 22, this function is plotted in blue for Qbefore ≥ 17500 (for Qbefore < 17500,
Qafter coincides with the black line.) The figure shows that this passive construction
does not satisfy the condition of Rijkswaterstaat for intermediate values.
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Figure 22: The discharge after the weir is plotted in blue against the discharge before
the weir when using a weir of 13 kilometers long. The black line refers to the preferred
situation (49). The requirement from Rijkswaterstaat that the discharge be reduced
to Qafter ≤ 17500, is not met.

To avoid the unwanted behavior at intermediate values of the previous weir we now
replace one of the conditions of (53) by an equation on the derivative:

dQoutlet

dQbefore
= 1, if Qbefore = 18000, and Qoutlet = 500, if Qbefore = 18000.

(55)

Because of the apparent concavity of (54) the condition on the derivative will preclude
Qafter ≥ 17500 and it will also minimize the amount of unnecessary water entering
the retention area for these kinds of weirs. Again employing (52) and (51) with (55)
leads to a relation which can be numerically solved for l and d, l ≈ 7 kilometer
and d ≈ 7.04m. In Figure 23, Qafter is plotted against Qbefore, with the formula
in (54). The figure shows that Qafter never exceeds 17500, but it also shows that
from Qbefore = 17250 onward, there is already water flowing over the weir. But the
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superfluous amount of water entering the retention area stays below 100 m3/s all the
time.
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Figure 23: The red curve indicates the discharge after the weir when a weir con-
struction is used, with a length of 7 km. The black line again refers to the preferred
situation in (49). The condition Qafter ≤ 17500 holds for all values of Qbefore, but
water starts flowing into the retention area already at Qbefore = 17250, indicated with
the dashed line.

6.3 Constructions with water flowing over a floodgate

As we saw in the previous section passive constructions need to be very long. In this
section we look at controllable floodgates; essentially these are weirs of variable height.
So water is assumed to flow over the floodgate, this allows us to use the dam-break
formulas derived previously.

First we consider a floodgate whose height can be continuously adjusted to allow
for precisely the correct amount of water entering the retention area. We give a
description of how this height needs to be adjusted. Second we look at a floodgate
which can be either open or closed.



110 SWI 2013 Proceedings

6.3.1 Continuous control

The preferred outlet (49) for Qbefore ≥ 17500 is equivalent to Qoutlet = Qbefore−17500.
Using this, (51), (52) and η = h − d we obtain an equation for the height of the
floodgate as a function of Qbefore and l:

d =

(
nQbefore√

Sw

) 3
5

− 9

4

(
Qbefore − 17500√

gl

) 2
3

.

For several choices of l we have plotted the graph in Figure 24.

1.75 1.755 1.76 1.765 1.77 1.775 1.78 1.785 1.79 1.795 1.8

x 10
4

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Discharge of river (Q)

R
eq

ui
re

d 
he

ig
ht

 o
f f

lo
od

ga
te

 

 

75 m

1000 m

4000 m

7000 m

Figure 24: Height of floodgate in meters above the bottom of the river to reduce Qafter

to 17500. Smaller floodgates (in length) need to be lowered more to allow enough flow
through. When floodgates are controlled accordingly, each floodgate has the preferred
property (49). The dotted horizontal lines at height 7.10 and 7.22 are the heights of
the river at Qbefore = 17500 resp. Qbefore = 18000.

In theory it is now easy to build the preferred outlet. But implementation may be
complicated as the height needs to be continuously adjusted and calculated from a
known discharge. This relatively complicated procedure may be prone to errors and
since high discharge is assumed to be a rare event it may be hard to tune the floodgate
correctly.

