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Preface

The 72nd “Studiegroep Wiskunde met de Industrie” (SWI) took place at Centrum
Wiskunde & Informatica (CWI) at the Science Park in Amsterdam from 25 till 29
January, 2010. The concept of SWI is simple. During one week, around sixty math-
ematicians from all over Europe come together to tackle challenging industrial prob-
lems. Several companies present their problems on Monday, the mathematicians are
divided in groups and devote the entire week aiming at solving the problems, and on
Friday the results are presented.

The main purpose of SWI is to demonstrate that mathematical modeling and
mathematical techniques are powerful tools to solve real-life problems. The motiva-
tion for most participants is also driven by the pleasure to apply mathematics to open
problems, which requires team work and intensive collaboration.

We have selected companies to cover a wide range of application areas, as well as a
broad spectrum of mathematical techniques. This year’s problems were provided by:
the European Space Agency (ESA) on satellite communications; KEMA on energy
networks; Phytocare on algae growth; the Maritime Research Institute Netherlands
(MARIN) on thruster allocation; and Stork on food processing.

The enthusiasm and commitment to get optimal results given the time limitations
were overwhelming and often the industrial partners were amazed by the results ob-
tained from a short period of intense and cooperative research. In these proceedings,
the scientific reports of the five groups of SWI 2010 are presented.

It is a great pleasure to thank the sponsors of SWI 2010 for their donations. STW,
NWO, CWI and the five industrial partners have been very generous sponsors, and
their financial contributions are strongly appreciated.

The organizing team of SWI 2010,

Arnoud den Boer, Joost Bosman, Niek Bouman, Susanne van Dam, Jason Frank,
Rob van der Mei, Chrétien Verhoef



Table of Contents

Five Industrial Problems

ESA: Smart Positioning Algorithms for Indoor Navigation
KEMA: Scalability of Electricity Grids

MARIN: Thruster Allocation

Phytocare: Optimizing Algae Growth

Stork: Modeling the Production Process of Nuggets

Reports by the Participating Mathematicians

Position Estimating in Peer-to-Peer Networks

1.1 Imtroduction . . . . . . . . . . ..
1.2 Problem description . . . . . ... ...
1.3 Least squares algorithm . . . . .. ... ... ... ... ... ...
1.4 Probability density functions algorithm . . . . .. ... ... ... ..
1.5 Conclusion and discussion . . . . . .. .. ... . oL oL
1.6 References . . . . . . . . ..

Optimal Distributed Power Generation Under Network-Load Con-
straints

2.1 Imtroduction. . . . . . .. ... .
2.2 Network model and load flow . . . . .. .. .. ... . ........
2.3 Local power production and consumption . . . .. ... .. ... ...
2.4 Objective: maximal local energy production under load constraints . .
2.5 Computational experiments . . . . . . . ... ...
2.6 Conclusion . . . . . . ... L
2.7 References . . . . . . ..

Thruster Allocation for Dynamical Positioning

3.1 Imtroduction . . . . . . . . . . . . ...
3.2 General problem statement . . . . ... ... oL
3.3 Approaches . . . . . ..
3.4 Results. . . . . . . e
3.5 Recommendations . . . .. .. ... ... ..o
3.6 References . . . . . . . . . . . . ...

Modeling and Optimization of Algae Growth
4.1 Introduction . . . . . . . . .. L L

10
10
11
12
15
24
24

25
25
27
31
32
35
37
38

39
39
40
43
49
49
93

54



iv

4.2 A hierarchy of models and some qualitative analysis . . . . . ... .. 57
4.3 An ODE model for algae growth . . . . ... ... ... .. ...... 65
4.4 An alternative PDE Model . . . ... ... ... ... ......... 74
4.5 Recommendations . . . . . . ... .. o 82
4.6 References . . . . . . . . .. 83
Modeling Compressible Non-Newtonian Chicken Flow 86
5.1 Introduction . . . . . . . . . . . L 86
5.2 Modeling chicken flow . . . . . ... ... oo 87
5.3 Construction of approximate velocity profiles . . . . . . ... ... .. 89

54 References . . . . . . . ... 96



Part One

Five Industrial Problems



Problem 1
ESA: Smart Positioning Algorithms for Indoor Navigation

The European Space Agency (ESA) is an agency for the cooperation among European
States in space research, technology and space applications. One of the topics of ESA
is Satellite Navigation, being responsible for the construction of the Galileo system
and an augmentation-system for GPS. Satellite Navigation has many applications,
including route guidance for cars, the navigation of boats and airplanes, and the
synchronization of telecom networks.

Problem Description

Today’s positioning algorithms for users applying Satellite Navigation are well known
and relatively simple. However, in spite of this large number of applications, Satellite
Navigation has a major weakness: the availability inside buildings is rather poor
(due to the attenuation of the signal by walls). As a result, alternatives for indoor
navigation are a topic of research. One potential solution is to use wireless signals
to determine the distance between users. In the future we could have the following
scenario: inside a shopping mall, a large number of users are able to determine the
distance to nearby users, whereas a minority of these users is also able to use Satellite
Navigation. In addition, all users are able to exchange data, but they would like to
compute their position themselves. This leads to the following question: What are
the optimal positioning algorithms in this scenario?
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Problem 2
KEMA: Scalability of Electricity Grids

KEMA is a global, leading authority in energy consulting and testing & certifica-
tion, and is active throughout the entire energy value-chain. In a world of increasing
demand for energy, KEMA has a major role to play in ensuring the availability, reli-
ability, sustainability and profitability of energy and related products and processes.
KEMA combines unique expertise and facilities, in order to add value to our cus-
tomers in the field of risk, performance and quality management. With more than
2,000 people, operating from 20 countries around the globe, we are committed to of-
fering reliable, sustainable and practical solutions. We understand and recognize the
technical consequences of a business decision, as well as the business consequences of
a technical decision. Innovative technology has been our starting point for more than
80 years. That is our experience you can trust.

Problem Description

Electrical power grids are becoming increasingly complex. The customer used to be
solely a power-consumer, whereas nowadays more and more customers are becoming
power-producers, mainly because of the development of novel components for decen-
tralized power generation (solar panels, small wind turbines and heat pumps). And
in the near future, decentralized energy buffering is expected to become important
due to the growth of the electric car market.

These developments pose many interesting questions to grid operators and electric-
ity producers. To what extent is the current power infrastructure suited for the addi-
tion of this kind of energy-producing components? Or, at which locations should the
infrastructure be reinforced to handle placements of additional components? What
is the peak power that is produced by these components, as a function of time, day
of the week, season, etc.? What kinds of correlations exist between the yields of
multiple components of the same type, which are, for instance, installed at different
geographical locations? For example, if the sun is shining in a particular street, then
it is likely that the sun shines in all streets in the vicinity. And what about correla-
tions in power production between different types of components, e.g. between solar
panels and wind turbines, day versus night, seasonally?

KEMA addresses these types of questions, and advises grid operators and energy
producers. Although the problem is clearly complex, for the SWI we will focus on
the following question.

The transmission of power in each segment of an electrical power network can be
determined through a load flow analysis according to Ohm’s and Kirchhoff’s laws.
Solving these algebraic equations can be computationally involved. In particular,
simulating many alternative configurations (due to proposed placements of additional
decentralized power-generating components in various locations of an existing power
network, in order to assess the impact of such placements) is prohibitively complex.



Given an existing power grid, we would like to have a method that can quickly
determine how many units of each type (solar panel, small wind turbine or heat
pump) can be inserted into any transmission line in the network, such that under
given distributions on the typical production and consumption, the maximum loads
on the lines and components will not be exceeded, or if exceeded, to what degree and
for what length of time this is likely to happen.

As input, we will provide the operating characteristics and statistics of the three
types of components, the load-flow parameters of a model power grid of a neighbor-
hood of a fictitious town, and typical usage data.

Depending on the progress during the week, the problem can be extended by
incorporating more parameters into the analysis, adding optimization criteria, or
determining necessary network reinforcement.




Problem 3
MARIN: Thruster Allocation

MARIN, the Maritime Research Institute Netherlands, has become a reliable, inde-
pendent and innovative service provider for the maritime sector and a contributor to
the well being of society.

MARIN has been expanding the boundaries of maritime understanding with hy-
drodynamic research for over 70 years. Today, this research is applied for the benefit
of Concept Development, Design Support, Operations Support and Tool Develop-
ment. The services incorporate a unique combination of simulation, model testing,
full-scale measurements and training programmes.

Problem Description

Many ships working in the offshore industry are equipped with a dynamic positioning
(DP) system. The position of the vessel is measured and actively controlled thrusters
(main propellers, rudders, azimuth thrusters, bow tunnel thrusters, ...) are used to
keep the vessel at the desired location. The main advantage for DP vessels working
in deep water is that no mooring system is required. DP systems consist of the
following components; a position reference system (to determine the position error),
a Kalman filter (to separate the low frequency and wave frequency motions, in real
time, without phase delay), a controller (to determine the required forces FX, FY
and MZ, based on the low frequency position error) and a thrust allocation algorithm
(to distribute the required total forces over the available thrusters). Typically, the
vessel will have more thrusters than strictly necessary, resulting in an overdetermined
allocation problem. The aim of the allocation algorithm is to generate the total
thrust force, while minimizing fuel consumption (power). The output of the thruster
allocation algorithm are the RPM and azimuth angle settings for each of the individual
thrusters. The resulting optimization problem has the multiple challenges.



Problem 4
Phytocare: Optimizing Algae Growth

Problem Description

The runoff water from greenhouses contains fertilizers and must be cleaned before it
can be returned to the groundwater system. A means of doing this is to introduce
algae into the water. The algae eat up the fertilizer and clean the water. Subsequently,
the algae may be removed and sold as feed, for example, to oyster farms.

Phytocare plans to grow algae in greenhouse runoff water, both for sale as feed
and to clean the water. These are two different optimization criteria: (1) maximum
production of algae in a production pond, and (2) maximum depletion of contaminants
in an exhaustion pond. We would like to determine the best conditions for each case.

A runoff water treatment pond is a racetrack-shaped tank, 30cm deep, with a
paddle wheel at one point to keep the water flowing and mixing (see Figure). Tests
confirm that the mixture is homogeneous and the algae density is independent of
depth. Photosynthesis depends on the amount of light present, which is a function of
the time of day, the season, the weather, and the penetration into the pond (a function
of the algae density and the depth). Algae growth can be influenced by varying the
supply of nutrients and by controlled harvesting. Algae density is measured 3 times
per day and the pond composition is regularly analyzed in a laboratory (analysis
takes 1 day).

Phytocare seeks mathematical answers to the following questions. How does the
photosynthesis model depend on pond composition in terms of pH, fertilizer content,
temperature, CO2 level, and sunshine? How can this dependence most efficiently be
determined by means of experiments? Given a photosynthesis model, what is the
dynamics of phytoplankton production? How is it influenced by weather, by nutrient
supply, by harvesting? How can we optimally control the production as a function
of the weather conditions (e.g. the amount of sunlight) by adjusting the nutrient
supply? What is the optimal harvesting strategy?” And how do the optimization
strategies change, depending on whether algae production or water cleaning is the
goal?
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Problem 5
Stork: Modeling the Production Process of Nuggets

Stork Food Systems is the supplier of processing systems for poultry and fresh meat.
As a technology market leader, with more than 45 years of experience, process knowl-
edge and proven track record worldwide, we support and equip food processors to
create maximum process value now and in the future.

Problem Description

In meat processing equipment flow of meat mass is an important aspect. Meat mass
will flow through tubes, pass bends and orifices, diverge or converge in manifolds, enter
moulds, etc. Optimization of equipment to attain stable, high-end product quality
requires control of this meat mass flow. We would like to be able to better predict how
meat properties affect flow in our forming (moulding) machines, where meat mass is
pressed in moulds during mould opening and flow is a start-stop phenomena. Meat
masses have the following physical properties:

1. Viscoelastic

2. Compressible

3. Strongly inhomogeneous

4. Strongly temperature dependent

These properties together cause a very complex reaction to deformations (flow). Es-
pecially in non-continuous flow, where the value of different parameters and even the
equipment itself never stabilizes, this leads to high complexity. Complexity ham-
pers prediction of flow and final product quality and, as a result, optimization of
equipment.

Nowadays, many flow problems are solved by Computational Fluid Dynamics
(CFD). However, meat mass properties are very complex and CFD as a modeling tool
is too complex and time consuming for such a purpose. It would not be unthinkable
that there are other ways to come to a model that sufficiently predicts flow. There
might be analogies with other fields of expertise that indicate possible solutions that
we are not aware of this moment.

The goal of this assignment is to develop a mathematical model that predicts
non-continuous flow of viscoelastic, compressible meat mass in simple geometries.
Pressure fluctuation, deformation rates, mould filling rates and final product weight
should be important parameters in a model.

STORIK®






Part Two

Reports by the Participating Mathematicians



1.1

There are many wireless network applications for which knowing the location of the
devices within the network is necessary. Think, for example, of a military or police
operation using a radio network. Other examples are locating a specific car in a

Report 1
Position Estimating in Peer-to-Peer Networks

Authors:! Rogier Brussee?, Mirela Darau®, Marta Dworczynska?, Yabin
Fan?, Paulien Koeleman®, Piotr Kowalczyk®, Nico Schlémer”, Tomasz
Swist®, Sandra van Wijk3

Abstract

We present two algorithms for indoor positioning estimation in peer-to-peer net-
works. The setup is a network of two types of devices: reference devices with a known
location and blindfolded devices that can determine distances to reference devices and
each other. From this information the blindfolded devices try to estimate their po-
sitions. A typical scenario is navigation inside a shopping mall where devices in the
parking lot can make contact with GPS satellites, whereas devices inside the building
make contact with each other, devices on the parking lot, and devices fixed to the
building. The devices can measure their in-between distances, with some measurement
error, and exchange positioning information. However, other devices might only know
their position with some error.

We present two algorithms for positioning estimation in such a peer-to-peer net-
work. The first one is purely geometric and is based on Euclidean geometry and
intersecting spheres. We rewrite the information to a linear system, which is typically
overdetermined. We use least squares to find the best estimate for a device its posi-
tion. The second approach can be considered as a probabilistic version of the geometric
approach. We estimate the probability density function that a device is located at a
position given a probability density function for the positions of the other devices in the
network, and a probability density function of the measured distances. First we study
the case with a distance measurement to a single other user, then we focus on multiple
other users. We give an approximation algorithm that is the probabilistic analogue of
the intersecting spheres method. We show some simulated results where ambiguous
data lead to well defined probability distributions for the position of a device. We
conclude with some open questions.

Introduction

parking garage, or finding your seat in a large stadium.

1'We would like to thank Jaron Samson from European Space Agency, The Netherlands, for useful
discussions during the week. Thanks furthermore to the other participants who helped during the
week: Rob De Staelen (University of Gent, Belgium), Rashid Mirzavand Boroujeni (TU Eindhoven,

The Netherlands), and Valentina Masarotto (TU Delft, The Netherlands).
2Novay Institute, The Netherlands
3Technische Universiteit Eindhoven, The Netherlands
4Wroclaw University of Technology, Poland
5Vrije Universiteit Amsterdam, The Netherlands
6University of the West of Scotland, United Kingdom
"Univeristy of Antwerpen, Belgium
8National Bank of Poland, Poland
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For outdoor situations GPS is widely used, and location estimates using GPS are
in general very accurate [1]. However, for indoor use it is not possible to use GPS as
the signal is quickly absorbed or blocked by walls. A number of indoor positioning
technologies exist, see Zeimpekis et al. [2] for an overview.

In this paper we consider a network situation in which a small number of devices
have knowledge of their locations, for example from using GPS or because their
location is fixed. We call these devices reference devices. Most of the devices however,
the so-called blindfolded devices, do not have this knowledge, but they wish to estimate
their own location on the basis of location and distance information they exchange
with other uses in the network. Such a network is known as a peer-to-peer network.
We develop two algorithms for position estimation in these kind of networks. One is
based on least squares methods and triangulation, and the other involves convolutions
of probability density functions of the device locations.

The rest of the paper focuses on the two algorithms. Firstly, we explain the
problem setting in more detail, and discuss the assumptions made in Section 2. In
Section 1.3 we present the algorithm using the least squares methods. In Section 1.4
we give the algorithm based on probability density functions. Finally, in Section 1.5
we give our conclusions and suggestions for future research.

1.2 Problem description

We consider the following indoor peer-to-peer positioning problem. A number of
customers inside a shopping mall want to know their positions inside the building.
In order to estimate its position, each customer has a GPS device which measures
the distances to and can exchange positioning information with other customers’
devices. These customers can either be inside the building as well, or outside, e.g.
on the parking lot. Customers inside the building might have connection to one or
a few satellites, and hence might have some partial information about their exact
positions. The customers outside have full satellite connection, and hence know their
positions. We refer to these devices with known position as reference devices. This
also includes fixed devices, such as routers, of which the position is known. The
so-called blindfolded devices do not have exact position knowledge. They can try to
estimate their own location based on location and distance information they exchange
with other devices in the network. However, the distance measurements contain some
error, and other (blindfolded) devices might be insecure about their positions as well.

We assume that the reference devices have exact or close to exact position esti-
mates. This is because satellite connections give a location estimate with an error
that is negligible compared to the error in location estimates made by blindfolded
devices. The customers inside the mall are blindfolded devices, and we study the
problem of how they can compute their locations, given that some of them have a
connection with reference devices. We want to find an estimate for the location of
each customer inside the mall.

We make the following simplifying assumptions. Firstly, we assume that there is
no reflection of signal from the walls, or obstruction of the distance measurement is
some way. Also, we assume the errors in the distance measurements between two
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devices, to be Gaussian distributed with zero mean. The variance in the error is the
same for all devices. However, we do include the fact that signals die out over a
distance. For this, we assume that two devices can exchange information only if they
are closer to each other than some maximum distance, which is assumed equal for
all device pairs. All devices within reach are referred to as the neighbours of a given
device.

We focus on a two dimensional, static problem. So, we do not allow devices to
change position. In consecutive time steps, each of the devices performs distance
measurements to other devices within its range, and exchanges position information.
From this information, the devices estimate their positions. The question is, how
a device should best process the information. We want to find an estimate for the
position, as well as the accuracy (error) of this estimate. For this, two algorithms
are given in the next two sections. Firstly, we consider the problem after a single
time step and give an algorithm using least squares estimates. Secondly, we give
an algorithm based on probability density functions, focusing also on multiple time
steps.

1.3 Least squares algorithm

In this section, we give a method for estimating a given device its position after a single
time step. Let X, with coordinates (z,y), be the unknown position of the blindfolded
device under consideration. Suppose it is within range of n neighbours, say A; for
i=1,...,n, with (estimated) coordinates (x;,y;). This estimate is the actual location
plus some error ¢;. Also, the outcome of a single distance measurement between X
and A; is known, for all 7. These measurements consists of the actual distance plus
some error £;, which we assume to have a Gaussian distribution with zero mean and
standard deviation o. From this information, we want to estimate the position X of
the device.

