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Abstract

We describe a number of approaches to a question posed by Philips Research,
described as the “random disc thrower” problem. Given a square grid of points
in the plane, we cover the points by equal-sized planar discs according to the
following random process. At each step, a random point of the grid is chosen
from the set of uncovered points as the centre of a new disc. This is an abstract
model of spatial reuse in wireless networks. A question of Philips Research asks
what, as a function of the grid length, is the expected number of discs chosen
before the process can no longer continue?

Our main results concern the one-dimensional variant of this problem, which
can be solved reasonably well, though we also provide a number of approaches
towards an approximate solution of the original two-dimensional problem. The
two-dimensional problem is related to an old, unresolved conjecture ([6]) that
has been the object of close study in both probability theory and statistical
physics.

KEYWORDSs: generating functions, Markov random fields, random sequential
adsorption, Rényi’s parking problem, wireless networks

1 Introduction

Various algorithms have been developed for effectively and efficiently maintaining and
updating network information in wireless sensor networks. In order to analyse the
performance of certain stochastic gossiping algorithms, Philips Research has posed
the following two questions.

The first question is related to the maintenance of network information in wireless
sensor networks. Consider an n X n grid of evenly spaced points (with spacing 1).
A disc thrower sequentially distributes (closed) discs of fixed radius r, so that each
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disc is centred on a grid point randomly and uniformly chosen from grid points that
were not covered by one of the previous discs. (Discs are allowed to overlap.) The
disc thrower continues throwing discs until every grid point is covered by at least one
disc. The question is, how many discs is the disc thrower expected to throw? More
specifically, what is the probability distribution for the number of discs thrown?

A second question is related to the propagation of new network information in
wireless sensor networks. Again consider an n X n grid. The disc thrower now throws
discs in phases. Again he throws discs sequentially. During each phase though he is
only allowed to throw discs so that each disc is centred on a grid point that he covered
during the previous phase. Once he cannot throw any more discs, he starts his next
phase. During the first phase he is only allowed to throw a disc on one of the corner
points. The question of interest here is, what are the expected number of phases until
the disc thrower covers the entire grid?

We will primarily focus on the first problem. As such, let us precisely define the
parameters that we are interested here. Let us first note that there is a natural d-
dimensional generalisation of the (first) random disc thrower problem. Consider a
d-dimensional n x - - - x n grid with n¢ equally spaced points with spacing 1. A sphere
thrower sequentially distributes (closed) d-dimensional spheres of radius r such that
each sphere is centred on a grid point chosen uniformly at random from grid points
not contained within a previously thrown sphere. Let Ny(n,r) be the number of
spheres thrown by the end of this process. We are most interested in the coverage
ratio E[N(n. )]

an,r
Oa(n,r) = —a
Since our first interest is in the case d = 2 that corresponds to discs, we often drop
the subscript and write N(n,r) (= Na(n,r)) and 8(n,r) (= 3(n,r)).

The structure of the report is as follows. We start by discussing some of the related
background literature, then present some simulation results that give us insights on
how the expected number of thrown discs is related to the grid size n and the discs’
radius r. This is followed by an analysis of the one-dimensional disc thrower problem,
where exact results can be obtained. We also propose two approximation methods
based on Markov chains and enumeration of all possible fillings of the grid and discuss
them for the one-dimensional case. We then discuss the possibility of extending these
methods to the two-dimensional grid, in the specific case of discs having radius 7 = /2.
We leave the extension to larger discs for later work. At the end, we briefly look at
the second problem and discuss how it can be solved in the one-dimensional case.

1.1 Random sequential adsorption and Rényi’s parking prob-
lem

The (first) disc thrower problem is closely related to some models of physical chem-
istry. Perhaps the most relevant is that of random sequential adsorption (RSA) which
we describe now. Suppose we have some surface and a sequence of particles land at
random locations on the surface. Each particle adheres to the surface, or is “adsorbed”,



The random disc thrower problem 61

if it lands at an exposed portion of the surface. In particular, each adsorbed particle
covers a region of the surface, which prevents the adsorption of any particle that lands
there afterwards. The process is irreversible, meaning that the system will eventually
arrive at a jammed state, after which no new particles may be adsorbed. The standard
models that incorporate these kinds of stochastic and geometric elements are known
as random sequential adsorption (RSA). For a comprehensive overview of RSA, the
reader is referred to [4]. Most of the research done in this field is about determining
the coverage ratio 6 in the eventual jammed state: for adsorption onto lattices, 8 is
the ratio of adsorbed particles to the number of lattice points; in continuous space,
is the density of points of adsorption in the surface. Clearly, the random disc thrower
problem is captured by an appropriate lattice RSA model.