To partially circumvent these problems we next look at a floodgate that can either
be open or closed.
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6.3.2 Open/closed floodgate

Here the idea is to lower the floodgate when Qbefore ≥ 17500 and to close it again
when Qbefore < 17500. The floodgate is lowered to a fixed level such that Qoutlet =
500 when Qbefore = 18000. This last property yields a relation between d and l.
After choosing l (and thus d) we can now plot the function (54) again, for values
17500 ≤ Qbefore ≤ 18000. Below Qbefore = 17500 the floodgate is closed and no water
leaves the river.
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Figure 25: Effect of opening floodgate on discharge in river. For intermediate dis-
charge too much water enters the retention area. This effect is larger for shorter
floodgates, which need to be lowered more (see Figure 24). Below Qbefore all func-
tions coincide with the black line.

It has to be mentioned that for l < 7000, Qafter will grow beyond 17500 whenQbefore ≥
18000, so the corresponding floodgates do not decrease discharge sufficiently in case of
an extremely high Qbefore. In fact l ≈ 7000 corresponds to the only weir with

Qafter = 17500 when Qbefore = 18000,

and
Qafter ≤ 17500 for all Qbefore.

So it is the only weir that meets the requirement in (49) and also behaves properly
for Qbefore ≥ 18000.
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6.4 Constructions with flow underneath

Each of the previous configurations had water flowing over the construction, which
is necessary for options without control. We now shortly look into the option of flow
underneath a closable floodgate or through a pipe, as sketched in Figure 26.

1 2

river outlet reservoir

dike

Figure 26: A cross section of the construction with a pipe in the dike. When the pipe
is opened water from the river flows through the outlet, e.g. from 1 to 2.

All calculations will be based on Bernoulli’s law, which is essentially an energy con-
servation law along streamlines:

ρv2
1

2g
+ ρz1 +

p1

g
=
ρv2

2

2g
+ ρz2 +

p2

g
, (56)

with v the speed of the water flow perpendicular to the river flow, g the gravity
acceleration, z the elevation, p the pressure and ρ the density of water. The subscripts
correspond with different locations, see Figure 26. The velocity v1 (perpendicular to
the flow of the river) can be assumed to be almost zero. Since the water is horizontally
flowing through the pipe, z1 = z2. Furthermore, p2 equals the air pressure and the
pressure at position 1 may be written as p1 = p2 + ρgh, with h the distance between
the opening of the pipe and the water surface. Therefore, equation (56) reduces
to

v2 =
√

2gh, (57)

which was already derived experimentally by Torricelli in the 17th century.

If the outlet is located at the bottom, the height of the river is given by equation
(52). For Q = 18000, this means h = 7.22. Using equation (57), the velocity is
determined,

v2 ≈ 12m/s ≈ 43km/h.

For comparison, we estimate the velocity of water flowing through the outlet in both
the case of a weir using condition (55) (h = 0.18) and a small floodgate as discussed
in section 6.3.1 with a length of 75 metre (h = 3.7). Using equation (50), we ob-
tain:

vweir = 0.89m/s vfloodgate = 4.0m/s.



Effective Water Storage as Flood Protection
The Rijnstrangen Study Case 113

The speed of the water flowing underneath a floodgate or through a pipe is much
larger compared to the situation where the water is flowing over a weir or a floodgate.
This may cause more damage for constructions inside the reservoir, but the size of
the outlet can be made as small as 500

12 ≈ 40m2.

6.5 Discussion

Because of the nonlinearity of Qafter as a function of Qbefore, it is not possible to
construct a weir with preferred characteristic (49). One is naturally led to weaker
requirements ((53) and (55)), of which the latter is preferred because it at least has
sufficient inflow into the reservoir. In fact, for a weir, requiring that water starts
flowing into the reservoir only at a certain discharge Qbefore, is not the correct way
to view the problem.

In theory, the continuously controlled floodgate fulfills the preferred characteristics
of equation (49). Though this construction may be hard to implement in practice,
Figure 24 gives an indication of how much a floodgate should be lowered at all possible
discharges.

For long weirs or floodgates (l = 13000, l = 7000), the water levels at Qbefore = 18000
are only about 12 and 18 centimeter above the weir or floodgate respectively, hence
implementation would need a high level of precision. The authors doubt whether any
model would be able to predict the required height of the weir with sufficient accuracy.
This will certainly be the case for the model we used, as it implicitly assumes the width
of the river to be large compared to the length of the outlet.