We start by abstracting the problem in geometrical terms in the following way.
From the coordinates (z;,y;) and the error d;, it follows that the exact position of A;
should be contained in a disc with radius §; around (z;,y;). That is, the exact position
of A; is contained in the following domain:

{(@iz,aiy)l(aiz — z;)% + (@iy — yi)? <%}, Vi=1,...,n. (1.1)
The exact position of X is contained in the domain:
{(@,»l(di = lei)* < (x = aiz)® + (y — aiy)® < (di + |eil)?}, (1.2)

which is a ring centered at (a;,,a;,), with inner radius d; — |¢;| and outer radius
d; + |gi]. From (1.1) and (1.2), we have that X is in:

{(z,9)(di =6 —|ei])® < (x—2:)*+ (y—u:)® < (di+0i+[ei])*}, Vi=1,...,n. (1.3)

This is again a ring, now centered at (z;,y;) with radii d;£(J;+|e;|). The probabilities
ofe; € (—o,0), (—20,20), respectively (—30, 30) are about 68.2%, 95.4%, respectively
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99.6%. Now based on geometrical considerations, X should be inside the intersection
of the n domains given by (1.3):

n

N{@9ld =6 = [e:])* < (@ —2:)* + (y —9:)* < (di + 6+ =)} (1.4)
i=1

Example 1.3.1. Consider the following example for n = 4, where
{(@iy i 0 di) | i =1,...,4} = {(1,1,0.2,v2), (3,1,0.01,/10),
(—2,0,0.08,2), (3,-3,0.1,3v2)},
o0 =10"2 and ¢; € (—30,30) randomly chosen. Figure 1.1 shows the four rings spec-
ified by (1.3). The position of X should be inside the intersection of these four rings.

When zooming in, Figure 1.2 gives a closer look of the intersection (the shadowed
part), i.e. the domain that X belongs to, which is (1.4).

Remark 1.3.2. When there are no errors in the distance measurements and the
positions (z;,y;), i.e. when all §;,e; = 0, then domain (1.4) reduces to a single point.

Remark 1.3.3. The more information available (i.e. the larger n), the smaller the
domain (1.4) is, i.e. the more accurately X’s position is estimated.

Now we know that X should be inside a given domain, the question is which point
inside this domain should be chosen as a best estimate for X. In the following, let
us consider the problem in a different way. Knowing the outcomes of the n distance
measurements to its neighbours, we have the following system of equations for (z,y):

(z—21)*+ (y—wp)’ =di

(x—22)*+ (y—y2)° = d3
(1.5)

(x—2n)+ (y—yn)? =d2

Since the system is quadratic, and therefore hard to solve, we use the following
procedure to reduce it to a linear system. Let

I I 2 1
x:E’;Ii, y:ﬁ;yia d :ﬁ;df- (1.6)

Then, fori=1,...,n:

(x—2) = (2 -2+ (T —2:)* +2(x — 7)(z — ), (1.7)
(—v:)* =@ —=0"+T—v)* + 20— Dy — ). (1.8)
Summing (1.7) and (1.8) over all ¢ = 1,...,n, and using the notation of (1.6), we

have

(x -2+ (y—7)7° = %Zd? —d. (1.9)
k=1
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Figure 1.1: Figure of Example 1, for four neighbours.

Figure 1.2: Again Figure 1.1, now zoomed in at the intersection.
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Substituting (1.7) and (1.8) in (1.5), and using (1.9), we obtain the linear system
1
(@ =Tz + (o =Py = 5 (& - &+ @ +7°) = (@1 +97))

(02— T)r + (o~ Dy = 5 (B~ &+ @ +7) — (7 + 1)
(1.10)

(e =D+ 4~y = 5 (@ — &+ @ +7) — (7 +2)

This system is generally over-determined, therefore we use the least squares method
to determine the best estimate for (z,y). That is, when writing (1.10) as AX = b,
we find X = (x,y) such that

[AX — bll2

is minimized. Here ||-||> denotes the Euclidean norm, defined by ||z||2 = (37, 22) 1/,2

for some real-valued vector z = (21,...,2,). Hence, the best position estimate for X
is the least square solution of the system (1.10).

1.4 Probability density functions algorithm

In this section we present a holistic approach to the uncertainty of localization of
clients. The idea is that at each moment, client k’s notion of its absolute position
is described by a random variable X and an associated probability density func-
tion (pdf) px,. This concept captures other more specific approaches, such as the
one described in Section 1.3, which can be embedded into the present approach by
associating each client k with pdf

(mr?)~1 i || — @]l < 7
pr(x) = :
0 otherwise,

where xj, is the true position of client k, and r is the range of the distance measure-
ment. In this sense, the present methodology aims to provide a general framework
with the help of which it can be inferred what localization information generally can
and cannot be deducted from a given client configuration. In this sense, all more
simplistic approaches could use this approach as a reference framework.

The general idea is that in each (time) step, a client’s pdf is updated based upon
all available information, that is, measurements of its distance to neighbouring clients
and their respective pdfs. In this way, within a group of clients, every individual client
can alter and hopefully improve its localization pdf over time.

We try to outline in how far one can defer properties of the clients pdf by distance
measurements to other clients and their pdfs. We focus on the two-dimensional case,
although all presented ideas can be formulated effortlessly in any spatial dimension.

In Subsection 4.1 some required notation is introduced and the model is laid out
in greater detail. Then, in Subsection 4.2, the focus is on the mathematical steps that
a client has to perform to build its own pdf. This is done based upon measurements
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with respect to other clients. Subsection 4.3 contains numerical experiments with
simple client setups from which suggestions are derived about the characteristics of
possible scenarios. Finally, the results are discussed in Subsection 4.4.

Model and notation

When a client tries to determine its position based on measurements to other clients,
there are two kinds of uncertainties involved: the distance measurement itself and
other clients’ pdfs. We capture these uncertainties in two random variables, which
are both introduced below.

Position. Let the generally unknown true position of client k be denoted by xj €
R?, and let the random variable X}, describe the assumed position of client k. Let pg
denote the corresponding probability density function. Hence, the probability that
client k is located in © C R? is given by P(x), € Q) = [, pe(x)dz. The random
variable X may typically be normally distributed with mean xj, but in general, py
can be every normalized integrable function.

Distance measurement. Let D,igkl be the random variable giving the distance
measurement of one client ko to another client ky # ko. It is assumed that D2, is
normally (i.e. Gaussian) distributed with (unknown) mean dy, 5, := ||zx, — 2k, ||, and
a given standard deviation o > 0. This standard deviation could e.g. be a property
of the devices in use. So,

1D 2
DkoJcl NN(dko,ka )’

_ ) 1 1 (2 —dgyk, 2
pDi?,kl (.’17) - pN(w7dko,k1aU) i ﬁ eXp {_2 ( y (111)

see Figure 1.3(a).

Based upon n statistically independent samples {D;}? ; of Di?kl, it is the goal
to estimate (1.11), that is, to estimate dj, x,- The most natural approach is here to
use the maximum likelihood estimator

D=

S|

2D
i=1
which is well known to be normally distributed as well, with standard deviation o /+/n:

D ~ N (dpy g, 02 /7). (1.12)

Based upon this, it is possible to determine the probability density function of the
random variable D,%Bkl which describes the location d := x — x( relative to a fixed
spot @ to which a distance measurement according to (1.11) was done. As there is
no preference in a particular spatial direction, the pdf associated with DiOD, k, 1S given
by

A 1 1 ~ 1 ~
P <d;d,a>—<po (Il Do) + 5-pop (dz;—D,a)); (1.13)

ko, k1 2 2 ko, k1 ko k1
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Figure 1.3: Assumed normal distribution of Di?kl as defined in (1.11), along with
the corresponding two-dimensional ring distribution of DiR k, as defined in (1.13).

see Figure 1.3(b).

Note 1.4.1. It would also be possible to generically discard negative distance mea-
surements, and instead of (1.11) assume a cut-off normal distribution

o (z) = I pp (x5 dyg kyy o) for >0,
Dl 0 otherwise

for Di?kl. The normalization factor I := [ _ pa(#; g,y ky 0) is well-known not to
have an analytic representation. However, this would lead to the simpler expression

A 1

ﬁDﬁoD,kl(d; d,o) = or1PPil <||d||2;d, U)-

Note that p is non-smooth at xy, which is in the context of pdfs not a restriction.

Deferring information on the location from other clients

We now make use of the knowledge gained by distance measurements to several
neighbouring clients, and combine the uncertainties given by (1.13) with the pdfs of
the respective neighbouring clients to get an estimate for the user’s own pdf.

Distance measurements to one other client

The first question to be answered is how the estimated PD, of (1.13) and px, can
be cast into an approximation for px, ., As xp, = g, +d, we set Xy 1y = Xy +
D,%R kp Where Xy, x, describes the position of client ko with respect to communication
with client k1. Furthermore, the random variables X}, and D,%B &, are assumed to be
independent, which means that the distance measurement (error) does not depend
on the actual distribution of X},. Hence,

PXiyry = pXk1+Di]03,k,1 = PXy, * pD’%oJﬂ’
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3 1.5 04
.I
0 0.0 0.0
(a) Normal distribution cen- (b) Ring distribution as de- (c) Result of the convolution

tered at the origin, with a  fined in (1.13) with deviation  of the two distributions of Fig-
slightly larger deviation in  significantly smaller than the ures 1.4(a) and 1.4(b).

the y-direction than in the z-  deviations of the normal distri-

direction. bution of Figure 1.4(a).

Figure 1.4: Illustration of the convolution process of (1.14). Figure 1.4(a) shows
the convolution data, Figure 1.4(b) the convolution kernel, and Figure 1.4(c) the
actual convolution of the two. Note how the smaller deviation in the z-direction
of the bivariate Gaussian distribution increases the values of the convolution at the
x-extreme ends of the localization pdf in (c).

where the asterisk denotes convolution, i.e.,

PX g1, (T) = // Pxy, (Y)ppeo (x—y)dy, (1.14)
R2 0-F1

where px, is occasionally referred to as convolution data and pp2o, as convolution
071

kernel. This expresses the notion that the ‘data’ distribution px, 1s acted upon and
blurred by convolution with the ‘kernel’ p DD - Note, though, that mathematically
there is no distinction between data and kernel as the convolution is commutative.

The integral in (1.14) can be calculated numerically (e.g., using Fast Fourier Trans-
formation). Figure 1.4 shows an example.

Example 1.4.2. Suppose that client k1 knows its position exactly. So, its distribu-
tion is the Dirac-distribution centered at y,, that is px, = ds, . Then

pxpl@) = [ / o, oo, (#—y)dy = ppzp (@~ w,)

i.e., the ‘ring’ distribution centered at xx,. As expected, the only contribution to the
uncertainty of Xy, r, is the uncertainty rooted in the distance measurement itself.

Distance measurements to multiple other clients

Once all Xy,  for all n neighbouring clients k € {k1,...,k,} have been calculated,
the information contained in each of them is to be combined to a common pdf Xj,
that indicates the localization likelihood of client kg based upon measurements to all
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reset own P to uniform distribution over €2;

for all clients k; within reach do
measure the distance to k;;
create the corresponding ring distribution Ry, using (1.13);
request the pdf Py, of client k;;

end

normalize P;

Algorithm 1: One update step for the pdf of a client. In this algorithm in-
formation about previous updates is discarded. However, a client could very
well store data of the previous measurements to decrease the uncertainty of its
neighbours’ positions. For the computations in the present paper, the mean of
all previous computations is stored in each step and updated accordingly for the
new measurement. This assumes that none of the clients changes its position
throughout the process.

its neighbours. Quite naturally one could ask for the probability that x is contained
in Q C R? according to X, x, and Xy, k,- That is

P(Xk07k1 SR’ N Xio ko € Q) = P(Xko,kl € Q) ’ P(Xkon € ‘ KXo ky € Q)
Assuming independence of Xy, », and Xy, ,, this yields
P (XkoJﬁ €A Xhoks € Q) = P(Xko,kl €Q)- P(kakz € Q)’

and subsequently for all k € {kq,...,kn}:

P (/\ Xio ok, € Q) = [[ P(Xxor. € Q).

i=1 i=1
This results in the pdf

PXy, (.’B) =I1! prko,ki (.’B),
=1

with the normalization constant I € R.

Simulation

In this section, a few example constellations are set up and iterated over a number
of time steps, to see how the pdfs of the individual users evolve when more and more
accurate data of the other users becomes available. It is assumed that none of the
clients moves during the process.

Each of the following example setups consists of a number of free clients (®),
having blindfolded devices. These are located in a square-shaped domain ) with edge
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0.0 0.0 0.0

(a) Step 1. (b) Step 10. (c¢) Step 100.

Figure 1.5: Experiment with one free client (®) and one satellite client () after
multiple executions of Algorithm 1. The exact positions of the clients are depicted,
as well as the pdf of the free client. After the first measurement, the free client can only
determine its position up to rotation around the satellite client. Over time, the width
of the rings becomes smaller as the deviation of the distance estimation diminished
(see (1.12)), but with only one reference client the position cannot be further localized.
The fuzziness of the ring distribution after 100 steps mainly depends on oy, rather
than the uncertainty about the distance measurements.

length normalized to 1.0. All values indicating lengths, including standard deviations
of distance measurements, hence are in units of the domain edge length.

Every client k starts off with an insignificant pdf corresponding to the random
variable X of its spatial position, i.e. the uniform distribution over the domain ).
Furthermore, there is at least one client who already has a significant pdf from the
start, which are modeled here by clients ((8)) who have a connection to a set of GPS
satellites and can thus determine their positions independently from other clients.
Hence, these are the reference devices. It is assumed that the pdf of client kg, is the
normal distribution centered at its true position xj,,, with osay = 0.05 independently
for all satellite clients.

With this given setup, each of the free clients now iteratively executes Algorithm 1
to update its pdf given pdfs of its direct neighbours. The simulation is run for six
settings, see Figures 1.5 to 1.10, starting from a simple case with only one satellite
client and one free client, ending up with a network of multiple clients of both types.
We depict the pdfs of the indicated free client after 1, 10, and 100 steps. Typically,
the probability density becomes more concentrated about one location or possibly
multiple locations. In this way the most likely location(s) of the clients become
clearer and clearer. For each setting we discuss the setup and the results.

Discussion pdf algorithm

The presented approach gives in multiple settings reasonable outcomes, where the
peak of the pdf coincides with the true position of the client. For some setups it
was not possible to get any more specific information than a localization up to two
significant spots (see for example Figure 1.9), although all available information was
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(b) Step 10.

(c) Step 100.

Figure 1.6: Experiment with one free client (®) and two satellite clients (®)) after

multiple executions of Algorithm 1.

After measurements to both of the satellite

clients, the free client can be determined to be more likely in those regions where the
two fuzzy rings overlap, i.e., where their product is locally maximal. The principal
fact that two spots are preferred cannot be overcome, although again the uncertainty
about the distance measurements is filtered out by sampling over 100 steps.

1 6 10
(O] O]
. o . o
(O] O]
0 0 0
(a) Step 1. (b) Step 10. (c) Step 100.

Figure 1.7: Experiment with one free client (®) and three satellite clients () after
multiple executions of Algorithm 1. As opposed to Figures 1.5 and 1.6, after one
measurement already one fuzzy spot can be determined to likely contain the client’s
position. Again, certainty is increased as more samples in distance measurement are
taken, such that the uncertainty og,; ultimately dominates for the free client as well.
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(a) Step 1. (b) Step 10. (c) Step 100.

0.0

Figure 1.8: Experiment with two free clients (®) and one satellite client (®)) after
multiple executions of Algorithm 1. This situation is not much different as compared
to the one in Figure 1.5, except for the fact that now two clients with (initially)
rather uncertain information about their position can try to improve their local-
izations by exchanging information about their position relative to each other. It
appears, though, that this extra information does not improve the position estimate
of the individuals. The determining factor remains that there is only one client with
absolute information about its position. This experiment suggests that adding clients
without information on their absolute positions does not alter the uncertainty of
localizations of present clients.

0.3 1.5 4
- -
© © © ©
- -
0.0 0.0 0
(a) Step 1. (b) Step 10. (c) Step 100.

Figure 1.9: Experiment with six free clients (®) and two satellite clients (®) after
multiple executions of Algorithm 1. No single free client has contact with both of the
satellite clients, but still the localization information propagates through the network
to each of the clients, such that they all have pdfs similar to the situation in Figure 1.6
rather than Figure 1.5.
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(a) Step 1. (b) Step 10. (c) Step 100.

Figure 1.10: Experiment with six free clients (®) and three satellite clients () after
multiple executions of Algorithm 1. Quite curiously, the pdf of ® has a curved shape
with a preferred direction in space after one step. This is likely related to the partic-
ular (not fully rotational symmetric) arrangement of the satellite clients within the
circle of the free clients. After a few steps, two spots of higher probability of localiza-
tion are formed which is rather similar to the much simpler situation of Figure 1.6.
One of the two preferred spots is indeed the true position of the client. After a few
more steps, this location is actually preferred over the other local maximum, such
that the client gets a good estimate about its position.

made use of. This means that, principally, no algorithm that uses less information
can localize the client any more precisely.

An option for improvement still might be taking into account previous measure-
ments by weighting them with the current one, and using this for the updating of the
pdf. Currently, only the most recent measurement is taken into account, which can,
by chance, have a large error. In an early stage of the updating process, this might
cause the pdf to concentrate about an erroneous location, far off the true location,
from which it needs many extra measurements to make it more accurate again. On
the other hand, putting too much weights on previous measurements makes it last
longer before the pdf concentrates around a location.

It must be noted that, for practical implementations, the given approach requires
relatively heavy inter-client communication between the devices. Also, numerical cal-
culation of the convolutions (1.14) is computationally expensive. This holds particu-
larly for very fine-grained discretizations of the client’s environment. An alternative
for communicating an entire pdf is approximating it by, e.g., a bivariate Gaussian
distribution. As only the few real-valued parameters have to be exchanged in this
case, this would dramatically reduce the amount of data to be transferred. On the
other hand, a bivariate Gaussian distribution might not always be suited for repre-
senting a client’s position, see for example Figure 1.5. It is left for further research
to investigate how much this decline in performance is, and what would be the best
choice for approximation of a client’s pdf.
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1.5 Conclusion and discussion

In this paper we presented two promising methods for solving the problem of comput-
ing device locations from information about neighbour locations. The first method
uses least square techniques, and is simple to implement and execute on a device. The
second method uses complete information in the form of probability density fuctions
and so gives more, and even more accurate, information than the first method. How-
ever, this comes at the cost of having to exchange more information between devices
and using a more computation-intensive algorithm.

There are many posibilities for further research. A first important point for both
methods is, if and how the algorithms converge. From our experiments we are confi-
dent that both methods converge to a location or probability distribution of a location
for every device in the network, but that does not necessarily mean that they converge
to the correct position. The conditions under which they actually do so, would be
interesting, as would be the rate of convergence.

For the method using least squares, the question also remains how accurate the
proposed method is, and how the error in the best estimated position can be de-
termined. For the second method, an important issue still open, is the question if
the amount of information transmitted and the computation to be done, can be re-
duced to make it more suitable for practical use. This reduction should be done with
minimal loss in performance.

Finally, another important point for consideration is how these algorithms can be
extended to include moving devices, that is, customers actually walking around in
a mall. This makes the questions on speed of convergence and ease of computation
even more relevant.
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Abstract

In electrical power networks nowadays more and more customers are becoming
power-producers, mainly because of the development of novel components for decen-
tralized power generation (solar panels, small wind turbines and heat pumps). This
gives rise to the question how many units of each type (solar panel, small wind turbine
or central heating power units) can be inserted into any transmission line in the net-
work, such that under given distributions on the typical production and consumption
over time, the maximum loads on the lines and components will not be exceeded.

In this paper, we present a linear programming model for maximizing the amount
of decentralized power generation while respecting the load limitations of the network.
We describe a prototype showing that for an example network the maximization prob-
lem can be solved efficiently. We also modeled the case were the power consumption
and decentralized power generation are considered as stochastic variables, which is
inherently more complex.

2.1 Introduction

Electrical power grids are becoming increasingly complex. The customer used to be
solely a power-consumer, whereas nowadays more and more customers are becoming
power-producers. Decentralized Power Generation (DPG) refers to an electric power
source such as solar, wind or combined heat power (CHP) connected directly to the
distribution network or on the customer side of the meter (Pepermans, G. et al., [8];
Chicco and Mancarella, [2]). It has emerged as a key option for promoting energy
efficiency and use of renewable sources as an alternative to the traditional generation.
Moreover in the near future, decentralized energy buffering is expected to become
important, e.g. due to a growth of the electric car market.