Although Philips is mainly interested in the lattice version of the problem, we
mention here that the continuous RSA may be viewed as a useful limiting case. In
lattice RSA, discs of small radius correspond to regions of the lattice that are jagged
and far from round. On the other hand, taking r large and n even larger, the shapes
more closely approach perfectly circular shapes in a continuous square. In particular,
the random disc thrower problem can in this case be approximated by the contin-
uous disc thrower problem, in which perfectly circular (closed) discs of radius r are
randomly and sequentially thrown into the plane, so that their centres land inside a
square of side length x, but do not land on a previously covered point, continuing
until no area of the square is uncovered. Let us denote the analogously defined cov-
erage ratio by 6(z,r) and write 8(r) = lim,_,o, 6(z,7). This problem is also known
in the literature as continuous RSA with hard discs of radius r/2. Figure 1 depicts a
jammed state in this model.

Figure 1: RSA with hard discs of radius r/2 in jammed state.

This leads us to another very relevant but older model, one that is related to
the random car parking problem solved by [9]. Consider the d-dimensional cube
[0,2]¢ for some x > 1. First we place a random unit-length d-dimensional cube so
its centre point is uniformly distributed in [1/2,7 — 1/2]¢. Subsequently, we place
a new d-dimensional cube randomly and independently within [0, z]? in such a way
that it does not intersect any previously placed d-dimensional cube. We repeat this
until no more cubes can be placed. The question is, what is the expected eventual
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density of cubes placed in [0, z]%? This model may be referred to as the (continuous)
random sequential packing of d-dimensional cubes, and such problems are discussed
more generally in [3].

The random sequential packing problem for d-dimensional cubes is quite natural
and is related to a wide variety of problems in statistical physics. By a suitable simple
rescaling and ignoring boundary effects in the asymptotic limit, one may consider the
d = 2 case as equivalent to a continuous and “square” version of our random disc
thrower problem. Since the objects are simpler, one might expect that this problem
is somewhat easier than the disc thrower problem; however, the process retains the
same irreversibility property, which seems to be a fundamental difficulty. [9] solved
the d = 1 case, known best as the random car parking problem, by proving that the
expected density in the limit as z — oo has the form

> bl —e v
Cy = / exp (2/ du) dt =~ 0.748.
0 0 u

The evocative name of this model comes from imagining the intervals as cars of
unit length that are parked randomly in a street of length x. [6] considered the
d-dimensional problem in general and conjectured that the density should converge
to C1¢. From simulation results, this conjecture is widely believed to be false for
every d > 1. Nonetheless, it remains open after more than half a century! Even the
existence of the d-dimensional limit density was not proven until [7].

Following on that work, [8] proved a law of large numbers and central limit theorem
for a general class of lattice RSA models, of which the random disc thrower problem
is a member. Those results imply the following.

Theorem 1.1 ([8]). For all r € R there is a constant 6 = 0(r) > 0 such that for all
p € [1,00)
N(n,r)
n2
Theorem 1.2 ([8]). For all r € R there is a constant o = o(r) > 0 such that

LP
=6 as n — oo.

Var[N (n,r)]

5 -0 as n— 00
n
and N EIN
(n,r) — E| (n’r”g]\/’(o,a) as n — o0o.

n

Hence for n large enough the distribution of N (n,r) is approximately Gaussian. More-
over, the coefficient of variation tends to zero as n~!. Thus a good approximation for
grids of moderate size is E[N(n, )] ~ n?0(r).