Compared to the weir, the open/closed floodgate prevents superfluous inflow for
Qbefore ≤ 17500. This allows for smaller constructions, although the disadvan-
tages of redundant inflow for 17500 < Qbefore < 18000 and insufficient inflow for
Qbefore > 18000 are more significant.

Even smaller constructions are possible with an outlet at the bottom of the river.
However, one needs to take into account the speed of the water exiting the out-
let.

7 Conclusions

Discharge levels into the river Rhine at the Dutch-German border are expected to
rise due to climate change. Assets and livelihood in the Netherlands are thus at risk
unless appropriate measures are taken. The study group working on this problem
looked into three aspects of flooding the Rijnstrangen area as a protective measure.
First we performed a statistical analysis of the recorded water levels. We found that
an extreme discharge is expected to occur every 1250 years and to last for about
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three and a half days. The Rijnstrangen area was found to be large enough to serve
as a buffer for the excess of water. Next, we developed a partial differential equation
model for the water flow in the river. Numerical results indicate that the time scale
of transient phenomena is small compared to that on which discharge rises and falls.
Transients can thus be neglected in the model. Finally the design of passive weirs
and active floodgates was investigated. We advise the implementation of the latter
option if indeed the Rijnstrangen area is to be used as a retention area.
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Abstract

In this paper we investigate the effects of deformation of a metal specimen,
which is either a plate or a cylindrical rod in our case. In particular we study
neck formation in tensile loading of a plastic metal. We try to generalize the
work of Bridgman, who considered a purely two-dimensional geometry, to an
effective theory that takes into account some essential three dimensional char-
acteristics. That extending the description of neck formation to three dimensions
is necessary was illustrated by recent experimental findings of [1].

We have studied existing models from the literature that describe necking
for plates and cylinders to identify the consequences of the crucial assumption
of uniform in-plane stress. We also developed a new model that we have not yet
been able to analyze. Finally, using work of [4] in which a power law relation
between the von Mises stress and the effective strain is used, a perturbation anal-
ysis for a simple flat geometry was performed. The perturbation analysis offers
a good starting point for generalizing the work of Bridgman to three dimensions.

Keywords: Neck formation, von Mises stress, tensile pulling, plane stress as-
sumption

1 Introduction
In many daily life situations materials are deformed. If deformations are very small
the material will respond elastically. However, for metals deforming in collisions
the plasticity regime is entered for relatively small deformations and the material
will therefore not return to its initial state. This phenomenon can also be observed
in uniaxial tension experiments of a specimen, which is in our case a metal bar or
cylinder. If in an experiment the length of the bar is continuously increased by exerting
a pulling force sufficiently large to accomplish elongation of the metal, then for certain
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loading the metal will yield and enter the plasticity regime. Still further enlarging
the load gives rise to so-called "necking". A picture of typical neck occurring in a
cylindrical specimen is depicted in Fig. 1.

The stress distributed in the metal has been shown in [1] to become fully three-
dimensional, that is, the two-dimensional models originally proposed by Bridgman
in the nineteenfifties will not be appropriate to model necking. The goal of this
study during the SWI 2013 is to extend the 2D description of Bridgman, so that the
findings in [1] are effectively incorporated. Such a description would be very useful in
finite element codes for collisions of ships, as full 3D models are computationally very
expensive and so an approximate incorporation of the stresses in 2D could drastically
improve the computation time needed to analyze such situations. To find an extension
of the existing models a good review of the literature and the most important concepts
in continuum mechanics were required.

The paper is organized as follows. We first introduce some concepts from con-
tinuum mechanics needed for the description of the problem. Next we describe the
model that we employed for both a cylindrical and a plane geometry. In section 3,
we discuss our preliminary findings. Finally, in section 4, we summarize our results
and make recommendations for future research.

Figure 1: A neck appears after applying a critical load to the cylinder.

