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Abstract

We study a surveillance wireless sensor network (SWSN) cgeg of
small and low-cost sensors deployed in a region in order tectl@bjects
crossing the field of interest. In the present paper, we addwgo problems
concerning the design and performance of an SWSN: optinmsoseplace-
ment and algorithms for object detection in the presencaleéfalarms. For
both problems, we propose explicit decision rules and efiicalgorithmic
solutions. Further, we provide several numerical examgtespresent a sim-
ulation model that combines our placement and detectiohaodst

Keywords: sensor deployment, detection probability, overlap, hiyesis test-
ing, Bayesian approach, hidden Markov models, Viterbi mdlgm, simula-
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5.1 Introduction

An important class of wireless sensor networks (WSN) is tH&N4& comprised of
small and low-cost sensors with limited computational asvd@munication power [1].
Sensors are deployed in a region, they wake up, organizestiees as a network,
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5 Increasing Detection Performance of Surveillance SelNstworks

and start sensing the area. The objective of the sensorsiséngethe environ-
ment and communicating the information to a data colleatemter. Many types of
employment are envisaged for WSNs ranging from the momnigooif endangered
animal populations to military surveillance or the surlaite of critical infrastruc-
tures [12], archaeological sites [2], perimeters, or couhbrders [10]. The tasks
of a surveillance wireless sensor network (SWSN) is to detiejects crossing the
field of interest. The sensors monitor the environment and seports to a central
control unit. The major requirement of a surveillance agailon is that the SWSN
is to monitor the environment with a certain quality for a @fie period of time.
Important issues in designing an SWSN are the deploymeigidas such as the
sensing range of sensor nodes and density of the SWSN, afay/oegmt strategy
(random, regular, planned, et cetera.) to be applied [10].

Different types of sensors may have to be utilized in a WSNdtiress the prob-
lem at hand. For outdoor surveillance systems, radar, mare, ultrasonic and/or
infrared sensors are typical. To analyze the detectioropeegnce of the sensors
or the surveillance systems, a common measure such as ghe-sansor detection
probability p may be utilized since it allows to abstract the different kieg prin-
ciples of the sensors. The factors that affeere the object-to-sensor distance, en-
vironmental characteristics, the size and the motion patiethe object, et cetera.
Moreover, He et al. [7, 8] showed that sensors produce a eghgible amount
of false alarms. The false alarms are defined as positivateepba sensor when
no object exists. Each sensor may produce a false alarm wightain probability
g. If data/decision fusion [5] is allowed, then the false algrobabilityq nega-
tively affects the detection performance of the networke Thst of false alarms
varies depending on the application. For example, it is fawa home surveillance
system when compared to the cost of false alarms in a swanedl application of
mission-critical infrastructure such as a nuclear readti@nce, the objective of an
upstanding SWSN design is to maximize the detection prdibabf the system
while minimizing or bounding the false alarm rate of the syst To this end, in
the present paper, we study two problems concerning thgresid performance
of an SWSN: optimal sensor placement and algorithms found#r detection in the
presence of false alarms. Our main performance chardeatercd the SWSN are
the system’s intruder detection probability and falseralprobability, for given in-
put parameterp andq representing single-sensor probabilities. The problem of
correctly communicating the reports of the sensors to thé&akecontrol unit (with
possibly additional failure probabilities) is beyond tlvege of the present study. It
has been studied elsewhere, among others in a previous gtody Mathematics
with Industry [9]. Therefore, we will assume perfect comneation of the reports.

The sensor placement problem addressed in this work is fatedias follows:
given a limited number of homogeneous sensors with an eféesensing range
r and a field of interest modelled as a one- or two-dimensiored,adetermine
the optimal location of the sensors that maximizes the tieteperformance of
the SWSN. In Section 5.2.1, we study the trade-off involvedverlapping sensor
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5.1 Introduction

ranges. If the number of sensors is limited then, clearlgrlaps decrease the total
sensing part of the area but increase the detection penfmeria the overlap of two
or more sensor ranges. We give an explicit condition whemnl@awén sensor ranges
leads to better detection performance of the system. Negection 5.2.2 we pro-
pose an algorithm for efficient coverage of a 2-D area, basediori knowledge
on the probability distribution of the intruder position. hh the distribution of
an object’s location in the area is uniform, our algorithnifgens closely to the
optimal hexagonal placement.

Given a particular layout of the sensors, the probabilitingluder detection and
the false alarm probability of the network depend on thesiegirule that prescribes
in which situation an intrusion alarm has to be reportedgetiasn observations
from all deployed sensors. For instance, if we have two cetepl overlapping
sensors and report an intrusion alarm only if both sensgrgasian intruder, then
the intruder detection probability of the SWSN@$é and the false alarm probability
is 2. The problem is to determine a decision rule for reportingnémision alarm
such that the detection performance of the network is madchi In Section 5.3
we attempt to resolve this problem by statistical methodst. i@ain conclusion is
that several observations of the same object are absoluelyssary to report an
intrusion alarm with a reasonable confidence. However,ipiaelobservations will
result in a huge variety of observed patterns. Which pagtsignal the intruder and
which are caused by false alarms only? This question is¢ddkISection 5.4 where
we design a procedure for intruder detection, based on hitftsgkov models and
the Viterbi algorithm.