These developments pose many questions to grid operators and electricity pro-
ducers. To what extent is the current power infrastructure suited for the addition
of this kind of energy-producing components? Or, at which locations should the
infrastructure be extended to handle placements of additional components?

This question is complicated by the fact that the power production of the com-
ponents strongly varies over time. Different types of components will produce peak
power at different points in time, which most likely will differ from the peaks in con-
sumption. Moreover, there are correlations between the yields of multiple components

1Department of Information and Computing Sciences, Utrecht University
2KEMA, Arnhem

3Centrum Wiskunde & Informatica, Amsterdam

4Tinbergen Institute, Erasmus University Rotterdam



26

of the same type, which are installed at nearby geographical locations. For example,
if the sun is shining in a particular street, then it is likely that the sun shines in all
streets in the neighborhood.

In many cases, distributed generators can provide lower-cost electricity and higher
power reliability and security with fewer environmental consequences than traditional
power generators. In contrast to the use of a few large-scale generating stations
located far from load centers (the approach used in the traditional electric power
paradigm), DPG systems employ numerous, but small plants and can provide power
on-site.

Nevertheless, the high complexity of the issues regarding the planning and man-
agement of the electric power system and infrastructure for the decentralized power
generation calls for powerful analysis tools. One of the most critical factors limiting
large scale DPG in an existing network is the possible over-current on connections and
over-voltage on nodes. A very large power generation at a moment of low consump-
tion in the grid will usually violate voltage profile constraints. Transmission lines
between the low voltage grids may become overloaded due to altered flow patterns
resulting from the DPG current contribution. This may require a network reconfigu-
ration or generation limitations on DPG. However, network reconfiguration requires
a huge investment for which the distribution network has no incentive as a natural
monopoly. Hence, it is important that regulators impose limits on DPG to allow them
to participate in the electricity market. In this respect, few papers have addressed
the optimal sizing and placement of DPG in an existing distribution network.

Niemi and Lund [7] develop a fast tool to assess and visualize the voltage ef-
fects of DPG in an existing distribution network. Using their method, they find that
over-voltages with large amount of DPG can be avoided through a proper placement
strategy; placing closer to the transformer side will reduce the voltage increase. How-
ever, there are quite a few limitations in their method such that it cannot be applied
generally. Their static method assumes known load pattern and DPG production
over time to predict a modified steady-state voltage profile when introducing DPG,
and they believe the dynamic behavior of the electric system can be accessed through
a point by point calculation over time. However, in reality, there are high uncer-
tainties in both load and DPG production which makes the net power/consumption
more volatile. They restrict their method to a loopless network, because in a loopless
network, the cables between adjacent nodes have an unambiguous orientation: the
upstream node looks always toward the transformer and downstream node toward
the end of the line, so the loopless branched network can be approximated with a
single line network by matching downstream consumption and impedance at each
node. Nevertheless, it is quite usual that a power distribution network has loops.
Moreover, they assume an evenly distributed load along the line and some sort of
even distribution of DPG units along the line. This approximation takes into account
the voltage differences occurring over transmission line, but not over the individual
loads.

Other papers (Gozel and Hocaoglui [3]; Acharya, Mahat and Mithulananthan
[1]) propose analytical approaches to calculate the optimal sizing and placement of
DPG for minimizing the total power losses in a power distribution system. They
document the exact loss formula or loss sensitivity factor for the distribution system.
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They examine the effect of size and placement of DPG with respect to loss in the
network. However, they only considered voltage constraints and their analyses are
based on the power injection or equivalent current injection which they assume to be
deterministic. Kuhn and Schultz [6] developed models and algorithms for risk neutral
and risk averse power optimization under uncertainty, including a stochastic integer
programming model.

KEMA BV addresses many types of questions related to energy networks, and
advises grid operators and energy producers. For the SWI we have focused on the
following question. Given an existing power grid, we would like to have a method
that can quickly determine how many units of each type (solar panel, small wind
turbine or central heating power units) can be inserted into any transmission line
in the network, such that under given distributions on the typical production and
consumption, the maximum loads on the lines and components will not be exceeded.
As input, we have used the operating characteristics and statistics of the three types
of components and typical usage data.

The transmission of power in each segment of an electrical power network can be
determined through a load flow analysis according to Ohm’s and Kirchhoff’s laws. For
this analysis there is standard software available such as Vision Network Analysis®
for the medium voltage network and Gaia® for the low voltage network. This analysis
results in a linear relation between the amount of decentralized power generation
and the load in the network. We first considered the situation in which the power
usage of consumers and the power generated by the decentralized units is assumed to
be deterministic, although it can vary over time. We derived a linear programming
model for maximizing the amount of decentralized power generation while respecting
the load limitations of the network. Linear programming models can be solved quite
efficiently by modern solvers, for example CPLEX”. We have implemented a prototype
for a small example network.

We also modeled the case were the power consumption and decentralized power
generation are considered as stochastic variables. This case is inherently more com-
plex, since we have to deal with probabilities of overloads.

The remainder of this paper is organized as follows. In Section 2.2 we study the
network model and the load flow analysis. In Sections 2.4, 2.4, and 2.4 we describe
the models for the deterministic and stochastic case respectively. Then is Section 2.5
we present numerical experiments for our prototype. Finally, Section 2.6 concludes
the paper.

2.2 Network model and load flow

We model the electrical power network as an undirected graph (N,E), where N is
the set of nodes and FE is the set of edges. A node corresponds to a site of electricity
consumption and/or production (e.g. a house with solar panels) or to a connection
point. There is an edge between two nodes ¢ and j if there is a cable between the
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nodes. We assume that the network is connected, i.e., there is a path between each
pair of points in the graph. For the network we define the following entities:

e H set of electricity consumption and/or production points.
e ( set of connection points.

e P, = net power production at node i€ H. P; <0 implies that the power con-
sumption is larger than the power production, P; > 0 implies that production is
larger than consumption.

e V; = voltage at node 17

e (); = current flowing into or out of the network due to production at i. ;>0
means power generation and ); <0 means power consumption i€ H. For a
connection point i € C' we have Q; =0

e R;; = resistance of cable corresponding to the edge between 7 and j. If there is
no edge between ¢ and j, R;; =00. Resistance is independent of the direction
of current flow R;; = Rj;.

o I;; = current flowing from nodes ¢ to node j (I;; >0: flow i —j, I;; <0: j—1).
Because of this definition, I;; = —1j;.

We assume the power at node i is generated at voltage V;, such that
Pi(t) =ViQi(1).

We are interested in the behaviour of the local flow I;; given the production and
consumption pattern ;. The flow of current in the network is governed by the laws
of Ohm and Kirchhoff. The voltage drop along network edge (7,7) is given by Ohm’s
law

Kirchhoff’s current law states that the total current entering a node equals the
total current leaving it. For node ¢ with net production @); this becomes

Zfz‘j =0 (2.2)

Kirchhoff’s voltage law states that the total voltage drop around a closed loop in
the network must be zero. Let L={(k1,k2),(ka,ks),...,(kn,k1)} be a closed loop of
n nodes. Then we have

Z Rki7ki+llki7ki+1 =0, (2.3)
(ki,kip1)EL

where k,11=F;.
In 1847 Kirchhoff [5] already showed that to determine the current I, it is not
necessary to consider equation (2.3) for all cycles, but only for a set of independent
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cycles. For example if the equation holds for a cycle {4, B,C} and a cycle {C, B, D},
then it also holds for the "sum” {A,B,D,C}. A well-known method to construct this
set of independent cycles in as follows (see also Harary [4]). A tree is a graph without
cycles. A spanning tree of a graph is a subgraph which is a tree and contains all
nodes. For a connected graph with n nodes a spanning tree has n—1 edges.

We take a spanning tree T' of the graph. If we extend T by one edge from outside
T we obtain a cycle. From the set of edges outside T', we now obtain a set of cycles,
where each cycle is obtained by extending 7" with a single edge. This set of cycles
forms a set of independent cycles. In fact it forms a cycle base, i.e. a family of cycles
which spans all cycles of the graph. Now it is easy to see that the size of a cycle base
equals

[E|=(IN[=1).

In general, Kirchhoff’s voltage law on the elements of a cycle base, implies Kirchhoff’s
voltage law on all loops. Hence, Kirchhoff’s voltage law can be described by |E|—
(IN|—1) equations of type (2.3).

We assume that the local network is connected to an infinite power reservoir and
modelled by one node, say oo, connected to the outside world. This reservoir can
provide (or absorb) any amount of net power produced by the local network. For
simplicity, we will disregard the voltages and equations (2.1), by assuming that the
power at the nodes is produced approximately at a constant voltage. As a result, we
can analyse the load flow entirely in terms of currents and resistances. Thus, given
the resistance R and the local production @, we can use (2.2) and (2.3) to calculate
1.

For the local flow, we do have to worry about equation (2.2) for the point co. We
conclude that Kirchhoff’s current law can be described by |N|—1 equations of type
(2.2). Since Kirchhoff’s voltage law can be described by |E|— (JN|—1) equations of
type (2.3), the local flow I on the edges can be expressed in terms of R and Q by |E|
equations. From this we can easily show that there is a matrix A such that

I[=AQ. (2.4)

We illustrate this by the following example.

Example. To work with a concrete example, we consider the simple example net-
work of Figure 2.1. This network has five houses indexed 1,...,5 with two houses in
a closed loop, and three more houses in a radial network. The points with indices a,
b and c are connection nodes, that have no generation or usage.
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Figure 2.1: Example network

Kirchhoff’s current laws for the respective nodes are:

Toa—1Ia1 —1a2=0 (a)
Iy — Iy +Q1=0 (1)
Ioo— Iy +Q2=0 (2)
Ly +Iop — Iy =0 (b)
Ipe—1Ie3—1cs=0 (c)

I3+Q3=0 (3)
Iy —Ii5+Q4=0 (4)
Ii5+Q5=0 (5)

For the loop, Kirchhoff’s voltage law gives
Ra1la1+ Riply — Roplop — Raala2 =0.
For ease of exposition, we assume R, = R1, = Rop, = Ra2, so that Kirchhoff’s voltage

law results in I,1 + I1p — Iop — I42 =0.

The above equations can be written in matrix form

1-1=10 0 0 0 0 07 [Ina 0
01 0-1000 0 0[] In Q1
00 1 0-100 0 0[] I —Qy
00 01 1-100 0[] Iy 0
00000 1-1-10|]|L|=]|o0 (2.5)
00 0000 1 0 0] I —Qs
0000 00 0 1 —1|]Is —Q4
00 000000 1[I —-Q5
01 -11-10 0 0 0] \Is 0

The matrix on the left, which we denote by B is nonsingular. We also define the
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injection matrix

(00 0 0 0]
~10 0 0 0
0-10 0 0
0000 0
J=10 00 0 0
0 0-10 0
00 0-10
000 0 -1
(00 0 0 0]

and the vectors I = (Isoa,la1,102: 116, I2b, Ipes Ie3, Iea, Ias) T of loads and
Q=(Q1,Q2,Q3,Q4,Q5)T of net productions. With this notation, equation (2.5) takes
the form

BI=JQ.

Recall from the above that B is a square nonsingular |F| X |E| matrix, and we can
define A=B71J, cf. (2.4), with

—4 —4 —4 —4 —4
-3-1-2-2-2
—-1-3-2-2-2
1 1 -1-2-2-2
A:Z -11 —-2-2-2 (2.6)
0 0 —4—-4-4
0 0 —40
0 0 0 —4-4
L0 0 0 0 —4
2.3 Local power production and consumption
We write the net production of power at node i as
Pi(t)=-Ui(t)+»_ Sik(t) (2.7)
k

where U; is the power consumption and S;; is the generation by a device of type k
(e.g. solar panel of given type, wind turbine, CHP unit, ...). Assume we can specify
a distribution of local energy sources by choosing constants o;; such that

Sik(t) =01 Sik (1) (2.8)

where Sy, (t) are unit production rates (possibly random), e.g. for solar production
at a given node. S represents the solar insolation per m?2, multiplied by a (possibly
time-dependent) efficiency parameter that incorporates the angle of orientation of the
solar panel and its efficiency factor (W/lux). Thus, oy determines the size of the
production unit (e.g. m? solar panels) of type k at node i.
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As mentioned earlier, we assume that the power at each node in the local network
is produced at a given voltage V;. We will also assume that these voltages are all
approximately equal, i.e. V;~Vj. This implies that ¢); depends on oy in much the
same way as P;:

Qi) =qio()+ > carain (t) (2.9)

k

2.4 Objective: maximal local energy production under load constraints

Deterministic case

The overall objective is to maximize the collective yearly energy production E by
the local energy production units, while obeying constraints on the loads in the local
network. In the deterministic setting, these are hard constraints, of the form |I;;| < Ly
with given maximal loads ;7. For simplicity, we will not take into account constraints
on the voltages (recall that we had assumed the voltages to be given).

We denote the yearly energy production of a unit size device of type k at node 4
as

Eik:/ dt S (t)
year

The total energy production F is determined by the o and ¥;x. In this section, all
Yk, and thereby FE, are considered to be non-random. The objective is to maximize
E under variation of ¢. Thus:

& = argmax FE(o)

= argmaxZZaik Yik (2.10)
7 ik

= argmaxo’ % (2.11)
under the constraints
Vigt: || <ID (2.12)
Vi,k: 042>0 (2.13)
Because of (2.4) we can write
Ly(t) = AijyQy (t). (2.14)
7

By substituting this expression in (2.9) the current constraints (2.12) can be recast
as -
Vi, j,t: —IZT?SA?j(t)-FZAijj/k(t)Uj/kSIZ—L (2.15)
3.k
or
—Im<A(t)+A(t)o <I™ (2.16)
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with
AL (1) = Aijjrapo(t) (2.17)
j/

Aijjr(t) = Aijjr e (t) (2.18)
Although the objective function does not depend on time, the constraints do:
we need —I" < A%(t)+ A(t)o <I™ for all t. Can we find t,,...,ty such that if the
constraints are satisfied at ¢q,...,t then they are satisfied for all t? If so, we extend
the number of linear constraints (one set for every t,) and solve the resulting LP.
Summarizing: if we check the constraints (2.15) only at a finite number of points
in time (t1,...,t5), we have to solve the following linear program (LP):

6= arg(rfnaxE(U) (2.19)
E=0"% (2.20)

c>0 (2.21)

A(ty)o < T — A%(ty) (2.22)
—A(t))o < I+ A(t) (2.23)
: (2.24)

Alty)o < T™— A%(ty) (2.25)
—A(ty)o < I+ A%(ty) (2.26)

Benefits of increasing the maximum loads
From the theory of linear programming it is known that each linear program
max{c’ z|Ax <b, x>0}
has a corresponding dual problem
min{b”u|ATu> ¢, u>0}.

The optimal values of the dual variables u are called the shadow prices of the con-
straints Az <b (i.e., the constraints (2.22) — (2.26) for the network problem considered
here). These optimal values can be calculated from the solution of the original (pri-
mal) LP. Let & and @ denote the solutions of the primal and dual LP. Assuming these
solutions exist, they satisfy ¢74 =57 4. Thus, the shadow prices @ can be seen as the
gradient of the maximum ¢?# of the (primal) objective function with respect to the
constraints b.

Let the shadow prices associated with the constraints (2.22), (2.25), etc. for edge
(4,7) be denoted by @;;(t1) and @;;(tn). Similarly, w;;(¢1) and w;;(tn) denote the
shadow prices associated with (2.23), (2.26), etc. If the I]? is increased by a small
value ¢, the value of the maximum yearly energy production F(4) will increase by

N

n=1
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Edges (7,7) for which this value is largest represent connections for which investment
in additional load capacity is most beneficial.

Stationary stochastic case

In this section we assume that usage and generation at nodes are stationary random
variables, i.e. all U; and S, are characterized by probability distributions that are
independent of time. For the objective function we take the expectation of the en-
ergy production (which, due to the assumption of stationarity, is proportional to the
expectation of the power production). That is,

EE(0) = Ezaik/ dt Si (2.27)

ik year
x> oinESi (2.28)
ik

Thus, the objective function is (again) linear in o.

The constraints must be reformulated. Rather than imposing a hard constraint
[1i;| < 1], we want the probability that currents exceed their threshold to be below
a certain level. Thus, we require

PI‘Ob(|]Z‘j| >IZ-L)<€Z‘J‘ (229)
Alternatively, we can use a single constraint:
Prob(3(i,j,) |1;;| > 1]7) <e (2.30)

An interesting, related question is: given a set of constants o;;, what is the prob-
ability distribution for any I;;7 That distribution tells us e.g. what the probabilities
are for small and large overloads.

Because of the linearity of the system (I depends linearly on @, @ depends linearly
on o, U and S), the random variable I; i; is a linear combination of the random variables
U; and S;r. We cannot assume that the U; and S;;, are all independent. In fact, for
some types of production devices (e.g. solar panels) we expect Szkwcm Sjk for any

1,7 (unless the network is well spread out geographically). In other words, two solar
panels of the same size but at different (nearby) locations produce nearly the same
power at equal times.

Constructing the probability distributions for the I from those for U and S will
be difficult, partly because the dependence discussed above. Another complication
stems from the type of distributions for U and S: it is questionable that those are
close to known distributions (such as Gaussian). Monte-Carlo simulation can provide
a way out (but may be time-consuming).

Time-dependent stochastic case

Clearly, it is more realistic to consider U; and Sj;, as non-stationary stochastic pro-
cesses, rather than as stationary random variables. The non-stationarity stems from
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the dependence of U; and S;;, on seasonality and on the day/night cycle. The objective
function, the expected yearly energy production, is still linear in o:

EE(c) = EZM/ dt Sy, (2.31)
ik year

= oin [ dtES, (2.32)
ik year
where we have used E [ dtS = Ik dtES because all Sj;, are non-negative. Formulating
(or estimating) suitable stochastic processes will be a major challenge. In fact, a
hybrid approach (consisting of deterministic signals incorporating the daily, weekly
and seasonal cycles, and supplemented by a stationary noise) may be plausible.

2.5 Computational experiments

For this paper we conducted numerical experiments for the deterministic case of
Section 2.4 only. There was insufficient data for testing the stochastic model.

For the SWI, typical solar production and household usage data were provided by
KEMA in the following form: 1) a database containing the instantaneous power flow
in Watts for 27 households at 10 minute intervals for one week and 2) solar insolation
data in lux at 10 minute intervals for one year.

Making use of the network of Figure 2.1 and corresponding matrix A (2.6) we
solved the deterministic LP (2.19)—(2.26) on a one week interval with time constraint
period At=t,1 —t, =10 minutes. The usage data U;(t) was taken from the first 5
households of the provided data.

We took all power line maximum load constraints to be I} =70A. We assume
only a single type of decentralized generation, namely solar energy. To this end we
ignore the second index k on source terms and denote them simply by S;(t), etc. We
chose S;(t)= (100 W/m?)S;(t)o;, so that o; can be interpreted as the surface area of
solar panels in m? at node 4. Solar insolation S; was taken from the first week of the
given datafile, and assumed to be uniform over the model neighborhood.

The solution of the optimization problem is shown in Figure 2.2. For the optimal
configuration, Figure 2.2a shows the loads in Amperes on all edges. Loads al and
a2 are approximately equal. The critical load is reached on edges al and a2 after
approximately 6.5 days.

The optimal configuration of solar panels is

o1 =122 m?

g9 =121 m?