1.2 Simulation estimates of 0(r)

In this subsection, we discuss heuristic and simulation estimates for the coverage ratio
O(r) in terms of r. Let us consider first the case r = 1. A disc thrown on a grid point
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Figure 2: A disc with radius 7 = 1 or with radius r = v/2.

will then cover four neighbouring nodes, see Figure 2, left. Hence, in this case, the
problem is equivalent to randomly selecting grid points in sequence, subject to the
restriction that each selected point does not neighbour a previously selected point.
This problem is known as RSA of monomers on a square lattice with nearest-neighbour
exclusion. An approximation for 6(1) derived from series analysis has been obtained
(cf. [10]) with the estimate 6(1) ~ 0.36413. Ignoring effects of the grid boundary, or
taking n sufficiently large, we can then estimate E[N(n, 1)] ~ 0.36413n%. Next let us
consider the case r = v/2. A disc thrown on a grid point will then cover eight nearby
nodes, see Figure 2, right. This problem is known as RSA of monomers on a square
lattice with next-nearest-neighbour exclusion. One can deduce that this problem
corresponds to RSA of hard unit squares on a square lattice ([4], page 1310). The
coverage for the latter problem is estimated as 6 ~ 0.7476. However, since a square
covers four points and a square corresponds to one disc, we find for our problem
0(v/2) ~ 0.7476 /4 = 0.1869, giving the estimate E[N(n,/2)] ~ 0.1869n>.

We are not aware of published analysis to approximate the coverage ratio for other
disc sizes. Simulations could help to determine the coverage. Moreover, methods using
rate equations to estimate the coverage are discussed in [4] and [10].

Using continuous RSA as an approximation however, we can develop asymptotic
estimates of §(r) for large 7. The continuous RSA problem has been studied exten-
sively and the coverage has been estimated by 6(1//7) ~ 0.5479 (cf. [10]). Since
each disc has area 7r?/4, we deduce that §(r) ~ 0.5479/(7r?/4) ~ 0.6976r =2 as r
grows large. This approximation and some simulation results are plotted in Figure 3
for n = 128 against r, where for each r we average over 100 simulations. The ap-
proximation becomes more accurate for larger r as the discrete discs become more
circular.

We end this section with a short remark about the effect of the grid boundary
on the covering ratio, i.e. the difference between 05(n,r) and 62(r). (The boundary
effect is also the essential difference between RSA and random sequential packing.)
Points near the boundary are more likely to be covered than points in the inte-
rior of the grid. However, in [4] it is noted that in the one-dimensional case these
boundary effects decay superexponentially. Furthermore, simulations suggest that
for the two-dimensional case boundary effects tend to decay even faster than in the
one-dimensional case. Thus, in moderate size grids, the boundary has only a small
influence on the actual coverage ratio, when compared with the coverage ratio for
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Figure 3: Asymptotic behaviour of E[N].

large n. In Figure 4, simulation results are shown for the coverage ratio with respect
to the position of grid points. We average over 10° simulations on a 30x30 grid and
discs with radius » = 5. We indeed see that the boundary effects decay rapidly, af-
ter approximately one radius length. It also appears as though the boundary effects
propagate like waves to the interior of the grid.

2 One-dimensional disc throwing

In this section, we analyse the one-dimensional restriction of the random disc thrower
problem. This amounts to throwing equal-sized line segments on a line with n grid
points. For simplicity, we shall usually assume that the segments all have radius
r =1, that is they each cover exactly three points of the line.

2.1 Recurrence

We now describe a recursive approach to the one-dimensional random disc thrower
problem. Each time a disc is thrown, the problem naturally splits into two smaller
subproblems which are independent of one another. See Figure 5. This leads to the
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Figure 4: Simulation results of boundary effects.
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Figure 5: A depiction of the decomposition of the one-dimensional problem into two
smaller independent subproblems.

following recursion:

n—2

01(n,1) = 1+% D (01(k—2,1)+61(n—k—1,1))+
k=3
+%(91(n—3,1)+91(n—2,1)). (1)

We note that the last term on the right hand side corresponds to the case where the
disc has been thrown close to one of the endpoints of the line. Though the above
recurrence is written only for r = 1, this relation can be extended to arbitrary r.
Hence for reasonably small n (and r) we can use the recurrence to compute 6;(n,r)
exactly.

To compute the limit of 61 (n, 1), we require analytical tools. This is done explicitly
in Dutour Sikiri¢ and Itoh [3, Chapter 2] for a closely related one-dimensional discrete
random sequential packing problem, referred to as the Flory model. This process is
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defined as follows: place at random a left-closed, right-open interval of length r in
{0,...,n}, with the left endpoint of the interval chosen uniformly from {0,...,n—r};
then each subsequent interval (of length r) is chosen uniformly at random so that it
intersects with no previously chosen interval. Here the problem is to study v,(n), the
number of intervals that have been packed by the end of the process, and in particular
to determine Ev,.(n)/n.