2 Model

In this section we discuss three different models that were investigated. The first
model was constructed from some special assumptions using the general theory and
a modelling assumption about the strain rate. We discuss two possible choices for
the strain rate. The first possibility was to assume a constant strain rate, the other
was found in a paper [4]. The other two models we studies were both taken from
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the literature: the original model of Bridgman in [2] and a more recent version by
Kaplan in [5]. Before discussing the models we start with reviewing some concepts of
continuum mechanics.

2.1 Concepts from continuum mechanics
To understand the problem of necking, we need some concepts of continuum mechanics
that we here present. If a material is deformed a displacement field results, which is
denoted as u(x). The strain ε is defined as

ε =
1

2

(
∇u + (∇u)T

)
. (1)

It is a symmetric tensor that is related to the stress tensor σ(x), which assigns a value
of the force per unit area to each point x in the material, by a constitutive relation.
In the elastic case the constitutive relation between σ and ε is linear. In the regime
where the material yields and the deformation is plastic, the situation is much more
difficult. However, for the one-dimensional case an empirical relation between stress
and strain still exists as we will see.

Figure 2: A deformation of a material may lead to a change in volume and stresses
throughout the solid.

If we assume that the yielding is unaffected by moderate hydrostatic pressure or
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tension, which is correct to a first approximation it follows that the yielding condition
only depends on the principal components, or eigenvalues, of the deviatoric stress
tensor, σ′, defined by

σ′ij = σij −
1

3
Tr(σ)δij . (2)

The eigenvalues of σ′, {σ′1, σ′2, σ′3} are not independent since they satisfy

σ′1 + σ′2 + σ′3 = 0,

as follows immediately from the definition of deviatoric stress. If we further assume
that the material isotropic, the condition for which yielding will occur only depends
on the eigenvalues, of which only two are independent. So we can write the equation
for yielding

F (σ′1, σ
′
2) = 0, (3)

with F an arbitrary function.
Finally, we use the von Mises proposal (1937) which has been verified in a number

of experiments that the yielding condition depends quadratically on σ′1, σ′2, σ′3. Using
symmetry this gives

σ′21 + σ′22 + σ′23 =
2

3
σ̄2, (4)

where σ̄ is called the von Mises stress. This nonlinear relation can be expressed in
term of the eigenvalues of the original stress tensor σ as

σ̄ =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
. (5)

It turns out that in the plastic regime the von Mises stress is related to the strain
by a power law. For the one-dimensional case this relation is

σ̄ = CεN , (6)

where C is a material constant and N is a power law exponent whose value is in the
range [0.1, 0.2]. To generalize the constitutive relation (6) to three dimensions different
approaches are possible, that we will discuss in Model I. The original Bridgman model
and related to it the model by Kaplan, will be explained in the subsections Model II
and Model III.

2.2 Model I
1. Steady motion

In this approach we try to generalize (6) to 3D by defining an effective scalar
strain, ε̄ such that (6) remains valid when ε is replaced by ε̄. The problem is that
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we need to know the effective strain, which in general depends on the loading
history. Even though we do not know how the strain evolves, the strain rates ε̇
obey [3]

ε̇ =

√
2

9
((ε̇1 − ε̇2)2 + (ε̇1 − ε̇3)2 + (ε̇3 − ε̇2)2), (7)

where the dot denotes differentiation with respect to time. Assuming constant
time derivatives, Eq. (7) is also valid for the strains, which implies that the dots
in (7) can simply be left out.
In order to close the equations we need two more equations. To this end we
invoke the Levy-Mises flow rules which state

ε1 − ε2
σ1 − σ2

=
ε1 − ε3
σ1 − σ3

=
ε3 − ε2
σ3 − σ2

. (8)

and give the two necessary conditions to close the system.

2. Hutchinson theory
In a paper by Hutchinson et al. [4] it was proposed to generalize relation (6) in
the following natural fashion

ε̇ij =
3

2
ασ̄n−1σ′ij , (9)

with α a material constant and n the strain hardening exponent that is typically
larger than 1 and directly related to N . We remark that relation (9) is similar
to (6) if we require in addition that the the strain rate is time independent and
that the strain and the stress have a common set of eigenvectors.