05 =31 m?
o4 =24 m?
0'528 m2

For this arrangement, the production in kW at each household is shown in Figure
2.2b. Productions at nodes 1 and 2 are nearly equal and significantly greater than
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Connection currents in Ampere

Current

time in days
Solar panel production in kW

15 T T T T T T
S,
g 10 i Sz
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5 3
o gl i S,
Ss

0 L L L L L L

0 1 2 3 4 5 6 7

time in days

Figure 2.2: Optimal configuration of solar panels: (top) current flow through each
network edge for the optimal configuration (negative flow is upstream, consistent
with a net surplus in decentralized generation); (bottom) total solar generation at
each household node for the optimal configuration.

nodes 3-5. The total optimal production is 1340 kWh/yr, with a net positive energy
production of 1070 kWh/yr.

This fact hints at a possible problem with the simple optimization model used
here. In particular, the benefit to a consumer of placing solar panels is dependent
on that consumer’s node in the network topology. For an optimal production, some
consumers will gain a much more significant advantage than others. We also computed
an alternative configuration for a strict ‘fair play’ scenario in which we assume all
households are allowed an equal maximum solar production, enforced by taking o; =
o = const. We manually iterated to obtain an approximate best value of o of 50 m2.
Figure 2.3a shows the loads on each network edge. The critical load again occurs on
edges al and a2 after 6.5 days. In Figure 2.3b the production of all households is
equal by assumption. Under the ’fair play’ scenario, the total production is reduced
to 1100 kWh/yr and net production to 830 kWh/yr.
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Connection currents in Ampere
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Figure 2.3: Optimal ‘fair play’ configuration of solar panels: (top) current flow
through each network edge for this configuration; (bottom) total solar generation
at each household node is equal.

2.6 Conclusion

In this paper, we developed a method that can quickly determine how many units
of each type (solar panel, small wind turbine or central heating power units) can be
inserted into any transmission line in the network, such that under given distributions
on the typical production and consumption, the maximum loads on the lines and
components will not be exceeded.

We first considered the situation were the power production and consumption are
considered deterministic but vary over time. We derived a linear programming model
for maximizing the amount of decentralized power generation while respecting the
load limitations of the network. Since linear programming problems can be solved
efficiently this is a promising result from the viewpoint of the application. We pre-
sented an initial model for the case where power consumption and production are
considered as stochastic variables.

For the deterministic case we implemented a prototype in Matlab for a small
example. The results are promising since we could quickly compute the optimal
allocation of power generation units with a 10 minute time granularity. The results
revealed that the optimal allocation is unbalanced in the sense that houses closer to
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the connection point to the high voltage network are allowed to generate much more
power that house located further from this connection, consistent with the findings
of Niemi and Lund [7]. To achieve complete fairness, we tested the situation were
each house generates the same amount of power. Then the financial benefits are more
uniformly distributed among the consumers. However, this provides a significantly
lower power production. Consequently, the development of intelligent fairness criteria,
which for example can be achieved by adding additional constraints to the linear
programming model, is an interesting issue for further research.
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Thruster Allocation for Dynamical Positioning
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Abstract

Positioning a vessel at a fixed position in deep water is of great importance when
working offshore. In recent years a Dynamical Positioning (DP) system was developed
at Marin [2]. After the measurement of the current position and external forces (like
waves, wind etc.), each thruster of the vessel is actively controlled to hold the desired
location.

In this paper we focus on the allocation process to determine the settings for each
thruster that results in the minimal total power and thus fuel consumption. The
mathematical formulation of this situation leads to a nonlinear optimization problem
with equality and inequality constraints, which can be solved by applying Lagrange
multipliers.

We give three approaches: first of all, the full problem was solved using the MAT-
LAB fmincon routine with the solution from the linearised problem as a starting point.
This implementation, with robust handling of the situations where the thrusters are
overloaded, lead to promising results: an average reduction in fuel consumption of ap-
proximately two percent. However, further analysis proved useful. A second approach
changes the set of variables and so reduces the number of equations. The third and
last approach solves the Lagrange equations with an iterative method on the linearized
Lagrange problem.

3.1 Introduction

In this report, we focus on the allocation part of the full closed loop control system,
depicted in Figure 3.1, which is used to keep the vessel in a stationary position.
This allocation unit receives the required total force and momentum from the PID-
controller and will try to generate these by sending the appropriate control signals to
the available actuators of the vessel.

Note that the problem is considered to be 2-dimensional. In fact, any movement
in the z-direction (up/down) is ignored due to its periodic behavior. Also, most
common actuators do not have the ability to produce trust in the z-direction. This
clearly reduces the complexity of the problem.
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Required Extended Kallman
position/orientation Filter (EKF)

. Measgred . Vessel Actuators
position/orientation
S

Figure 3.1: The closed loop control system. Measurements of the position of the
vessel are compared with the required position. The difference is fed into a Extended
Kalman Filter and PID-controller to convert this to the force and momentum re-
quired to correct the position. The allocation unit controls the thrusters, which must
generate the required force and momentum.

PID

Y

Allocation

Semi-submersible setup

Several types of actuators exist, but we limit ourselves to the azimuth thruster, shown
in Figure 3.2(a). These are able to direct their thrust in 360 degrees around the
z-axis. They are frequently used in the semi-submersible configuration shown in
Figure 3.2(b). This kind of vessel consists of two pontoons which remain under water
and eight poles that connect the pontoons with a large rectangular platform above
the waters surface, a setup that is often used for offshore drilling in deep water, where
anchors cannot be used.

It is necessary to introduce some notations. First of all, the coordinate system is
installed in the center of gravity and the x-axis is pointing in the forward direction.
The z-axis is the upwards direction and so the y axis points towards starboard. Let us
denote the total required forces, given in z- and y-direction, by F, and F, respectively,
and M, the required momentum in z-direction. These must be generated by the
N thrusters that are positioned on the bottom of the ship. We denote the force
per thruster by its components (fy ;,fy.:) €R? for i=1,..,N. An alternative polar
notation using T; =/ fy 2+ fy:2 for the thrust and a; € [—m,7) for the orientation
relative to the z-axis, is shown in Figure 3.2(a). Furthermore, we use P for the total
power used in a given time step and T; and P; respectively for the maximal thrust
and maximal power for thruster 7.

Some dimensions and the coordinates (z;,y;), indicating the positions of the
thrusters on the semi-submersible, are summarized in Figure 3.2(b).

3.2 General problem statement

The allocation problem can be translated to a constrained optimization problem. We
introduce the objective function and the constraints of this minimization problem in
the following paragraphs.
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(a) Azimuth thruster (b) The semi-submersible

Figure 3.2: Detail of an azimuth thruster with its associated variables in 3.2(a) and
a top-view of the actual semi-submersible that was used in the simulations. The
azimuth thrusters are located on diamonds in 3.2(b).

Objective function

Cost-efficiency is important when considering the dynamical positioning. Therefore,
we try to satisfy the requirements with the least energy possible

N

PuzNjn”Z(fx,mfy,f)". (3.1)
i=1

=1

Here we assume that each thruster has the same specifications. If not, each term in
the sum (3.1) must be scaled with a thruster specific constant P;/T;?".

In this report we use the realistic setting of the power v = % Previously at MARIN,
this optimization problem was only considered for ¥ =1, because it leads to linear
derivatives of (3.1). Simulations have shown that the energy consumption may be
3

lower by about 2% when using the realistic v = 3.

Equality constraints

The first set of constraints follows from the need to generate the required force and
momentum. If these would not be satisfied, the vessel can start to drift. To avoid
this, the following equality constraints must be satisfied:

N
F, = Zfac,i s (32)
=1
N
i=1

N
M. = @i fyi—Yifoi - (3.4)
i=1
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af + oo
ap

ap —ac

T

(a) Forbidden angle approach (3.6). (b) T(c) approach.

Figure 3.3: Two ways of dealing with disallowed angles. In 3.3(a), certain angles are
forbidden, whilst in 3.3(b), the maximal thrust is variable (depending on «), and the
intensity of the gray that indicates the available amount of of available thrust for each
angle a.

Note that these conditions assume that the total installed thruster capacity is suffi-
cient. A more elaborate discussion on this is deferred to Section 3.3.

Inequality constraints

The second set of constraints originates from physical limitations. First of all, the
thrusters have a limited capacity® T;. Secondly, thrusters that are close together have
an influence on each other: if one is in the stream of the other, its efficiency drops
significantly. In order to avoid this, certain angles are prohibited. This results in the
following constraints, for i=1,...,N:

T, >T= \/m ) (3.5)

loi —ari| > acyi - (3.6)

In this, cf. Figure 3.3(a), ap, is the center of thruster ¢’s forbidden zone, the angle
that is oriented away® from the neighboring thruster. The constant ac; gives the
minimal angular distance from af; needed to avoid influence on the other thrusters.
A typical value used for ac; is about 10 degrees.

An alternative way to describe the inequalities is by using an angular dependent
maximal thrust. In this, the maximum thrust in the forbidden regions can be limited
to zero. Constraint (3.5) and (3.6) are combined into

This way of describing forbidden angles provides much more freedom and is easy to
adapt for the influence of several near by thrusters. A rough example of such an

8This is also an approximation because this is the open water thrust capacity. Because of currents
and interaction with the hull of the boat, the actual thrust might be far less.

9We use a thrust notation that shows the direction of the resulting force, while the water is pushed
in the opposite direction. Hence the forbidden angles are opposite to the neighboring thruster.
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angular dependent maximum thrust T;(c;) for two neighboring thrusters is given
in Figure 3.3(b). Note that it might be convenient to use a smooth continuous
differentiable function for this angular dependence.

Full problem statement

The full allocation problem can be summarized as follows:

minimize (3.1)
subject to (3.2), (3.3), (3.4) and (3.8)
(3.5), (3.6) for i=1,...,N .

3.3 Approaches

We are looking for a numerical method to solve the optimization problem described
by (3.8) in real time: the computation should be instantaneous compared to the
timescales of the vessels actions. Currently, the closed loop control system from
Figure 3.1 runs at 4Hz. The method is thus required to take far less than 0.25s,
because the allocation is only part of the calculations.

Idea I: Direct nonlinear optimization

With the vast amount of tools available, solving a nonlinear optimization problem is
not that difficult. Without considering the efficiency or the computation time, the
problem (3.8) can be solved by the MATLAB optimization toolbox. More specifically,
fmincon was used to gain insight into the behavior of the problem. For this specific
setting, the fmincon routine used a Sequential Quadratic Programming (SQP) ap-
proach for the inner, and line search for the outer loop. The Hessian is updated using
a quasi-Newton scheme (more details are available in the MATLAB documentation).

In order to provide a reasonable starting point, the solution of the linearized
problem was considered at t=0. When ignoring the inequality constraints, problem
(3.8) with =1 has a quadratic Lagrange function. This leads to a much easier linear
problem that can be solved directly.

For subsequent time steps, the result of the previous step were taken as initial
value. This is reasonable because of the rather large timescales that are involved
with the actual movement of the vessel and external influences like wind and water
currents.

Alternative penalty approach for overloaded situations

As mentioned before, there may be times where the thrusters can not produce the
requested forces. It is necessary to be aware of this situation and to prioritize the re-
quirements. What is most important the drift avoidance or the energy consumption?
In practice, the former is considered to be crucial.

No value can be attributed to the output of fmincon when the force and momen-
tum constraints (3.2), (3.3) and (3.4) cannot be met within the thruster capacity
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(i.e. (3.5)). It is thus necessary to consider this, undesirable but sometimes unavoid-
able, case separately. The approach used here is to loosen the constraints on the
required forces if the capacity of the thrusters is insufficient. The force/momentum
constraints (3.2), (3.3), (3.4) are then dropped, but they are reflected by an additional
penalization term in the modified objective function. In particular, we penalize dif-
ferences between required and provided forces and momentum. Together with the
power consumption of the thrusters, this leads to the following modified objective
function:

P, =w; P, +w, (Ar,”+AF,%) +ws Ay, ” (3.9)

where wy, wy and ws are weights (to be chosen appropriately), and
N
A]FJc - F:v_z.fm,i 5
i=1
N
Ap, =Fy=> fyi, (3.10)
i=1

N
Ay, = M, —Z(xify,i —Yi [ri)-

i=1

The associated alternative minimization problem, that is used only when the thrusters
have insufficient capacity, can be written as

minimize (3.9) (3.11)
subject to (3.5), (3.6) for i=1,...,N. '

The weights in (3.9) need to be chosen so that the right balance is reached between
the energy consumption, drift and orientation changes. Consulting the experts from
MARIN led to the use of w; =0: there is no intention of minimizing the power in
extreme weather conditions. The other weights were chosen relative to the maximal
required thrust and moment for a given time series. This somehow equally treats
both position and orientation errors.

Idea Il: Reduction to a 3 x 3 nonlinear system

We will show that, even for the more realistic case where V:%, the 3N +3 La-
grange equations can be reduced to only 3 equations and the 3 unknown multi-
pliers. The equations obtained from the multipliers technique can be simplified
using T; and «;, the thrust and azimuth angle of thruster i, as main variables.
The associated feasible region then reduces to the product of intervals T; ¢ [O,Ti]
and «; € [ap; —ac,api+ac,;]. Solutions will be either inside this domain, as sta-
tionary points of the Lagrange function A(T,A,L) (where we collect the thrusts
T:[Tl,...,TN]T, angles A:[al,...,aN]T and Lagrange multipliers Lz[/\l,)\g,)\g,}T
in column vectors) or on the boundary of the domain. These cases are discussed
separately.
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Solutions in the inside of the feasible region

Using the notation (3.10), the Lagrange function for problem (3.8), assuming that
the inequality constraints are inactive, can be written as

N
s(T,AL) =) "T;% =\ Ap, — Ao A, — A3 A (3.12)

=3
i=1

A

4

For a given thruster i, collecting terms linear in f,; and fy,; gives u;fz i +v;ify
where u; = A1 —y; A3 and v; = Ay +;A3. Using the relations f, ; =T;cos(a;) and fy; =
T;sin(«;), the collected terms are written as T;(u;cos(a;)+v;sin(e;)) and further
summarized to T; h; using h; =u;cos(a;)+v;sin(e;). This gives

N
A_s(T,AL)=Y" (Ti% +Ehi) M F — A F, — AsM, . (3.13)
=1

In stationary points, the partial derivatives of the Lagrange function A,_ 3, with
respect to T; and «; for each thruster ¢, must be zero and can be solved:

OA,_s 3 4
=— 2 ="\/Ti+h T;=—-h*, 14
0=—r =3 VI+h = 5 (3.14)
aAu:§ T;7#0 V;
0= Do L = —Tiu;sin(o;) + T;v;cos(ay) == tan(ai)zj . (3.15)

If T; =0, the thruster 7 is switched off and any value of «; is a solution.
With the above, thrust T; can be rewritten as a function of u; and v;:

T L R B N 2,2
hz—iul(m>ivl(m>—i w2 +v;2. (3.16)

cos(a;) sin(a;)

Both T; and «; depend only on the Lagrange multipliers A1, A2 and A3. The stationary
points are thus characterized by the multipliers, that can be found by substitution T;
and «; into the equality constraints (3.2),(3.3) and (3.4):

F,=Y"N, T;cos(cv;) =45 N hiu,
Fyzzijil’fisin(ai) :gzﬁvﬂ hiv;, (3.17)
M, = Zi]\il T;(w;sin(oy) —y; cos(c;)) =4 Zil hi (xv; —yiu;) .

These are thus three equations for the three unknown multipliers A1, A\ and A3. When

such a Stat1onary pomt ex1sts inside the domain, the optimal value of the power P is
then equal to ZZ T2 =9 Zl Lhid.
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Solutions on the boundary: saturation and forbidden angles

With the Lagrange multipliers technique, it is possible to take inequalities into ac-
count, introducing a new multiplier u; for each inequality. Derivations lead to the
following conclusion: either inequality j becomes an equality (border of the domain)
or u; =0. Hence, inside the domain all y; vanish and the extended Lagrange function
is equal to the previous A=A, _s

On a border, optimizing the total power can also be done by the multiplier tech-
nique using the restriction of Lagrange function A to this border of the domain. As
the domain is expressed as boundary values for T; and «;, the restriction of A to a
border amounts to fixing the value of T; (resp. «;) in A. Hence all previous deriva-
tions remain valid excepted (resp gA) that is no longer needed to determine
T; (resp. «;) as a function of the N's. Observe that when T} is saturated, equation

(%\ =0 still allows to determine «; =arctan (—) and conversely, if a; is a forbidden

angle, equatlon e —0 still allows to determine T;(A1,A2,A3). Finally, if for some i,
both T; and «; reach boundary values, then the allocation problem is reduced to a
problem with N —1 thrusters and new known constraints (F, :=F, — f; ;, and similar
for F, and M) and it reduces to the same system of 3 equations for a subset of
indices in the summations.

Idea IlI: Iteration on a linearized Lagrange problem

For this strategy, we distinguish a simplified version of the problem and the full
problem. By first solving a simplified version, an initial estimate of the solution is
obtained. This can be used in an iterative algorithm which adapts the simple version
to obtain improved versions. A few of these defect correction type iterations yield
the final solution.

The simplified problem (v=1)
We simplify the optimization problem (3.8) by taking ¥ =1 and the angular dependent

maximal thrust constraint (3.7) instead of constraints (3.5) and (3.6):

minimize (3.1) for v=1
subject to (3.2), (3.3), (3.4) and (3.18)
(3.7) for i=1,...,N .

Denoting J as the set of indices j for which thruster j is saturated, e.g. inequality
(3.7) becomes an equality, using vectors F= [fxyhfy’l,...,fz’N7fy’N]T M={u;}jcs
and L= [)\17)\2,)\3]T, the Lagrange function becomes
Ap—1(F,LM) = P,—1 — A1 Ar, — A2 A, — A3 A,
Z]GJMJ( ( ) fmj fy,jQ)'

Now we can find F, L, and M such that (F,L,M) is a stationary point for the
Lagrange function (3.19), by solving the following system (for notational convenience,

(3.19)
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we write the system only for N =4 thrusters):

[ 2 2fu 1 =y | [ fan]
2 2fy1 1z || fyn
2 2fr,2 1 —y2 || fz2
2 2fy,2 1 @ || fye
2 2fz,3 1 —ys || fa,3
2 2fy,3 1 3 || fys
2 2fra |l —ya || fz4
2 2fya| 1 ma || fya
2fz1 2fy1 B
2fz,2 2fy,2 2
2fz,3 2fy,3 H3
2fz,4 2fy,4 Ha
1 1 1 1 A1
1 1 1 1 A2
| —Y1 %1 —Yy2 T2 —Ys T3 —Ya 4 11 A3 |
_ o _
0
0
0
0
0
0
- 0 , (3.20)
T1(c1)?+ fo12+ fy1?
Ta(2)? + fa,2% 4 fy,22
T3(e3)?+ fu,32+ fy 32
Ta(og)?+ fr,a% + fy,a2
Fy
Fy
M,

For each non-saturated thruster j, the corresponding p;, row and column should
be omitted from the system. Notice that the system is symmetric in any case.

Using R= []FI,IFy,MZ]T for the requirements and T2 for part of the right hand side,

. < — — T . .
ie. T2=[T12+ fo 1?2+ fya .., TN?+ fon?+ fy,n?] , we can write this system as

CB'E'][F 0
Bo o |M|=|T2], (3.21)
EO0 0||L R
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where C is an diagonal matrix of dimension 2N x 2N; the matrix E is 3 x 2N and
the matrix B is £ x 2N, where k is the number of indices in 7, that is the number of
inequalities (3.7) that is reduced to equalities (i.e. the number of saturated thrusters).