The relationship between the one-dimensional random disc thrower problem and
the one-dimensional discrete random sequential packing is, for instance for r = 1, that

lim ) ining 6, (n, 1), (2)

n— 00 n n— 00

It is possible to derive from a recurrence relation similar to ours in (1) a differential
equation for the generating function

o0
Evi(n)
F(z):= "
()= 3 o),
n=1
By solving the differential equation, we can then obtain an analytic expression for
F(x). Then reading off the coefficient of 2™ in the Taylor series of F'(x), we obtain

n—oo

. 1 1
lim 01(n,1) = 3 <1 — (:‘2> ~2 0.432
where we used (2).

2.2 A Markov chain approximation

The following approach is suitable for the coverage for a very large grid compared to
the size of the disc. Consider the one-dimensional case and a new random process
with the following three building blocks, named a, b and c. Linking two building
blocks we require the endpoints to overlap and to be either both occupied or both
empty. The following pictures illustrate the building blocks, how to link them, and
give an example of an admissible configuration.

linking two blocks:

. three bgilding bloclis: a b o
ce® [0O

ele®

In order to approximate the one-dimensional random disc thrower problem, we
would like to exclude on one hand the possibility of two centres being neighbouring
points, and on the other hand the appearance of three (or more) unoccupied neigh-
bouring grid points. Therefore, we consider the following transition matrix:



The random disc thrower problem 67

example of an admissible configuration:

CecCeCeo

q
@——=0
0 q 1— q P
M:= M;j)i<ij<s=[1 0 0 _q
0 1 0
C

for 0 < g < 1, g being the only parameter that determines the Markov chain. Which
value of ¢ should we choose? Our Ansatz is the following: we choose the value of g
to maximise the entropy of the system.

The entropy of the Markov chain with transition matrix M is given by the entropy
rate

1
H=- Zm’Mij log Ml;; = —fq(qlogq +(1—q)log(1 - q)), (3)
2]

where II = (71,7, m3) with m; + 79 + m3 = 1 is the stationary distribution, i.e. it

satisfies the equation IIM = II. The latter two equations imply IT = (3flq, 3 L L é—:g).

Note that Sflq is an approximation for the coverage ratio 6;(1).

Let us heuristically explain our Ansatz: the system is very likely not to be in an
extreme event. A likely event is a steady state, i.e. a configuration that does not
change much under small fluctuation. Entropy is the measure of the multiplicity of
a configuration. So we can reformulate our task as to extremise the entropy. This
Ansatz is consistent with the Second Law of Thermodynamics. The concept of entropy
and the entropy maximisation principle also plays an essential role in information
theory, see Cover and Thomas [1].

The mathematical justification is based on large deviations. Morally, we say that
a sequence of random variables Y, taking value on a (Polish) space Y satisfies a large
deviation principle with a rate function I: Y — [0, +o0] if for any event A

P(Y,, € A) = exp[—n inf I(z)] as n — oo.
z€A

The rate function I characterises the probability of observing an event: for an
event A, the smaller values of inf,c 4 I(x) yield higher probabilities of observing A.
The value of I is always non-negative and attains its minimum at the most probable
event. Thus the large deviation principle explains that in order to have the most
likely event, we need to extremise the rate function.

Now we consider the empirical pair measure of an irreducible Markov chain X =
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{X;} where X; €T,i=1,--- ,k,

1 n
L, = - Z5<Xi,xi+1>-
=1

Sanov’s Theorem (cf. den Hollander [2]) states that L,, satisfies a large deviation

principle with the rate function
E v;; log ( )
P\

for any probability measure v on I' x I, where 7; = ) j Vij- Since the empirical
measure counts the (average) number of realisations of an event, the theorem says
that in order to have a maximum number of realisation of a Markov chain, we should
extremise the relative entropy. Note that we can rewrite I as a relative entropy

Iu(v) = R(v|[F @ M), (4)

where 7 @ M is defined by (7 ® M);; = 7;M,;;. Now we can rewrite the function H
in (3) in the form of (4). Let u;; = \1“1|2 be the uniform measure on I" x T'.