We next discuss two existing models in the literature. One is the orginal model of
Bridgman for necking. The other model is a model introduced by [5].

2.3 Model II: The Bridgman model for necking
Bridgman discusses neck formation in a cylindrical tensile specimen. The distribution
of stress across a transverse section is, however, not necessarily uniform. Measure-
ments generally only provide data about the mean stress through the neck. Since
the shape of the neck is not known beforehand calculating the stress distribution is
extremely difficult and determining its shape from first principles requires tracing the
time evolution of the dynamical process of neck formation as is done by [4]. Bridgman
made the assumption, based on his own experimental data, that at the neck minimum
the stress is uniformly distributed. From the area reduction at the position of the
neck, which we call x = 0, the strain is known. Furthermore the strain rate can be
shown to be proportional to the radial distance r. For equation for equilibrium is
again given by

∂σrr
∂r

+
∂σrz
∂z

= 0, at z = 0. (10)
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The yield condition is also very much simplified in this case, because σrr = σθθ as
ε̇rr = ε̇θθ and the strain rate is proportional to r. This gives the yield condition

σzz − σrr = Y. (11)

Bridgman then lets his principal stress direction in a meridian plane to the axis as in
Fig. 2.1. We have

σzz 'σ3, σrr ' σ1, σrz ' (σ3 − σ1)ψ. (12)

This implies that the yield condition is

σ3 − σ1 = Y +O (ψ) , (13)

from which it immediately follows that
(
∂σrz
∂z

)

z=0

= Y

(
∂ψ

∂z

)

z=0

=
Y

ρ
. (14)
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Figure 3: The geometry for the Bridgman model. Neck formation in a cylindrical
geometry. Plane and uniform stress assumption at z = 0.

This leads to the following partial differential equation for σzz

∂σzz
∂r

+
Y

ρ
= 0, for z = 0. (15)

Using the symmetry in Fig. 3, we can deduce that

ρ2'CT 2 = OC2 −ON2 ' (r + ρ)2 −ON2, (16)
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hence for any point on OA we have

ρ =
a2 + 2aR− r2

2r
. (17)

From (17) [2] obtained the formula

σzz
Y

=1 + ln

(
a2 + 2aR−R2

2aR

)
. (18)

2.4 Model III: The Kaplan model
In 1973, M.A. Kaplan [5], extended the analysis of Bridgman. His analysis deals
with necking in bars of mild steel. One assumption that is made here is that the
displacement will be axially symmetric in a symmetric bar. This reduces the number
of unknowns in this analysis drastically. Another important assumption is that the
deformation will be produced entirely by plastic flow, so the elastic deformation is
neglected. This can be supported by the fact that the elastic contribution to the total
axial strain in ductile metals is of the order of 1 percent at the onset of necking, and
decreases as necking proceeds.

Kaplan uses the work of Bridgman to calibrate his own model. Experimentally,
Bridgman concluded that during necking, the ratio between the external radius and
core radius remains constant during necking from the point on where necking has
started. This means that r/a = r0/a0 where r and r0 are the deformed and initial
radial positions of a particle respectively. The radius of the profile, a is measured
on a plane on which the particle lies after deformation. The initial radius of the bar
is a0. This fixed quantity implies an equation for the radial displacement in terms
of the profile of the bar a, which is assumed to be a function of the z-direction (see
Fig. 1) and time t. Kaplan then performs a formal analysis to derive the strain fields
and strain rates in terms of this profile.

From the strain field, the Levy-Mises plasticity equations and use of the radial
displacement uniformity, the stress field could be determined. This is a closed system
of eight equations and unknowns. After some formal derivations the predicted profile
of the neck, a(z, t) is determined and has the shape of a parabola.