In the initial step we assume none of the constraints (3.7) is active, i.e. J =0. This
implies that in the initial step the rows and columns with B, L and T are absent
from (3.21). So we solve the system (3.21) for F and L to find the estimate FI°.

As soon as an estimate FI" is available we can compute the thrusts 7}

N\ [m]
T,-T, <arctan (%)) for i=1,--- N (3.92)

and find 7, the set of indices j for which the constraints (3.7) is violated. For those

indices, we scale that vector so that the trust is equal to the maximum:

T' (67 T Q;
fzd' = Jj(—\ ) fo and ny = jj(_" ) ny . (323)
J J

If 7 #( we compute B, T; and T, using F™, and solve the system (3.21) again. The
iterative process ends when the set 7 does not change any more!'°.
After the first iteration, instead of system (3.21) with the artificial v =1, it is more

realistic to solve the system that will be described in the following.

The true, non-simplified problem (v = %)

In order to remove the simplification made in Section 3.3 by setting v =1 instead
of 1/:% in the expression P,, we have to correct for it. The function P, was the

original object function for optimization, and the value of v is reflected in the system
(3.21) only in the C. In fact C is the Hessian of P, which is constructed to make the
gradient of P vanish.

Namely, for v=1 the gradient of P,—; reads

a131/:1 T
VPVZI(F): oF :2(fav,17fy,17fw,27fy,27"'7fx,Nafy,N> (324)
and the equations CF =0 make the gradient vanish.
If V:% the gradient can be written with ‘+’, an element-wise division

o 8-Pl/:3/4 _

3 T
VPymgya(F) = — = SF [V TV TV o VT VT |

Applying the defect correction principle [1], we compute the true problem by
replacing the system (3.21) by

CBTET]|[F VP,-1(F)=VP,_3,,(F)
BO O0||M|= T2 , (3.25)
EO0O 0||L R

10Because of the weak non-linearity of the system, a nice convergence behavior of the iteration is
expected.
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so that the iterative improvement of the solution of the problem we are interested in,
is achieved by solving for FI™*! from the system

c BT gT][FImtU] [VP,_i(FIM) —VP,_g/4(FM)

B o0 o M |= lm]? ; (3.26)
E 0 o0 L R

for m=0,1,2,.... Upon convergence, this leads to the stationary point of (3.19) with
v= %, hence to the solution of the full optimization problem.

3.4 Results

The optimization using fmincon was used to solve the allocation problem for a se-
quence of F, F, and M., provided by MARIN. The resulting thrusts 7; and orienta-
tions «; are plotted for the first 250 seconds in Figure 3.4-3.5, where the second figure
uses the modified algorithm with the robust handling of the overloaded situation (see
Section 3.3).

The baseline implementation took on average 0.15s per iteration for the given
sequence. This was reduced to about 0.03s by optimizing the code and by provid-
ing some of the derivatives analytically (profiling showed that the finite difference
approximations of this derivatives took most of the time).

We tried to mimic the approach that MARIN uses nowadays (with v=1). It is
unclear if this is exactly identical to their program (there is no way of verifying due
to confidentiality of their actual results). Our implementation, in which we use the
realistic value v= %, proved to require about 2% less power on average than when
considering the previously used quadratic objective function (v=1). It is clearly
worth considering the realistic case with v = %: in some time steps, the excess power
for v=1 reached up to 5% of our optima.

In order to facilitate the interpretation, a MATLAB visualization was written to
show the thrust together with their orientation (see Figure 3.6). By joining static
plots for the given sequence of required values, a movie was made. It allows for a very
natural way of inspecting the results because the human eye is able to see trends,
even for several thrusters simultaneously. Waves for example, can easily be spotted
in this manner because all thrusters re-orient in a similar fashion. This video also
shows the required and achieved forces and moments. Violations of the constraints
are indicated by the use of color, as explained in Figure 3.6. For the time being,
the visualization is specialized for the azimuthal thrusters, but it can be extended to
other type of actuators, as can the analysis in Section 3.3.

3.5 Recommendations

If the speed and quality of the straight forward MATLAB implementation is sufficient,
this optimization routine can be used in the software with minimal effort. If not, the
other approaches should be investigated further.
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t=178.015
SB3 SB2
SB4 SB1
M (F IF )
PS4 PS1
PS3 PS2
[

Figure 3.4: Resulting thrust and orientation for the direct nonlinear optimization
(Section 3.3) for a given sequence of requested force and momentum. Each plot
represents one of the eight thrusters on starboard (SB) and port side (PS). The left
axis shows the thrust 7; with an indication of the maximum T (at some points in
time, the thrusters are indeed overloaded), the right axis shows the azimuth angle «;
and the forbidden angle range [ap; — ¢ i, +ac;] (only within visible range for
thruster ‘PS3’).
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t=178.01s

SB3 SB2

IM (F IF )

PS4 PS1

Figure 3.5: Identical setup as in Figure 3.4, but with results for the approach in which
the penalty function formulation is used in case the thrusters are overloaded. This
avoids overloading, as can be seen in the graphs, by loosening the constraint on the
required force and momentum (see Section 3.3).

The use of the thrust/angle notation proved to reduce the complexity of the
problem quite dramatically to only 3 equations with as many unknowns. Using this
in the software could result in another significant speedup.

The iterative method with linearized Lagrange problem seems a promising algo-
rithm. It should only require about 4 or 5 iterations to find a sufficiently accurate
solution. However, during the workshop, we had no time to make an implementation
and thus have no results at the time of writing.

It should be noted that optimizing only the allocation block in Figure 3.1 might not
be ideal. A model-predictive approach, that combines the EKF, PID and allocation
units might lead to even better results. Another important aspect of this approach
would be the concept of time horizon: the power can be minimized over a given
period, the next two hours for example. However, this would require a full model
of the vessel, together with models for the wind and the waves. This is not that
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t=17801s
SB3 sB2
SB4 SB1
M, (FIF)
PS4 PS1
ﬁ Ps2

(a) Still image from the visualization of the direct nonlinear optimization from Section 3.3. At
this moment, the thrusters are overloaded as indicated by the red circles that show the maximal
thrust and the thrust vectors that are longer than that radius.

t=17801s
SB3 SB2
SB4 SBi
M, (F,JF)
PS4 PSt
ﬁ ps2

(b) Still image form the visualization for the nonlinear optimization with special handling of the
overloaded thruster situation as explained in Section 3.3. At this time, the thrusters would be
overloaded, as shown in 3.6(a). So the alternative approach with penalty function is used: instead
of overloading the thrusters, the required force and momentum constraint is loosened and matched
as closely as possible given the available capacity.

Figure 3.6: MATLAB visualization of the resulting thrusters settings. The required
(gray) and achieved (blue, red if not produced) total force (F,F,) and moment M, are
shown, together with all the thruster forces of this semi-submersible. The constraints
are also shown: filled sections show the forbidden angles and the circle’s radius is the
maximum thrust capacity. If constraints are violated, the corresponding section or
circle is shown in red.
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straightforward.
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4.1

Greenhouses produce large amounts of mineral rich runoff water that needs to be
treated to avoid ground-water contamination. The contaminants are mostly fertilisers
such as nitrogen and phosphorus. It is both an environmental challenge and a legal
requirement to avoid such contamination. A simple and efficient treatment to lower
the nutrient concentration is to grow algae in shallow outdoor racetrack ponds, which
are cheap and easy to maintain. This problem was presented by Phytocare who wants
to achieve the following goals: To prove that algae cultures can clean runoff water; to
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Abstract

The wastewater from greenhouses has a high amount of mineral contamination and
an environmentally-friendly method of removal is to use algae to clean this runoff water.
The algae consume the minerals as part of their growth process. In addition to cleaning
the water, the created algal bio-mass has a variety of applications including production
of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can
even be used as a source of heating or electricity.

The aim of this paper is to develop a model of algae production and use this model
to investigate how best to optimize algae farms to satisfy the dual goals of maximizing
growth and removing mineral contaminants.

With this aim in mind the paper is split into five main sections. In the first a review
of the biological literature is undertaken with the aim of determining what factors effect
the growth of algae. The second section contains a review of exciting mathematical
models from the literature, and for each model a steady-state analysis is performed.
Moreover, for each model the strengths and weaknesses are discussed in detail. In
the third section, a new two-stage model for algae production is proposed, careful
estimation of parameters is undertaken and numerical solutions are presented. In the
next section, a new one-dimensional spatial-temporal model is presented, numerically
solved and optimization strategies are discussed. Finally, these elements are brought
together and recommendations of how to continue are drawn.
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obtain experience in growing algae cultures and develop protocols for industrial scale
production; and to work toward producing an economically valuable product from
the runoff water. This could be the start toward a new sustainable economic activity
for greenhouse builders.

To grow algae, one requires not only nutrients but a supply of energy, which
is provided by sunlight. The photosynthesis process converts photonic energy and
carbon dioxide into glucose, or sugar. Thus, the pond requires an inflow of runoff
water from the greenhouses as well as a pump that maintains a specified amount of
carbon dioxide in the pool. The pond is continuously mixed to allow for homogeneous
growth conditions and algae is continuously removed by ‘sieving’ the water, see figures
4.1 and 4.2.

Pump for mixing)
and CO,

Inflow Outflow

Figure 4.1: Schematic of a racetrack pond. Photos of the key parts can be seen in
figure 4.2.

Algae not only remove the contaminates from water, but are an extremely im-
portant resource in many fields of industry. On the one hand, they can be employed
for production of bio-diesel and bio-ethanol. On the other hand they form an impor-
tant food source for shellfish or other animals. In addition, they are commercially
cultivated for pharmaceutical and cosmetic purposes as well as to produce biomass,
which is subsequently exploited to create heat and electricity. This wide variety of
applications of algae explains the interest in controlling their growth.

The remainder of this paper is split into four sections. In the second second
an hierarchy of exciting models from the literature is reviewed. For each model a
equilibrium point analysis is undertaken and the limitations are discussed. In the
third section a new two-stage ordinary differential equation model that considers the
evolution of carbon, sugar, nutrients and algae is presented. Careful estimates for
the parameters are obtained using a combination of the literature reviewed above
and temporal averages of the equations. The fourth section presents an alternative
partial differential equations model, which considers the depth and temporal evolu-
tion of two separate nutrients (phosphates and nitrates), carbon dioxide and algae
growth. Numerical solutions are presented and a discussion of how to optimize the
algae growth is undertaken. In the final section all these models and approaches are
compared and contrasted, and then the factors that affect the growth of algae are
discussed.
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Figure 4.2: Images of an algae farm owned by Ingrepro: Top left, overview of the
racetrack pond; top right, close up of the mixing device; bottom left, algae extraction
apparatus; bottom right, bagged dry algae. Images reproduced with permission of
Ingrepro, Borculo, The Netherlands. Website www.ingrepro.nl. Photos taken by V.R.
Ambati.

Brief review of existing literature

Before discussing mathematical models, we will briefly review some of the biological
literature on the growth of algae; including a study of the conditions for optimizing
the growth of algae and the removal of contaminants. We explain this process in
terms of environmental conditions. The most important parameters regulating algal
growth are temperature, nutrient quantity and quality, intensity of light, levels of
CO5 and Oz, pH and salinity. Knowledge about the influence and ranges of these
parameters will help us to promote algae growth. The temperature of water as well
as the nutrients content must be on the level that will allow the algae to grow [9].
The optimal temperature for phytoplankton cultures is generally between 20°C and
30°C. Ranges for nutrients are presented in [12] and [6], whereas content of specific
elements with focus on nitrogen and phosphorus is described in [15]. Since algae
are photo-synthetic organisms, there is a need to set the cultures in areas of vary-
ing temperatures but with sufficient light to promote photosynthesis. Photosynthesis
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depends also on the light intensity and frequency. The photo-synthetic rate is pro-
portional to irradiance and the higher the irradiance, the longer the dark period that
can be afforded by the system without loss of growth [20]. Optimal light intensity for
algae is 2,500-5,000 lux. According to Vonshak et al. [31], growth of algae becomes
saturated at a range of 150 —200umol photon m~2s~!. For a high photosynthesis
rate balance between COy and Oz has to be taken into consideration [27]. In ad-
dition, Pulz in [27] described that species-specific O evolution rates were recorded
between 28 and 120 mg Oy /(gDWh™!) in high-cell-density micro-algal cultures with
optimum growth; whereas, Cheng et al. [6] studied the C'Os concentration during
algal growth and determined that the proper range is 0.8%-1.0%. Deviations from
the optimum pH and salinity will cause productivity problems. Therefore optimum
conditions should be maintained. The pH value for optimum growth of algae ranges
between 7-12. Every algal species has a different optimum salinity range [4]. Paasche
at al. [24] found a salinity range of 10 to 34 ppt for growth of clones of Emiliania
huxleyi.

4.2 A hierarchy of models and some qualitative analysis

In this section we describe a hierarchy of increasingly complex, minimal models for
light and nutrient limited algae growth which may serve as building blocks for more
detailed models. All model ingredients were taken from the literature. The light-
limitation is a crude model for the influence of photosynthesis on growth, lumped
into a few parameters that would need to be gauged by measurements or extended
by more detailed model components. This holds similarly for other influences, such
as CO9, pH value, etc. In the models presented in this section, we do not specify
values for such parameters but rather investigate the qualitative dynamics of the algae
growth and its interpretation.

We start with the purely light limited scalar model derived by Huisman et al in
[12]. Inspired by the model in [10], see also [9], we extend this model by including two
nutrients and a temperature dependence, but keep a scalar model. We then move
on to a model by Klausmeier ([17, 16]) for nutrient-limited growth where nutrient
densities are variable, and where intra- and extracellular densities are distinguished.
Lastly, we combine this with the light-limitation model by Huisman ([12]).

The Huisman model: light-limited, nutrient surplus

This model has been derived in [12] and gives the density of algae A(t) >0 through
the scalar ordinary differential equation

gain
loss
d Hmax HP"'Iin A ——
S A= . Hmax ~h.A-D,A. 4.1
= A zmaxn(Hp—kfout)kA—i—Kbg hrA=DrA (4.1)
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The parameters of the model can be roughly grouped into external, somewhat
controllable, and internal, algae dependent parameters. All of these also depend to
varying degrees on COsq, pH value, temperature, nutrients, etc.

External parameters Internal parameters
incoming light: I maximum specific growth rate: Imax
outgoing light: Tout half saturation of photosynthesis: Hp
background turbidity: K, specific light attenuation: k
mixing depth: Zonan specific maintenance (death rate): D,
dilution / outflow: h,

One of the main aspects of the model is that, even in the presence of mixing,
the light intensity decays with depth due to ‘shading’ by algae above. For the above
spatial average model this means:

Iout = Iinexp(f(kA‘i’Kbg)Zmax)-

In [12] the form of the growth rate H is compared with ecological reality. For instance
the inverse proportionality with respect to zmax suggests that shallow tanks are better
for growth, which is well known in practice. Note that here this effect is given by a
quantitative scaling law, and, for instance halving zny,x has much greater effect than
doubling I;;,. We shall investigate some other qualitative predictions of this model.

Steady state analysis. The qualitative behaviour of a scalar ordinary differential
equation is essentially determined by the location and stability of steady states, where
H(A)=0: the flow is monotone on intervals between equilibria with direction com-
patible with the (necessarily changing) stability of these equilibria. It is convenient
to rewrite (4.1) in steady-state as

HP + Iin
m x1 T7r . 1 7 A\ | T “max k K hr DT‘ ) 4.2
el g7 ) = (EAH Kig) B 4.D) (12
where we divided by A, to remove the trivial steady state A=0. The relative value
of left and right hand sides (LHS, RHS) of this equation determines growth via

%A>O<:> LHS > RHS. (4.3)

We first observe that LHS saturates for growing A to the asymptotic state,
Lmax 1D (Hf}{i';]i“)’ while RHS is growing linearly. This implies that for sufficiently

large A we always have %A< 0 which makes intuitive sense as we expect that very
large amounts of algae cannot be maintained.

Since the model is scalar, this decay can only be stopped by a steady state, which,
in absence of positive steady states means A=0. The left and right hand sides at the
state without algae satisfy:

LHS at A=0: RHS at A=0:
Value:  fmaxIn (Hp+1- Hp+I;, ) Value:  zmaxKog(he +Dy)

in ©Xp(—Kbg Zmax)

IineXp(_Zmabeg

Slope:  fimaxZmax P A E—o Slope:  zZmaxkA(hr+ D)
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Figure 4.3: Configurations without stable steady state (a) and mono-stability (b).
Arrows on the horizontal A-axis indicate the direction of growth. Bullets are steady
states.

We infer that A =0 is the only steady state if the light intensity [;;, is very small or
if the depth zy.x is very large. Again, this makes intuitive sense as ‘life need light’ to
overcome depletion and natural death. The algebraic criterion for this is cumbersome
and does not provide much insight. A relatively simple sufficient criterion for the
existence of another steady state above A=0 is that the value of LHS at A=0 is
bigger than that of RHS:

Hp+Iin
max | maxKbg (hr + D). 4.4
H " (HP+IineXp(Kngmax)> - bg( + ) ( )

As mentioned, this holds for large Iiy, or for small zpyax and Ky i.e. a clean shallow
tank, and can be somewhat controlled by small depletion (harvest) rate h,..

Geometrically, steady states are intersection points of the graphs of LHS and RHS,
see Figure 4.3. Since LHS is concave and RHS linear, under criterion (4.4) there is a
single non-zero positive steady state. Since A larger than this implies decay as noted
above, this steady state is stable, that is, when perturbing the amount of biomass the
growth dynamics will be driven back to this state. This configuration may be called
‘mono-stable’ as the state without algae is unstable, which is ecologically perhaps
unrealistic as it implies that even the smallest initial amount of algae suffices for
stable growth up to a ‘carrying capacity’. Note that the geometry implies that there
is a single point of fastest growth, which means that a slowing of growth implies that
the reactor is roughly halfway to its carrying capacity state.

The other possible configuration with positive carrying capacity is plotted in Fig-
ure 4.4. Here the initial amount of algae concentration has to lie above a threshold
value to trigger growth until the carrying capacity state.

Huisman Model with nutrient limitation

As a first step to incorporate nutrient limitation we include a nutrient concentra-
tion dependent factor in the gain term, similar to the model in [10]. Denoting the
amount of nitrogen and phosphorus as N and P, we assume for this factor the typical
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Figure 4.4: Typical dynamics of the Huisman model.

threshold for i
i decay

A

saturating form
P N

(Hp+&pP) (HN+N)

known from generic growth models, where Hy, Hp are the half saturation parameters.
To close the system, we assume instantaneous nutrient adaption

P:PTot —Oé.A, N:NTot _ﬁ-Av

where Prog, N1ot is the total influx of nutrients and «, environmental parameters
measuring the uptake into algae concentration.

It has been reported in the literature [5] that growth is more sensitive to Phos-
phorus, which we crudely model by taking the parameter 0 <{p < 1. For simplicity,
we initially set £p =0, so that the resulting model becomes invalid for large amount
of P.

In addition, and mainly for illustration, we follow [10], see also [9], to include
simple forms of temperature (T') dependence with respect to a reference temperature
Tref and rates 0;, j=1,2.

dA_.umaxln<HP+Iin> A

&t Hpt Tow ) (RA+ Kog)
P N

(Hp+&pP) (HN+N)

—~DA— D, 03 Tt A

Zmax

% efmef

Steady state analysis for {p =0. As above we pursue a steady state analysis and
divide out A=0, which now gives

MmaxGT_TRcf 0 ( HP +Iin ) _ (k‘A“V_Kbg)(HN +NTOt —ﬁA)
Zmax (D + DregiTRE’f) Hp + Iy (PTot — aA) (NTot — ﬂA)
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Figure 4.5: Sketches of possible configurations for the extended Huisman model with
nutrient limitation. (a) &p=0, (b) 0>¢p <1.