H=— Z WiMij lOg Mij

.3

:—Zmelog : ”—|—log|F|2—|—Z7T,log7T,

= —72(71' ® M||u) + log |T'|? + Z 7; log ;.
i
Hence, up to sum of a constant and entropy of the stationary distribution, H can
be written as the (negative) relative entropy. The argument above explains why it is
reasonable to maximise the function H.
Therefore, we are finding the value ¢ that satisfies

dH
diq—().

Using (3), we can calculate explicitly

dH _310gq—210g(1 —q)
dq (3—q)? ’

that yields the equation ¢ — g% +2¢—1 = 0. Solving this equation, we find ¢ = 0.5698
and 61 (1) ~ 3=, = 0.4115.

This is close to the actual value (= 0.432, as we saw in the last subsection). We
have hope to find better estimates of the coverage ratio by including longer building
blocks and consequently studying larger transition matrices. This is a task for future
research.




The random disc thrower problem 69

2.3 Configurations and weights

A final approach to understand the disc throwing problem is by an analysis of the
direct calculation. Such a direct calculation of all possible disc throwings quickly
becomes unfeasible when the number of grid points n is large compared to the disc
size r. However, when we approach the problem from the end result of a random disc
throwing, we see that the disc throwing process can be separated into two problems:

1. determine all possible configurations ¢; of covering the grid.

2. determine the relative weight, i.e. the probability P; of reaching a given config-
uration ¢; by the disc throwing process.

Here i € {1,...,1} runs over all possible configurations of covering the grid. If both
problems are solved exactly, the expected value for the number Nj(n,1) of discs to
cover the grid equals

where k; is the number of discs in configuration c¢;.

The advantage of separating the original disc throwing process in this way, is that
the two subproblems might be easier to calculate or estimate than the disc throwing
process itself.

2.3.1 Configurations

Determining all possible configurations of a completely covered grid of length n — 1
(n grid points) by discs of size r = 1 is not hard in the one-dimensional situation.
For this, we have to fill an interval of length n — 1 or n — 2 or n — 3 with intervals of
length 2 or 3 and add 0, 1 or 2 intervals of length 1 at the boundary respectively to
end up with a combined length equal to n — 1. These intervals represent the possible
distances between neighbouring centers of discs. The following example with n = 21
grid points (Table 2.3.1) should clarify the methodology.
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ke | similarity class of configurations

Q

C a

1 [ 11]10-2 ()
2 |10 [149-2+1 (5)
3 /10 |1+8-2+1-30r8-2+1-3+1|2(3)
4 |10 [7-2+2-3 (2)
5 19 [ 1+46-2+2-3+1 2-(3)
6 | 9 |1+5-2+3-30r5-2+3-3+1 2-(§)
719 |42+4-3 @
8 | 8 |1+3-2+4-3+1 )
9 | 8 |1+2-2+5-30r2-2+5-3+1 | 2(])
108 [1-2+7-3 (M
117 ]1+0-2+6-3+1 (é

Table 1: List of all possible similarity classes. n =21 and r = 1.

In the enumeration of possible configurations, we can restrict ourselves to enumer-
ating different similarity classes C, due to the symmetry of the ¢;. A similarity class
C' contains ac configurations ¢;, for which the analysis of the disc throwing process
does not depend on the precise ordering of the different intervals of length 2 and 3.
kc stands for the number of discs used for each configuration in the similarity class
C. As an example, the 5" similarity class consists of configurations with 6 intervals
of length 2 and 2 intervals of length 3. A representative configuration from this class
is presented in Figure 6. Since the probability P; of one representative ¢; in a similar-

o] leo] le] lo] lee] Jol Jo] Jelel ol J0

Figure 6: Representative configuration for C' = 5.

ity class C' equals the probability of any other representative in that class, the total
probability of ending up in any configuration in a certain similarity class is ac P;.

2.3.2 Weights

First approximation The probabilities of occurrence for intervals of length 2 and
3 are not the same. From Monte Carlo simulations, we know that the probability of
an interval of length 2 is higher than 0.5 and is length-of-grid-dependent. However,
we can conclude that the error we make when we do not use the exact P;, but rather
assume that each configuration c; is equally probable, is not large. In Figure 7, one
can see the distribution of N7 (100, 1) under assumption that each configuration ¢; is
equally probable.



The random disc thrower problem 71

0.35

0.3 B

0.25

Probability
o
o

o
o

0.1

0.05

32 34 36 38 40 42 44 46 48 50 52
Number of disks

Figure 7: Distribution of discs needed to cover n = 100 grid points.