Finally, in Section 5.5 we present a simulation model thahloimes our place-
ment and detection methods. Using this model, we charaeténe detection per-
formance in several configurations of a detection area.

Throughout the paper, we use the following notations:

e p — single-sensor detection probability, the probabilitgtth sensor signals
an object given that the object is present in the sensingeréagsumed to be
a circle, or sphere);

e (g — the single-sensor false alarm probability, the probgbihat a sensor
signals an intruder given that there is no intruder in thessgyrange;

e I —sensing radius of a sensor;

Further, a random variabl¥ € {0, 1} is an indicator of the event that an object is
present in the sensing range of a sensor, and a random eaxiabl {0, 1} is an
indicator of the event that a sensor gives an alarm. We wab alssume that the
alarm events of individual sensors are mutually indepenaéien conditioned on
the absence or presence of the object.
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5 Increasing Detection Performance of Surveillance SelNstworks

5.2 Optimal coverage of the area

In this section we study the problem of optimal sensor plaa#or sensor deploy-
ment, formulated as follows. Consider an area where a nuoflsansors are to be
deployed, and assume that there is an object in the area. fille dspgetectionthe
probability that at least one sensor correctly detects biject. The goal is to find a
sensor deployment maximizinGetection IN order to comput@getection throughout
the section we assume an a priori statistical knowledge ®@obfect position.

One natural solution to this problem is to maximize the cagerof the observed
area for a given number of sensors, or, equivalently, mirgrtie number of sensors
employed while covering the complete area. If each sensalange with radius
r, then we model the sensing area as a circle of radigh a center at the sensor
location. Thus, the question of minimizing the number ofssea while covering
the complete area is equivalent to the so-catleeering problenin two dimensions:
cover a given area completely with the least amount of @relgh a given fixed
radius. This problem (and many others like the packing amsgikg problems)
is solved by using the hexagonal lattice, defined as the spbiots 1o + uw,

A, u € Z, whereo = (1,0) andw = (1/2, +/3/2) are the vectors spanning the
lattice. To cover an area with circles of radiusthe vectors), w must be scaled
by a factorr +/3. In the asymptotic limit, with a large area covered by sensad
with negligible boundary effects, the sum of the sensor earig 1.209 times the
covered area, meaning that about 20.9% of the area is cobgredb sensors and
the remainder by one sensor. For further details, see [4]example of 7 sensors
placed by using the hexagonal lattice and completely cogeai rectangular area
is given in Figure 5.1. An example of hexagonal placementGi 4ensors with
non-covered gaps in between is given in Figure 5.3.

Figure 5.1: Rectangular area covered by seven sensorslfigeesing a hexagonal
lattice.
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5.2 Optimal coverage of the area

Intuitively, a sensor placement with minimal overlappinmgrathout overlapping
must be optimal if the distribution of the object’s positimuniform. Below in
Section 5.2.1 we show that this is often the case also forumisform distributions,
and in Section 5.2.2 we propose a procedure for close-toapsensor placement.

5.2.1 Optimal allocation of two sensors

Does it make sense to let two sensors overlap? Having sont&apvaight be
reasonable if we want a better detection in most vulneradgens. However, if
the number of sensors is limited then overlaps reduce thkdoverage. In order to
resolve this trade-off, we consider the following simpledeb We restrict ourselves
to a one-dimensional area, which constitutes an intervianafth two, and a pair of
sensors withr = 1/2. For each of the two sensors, the detection probability is
and the probability of a false alarmgs The question is how to place these sensors
so that the detection probabilifjyetectioniS maximized.

Formally, letS = [0, 2] be the area under surveillance. Denotexpthe leftmost
point of the first sensor’s coverage andyythe leftmost point of the second sen-
sor’s coverage. Thus, the first sensor covers the seg&ent[x1, X1 + 1] and the
second one covers the segm&nt= [x2, X2+1], wherex; € [0, 1] andx, € [X1, 1],
as shown in Figure 5.2.

— > |
0 1 X2 S 2

Figure 5.2: Partial overlapping of two sensors.

Now assume that the intruder locatitnhas a distributioP(L < x) = F(x),
X € [0, 2]. Then in the doubly covered segmeitn S the detection probability
by the two-sensor system & + 2p(1 — p), and the object is in this segment with
probability F (x1 + 1) — F(x2). In the singly covered segme( U $) \ (SN S)
detection probability isp, and the object is there with probabilify(x; + 1) —
F(x14+ 1) + F(x2) — F(x1). Finally, in the remaining uncovered p&t (S U &)
the detection probability is O.