In essence, the left hand side is the same as in (4.2), but the right hand side is no
longer affine. Instead, it has the shape sketched in Figure 4.5(a), and in particular
has the negative asymptotic value —k/a.

Therefore, large values of A imply %A >0, which would mean unbounded growth.
This is of course unrealistic, but as mentioned, the model becomes invalid for large
values of A. We infer that, within the range of validity, the largest steady state is
always unstable, and may be .A =0 in which case any initial amount of algae will grow
(and eventually lie outside the range of validity).

The most interesting case is when there exists a positive stable ‘low’ steady state,
which (to be consistent) implies the presence of a larger unstable ‘threshold’ steady
state. This would mean that starting with initial algae below this larger unstable
state and above any potential low threshold states, the reactor would always converge
towards the low stable state. It would thus not reach its potential, which is an algae
concentration so large that it is outside the range of this model.

One way to drive the reactor beyond the high threshold value would be control of
the parameters, which is, however, beyond the scope of this article.

We note that it is for instance also possible that, geometrically, RHS lies below
LHS everywhere, which implies unbounded growth for any amount of initial algae.

Steady state analysis for 0 <&p <1. In this case the steady state equation reads

fmax0y Ref Hp+1y \ _ (BA+Kug) (Hy +Nrow—BA) (Hp +Proy—a.A)
Zmax (D+Dr,~9§7TRef) Hp+1ous (Prot—aA)(Nrot —B.A) '

The main difference compared to £p =0 is that now the RHS asymptotically grows
linearly, so that for large values of A we have the more realistic case %A< 0. Asin
the original model, this implies that the largest steady state is stable (which may be
A=0). Qualitatively, and for small £p >0 also quantitatively, the discussion of £p =0
applies when augmented by a stable steady state larger than all others. This can be
viewed as the ‘carrying capacity’ state of the reactor. In particular, the scenario of
a stable low state now implies presence of a high stable state, which may be called
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‘bi-stability’: coexistence of two stable states. Bi-stability is a signature of nonlin-
ear systems and is analogous to a ball rolling in a landscape with two depressions:
depending on the initial conditions, the ball can be caught in either and will remain
there. In order to use the full potential of the reactor it is desirable to drive it always
into the large carrying capacity state, but a discussion of this is beyond the scope of
this short article. We only mention that a simple theoretical control would make the
tank more shallow so that the maximum of RHS will be below the LHS curve.

We emphasize that local considerations near any fixed value of A cannot determine
whether there exists such a larger stable state: It is an effect of global properties of the
model. One indicator of bi-stability that uses medium-range deviation from a known
potentially low stable state would be that the return towards this state significantly
slows down upon increasing the perturbation in A. This occurs when approaching
the unstable threshold steady state between the low and high states: when the red
and green curves get closer, the rate of decay becomes smaller, see Figure 4.5.

The Klausmeier model: nutrient-limited, light surplus

We describe the model from [17, 16] and summarize some relevant results. The model
considers the biomass growth depending on the inner nutrient resources of the cells,
rather than directly on the nutrient supply in the water. It thus accounts for limited
physical space within the cells, which prevents uptake of arbitrary large quantities of
raw nutrients, and the time it takes the cells to convert the raw nutrients into the
biomass.

The nutrients available from the environment, Ry, Rp, corresponding to N and
P, respectively, are thus distinguished from nutrients taken up from the water and
stored within the algae cells, i.e., ‘quota’ nutrient: Qn, Qp. This approach also
allows us to calculate the ratios of raw nutrients left in the water to the cell quota
Qi/Ri (i=P,N).

Biologically meaningful initial conditions in this setting require @; > Qmin,i, i-€.,
the cell growth starts only after a certain threshold value of stored nutrient has been
surpassed. Furthermore, at the initial time ¢ =0 a certain amount of the biomass and
nutrients are present in the water A(0) >0, R;(0)>0.

Klausmeier et al [17, 16] derived a 5-dimensional model, which describes the dy-
namics of the concentrations of two co-limiting nutrients and one algae species in an
ideal chemostat (the nutrient supply rate a matches the algae dilution rate h,.).

dRZ Umax ’LRZ
— =a(Rin; —Rj) — 57— A,
gr = i) =R A
dQZ Umax 1Rz . Qmin 7
= ———— — lmax 1——= )
dt R, + K; Hma ]H=1¥712 Qj @
d o . Qmin,j
%A = [imax rgn2 (1 — j) A—h,A.

The conservation law of this models concerns the total nutrients, which is given
by ijl 5 Rj+Q;A; note that @; is the nutrient concentration within a cell. Indeed,
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the rate of change of nutrients is equal to the nutrients added minus the nutrients
removed from this system:

d
e Z Rj +Qj.A= Z G(Rin,j_Rj)_thjA‘

j=1,2 j=1,2

This model can easily be extended to the case of multiple species (e.g. [19]),
competing for the shared resources, as well as incorporating the specific maintenance
rate D,.. The latter is set to zero here: D, =0; the loss of algae is only due to washout
from the chemostat.

In contrast to the previous scalar model, the dynamics of higher dimensional
models are, in general, no longer determined by the location and stability of steady
states alone. However, in this particular case it is: There is again the trivial steady
state A=0, but also one nontrivial steady state, and if the latter exists, it is stable
and the ‘global attractor’ [18] (all solutions with positive biomass converge to it).
The nonzero steady state (if it exists) is thus the steady state carrying capacity.

For low initial amounts of nutrients, biomass evolution undergoes a number of
stages. The first one is characterized by an ‘exponential growth’-state, the so-
called quasi-equilibrium state (where only biomass is not in equilibrium), during
which the cellular quota ratio Qn/Qp matches the so-called optimal N:P ratio
Qmin,N/Qmin,p =27.7, given in (mol N)/(mol P), which is also a condition for opti-
mal growth [17, 16].

Thus, if the quota ratio Qn/Qp changes, it means that the exponential growth
phase has been concluded and biomass has essentially reached equilibrium. If biomass
production is the focus, one may increase depletion and harvest at this point. If the
interest lies in water purification then the second stage is more interesting: the quota
ratio Qn/Qp swings towards the supply ratio Ri, n/Rin,p while the biomass is in
equilibrium. This is because algae are, just as most living organisms, highly sensitive
to their environment and able to adapt. Interestingly, the model also mirrors this
feature and exhibits the flexibility of the cell quota being able to match the supply
ratio at the optimal dilution rate of h,=0.59 day~! [16]. These results have also
independently been obtained in a series of chemostat experiments in [28, 29]. However,
the harvesting of clean water should be done before the third stage starts, which is
when the quota ratio falls back to the optimal ratio Qumin,n/@min,p [16], and the
biomass is still at equilibrium. Since the nutrient concentrations, the uptake rates
and the quota are modelled separately, it is possible to determine the remaining
concentrations of the nutrients in the water.

This model provides a fair description of phytoplankton/algae biomass growth
and stoichiometry, which is determined not only by the nutrient supply stoichiometry
in the chemostat, but also takes into account the physiological response of the algae.

Klausmeier-Huisman model: light and nutrient limited growth

The previous model is mainly focused on the chemical resources, however, we know
from the discussion of the scalar models, that light, i.e. energy, may be a limiting
factor for algal biomass growth, so that the next logical step is to incorporate the
light dependence.
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The simplest extension in view of the discussion above would be the inclusion of
the growth function in H, see section 4.2, in the maximum growth rate pyax, which
then becomes

Hmax HP + Iin
i k Kyg).
Zmax n(HP+Iout>/( A+ bg)
The extended ‘Klausmeier-Huisman’ model thus reads, i=1,2,
dRz VUmax sz
=a(Rini—Ri) — 55—
i~ OB =) = pme A
d [ max,iil; max in . min,j
@ =2 ’Rf H In Hp+1 min lfQ 2 ) Q;
dt Ri+K;  zZmax(kA+Kypg) Hp+ 1,4 ) i=1,2 Q;
d Mmax HP +Iin . Qmin 7
—A = 1 1—=——= —h,A.
i o (kAT Kpg) n(Herfout)}?i%( Q, A=he A

This still has the trivial steady state, and, depending on parameter values, possibly
multiple nontrivial steady states. In that case the analysis of [18] fails. The criterion
for stability of the trivial state is readily derived and reads

2 im, min max H Iin
(17621_, ) p 1n( Pt )<hr,
Qlim Zmeg HP +Iout

where Qiin is the equilibrium value of the quota of the limiting nutrient (we omit the
formula). For small dilution rate h, this is violated, which means the trivial state
would be unstable, the expected situation. Note that removing the light dependent
part gives the analogous criterion for the above Klausmeier model, where instability
of the trivial state implies that a non-trivial equilibrium is the global attractor. It
would be interesting to find a natural connection (homotopy) from this to the scalar
nutrient-limited Huisman model from section 4.2, and to analyze this model in more
detail.

Conclusions

We reviewed selected minimal models and model building blocks for algae growth
from the literature with focus on light and nutrient limitation effects. We showed a
simple geometric way to interpret and understand the dynamics of the arising scalar
models, in particular their carrying capacity states and the occurrence of bi-stability.
Strategies for optimization are beyond the scope of this exposition, and would require
better understanding of the actual values of parameters. In a nutshell, we claim that
a qualitative analysis provides: consistency check, criteria for growth, estimates of
growth rates and carrying capacity, and a framework for optimization. The next step
would be to find realistic parameter values and to compare the result with real data.

In the final sections we briefly discussed a more realistic five dimensional model
that includes nutrients as dynamic variables and distinguishes intra- and extracellular
nutrient concentrations. We proposed an extension by the light-limitation building
block of the previous models. Any satisfying mathematical analysis would require
much more mathematical formalism and analysis. We refer to [18, 19] for studies in
that direction.
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4.3 An ODE model for algae growth

Mathematical model

In the previous section a hierarchical series of one-stage models was presented and
a steady-state analysis undertaken, which revealed understanding of the long-term
behaviour of the pond. In this section a new two-stage model is presented and an
attempted to obtain ‘real’ values for all the parameters that appear in the models
is made. Due to the more complicated two-stage model a steady-state analysis is
not performed, but the Huisman model (see section 2.1) can be obtained from a
certain limit; therefore, the steady-state analysis could be used as test cases for the
numerical solution presented at the end of this section. The derivation of this limit
and numerical confirmation will not be covered in this publication.

Algae growth is a simple two-stage process, illustrated in Figure 4.6: carbon
dioxide is pumped into the water and transformed into glucose by photosynthesis;
then, nutrients provided by the drain water from the greenhouses and glucose combine
to form new algae. Further, the algae, and the sugar stored in them, are assumed
to be reduced by starving and harvesting. To keep the model simple, the nutrient
composition is neglected, as well as the fact that energy can not only be stored in
glucose, but also as more complex sugars and oils.

CO, I, Photo- Harvest &

— C S
pump synthesis natural death
synthesis h‘ /
growth
I,
Drain water —— M /

inflow

Figure 4.6: Production of algae from nutrients and carbon dioxide.

The algae production is modelled by the concentrations of dry algae A, nutrients
M, sugar S and carbon dioxide C in the pond. Assuming that the pond is well-mixed
and algae growth is very slow, the above mentioned concentrations are independent
of all spatial variables and only depend on time ¢; The inflow of nutrients and carbon
dioxide into the pond is denoted by I,, and I., respectively. The algae are starving
at a ‘death rate’ D, and harvested at a rate h,, both of which decrease the amount
of algae and the sugar stored inside the algae. Further, sugar is produced at a rate
a,C from carbon dioxide, where « is the rate constant. This decreases the amount
of carbon dioxide by a rate of —kjasC. From the oxygenic photo-synthetic process,

6CO5+6H50 — (CHQO)G 4605,

we know that 44 ¢ of carbon dioxide is needed to produce 30 g of sugar, yielding the
conversion rate

k1 =44/30 g[COa] g[(CH20)6] "

New algae are produced inside the existing algae at a rate aaN f,,(M) from
nutrients and sugar, where a4 is the rate constant and f,,(M) denotes the concen-



66

tration of nutrients inside the cells. This depletes nutrients and sugar by a rate of
—koaaN fr (M) and —ksaaN f,,, (M), respectively. Since mass has to be conserved,
ka+ks=1. Based on an estimate in [2] on the composition of algae,

_oq IM] 0.9 IUCH20)6]
k=01 70 and k=09 T

Units and a short description of all model parameters can be found in Table 4.1.

Combining the effects of algae growth, photosynthesis, inflow of carbon dioxide
and minerals and starving and harvesting of algae, the following system of ODEs is
obtained,

A=afm(M)S—(D,+ho)A, (4.5a)
M = —kyaa frn(M)S+ 1, (1), (4.5b)
S=a,C—ksasfm(M)S— (D, +ho)S, (4.5¢)
C=—kia,C+1.(t). (4.5d)

where the rate constants a4 =a4(A) and as=a4(A,C,\,0) are explained in section
4.3.

It should be noted, that in the current model we assumed the total amount of water
is constant. We do not explicitly model the inflow/outflow of water or evaporation
from the top of the pond . To fully treat the situation were the primary aim is
to clean large volumes of run-off water an extra equation for the evolution of the
total water volume is required. In the numerical examples presented below no clean
water is removed from the system; therefore, this model is valid but additionally
considerations are required to model the full decontamination problem.

Proper flux balance is obtained as the model obeys the following conservation law,

d
a(A+S+M+C/k1):—(DT+hr)(,4+5)+Im+fc/k1. (4.6)

One sees that the total mass involved is balanced by the nutrient and carbon dioxide
input and the material lost by natural death and harvest.

Parameter values and functional dependencies

In the following section, we define the nutrient concentration inside the cell, f,, (M),
and the rate constants a4 and «g. All parameters used below are summarized in
Table 4.2.

We assume that the nutrient concentration inside the cell is saturated at p.,qaz =
0.4 g[M]m=3 and that half-saturation is achieved when the outside nutrient concen-
tration is Myyrn =4 g[M]m™3; thus,

M

m(M)=Dmaz——7—.
f ( ) p laxM“!‘Mturn

(4.7)

The rate constants o, ay depend on various physical parameters. From [2], is it
known that a4 saturates with a increasing amount of algae and is half-saturated for
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Par. Unit Description

A glAm=3 Concentration of dry algae

M g[M]m=3 Concentration of nutrients

fm(M)  g[M]m=3 Concentration of nutrients inside algae cells

S g[(CH0)glm™3 Concentration of glucose

C g[CO2lm=3 Concentration of carbon dioxide

I. g[COy)m~3day™* inflow of carbon dioxide

I, g[M]m=3day~* inflow of nutrients

D, day ™ (relative) algae death rate

ho day™* (relative) algae harvest rate

au glAlg[M]~L. .. rate constant for biomass growth
9l(CH50)6] ' day ™

Qg 9l(CH20)g]. .. rate constant for photosynthesis
g[C O, tday™*

k1 44/30 g[COs]... conversion rate of COs into (CH30)g
9[(CH>0)6] !

ko 0.1 g[M] g[A]* conversion rate of nutrients into dry algae

ks 0.9 g[(CH20)g]... conversion rate of (CH30)¢ into dry algae
glA]

Table 4.1: Model parameters

Apmaz =30g9[Alm~3, yielding

A

= aa(A)=8afa(A), where fa(A)= .

(4.8)

Further, the growth rate of algae is assumed to be proportional to the light inten-
sity and further depends on the temperature and pH of the mixture. Therefore, aj
is proposed to have the following dependencies,

Oés:as(-A>Cv)‘79>:OAésf)\(Av'A)fQ(e)pr(C% (4.9&)

where fy, fo and fp,n model the dependence of the algae growth rate on light intensity,
temperature and pH, respectively.

The photo-synthetic process in the algae depends on the light intensity and is
therefore depth-dependent. However, since the pool is well mixed, the percentage
of light absorbed at any given depth is constant and the light intensity decreases
exponentially. In [12], a depth-averaged light intensity is given by

aA H+A
A = 1 4.9b
(A A) aA+ ap, n<H+)\e(aA+abg)d>7 (4.9b)

with A the light intensity at the pond surface, pond depth d=30 c¢m, half-saturation
constant H, light absorption constants of algae a =0.00455 m?g[A]~! and background
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apg=7.2m~"! given in [12]. !
From [30], the photo synthesis rate is optimal at a temperature of 6, =297 K
and vanishes at temperatures below 6,,;, =269 K. This is modelled by a simple

quadratic dependence,
2
fo(#) =max <0,1— (m> ) . (4.9¢)
min opt

We also know from the literature, see section 1.1 for a full discussion, that the
photo-synthesis rate has an optimal pH level and does not grow in alkaline solutions.
This optimum pH varies massively for different types of algae, here we take an optimal
value of 7.4 (which is a little of the low side of the average, see section 1.1) and assume
growth vanishes at at pH below 6.9. As shown in [22], pH does mainly depend on
the amount of potassium and carbon dioxide. A typical potassium content was given
in [3] to be 8 g[K H}m™3. Thus, by [22], the minimal and optimal pH corresponds
to a carbon dioxide content of Cpar=24.9 g[CO2lm™3 and Cope =7 g[CO2lm ™3,
respectively. This behaviour is modelled by a quadratic dependence,

2
forr (C) =max <0,1_ (Cc_fgt) ) . (4.9d)

It remains to estimate the constants &, a 4. Therefore we assume that the algae,
nutrient, sugar and carbon dioxide concentrations are bounded; therefore, average
values A, M, S, C exist, with ~=lim7_, %fOT'dt.

To estimate &4, we average equation (4.5b) over time [0,7] and take the limit
T — oo to obtain

M(T)—M(0

lim ) kb d FalA o OD)S + I, (4.10)

T—o0

Since the nutrient concentration is bounded,

lim M(T) —M(0) _ 0;
T
therefore, we approximate &4 by
I,
Ay R — — 4.11
oo (O)SFa(A) 1y

where we assumed fp;(M)Sfa(A)~ far(M)Sfa(A) =~ far(M)Sfa(A), ie., the av-
erage of the total product equals the product of the average of each factor and the
typical function value can be estimated by the function value at the typical parameter.

I'We note that the value given in [12] is a=0.7-10"% cm2cell™!. From [21], we know that the
maximal algae density is 5.6 —7.5-10% cells mi~! and 0.1 g[A] mI~!, from which we deduce that
algae weigh about 1.5-1078¢g cell ™.
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To estimate &g, we average equations (4.5a)+(4.5b)+(4.5¢) over time [0,7] and
take the limit T'— oo to obtain

A+M+9)|F - o

tim AEMEIN o X A0/ (€0 + L~ (D +h)(A+S). (412

T—o0 T

Assuming that the algae, mineral and sugar concentration is bounded, the left hand
side of (4.12) vanishes; combining this with the fact that C=~Cypy and 0~ 0,4, we
estimate &g by

Nl

(4.13)

where we assumed as in (4.11) that

I A) fo(0) o (C)C = fa(NA) fo(0) for(C)O = fr(AA) fo(8) for (C).
We estimate A, C, M, S, I,,, \, D, and h, by typical values from the literature:

e From [2], p. 36, a typical input rate of waste water is 7 to 20 [ m™3 day™!.