We obtained EN;(100,1) ~ 41.8370, Var Ny(100,1) ~ 1.7773 and Y5 a; =
2066337330754. This result is not far from 10000 Monte Carlo simulations where
we obtained EN7(100,1) =~ 43.5225, Var N1(100,1) ~ 1.9155. It would be useful
to improve our results by approximating the P;. The following section covers this
subject.

Approximation of P, Finding the probability P; of ending up in a given con-
figuration ¢; brings us back to the original problem. If the number of discs in the
configuration ¢; is denoted by k;, then there are k;! ways of ending up in this con-
figuration. At this stage, we want to emphasise that the probability is not given by
the ratio of multiplicities of the different configurations, P; # % Rather, to find
P; one has to consider each j € {1,...,k;!} of the k;! possible \A;ays to end up in c¢;.
Each of these disc throwings depends on the order of the discs being thrown and how
many grid points were covered in previous steps,

P, = — (6)

where z;; is the number of additional grid points covered by the s’th disc thrown in
the j’th process of covering configuration ¢; and z;;, = 0. Note that Zle Zi;, =M,
since the grid is fully covered after all discs have been thrown.
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Calculating P;; for all these different disc throwing processes is exactly what makes
the disc throwing process hard. Therefore, in this method we suggest to approximate
the additional coverings z;; in a sensible manner, based on what typically happens
in a disc throwing process. As evidenced by Figure 8, the values for z;; are typically
2r + 1 = 3 for the first discs thrown. Over the course of the disc throwing process,
some discs only cover 2 additional points, while at the end, most newly thrown in
discs cover only a single additional point. On average, 0.5 of the discs cover 3 points,

New coverings
30 — cemcmsmeme 0 mtmeem wmsametm 0o ® ssecomm misem s sems o woe e b b

2.5¢

15¢

1.0t e S —

0.5¢

100 200 300 a0 DiskHE
Figure 8: Additional points covered by newly thrown in discs, for an n = 1000
simulation.

0.31 of the discs cover 2 points and 0.19 of the discs cover 1 point.

As an approximation for P;; we assume that all initial discs cover 3 points, all
next discs cover 2 additional points and all remaining discs cover a single point. Then,
P;; = P;, for all j and we do not have to worry about different throwing processes.
Denote with ,k; the number of discs that cover p previously uncovered points, then
from

ski + ok; + 1k = ki, 33k + 22k + 1k = n, (7)
we can solve ok; and 1k; in terms of 3k;. As a further approximation, we assume that
’;‘% = %. This then fixes 3k; and allows us to write an approximate value for P; as

3k; 1 3k; 1
P=k! ] —
i = ki Hn—B(m—l)XHn—&gki—Q(m—l)

m=1

1k 1

Xrn];IlTL—?)gki—?gki—(m—l). (8)

As a result of approximating the probabilities, we are not guaranteed to have a total
probability equal to unity. These P; should therefore be seen as relative probabili-
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ties and, to find the expectation ENp(n, 1), one should use the rescaled probabilities
b = P,/ 22:1 P;. By this method, we find approximations EN;(21,1) ~ 9.0749
and Var Ni(21,1) ~ 0.24479, which are in reasonable but not excellent agree-
ment with 10000 Monte Carlo simulations that suggest EN;(21,1) &~ 9.3769 and
Var N1(21,1) = 0.43549.

3 Two-dimensional disc throwing

In this section, we analyse the original two-dimensional random disc thrower problem.
We have chosen to restrict our attention to discs of radius » = +/2. This in fact
corresponds to discs which are squares each covering 9 points of the grid.

3.1 Recurrence approach

In Subsection 2.1, we outlined an explicit recurrence for the one-dimensional restric-
tion of the problem. This recurrence relied on the fact that we could split into smaller
independent subproblems. Here we would like to discuss the difficulties of extending
this approach to the two-dimensional problem.

A natural idea is to split the problem at each stage into the four subproblems
corresponding to the four regions of the grid determined by the randomly thrown
disc, as depicted in Figure 9, left. Solving these as independent subproblems and
then combining them provides a lower bound to a related disc throwing problem. We
can solve this related problem by writing the corresponding recurrence relation, one
that is similar to (1) but with four terms rather than two. As in Subsection 2.1,
such a recurrence allows us to write down exact answers for small values of n, or to
potentially solve it asymptotically using analytic methodology.