The analysis of [5] is valid throughout a significantly larger portion of the plastic
flow region than the analysis of [2]. The analysis holds only for a necked cylindrical
mild steel tensile specimen. However, experiments show a high similarity for ductile
metals and Kaplan argues that his results apply to those materials as well.

A nice feature of Kaplan’s work is that all parameters used in his model can be
measured very well. Also, his results have good agreement with experiments and
tensile tests.

3 Results
To understand the necking process in time we studied a thin sheet as sketched in
Fig. 4. In this study we use the formalism as presented in [4]. The sheet is initially in
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rest and then a force P per unit length is applied at the ends, which are initially at
x = −L and x = L. For simplicity we assume L�1. The width of the sheet is given
by h(x, t). The stress is linearly related to P by at each section x1 = constant

P = σ11h (19)

We next make the plane stress assumption, that is, all quantities are independent
of x2. Moreover only the σ22 and σ11 do not vanish and these are taken to be uniform
over a section with constant x1. Finally, we assumed symmetry with respect to the
x3 coordinate and imposed volume conservation, that is,

ε̇11 + ε̇22 + ε̇33 = 0, (20)

with the additional condition that ε̇22 = 0, as there is no x2 dependence. If we use
Eq. (9), we find after calculating the von Mises stress

ε̇11 = −ε̇33 =
α
√

3

2

(√
3P

2h

)n
. (21)

We can now find the evolution equation of h(x1, t), by calculating the time deriva-
tive of h with respect to time, keeping in mind that there will also be a convective
contribution, that is

ḣ =
∂h

∂t
+ v1

∂h

∂x1
= ε̇33h. (22)

In Eq. (22) we introduced v1(x1), which is the velocity in the x1-direction. If we
now use Eq. (21), we have derived an evolution equation for h(x1, t), which however
includes the velocity v1.

3.1 Perturbation analysis

To find an approximate solution to Eq. (22) we perform a perturbation analysis. We
will repeat here the reasoning of [4]. First we assume that the sheet is perfect and
therefore h(x1, t) only depends on t, next we add a small sinusoidal perturbation, so
we can write

h(x1, t) = h0(t)

(
1− ξ cos

(
2πx1
l

))
, (23)

where ξ is a small parameter. The solution to zero order in ξ satisfies

ḣ0 = −1

2

√
3α

(√
3P

2

)n
h1−n0 = −h0f(h0), (24)
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where we introduced f(h0) = ε̇11 for notational convenience. Eq. (24) is easily solved
as

h0(t) =

[
hn0 (0)− n

2

√
3α

(√
3P

2

)n
t

] 1
n

. (25)

The first order contribution in ξ can be obtained by substituting Eq. (21) in Eq. (22)
and next differentiating with respect to x1. This yields

∂2h

∂x1∂t

∂h

∂x1
− ∂2h

∂x21

∂h

∂t
=

(
∂h

∂x1

)2

[−f ′(h)− f(h)] + f(h)
∂2h

∂x21
, (26)

with f as defined in (24). We could try to solve the nonlinear equation (26) numer-
ically, but we have to keep in mind that that this equation is only valid for in-plane
stress and the strain rates only depend on x and not on z . If we do make such an
assumption then solving Eq. (26) would determine how a perturbation h(x, t) would
evolve in time. For reasons of time we have not numerically solved (26), but rather
delved deeper in the theory behind neck formation closely following [4].

Of course, like in [4] it is possible to substitute the sinusoidal expression for h (23)
and see keeping only terms linear in ξ to calculate the linear variation of the h(x1, t)
in time as a consequence of the convective term. We will not repeat this calculation
here, but rather try to determine the functional form of h when a perturbation is
introduced.

R

1

=xz

x

3

h(x )1

ψ

Figure 4: A perturbation analysis can help to calculate the initial neck shape, without
assumptions on the curvature.