Assuming an average input of drain water of 20 [ m~3 day ™', given a nitro-
gen concentration of 15 mmol[N]I~1 and a molecular weight of 14gm0171, we
estimate I, =4.2 g[M]m~3day'.

e The input rate yields further that 2% of the water in ‘the pool is changed per
day, thus an order of magnitude estimate is given by M =2%x I,,,.

e The typical sugar content S =10 g[(CH20)¢]m ™3 is an estimate from [3].
o Since the carbon dioxide input can be controlled, we assume C =Copt-
e A typical algae concentration was provided by [1] to be A=6 g[AJm 3.
e The typical light intensity on the surface is

A=Amaz/2,

where the maximum light intensity A,,q. =2000 gmol photons m =2 is given by
[23].

e The typical harvest rate is

hy =h,A/(A+S),
where a typical harvest of h,.A=12g[Alm3day ™' was given in [2].
e Finally, we use an estimate of the death rate D, =0.46 day ' derived from [12].
Substituting these values into (4.13) and (4.11) we obtain

.~ 102 g[AJg[M]'g[(CH20)) 'day~! and
dug ~ 676 g[(CH0)g]g[CO2) tday .
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Param. Value, Source Description

Dmaz 0.4 g[M]m=3 maximal nutrient concentration
inside algae

Miurn 4 g[M)m=3 half-saturation constant for nutri-
ent
concentration inside algae

Amaz 30 g[Ajm=3, [2] maximal algae concentration be-
fore growth shuts down

H 30 pmol photons m~2, [12] half-saturation constant

a 0.00455 m2g[A]~1, [12, 21] light absorption constant

by 72m™1, [12] background light absorption con-
stant

d 0.3 m pond depth

Craz  24.9 g[CO2Jm™3, [22, 3] maximal COs concentration for
photosynthesis

Copt 7 g[COalm™3, [22, 3] optimal COz concentration for
photosynthesis

Ormin 269 K, [30] minimal temperature for algae
growth

Oopt 297 K, [30] optimal temperature for algae
growth

D, 0.46 day™*, [12] algae death rate

h 2 day ™, [2] typical harvest rate

A 1000 pmol photons m~2, [23] average light intensity

I 4.2 g[Mm~=3day~*, [2] typical nutrient inflow

M 0.084 g[M|m=3, I,,, typical nutrient concentration

C 7 g[CO2lm™3, Copt typical carbon dioxide concentra-
tion

S 10 g[(CH,0)g)m =3, [3] typical sugar concentration

A 6 glAm=3, [1] typical dry algae concentration

Table 4.2: Coeflicients and typical values.
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Limiting Behaviour and Threshold

The most well-known model for population growth is the logistic growth model. It
appears naturally in models with one limiting resource. We describe in which way the
system of ordinary differential equations (4.5) is related to a logistic growth model.

It is most natural to assume that the amount of minerals M is the limiting factor.
We assume that the influx I, is such that the COg-concentration is optimal, i.e. C'=0.
Since we only want the amount of minerals M to be a limiting factor, we should make
differential equations (4.5a) for A and (4.5b) for M independent of S. We assume
COq is transformed into sugar very fast, i.e. «a; is very large. Now depending on the
parameters in the model two things can happen: either o, saturates at a large value
of S, i.e. the photosynthesis will not become infinitely fast, or S itself saturates at
a large value, i.e. the sugar reserve cannot become infinite. Both of these processes
are not captured in the current model, since in the current model we assume S to be
not too large. The second effect for example can be built in by replacing S in (4.5a),
(4.5b) and the first S in (4.5¢) by

S
fS(S):: 1+(1/Smax)s

Furthermore, we assume D, =h,. =I,, =0, i.e. no natural death, harvest or inflow of
minerals, and M and A are not too large. For M and A not too large a4 behaves at
leading order linear in A: a4~ &4.A; similarly, f,, is at leading order given by

fm ~ pmaa: M.

turn

Equations (4.5a) and (4.5b)reduce to

A=aPmaz g A, (4.142)
turn
M= —kod g 2maz 5 AM, (4.14b)
Mturn

for some constant value S. From these two equations it follows M = —kyA, thus
M(t)=M(0)+ k2 A(0) — k2. A(t). Upon substitution in (4.14a) we obtain the logistic
equation

A=d AIZ”” SA(M(0)+ ko A(0) — ko A(t)).

For certain parameter values a threshold for the growth process can emerge. The
threshold manifests itself as an equilibrium in the (A, M, S,C) phase plane. Depending
on the parameter values, this equilibrium can be stable. Acting as an attractor,
this would limit the growth of A to this equilibrium value. Taking the COs-input
as the relevant bifurcation parameter, application of linear stability analysis at the

equilibrium yields the result that for low I. values, the equilibrium can indeed be
stable.
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Numerical Results

To investigate the behaviour of equations (4.5), the model was implemented in MAT-
LAB. We first test the numerical model for the case of nutrient limited growth,
as discussed in section 4.3. Thus, death rate, harvest rate and nutrient inflow is
set to zero, I. is chosen such that C'=0 and temperature and CO, concentration
is chosen to be at its optimal values Oopt, Copt, resp.. As initial values we choose
A(0) =3 g[Alm 3 < Amax, M(0) = .4 g[M]m =3 < Myum, and S(0) =10 g[S]m 3. The
results of this simulation compares favorably with the analytic solution to the logistic
limit equations (4.14), cf. Figure 4.7.

0.4
6
n 0.3
Q ©
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Figure 4.7: Comparison between results from the numerical model (black) and the
logistic limit equations (red).

In the following we test the model for different parameter settings.
To optimize the photosynthesis process, the carbon dioxide inflow is controlled
such that C'~C,p; by setting

I.(t) = Bmax(0 g[C]m ™3, Cpps—C), f=4 day . (4.15)

The ambient temperature was taken to be 0(t) =293K. To show that algae-growth
can be nutrient-limited, we use a low nutrient influx of I,,(t)=0.2 g[M]m3day .
The simulation is started with a low algae concentration A(0)=3g[A]Jm 3 and zero
sugar, while we chose typical mineral and carbon dioxide concentrations M (0) = M
and C(0) =C. We evaluate on the time interval 0 <t<20. We simulate three cases
for different harvest and light intensity values, producing the results shown in Figure
4.8.

The red line shows the behaviour, when no harvesting is done and light intensity
is constant,

ho(t)=0 day ™", A(t)=A. (4.16)

The algae grow rapidly until the nutrients are depleted. It then decreases towards a
stable equilibrium, while the amount of sugar is increasing. Thus, the algae growth
is nutrient-limited.

Next, a day-night cycle is modelled (blue line) by setting

ho(t) =0 day ™", A(t)=A(1+sign(sin(27t))). (4.17)
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Figure 4.8: Concentrations for ¢ €[0,20]. Red: h,=0 day ™', A\(t)=2X, blue: h,=0,
A(t) = Ao (1 4sign(sin(27t))), black: h, =0.4 day ™", A(t) = \o(1+sign(sin(27t))).

This decreases the amount of sugar, since the photosynthesis rate is non-linear w.r.t.
the light intensity. Otherwise, this has only little effect on the algae growth, since it
is nutrient- and not sugar-limited.

Finally, harvesting is turned on (black line),
ho(t)=0.4 day ™", \(t) =\ (1 +sign(sin(27t))). (4.18)

This significantly decreases the algae concentration. The mineral and sugar concen-
tration now varies around a constant value with the day-night cycle. The mineral
concentration initially decays in line with no harvest, but does not fall below a value
of 0.2 [grams/m?]. This would indicate that growing algae for harvest and removing
most of the minerals from the water may be difficult in the same pond; therefore, a
two coupled pond configuration, with one used to grow algae and the other to remove
nutrients, maybe the only way to achieve the joint goal of nutrient removed and algae
cultivation.
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Conclusions

In this section a new two-stage model is presented: photo-synthesis converts the COo
to sugars and then minerals and sugar are combined to create new algal mass. If
you take the limit of a quick photo-synthesis rate and a large bath of nutrients the
original Huisman model §4.2 can be obtained. Additional in §3.4 it is shown that
this two stage model can additionally be reduced to the logistic equation, when the
only limiting factor is the supply of a single nutrient. Separating the minerals and
modeling both phosphorus and nitrogen individually results in a system similar to
the model studied in §4.2. In this fashion all the extra factors added in §4.2 can be
added to this model and vice-versa.

Using parameter values from the literature and temporally averaged estimates,
the equations were solved numerically. The effect of harvesting was studied and
preliminary study seemed to suggest that two ponds would be best way to satisfy the
dual goal of nutrient removal and algae growth.

In various sensible limits, this model can be reduced to the one-stage model pre-
sented in §4.2, which can be used to verify the numerical model and give insight into
its behaviour in these limiting scenarios.

4.4 An alternative PDE Model

Mathematical Model

All the models considered in the previous sections are temporal models, they inves-
tigate the time-evolution of the total mass of algae in a given pond. In this section
a spatial-temporal model is presented that takes in account spatial depth variation
within the ponds. Additionally, at the end of this section optimization of the model
is discussed.

We study the growth of the algae (biomass) in the water body (described by the
domain 2 C R?). The biomass growth rate is related to the process of photosynthesis,
the process of mixing and the death rate. The process of photosynthesis depends
upon the concentration of the nutrients, the availability of CO5 and the availability
of light. The death rate includes both the harvesting rate as well as the natural death
rate of the algae. Since the light intensity is uneven at different depth of the water
body, it is important to stir the water to mix the algae. Advection is assumed to be
absent which corresponds to the still water body. In the horizontal plane, we consider
no variation and hence, the growth rate is independent of z and y coordinates. The
depth in the water body is denoted by z.

The growth rate of the algae biomass is given by

OtA=g(Lin) [1(P) f2(N) f3(C)A+ Dps0.. A~ H,(A). (4.19)

The mixing is modeled by a diffusion term with a constant coefficient Djy;. Inclusion of
the mixing term helps to understand the effect of mixing on the overall production rate
of the algae. The functions g(Iin), f1(P),f2(N) and f3(C) define the dependence of the
biomass growth rate on the light intensity, the concentration of nutrients (phosphates
and the nitrates), and the carbon dioxide. Function H, = (h,+ D,).A describes the
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death rate of the algae biomass including both the harvesting term as well as the
natural decay rate. A similar model was used in [13, 25]. For the light intensity, we
take the Monod form of dependence [11]

poli
o(l) = 2 (4.20)
where [, is the effective light intensity received by the algae and Hj is the half
saturation intensity. The Monod form ensures that the growth rate is almost linear
when the light intensity is very small, and the growth rate remains bounded by pg
when [, becomes very large. The light intensity received by the algae is not uniform
throughout the water body. The light intensity is attenuated by two factors: the
presence of algae and the water mass. The presence of the algae in the top layers
causes reduction in the available light for the algae in the deeper layers. This describes
the non-transparency of the water body due to the presence of algae. Moreover, the
water layers themselves cause attenuation in the available light intensity for the deeper

layers. In the light of the above discussion, the light intensity can be modeled by
Iin(z,t) = Iy (t)e*#eK(2) (4.21)

where

K(z) :—rs/ Adz
0

where Iy(t) is the incident light intensity which changes in time (for instance during
the day and night cycle). The constant k is the specific light attenuation coefficient
due to the water layer and r, is the specific light attenuation coefficient due to the
presence of algae.

For the nutrients, the phosphates and the nitrates, we once again take the Monod
type rates

fi(P)= m, (4.22)
fo(N) = SN =Nl (4.23)

T Hy+[N-NJp

Again, Hp and Hpy are the half saturation concentrations of phosphorus and ni-
trates respectively. The [-]4 denotes the positive cut-off function [x]+ =max(0,z).
Parameters P, and N, are the critical concentration of the nitrates and phosphates,
respectively, below which the growth becomes zero. To model the effect of COs we
note that the presence of carbon dioxide affects the pH value of the water. We assume
for simplicity that pH value is solely determined by the presence of the COs. The
growth rate of the algae is influenced by the pH value apart from the other factors
that we discussed above. The consumption of CO; leads to the reduction in the COq
concentration and hence, leads to the increase in pH value. It is known that there is
a certain range of pH value where the algae growth is optimal. Hence, if the source
of CO5 provides more than required, the pH value of the water body will decrease.
This decrease can lead to the enhancement of the death rate of the algae. The growth
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Figure 4.9: Monod type function for different half-saturation constants.

rate dependence is modeled by the functional form that monotonically decreases with
pH (and hence monotonically increasing with the concentration of CO3) however, at
higher concentrations of C'O5 the growth rate becomes constant and bounded. We
consider the following functional form

1

fg(C) = 1+6A(pH(C)7pHupt) ) (424)

where ) is a parameter that describes the sharpness of the profile and pH,,; describes
the ‘switching’ value of pH at which the growth increases if all other factors are kept
unchanged. The relation between the pH and CO; is given as

pH(C)=(6.35—1og,,C)/2.

This relation is obtained using the chemical equilibrium constant of the hydrolysis of
the carboxylic acid. The modeling of the harvesting term includes the specific death
rate having pH dependence so that at small pH the death rate enhances. We propose
the following functional dependence for this term similar to the f3(pH)

with

1
f1(C) = 1+ APHC)—pHaopr) ’

(4.26)

where pH gop¢ is again the ‘switching’ value of the pH at which the death rate increases.
In Figure 4.9 and Figure 4.10 we illustrate the nature of Monod- and f3 functions.

We complete the system with the following ordinary differential equations describ-
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Figure 4.10: f3(pH) function for different values of parameter A.

ing the evolution of the nutrients and the C'O5

dN Zmax

L ([ st AP ) 5(Cr Az ) N+ v,

= ([ s A Prse, )
dc Arans

= ([ s n P s Az ) -4

where Zpay is the maximum depth of the water body.?
We use homogeneous Neumann boundary conditions for (4.19) and we require the
following initial conditions

N(O)ZN(), P(O):Po, C(O):Co, w(z70):w0(z). (428)

Equations (4.19), (4.27) together with initial conditions (4.28) constitute the system
of equations under study. We use the following values of the parameters for the
numerical computations taken from [8, 11, 10].

pokpkn([1/s] | Hy[W/(m® day)] | Hylg/l] | Hplg/l]
0.0886 70 14.5-10°° [ 10.4-10°°

rsl-m/g] | k[1/m] | Day[m?/s] | Dy[g/(l-day)]
10 0.2 5.-107% 0

The values of the parameters chosen are realistic, however, not all the parameters are
exactly known and approximate values are taken for those parameters. The model
is generic and for a given type of algae these parameters need to be determined
experimentally. Here, we need the parameters to see whether the obtained results are
realistic.

2Tt should be noted that it is unclear if nutrient and algae mass are conserved in this model.
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Numerical experiment

In this section we test our model for the set of parameters presented in the previous
section. We solve the system (4.19),(4.27)-(4.28) using the method of lines (MOL)
approach which consists of two stages. The first stage is the spatial discretization
in which the spatial derivatives of the PDE are discretized, for example with finite
differences, finite volumes or finite element schemes. By discretizing the spatial op-
erators, the PDE with its boundary conditions is converted into a system of ODEs in
Rm

W (t)=F(LW(D), W(0)=W,, (4.29)

called the semi-discrete system. This ODE system is still continuous in time and needs
to be integrated. So, the second stage in the numerical solution is the numerical time
integration of system (4.29).

We discretize the diffusion operator in (4.19) by standard second-order central
differences on a fixed uniform grid 0=z < 22 <...< 2y = Zmaez- Lhe integral term
within the light function (4.21) is approximated by

k
Zk Zk;

The other integral term used in (4.27) is approximated by

m

/ozmaxQ(Iin)f1(P)f2(N)f3(C)Adzz T (P) (W) f5(C) 3 0(Tn(zi )21

m ;
=1

The obtained system (4.29) is stiff due to the diffusion term, therefore, an implicit
numerical integration method must be used. We use the two-stage second-order
Rosenbrock ROS2 method [14]. The method is linearly implicit: to compute the
internal stages a system of linear algebraic equations is to be solved.

An illustration of the algae concentration in time is given in Figure 4.11. The
behaviour in time of P, N, C and pH is presented in Figure 4.12 and Figure 4.13.

1.02

1.01

depth

0 20 30 40 50 60 70 80 90
time (hours)

Figure 4.11: Concentration of algae.

The model equations (4.19),(4.27)-(4.28) are discretized and solved in the domain
2 €[0,2mqz] on the interval ¢ € [0,7], where T'=96 [hours], which corresponds to 4
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Figure 4.12: Concentration of P and N.
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Figure 4.13: Concentration of C and pH.

days. Minerals are being added with a constant rate of 3.64-1071° [mol/(l-s)] and
2.78-10710 [mol/(l-s)] for N and P respectively. No carbon dioxide is added. In
Figure 4.11 we notice the periodic nature of the algae concentration. This is due
to the day-night cycle of the external illumination modeled by Iy(t). The decay of
light intensity with depth makes the solution z-dependent. As expected, the algae
concentration is lower at the bottom. However, the mixing included in the model
diminishes this difference. Due to a large initial concentration of algae, the rate of
consumption of minerals is larger than their inflow rate. There is no inflow of carbon
dioxide. Thus, the concentration of minerals and of carbon dioxide in the water
decreases monotonically as seen from Figure 4.12 and Figure 4.13. During one day,
the maximum algae concentration is attained in the noon when the light intensity
on the surface is the largest. In this particular simulation the value of the maximal
concentration increases from day to day at a rate which is comparable with literature
data.

Optimization

We define the average concentration of algae

1 Zmazx T
V= / / A(z,t)dtdz,
Zmaz1 Jo 0 ( )
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Figure 4.14: Nelder-Mead simplex optimization.
Table 4.3: Optimization parameters.
Se [mol/(I-s)] | Sy [mol/(l-s)] | Sp [mol/(1-s)] | V [g/]]
Initial 10-1° 10-1° 10-1° 0.946
Optimized | 5.309x 10~ | 1.886 x 10~ [ 2.129x10~10 | 1.0125

or in discrete form

1 n m
Ve —3 % Alzty),
nm- :
j=11i=1

where t; are the time points in which the numerical solution is computed. The average
concentration computed by means of the model described above can be optimized as
a function of three design variables: carbon dioxide, nitrate and phosphate inflow
rates, i.e.

maximize V(S¢,Sn,Sp),

subject to S¢>0,SNy >0,5p >0.

For this purpose we apply the Nelder-Mead simplex method [7, 26]. The Nelder-
Mead simplex method is designed to find a local optimum of a function. It makes no
assumptions about the shape of the function and does not use derivative information.
At each iteration the Nelder-Mead simplex method evaluates the function in a finite
number of points. In our case one function evaluation corresponds to computing the
average concentration of algae.

Figure 4.14 shows an example of the Nelder-Mead optimization. In this case the
optimization required 55 function evaluations. The values of the design variables
and correspondingly obtained concentration are plotted for each function evaluation.
Table 4.3 shows the values of the initial guess and the values after optimization.
For the optimized values of the design variables the average algae concentration has
increased by 7.03%.

Further, the result of the optimization could be improved by assuming S¢, Sy, Sp
to be functions of time. Thus, we assume that sc ={Sc;}-,, where Sc; is the
carbon dioxide inflow rate at time ¢;. For fixed Sy and Sp we obtain an optimization
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Figure 4.15: Input of COs as a function of time.

problem of L design variables
maximize V (s¢),

subject to S¢; > 0.

This could result in further improvement of the average algae concentration. As an
initial guess for optimization, instead of applying constant carbon dioxide inflow rate,
we could use a periodic function with the same period as of the incident light function,
with different amplitude and vertical and horizontal shift (see Figure 4.15).

It is important to note that the average algae concentration function may have
multiple maxima. However, the Nelder-Mead simplex method is designed to find a
local optimum of a function. It means that initial parameter guess should be close
enough to the desirable optimum. For a global optimum other optimization methods
(for example, simulated annealing optimization [26]) could be used.