Figure 9: A depiction of the problem with decomposition of the two-dimensional
problem into smaller subproblems.
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Unfortunately, in attempting to decompose the problem in this way, there are
possible long-range dependencies between the four regions, as depicted in Figure 9,
right. Though it may be possible to generate high quality solutions for the related
problem, it would require further investigation to determine if such solutions are at
all related to the original problem. In particular, it would be worthwhile quantifying
the error due to long-range dependencies. Perhaps they are negligible when n is large.

3.2 Markov chain approach

In two dimensions the Markov chain approach could be extended to the consideration
of Markov fields, see e.g. [5]. Let us first recall the definition of a Markov random
field on a regular two-dimensional grid.

Let S = {1,--- ,n} x {1, ,n} be the grid of n? points, which we call sites. For a
fixed site s define its neighborhoods N (s). For instance, for the site s = (4, j), that is in
the interior, the neighborhood could be N(s) = {(i—1, ), (i+1,7), (¢,7—1), (i, 5+1)}.
For a site on the boundary, there are less neighbors.

A Markov random field X (S) on S is defined via local conditionals

P(X(s) =zs | X(S\s) =25\5) = P(X(s) =25 | X(N(5)) = 2n(s))-

In other words, the full conditional distribution of X (s) depends only on the neighbors
X(N(s)).

To generalise our Markov approach to the two-dimensional case, we observe that
the probability of a point in the lattice chosen to be a centre given all other outcomes
is the same as the probability of being a centre conditioned only on the outcome of the
neighbors. We see that the space of configurations as well as the above requirement in
the two-dimensional disc thrower problem resemble with the definition of the Markov
random field on the grid. For this reason, we believe that the Markov random field
would be a good model for the two-dimensional disc thrower problem. The study of
this model is out of the scope of this report and is a topic for future research.

3.3 Configurations and weights approach

Extending the approach of Subsection 2.3 to more than one dimension introduces
additional complications. The feasibility of that method is determined by how well
one can recover from the complications in each of the two subproblems.

Configurations Finding all configurations in a two-dimensional grid is hardly as
straightforward as it is in the one-dimensional case. At least the separation of the
disc throwing process into the two subproblems (finding configurations and weights)
allows us to first only consider the problem of finding all possible configurations rather
than all disc throwing processes. In principle, all configurations can be algorithmically
enlisted by the following method: for a grid covered by r = /2 discs, we know that
exactly one of the 4 upper left grid points should be covered. Depending on which
grid point happens to be covered, there are again 4 possibilities for the disc to the
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right of it. By continuing this process also in the vertical direction, one finds all
configurations. However, for an n x n grid, there are a maximum of [n/2]? discs,
each with at most 4 possible center points, giving an upper bound for the number of
configurations equal to 22"/ 21*, To get a feeling for the number of configurations,
taking square discs covering 25 grid points on a 30 x 30 lattice, there are about
9130/31” ~ 10% configurations.

Weights Extending our approximation of the probability P; of a given configuration
to the two-dimensional case does not seem to be the weakest link in this approach.
Once the method has been fine tuned in the one-dimensional case, one can generalise
easily to the two-dimensional situation. The probability P; only depends on the
number of discs k; in the configuration, leading to only a small number of required
calculations. The difficulty is how to find reasonable values for the ,k;. In the
one-dimensional situation discussed above, only sk; had to be determined by the

assumption that f’; = %. In two dimensions, there are many more ,k; and still
only two constraint equations Zp pki = k; and Zp ppki = n?. However, this is

not a problem inherent to the two-dimensional situation, as it also occurs in the
one-dimensional case for r > 2. Therefore, an analysis of the applicability of our
approximation for the probabilities in this more general one-dimensional situation,
should also be conclusive for the two-dimensional system.

3.4 Hexagonal approach

One can consider other lattices than the square one. One of the most common lat-
tices in nature is the hexagonal one. While in a square lattice every point can be
covered up to four times, in the hexagonal lattice every disc (with r = 1) covers up to
seven points and every point can be covered at most three times. This may simplify
matters. Figure 10 depicts one of the possible configurations for a hexagonal lattice.
Determining the expected number of randomly thrown discs needed for coverage of a
given region is a problem that remains out of reach for the hexagonal lattice, yet we
can still make some comparisons.