Assume now that the wavelength of the perturbation is very large and define
X = βx1, where β is of the order of the inverse wavelength as in [4]. We use X and
z = x3 as coordinates. In the creeping flow approximation we can use div σ = 0, as
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an equilibrium condition. In components this reads

β
∂σ11
∂X

+
∂σ13
∂z

= 0 (27)

β
∂σ13
∂X

+
∂σ33
∂z

= 0 (28)

The boundary condition at z = h(X)/2 is given by

−σ11 sinψ + σ13 cosψ = 0

−σ13 sinψ + σ33 cosψ = 0 (29)

where tanψ = βh′(X)/2 and the prime denotes differentiation with respect to X.
The boundary conditions can be expanded up to order β2 as well as the stresses

σ11 = σ(0)(X) + βσ
(1)
11 + β2σ

(2)
11 + · · ·

σ33 = βσ
(1)
33 + β2σ

(2)
33 + · · · (30)

σ13 = βσ
(1)
13 + β2σ

(2)
13 + · · ·

and the strain rates

ε̇11 = −ε̇33 = ε̇(X) + βε̇
(1)
11 + β2ε̇

(2)
11 + · · ·

ε̇13 = ε̇
(0)
13 + βε̇

(1)
11 + β2ε̇

(2)
11 + · · · , (31)

where ε(0)13 = 0, but is kept for clarity as in [4].
The strain rates are related to the flow velocity in the following way

ε̇11 = β
∂v1
∂X

ε̇33 =
∂v3
∂z

2ε̇13 =
∂v1
∂z

+ β
∂v3
∂X

. (32)

To go beyond the in-plane plane stress assumption we would need to take into account
ε̇22, which could be achieved in a perturbative approach. Of course, this would make
the equations much more difficult to solve, but in this way a good estimate of non
in-plane effects can be given.

We next continue with the Hutchinson analysis. A major simplification of ε̇22 = 0
is that we can express σ22 in terms of σ11 and σ33 as

σ22 =
σ11 + σ33

2
.

If we write all expressions up to order β2, we find the following values of the stress
and strain rates

σ11 = σ(0)

[
1 +

β2(n− 2)hh′′

12n

(
1− 12

z2

h2

)]

σ33 = σ(0) β
2hh′′

8

(
1− 4

z2

h2

)

ε̇11 = ε̇(0)
(

1− β2hh′′

24

)(
n+ 4 + 12(n− 4)

z2

h2

)
(33)
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From Eqs. (33) it can be seen that only when the strain hardening exponent n equals
4, ε̇11 will be uniform across the neck.

Furthermore, we can now compare the result in [4] with that in [2] by introducing
the radius of curvature as

1

R
=
β2

2
h′′. (34)

Buy eliminating h from the expression for σ11 and σ33 we obtain
√

3σ11
2σ̄

= 1 +
h

4R

[
1− z2

h2

]

√
3σ33
2σ̄

=
h

4R

[
1− z2

h2

]
, (35)

which agree exactly with the Bridgman expressions to order z2

h2 .

4 Conclusions and recommendations

We conclude that the problem of neck formation is far from trivial. In order to find
a generalization of the Bridgman result we studied 3 different models. The model of
Kaplan is interesting and may prove very useful, however, we have not been able to
generalize this to more dimensions. We constructed a model using the assumption of
constant strain rates, which makes it much easier to take the convective terms into
account. Finally, we found a study of [4], which appears to be a good alternative to
the Bridgman theory. This model takes into account time dependent strain rates and
can indeed be generalized to cases in which there is no assumption made about the
stresses all being in-plane. Unfortunately, time has not permitted to do the complete
analysis, but a perturbation analysis along similar lines as that in [4] would open
new avenues for the resolution of the problem of taking the necking problem to three
dimensions.

Another direction which may be fruitful, is to start with one of the constitutive
models proposed in this study and investigate them numerically. Comparison between
experimental data and modeling results would indicate which constitutive relation
would be best. Next, complementary to the perturbation analysis, a numerical study
of the nonlinear model could be performed at reasonable computational costs, so that
a good estimate of the errors resulting from the assumptions such as a uniform stress
distribution across the neck can be obtained.
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