Conclusions

We proposed a model for the growth of algae in a mineral solution. The model
consists of a partial differential equation for the algae concentration coupled to three
ordinary differential equations for the phosphate, the nitrate and the carbon dioxide
concentrations. The minerals and the carbon dioxide are assumed to have a constant
concentration throughout the volume, while the algae concentration is modeled as
a z-dependent quantity. This choice is explained by the strong dependence of light
intensity on depth. Moreover, the z-dependency allows us to study the effect of mixing
on the algae population. Numerical simulations were performed with the model.
To this end, the continuous equations are discretized in space by a finite difference
scheme, and the resulting system of ordinary differential equations is integrated in
time by a two-stage second-order Rosenbrock method. The simulations have shown
a good qualitative prediction for the concentration of algae, minerals and carbon
dioxide. In order to achieve also a good quantitative prediction, the parameters of
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the model have to be adjusted to the experiment. Based on the proposed model,
the average concentration of the algae can be optimized by means of derivative-free
optimization.

4.5 Recommendations

In summary, this paper contains the following eight main themes:

1. A review of biological literature, to determine the key factors that effect the
growth rate of algae (§4.1).

2. A hierarchical review of existing mathematical models in the literature (§2).

Steady-state analysis of one-stage models (§4.2).

Ll

A new two-stage model (§4.3).

o

Parameter estimation (§4.3).
A new spatial-temporal model of algae growth (§4.4).

Numerical solutions of the new models (§4.3 and §4.4).

®© N>

A discussion of how to optimize (§4.4).

Each of these themes represents a step forward in understanding the factors that effect
algae growth. All the model extensions proposed (theme 2,3 and 6) can be reduced
back to the original model of Huisman et al [12] in the correct limit. For example the
additional spatial terms introduced in theme 6 can be neglected if the re-mixing rate
is small. There will be situations where each, or maybe even all, of these additional
effects are important and studying these effects both in isolation and combination will
be very enlightening. For the simple models (or the limits of the more complicated
models) the steady-state analysis (theme 3) is very powerful and highlights when
these limits are not valid and additional factors need to be included. Estimating
the parameters from either the literature (theme 1,5) or by temporal averaging the
equations (theme 5) is a challenge that does need more attention; hopefully, new
experimental work specifically aimed at determining the control parameters will take
place in the next few years. The numerical investigation (theme 7) of the new models
is very limited and there is much more scope for numerical studies that allow the
simulation of a full algae pond (or maybe even a coupled series of ponds) in the
future. Finally, there is room for more work on optimization of the model (theme 8),
but early results and a derivative-free method for optimization have been presented.

We have the following recommendations: Construction of a master model includ-
ing all the effects discussed in §4.2, §4.3 and §4.4; a detailed analysis on the mathe-
matical limits of this model using the steady-state analysis presented in (§4.2); further
controlled experiment to determine the key parameters; an more detailed investiga-
tion of optimisation. The steady-state analysis is useful for two reasons: firstly, it
reveals the effect individual factors have on the model; secondly, it gives a very useful
test case for any numerical solution of the full system. One of the major problems is a
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lack of numbers for key parameters in the model §4.1 and §4.3. Therefore a new series
of experiments designed to better determine these unknowns would be highly benefi-
cial. Finally, once a good set of parameters is determined, optimization of the model
can be undertaken (§4.4) and a detailed investigation (hopefully in collaboration with
the industry) of the optimal pond(s) design can be performed.
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Report 5
Modeling Compressible Non-Newtonian Chicken Flow

Oleg Matveichuk!, Patricio Rosen Esquivel', Hanif Heidari?»3, Adrian
Muntean!

Abstract

This paper addresses a few modeling issues relevant for the basic theoretical under-
standing of the meat flow behavior in simple geometries. We model the meat mixture
as a non-Newtonian compressible fluid. Focusing on conceptually easy-to-follow cases
like flow in thin molds, or steady incompressible or compressible flow in straight pipes
we derive explicit expressions for the velocity and pressure profiles. For the thin mold
case, we formulate a one-dimensional free-boundary problem able to capture the a pri-
ori unknown position of the moving meat-air interface. Special attention is payed on
the derivation of the free boundary conditions.

5.1 Introduction

Understanding how meat flows is one of the fundamental aspects when designing a
stable shape and content quality for food products, such as nuggets, croquettes, or
meatballs. The overall process has a twofold complexity:

(1) Meat is a compressible non-Newtonian fluid with variable viscous properties
and micro-structure (e.g. fiber orientation) strongly dependent on temperature
variations. Such a flow behavior typically causes complex (meat) deformations
especially in non-continuous flows, where the values of meat parameters and
even the equipment itself never stabilizes. This is a highly complex scenario
and complexity hampers the accurate prediction of both flow and final product
quality (and, consequently, also the optimization of the processing equipment).

(2) The geometry (patterned manifolds, irregular molds) is often complex and is
continuously changing from a product to another.

The problem posed by Marel to the 72 European Study Group Mathematics with
Industry was the following: Predict in a better way how meat properties affect flow
in forming (molding) machines, where the meat mass is pressed in molds during mold
opening and flow is a start-stop phenomena. More precisely, develop a mathematical
model that predicts non-continuous flow of viscoelastic, compressible meat mass in
simple geometries, where the pressure fluctuation, deformation rates, mold filling
rates, and final product weight are key parameters.

ITechnical University of Eindhoven
2University of Twente, Enschede
3Tarbias Modares University, Tehran, Iran
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We have chosen to discuss the case of a simple geometry* — cylindrical pipes —
and we have focused on developing a complete mathematical model for isothermal
viscous compressible flow of meat (e.g. chicken). We included the micro-structural
meat properties in a nonlinear power-law relationship connecting the shear rate to the
shear stress. Besides the law governing the conservation of meat mass, we derived,
by means of first principles arguments, a constitutive law for the meat density as a
function of internal pressure.

In the steady case and also when neglecting the nonlinear inertia terms, we suc-
ceeded to find an approximate solution for the velocity profile for meat flow in cylin-
drical pipes and meat flow between two plates.

Furthermore, we can give theoretical estimates of the time to fill a mold in two
conceptually-distinct ways:

(a) As mentioned in Remark 5.3.1, we know how to formulate a time-optimal-
control problem for the meat density, the time to fill a mold, and a corrector
factor (using an approximate velocity profile). Interestingly, the resulting prob-
lem resembles the porous media equation.

(b) We can suggest a calculation strategy, which gives exact results in one-space
dimension, for the time to fill a mold, namely a free-boundary problem having
as unknowns the velocity profile and the position of the interface between meat
and air.

In our opinion, both working strategies deserve further attention from a combined
modeling, analysis, and simulation perspective. Here we focus only on strategy (b).

The paper is organized as follows: In section 5.2, we develop a general model
involving partial differential equations (PDEs) to describe the meat (chicken) flow.
This is the core of our paper. The aim of section 5.3 is mainly to derive an easy-
to-handle approximate solution for velocity profiles, for getting some insight about
the characteristics of the problem, while in section 5.3 we propose a free-boundary
problem to better understand meat flow behavior in linear molds.

5.2 Modeling chicken flow

In the current section we describe a complete set of equations which are able to
capture the macroscopic behavior of chicken flow in a given geometry, say Q CR3.
Note that the meat is a mixture of material fractions with different properties, such as
a fibers, animals fats, bubbles of air trapped during the process of homogenization of
the mixture, and so on. The presence of all these components, some of which having
complex rheological properties, define the overall flow properties of the material.
Assuming that the material is homogenized to an extent such that inhomogeneities
of the meat are not noticeable at the macro-scale, allows us to make use exclusively
of "effective” or averaged variables, coefficients and model equations. Let’s denote by

4Note that the structure of the balance equations does not depend on the precise choice of the
geometry.
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T the final time of the process. Then t € (0,7 is the time variable, while x € () is the
spatial variable.
The conservation of mass is stated by continuity equation

%—F(V-pv):Oin Qx(0,7). (5.1)

Here p is the density of the meat-mixture, while v represents the meat flow velocity.

The balance of the (linear-) momentum density is described by a Navier-Stokes-
like equation. The major difference here compared to the Navier-Stokes equations for
usual Newtonian liquid lies in the very special expression of the stress tensor. This
balance of linear momentum reads:

%(pv)—l—(v'V(pv)):—Vp—i—V-a' in Qx(0,7). (5.2)
Here o is the stress tensor and p is the static pressure in the material.

Due to the specifics of our problem, all investigations reported in this note are
focused on shear flows. Therefore it is enough to determine averaged shear properties
of the meat-mass to account for the contributions to the stress tensor. Previous
works (cf. e.g. [6, 8, 3, 4], or [7] (chapter 5)) indicate that the flow properties of the
meat-masses can be taken in the form:

Monewr =k 3" in Q% (0,7), (5.3)

where k>0 and n €[0.2,0.4] are empirical® coefficients.

To complete our model we still need an equation of state. To be more precise,
we have to specify the compressibility properties of the material as a function of its
actual density and temperature. The change of temperature has a twofold effect -
it changes coefficients k, n and directly affects the flow compressibility. It is worth
noting that the empirical equation (5.3) defining the shear viscosity of the meat flow
is approximate, and moreover, this approximation strongly depends on temperature
variations. This means that we expect that small changes in temperature are able to
produce rather large deviations from the real shear viscosity. The parameters k and n
play the role of correctors compensating some of the errors induced by the variations
in temperature. In what we are concerned, we consider only an isothermal situation,
hence, k£ and n are fixed for when fixing the temperature level. What about the
influence of the temperature changes on the compressibility? The main part of the
compressibility of the meat-mass is due to the most compressible material fraction, i.e.
due to air bubbles. The effect is rather obvious: The bigger the bubble fraction is, the
bigger the compressibility. Roughly speaking, in order to notice the compressibility
of the air the changes of temperature should be in the range of 300K . However, this
temperature range is not the one encountered when filling molds with flow meat. This
fact suggests that as equation of state we may consider a density-pressure relationship.

The fact that the our material system consists of both compressible and incom-
pressible parts (air-filled parts versus liquid and solid parts of meat) leads us to the

5In most of the cases, n and k are fitting parameters. We expect them to incorporate important
micro-structure information like the local orientation of the meat fibers.
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following first principles approach:

pV=b1p+by in Qx(0,T), (5.4)
or equivalently,
p .
=——in O x(0,7). 5.9
P=ppan, M X (0D (5.5)

Here by1,bs, or equivalently, l~)1,l~)2 are material coefficients depending on the concen-
tration of air.

The equation of state (5.4) together with boundary conditions (describing the
experimental setup — the concrete food-processing machine) and initial condition
(the precise type of meat) complete the set of our model equations. It is worth noting
that, trusting arguments like those employed, for instance, in [1] (chapter 3) and [2]
(chapter 3), we expect that our model is thermodynamically consistent in the sense
that it fulfills the Clausius-Duhem inequality.

In the remainder of the paper, we study various flow behaviors corresponding to
specific (simple) geometries when boundary conditions delimitate different experi-
mental situations. Our focus will then be oriented towards the motion of the a prior:
unknown free interface separating meat and bulk air.

5.3 Construction of approximate velocity profiles

In this section we derive an approximate velocity profiles for the chicken flow in
cylindrical pipes. We start by considering the case of steady incompressible meat
flow. Under these assumptions, the term %(pv) drops out, and hence (5.2) takes the
form

p(v-Vv)=—-Vp+V.oin Q. (5.6)

Due to the prominent viscous properties of the meat mixture and due to the particular
scale of speed used in the processing machines, inertial effects become less important
than viscous effects. Therefore, neglecting the inertia term in (5.2) yields

~Vp+V-0=0in Q. (5.7)

Note that (5.7) is some sort of Stokes-like approximation, in which the stress tensor
o appears in general form.

In what follows we consider particular geometries mimicking standard ones used
in food processing technologies in order to derive closed-form expressions for meat
velocity and density profiles.

Steady flow in straight pipe

Let us consider firstly a straight cylindrical pipe. In this particular case, by neglecting
the effects of gravity, we can assume axial symmetry of the flow with respect to the
center line of the pipe. Consequently (5.7) can be rewritten in cylindrical coordinates
as follows

dp O

~ 4 D (KREI4) + kAT ) =0, i 9 (5.5)
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where z is the coordinate in the axial direction, and r is the coordinate in the radial
direction. Applying the chain rule of differentiation and multiplying the result by r
gives
ap a . n—1. .
—r— 4+ —(rk|¥(r r):Oan. 5.9
ot (PR () (5.9)
After integrating with respect to r and substituting 4(r) = —0v/dr, where v denotes
the axial velocity component, the latter equation takes the form
r dp |Ov "1 9y
-+ | = — =01in Q. 5.10
2k 0z + or or o (5.10)
Solving for Qv /0r, integrating with respect to r, and finally, using the no-slip condition
at the wall of the pipe, we obtain

n 1 0p 1/n nt1 nti1
v(r)fn—_'_1 (%82) (R no—pon ) for all r€Q, (5.11)

where the new constant R stands for the radius of the pipe. Fig. 5.3 shows a com-
parison between the well known parabolic Poiseuille profile for Newtonian fluids and
a typical profile for steady non-Newtonian flow (5.11). Depending on the particu-
lar value of the parameter n, the profile becomes flatter or steeper. For the case of
chicken flow with n €[0.2,0.4] the viscosity decreases when the shear rate increases.
Consequently, the profile becomes flatter.

Compressible steady flow in a pipe

The velocity profile (5.11) was obtained by neglecting the effects of compressibility.
However, when speaking about meat flow, one actually wants to keep some compress-
ibility effects in the game. In this section, we look at a steady flow of the meat-mixture
and including the compressibility accordingly to the equation of state (5.4).

In order to simplify matter, we consider our equation already averaged over the
cross section of the pipe. Let Q.= (0,L) be the new domain, where L is the length of
the pipe. For notational convenience, we use in the derivations below v for denoting
the average velocity over the pipe cross section. Note that the velocity v can be
decomposed as

v(z) =vo +u(z), (5.12)
where vy is the average of the velocity profile (5.11) derived in the previous subsection.
Furthermore, by neglecting inertia effects and linearizing our equations, we obtain the
following system of equations posed in QO

Op Gp@_o

R il 1
0z + Op 0z (5.13a)
ou dp

Dividing (5.13b) by p and integrating with respect to z we obtain

u(z) = —woln (’”). (5.14)

Po
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Figure 5.1: Velocity profiles in a straight pipe, for Newtonian and non-Newtonian
fluid.
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Figure 5.2: Velocity deviation u as function of the axial position.
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From (5.13a) we obtain then the density p(z). Indeed, substituting (5.4) in (5.13a)
yields

0 dp
— (b b2) p|=— 5.15
ap [(b1p+b2) p] D’ (5.15)
from which we finally obtain
— o, .
p(z) 0z for all ze (. (5.16)

bl( 7%)24’[)2

One important conclusion can be observed from this derivation. That is, that even
in the case of steady flow, the average velocity along the pipe is not uniform. In fact,
due to compressibility, the velocity of the flow increases with the axial direction. This
can be clearly observed in Fig. 5.2 for different values of the pressure gradient, the
density is plotted in Fig. 5.3. The decompression taking place in the axial direction,
introduces an extra velocity component to the flow, making the velocity distribution
non-uniform.
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Figure 5.3: Density p as function of the axial position z € Q:=(0,L) with L=1.

Remark 5.3.1. Interestingly, the pipe chicken flow situations described is remotely
resembling the porous media equation. One can see this easily when inserting the
explicit expressions of v=uv(p,po,vo) into meat mass balance. This similarity can
potentially be used (see e.g. [5]) to formulate a time optimal control problem for
chicken flow.
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On moving free chicken-air interfaces in linear molds

The aim of this part is to describe the filling of the mold by meat masses. We assume
that the mold has the form of the parallelepiped with a much less height compared
to its width and thickness. We choose the Cartesian coordinate system so that Oz is
directed vertically, Ox is directed from left to the right and Oy forms the right triple
with the other two axes.

Near the walls the speed of the meat is minimal and somewhere inside gains its
maximum. The small height of the mold means that the vertical velocity gradients
are much bigger than the horizontal ones. Consequently the main input in the fric-
tion term seems to be caused by vertical velocity gradients. If the boundary data
prescribed at the left and right sides do not vary much along the sides then it also
makes sense to formulate the filling-mold-problem as a one-dimensional event. Let’s
denote by s(t) the free boundary (meat front) separating the meat bulk (0,s(¢)) from
the air part (s(t),L). The front of the meat starts to propagate from left side to
the right. We are now interested in the time-behavior of the front of the meat. The
equations in this case can be derived from equation (5.2) by integrating along the
Oy and Oz directions. Locally, due to the high viscosity of the meat mixture, the
velocity profile along Oz direction can be taken as in-between two parallel plates.
But, of course, the average velocity given by this profile can be different for different
points x.

[

>

[l [

Figure 5.4: The velocity profile for the steady flow between two plates.

The velocity profile between two parallel plates is then

1 n+1
mfd\ " n+1 dd

Here d is the distance between the plates, Vp is the pressure gradient, while k and n
enter the expression for the viscosity (5.3). From this profile we get a relation between
the average velocity and the pressure drop due to viscosity

vpd?‘op:§|v|n_1u7 (5.18)

n_|p

v(x)=n+1 k
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where £ is a constant coefficient which relates to the coefficient k.
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Figure 5.5: The velocity profile for steady meat flow between two plates.

Summarizing, we get the equations for the averaged velocity v(x) and density p(x)
in the mold. The balance of momentum is
d(pv) _ 9p

e n—1, -
p T &lv|" " v in [0,L] % (0,T), (5.19)

and the conservation of meat mass reads

% +p(V-v)=Q(x,t) in [0,L] x (0,T). (5.20)
Here the total differentials are the Lagrange derivatives, i.e. this is the derivative in
accompanying system of reference for a local portion of the fluid. The function Q(z,t)
- accounts for a possible sources of meat inside the mold. The additional sources of
the meat are the possible inlets for the meat at the sides of the mold.

The boundary conditions are:

p(Ovt) :pin(t) and p(s(t)vt):plr

Here v;,,(t) is the velocity at the left side of the mold, p;,(t) is the pressure on the
left side, and p(s(t),t) =pp - the pressure at the meat front. py is the atmospheric
pressure. In practice there are many small outlets for the air to go out in the mold.
The inertia of the air is negligible compared to the inertia of the meat. That is why
we can neglect the changes of the pressure near the right boundary due to the flow
of air. s(t) is the function of the coordinate of the meat-air boundary on time and
is an unknown of our model. To determine s(t) we have to introduce an additional
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interface condition. This condition naturally arises when imposing the momentum
balance at that boundary. But, as it was said above, we neglect the inertia of the air.
Consequently, the momentum transfer by air is also negligible. So the condition on
the free boundary should be "no momentum transfer to the air”, i.e.

n—1
d
d% in [0,L] x (0,T). (5.21)

d?s Op

p@: ox

ds
dt

This equation defines the motion of the free boundary. It is a kind of Rankine-
Hugoniot conditions. But to make use of it we need to know the pressure gradient
near the boundary. To find it we have to find the function p(z,t). Therefore this
equation has to be solved together with (5.19) and (5.20). If we assume for a moment,
that the pressure gradient is constant in time, then we can immediately find the meat-
boundary motion. The pressure on the moving boundary is constant, and therefore
the density near the boundary is also constant. This leads to the following equation
for the boundary

d n— n—1_ .
pdit’ —¢lul"  u—€lo[* v in [0,L] x (0,T). (5.22)
Here u is a constant that can be related to the strength of the flow. The bigger the
pressure applied on the left edge, the bigger u is. The plot v(t)=s'(t) is shown in
Fig. 5.6.

Figure 5.6: The velocity s'(t) of the meat front in the mold as a function of time.

It seems that for short time the velocity of the meat front follows the asymptotic
relation §'(t)=0 (t%> for t>0. On the other hand, we expect that the large time

behavior of s'(¢) will essentially depend on the exponent n. We will focus elsewhere
on capturing the precise short- and large-time asymptotics of the meat front.
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