We have compared the square and hexagonal lattices directly, by performing 10000
Monte Carlo simulation on a 20 x 20 grid. Table 2 presents the outcomes.

Lattice EN5(20,1) | Var N2(20,1) | 6 area
square 149.1485 22.6434 0.3729 | 400
hexagonal | 97.8310 7.4639 0.2824 | =~ 346.41

Table 2: Comparison of characteristics of No(20, 1) for a square and hexagonal lattice
for a 20 x 20 grid.

On the one hand, with 400 points in a hexagonal lattice we can cover an area
which is approximately 12.5% smaller than an area covered in a square fashion. On
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Figure 10: One realisation of a coverage process for a hexagonal lattice in a 20 x 20
grid.

the other hand, we need 34% fewer discs and the coverage is 24% smaller, which
makes the hexagonal approach interesting for further investigations.

4 The second problem of Philips

As a second question, we shortly discuss a related but different disc throwing process
that models information propagation on a lattice. We restrict ourselves to a one-
dimensional grid with n grid points. In this second problem, at a given intermediate
stage, the first m grid points serve as possible locations for the centre of a disc.
Let us call these m grid points the base for disc throwing. During 1 uts (unit time
step) the usual disc throwing process is applied to this base for disc throwing. After
all discs have been thrown, m’ discs will be covered, where m’ > m depending on
the position of the (right) boundary disc. For the next uts the usual disc throwing
process is applied to the new base for disc throwing, consisting of the m’ grid points
that were covered in the previous phase. The process continues until all n grid points
are covered. The question is: how long, i.e. how many unit time steps, will it take on
average to cover a grid of n grid points when one starts by throwing a disc centred
on the first (left) grid point?

We consider discs of radius » = 1. At an intermediate stage — when the base
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for disc throwing consists of m points — the signal is only propagated when the
disc throwing process produces a configuration in which there is a disc centred on
the last allowed grid point m, thereby expanding the base for disc throwing for the
next phase to m + 1. Instead, if there is a disc centred at m — 1, there will be no
additional points covered and the signal will not have propagated during this unit
time step. With P(k,m) we denote the probability that at the end of the usual
disc throwing process on the base of m points, there is a disc centred at the k’th
point. Note that P(m — 1,m) + P(m,m) = 1. The average speed of propagation is
vim) = (0- P(m—1,m)+1-P(m,m))/(1 uts) = P(m,m)/(1 uts) when the base
for disc throwing has size m. Hence, on average the time it takes to expand to a

base of size m + 1 is t(m) = m uts and the total time it takes to propagate
information along a grid of size n is T'(n) = Zz;:ll t(m) uts.

For small values of m, the probability P(m—1,m) is quickly calculated: P(0,1) :=
1-P(1,1) =0, P(1,2) = 3, P(2,3) = 3. To find a closed expression for P(m —1,m)
for arbitrary m, we refer to ([4], page 1286) in which a problem isomorphic to the one
presented here is studied. A recursive formula for P(m — 1,m),

P(m—1,m) = %(P(m—S,m—2)+P(m—4,m—3)+...P(2,3)+P(1,2)+1), (9)

follows from adding probabilities corresponding to the grid sizes to the right of the
first disc thrown. This recursive relation is solved by P(m — 1,m) = >, (_Tl!) ,
which approaches e~ ! for large m. Hence, the average time of propagating through a

lattice of n grid points is

1
iy, OF
which is easy to compute for small n, e.g. T(10) = 14.007 uts. Furthermore, because
P(m — 1,m) approaches e~! rapidly for large m, we can find a linear propagation
formula, T'(n) ~ 14.007 + 1.582(n — 10) uts, for n > 10.

In this analysis, we have only considered discs of radius 7 = 1. Our methods can
be generalised to larger discs, » > 2. The average propagation velocity is then given
by v(m) = (P(m—r+1,m)+2P(m—r+2,m)+...+rP(m,m))/(1 uts) and each of
the P(k,m) are given in terms of a recursive formula. Extending the one-dimensional
situation to a two-dimensional setup requires more care, however. In two dimensions,
more exotic topologies are possible and the expansion rate is a more subtle notion to
define. Nevertheless, the one-dimensional situation described in this section is already
interesting by itself for its corridor or street/highway applications.

uts, (10)
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