Rearranging the terms, we can formulate the problem of miamgnthe detec-
tion probability pgetectionas follows:

MaX Pdetectiod X1, X2)} (5.1)
X1,X2

= [(Tr’;gqp(F(Xz +1) - FXx))+pd-p) (Fx1+1) - F(x2))}.

In general, in order to find an optimal paki( X2) we need exact knowledge of
F(x). However, as a direct consequence of (5.1), we can provildallowing
particular decision rule.
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5 Increasing Detection Performance of Surveillance SelNstworks

Lemma 5.2.1 (No-overlap principle). It is optimal to allocate sensors without
overlapping, if
1-p< f(X) - 1
fx+1) " 1-p

for every xe [0, 1], where f(x) = % is the probability density function of the

object location.

Proof . By differentiating the expression to be maximized in (5\ show that
it decreases irxy, if f(x1)/f(xy +1) > 1 — p, for everyx; € [0,1]. In this
case, 0O is the optimal value for. Similarly, this expression increases xa if
f(x2)/f(x2+1) <1/(1— p) for xo € [0, 1], which sets 1 as the optimal value for
X2. ]

The no-overlap principle indicates that it is optimal to nmaize the coverage
if the distribution of the intruder’s position is sufficigytclose to uniform. We
illustrate the no-overlap principle by means of two exarapfeamely one example
where the principle is applicable, and another where it ts no

Example 5.2.2. Assume that the intruder’s entering position has uniforstritiu-
tion, i.e., f (x) = 1/2, for everyx e [0, 2]. In this case our decision rule says that
it is optimal to avoid any overlapping.

Example 5.2.3. Assume that the intruder’s position has a linear densitgtion,
e.g., f(x) = x/2, for everyx e [0,2]. The no-overlap rule cannot give us an
unambiguous answer in this case. By solving (5.1), we olatamore sophisticated
joint sensor’s allocation:

1—
X1 = min [Tp 1} andxp, = 1.

5.2.2 Sensor deployment in a 2-D area

LetN € N, and letX C {1,..., N} x {1, ..., N} be a two-dimensional discrete
grid. Further, foralk € X, let f (x) be the probability that an object is at position
provided that there is an object in the area. As beforis an effective sensing
range of a sensor, arnlis the detection probability of one sensor. Our objective is
to provide an algorithm which finds the ‘optimal’ deploymertsensors int’, so
that the probability to miss the object is decreased as msigdossible. Note that
the problem now is discretized by allowing only placememsome pre-specified

points.
We say that a sensordeployed at position ¥ X if y is the center of the sensor’s
sensing range. Further, a tupte= (y1,...,¥n) € X" (n € NU {0}) is called a

deployment of size,nf n sensors are deployed at positions. . ., y,. We used
for the empty deployment.
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5.2 Optimal coverage of the area

Now, forx € X, n e Nandy = (y1,...,¥n) € X", defineg(y | x) to be
the probability that an intruder isot detected by any of the sensors deployed at
positionsys, ..., Yo provided that the intruder’s position s Further, denote by
Pmissed Y) the probability thanoneof the sensors of the deploymentietects the
intruder. Then, given that there is an intruder in the areapttain:

pmissec(y) = Z f(x)g(y | X)a for )7 = (YL sy Yn) € Xna ne N (52)
xXeX

One can computpmissed (Y1, - - ., Ym)) forallm € {1, ..., n} iteratively as follows.
First, note that, naturallg(@ | x) = 1 for all x € X, and thus

Pmissedd) = Z f(x)g@ | x) = Z f(x) =1

xeX XeX

Next, letd : X x X — R be the Euclidean distance function. Takes {1, ..., n},
x € X and consider a deploymefy, ..., ym) of sizem. Since the sensors are
independent, we get

g((yz, - -+ Ym) | X) = g((Ym) | X)9((Y1, - - -, Ym-1) | X)

:[ 9((Y1, - > Ym-1) | X) if d(X, Ym) >
(1-pa(y1, ..., Ym-1) | X) ifd(X,ym) <T.
(5.3)

Now, given the deploymery, ..., Ym—1), the probability

Pmissed (Y1, - - - » Ym—1, Ym))

can be computed using (5.2) and (5.3).

Using the described iterative approach, we can now addres&tosely related)
optimization problems: Minimum Size Deployment (MSD) anéhivhum Proba-
bility Deployment (MPD).

e MSD: Givenp e [0, 1], find a deploymenty of minimal size such that
Pmissed ) < .

e MPD: Givenn < N, find a deploymen§ of sizen such thatpmissedy) is
minimal.

We provide a heuristic algorithm described below, whichloamnised for both prob-
lems. The only difference is in the stopping criterion. le tinain iterative step
of the algorithm, a sensor is added to the deployment in suglyathat the non-
detection probabilityomissed ) is minimized (in case of a tie, the algorithm sticks to
the candidate deployment that has been found first). ThiBesifhat the algorithm
will find a ‘locally optimal’ solution, not necessarily théadpally optimal one.
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The heuristic algorithm

Input:

e MSD: g € [0, 1];

e MPD:n e N.
Initialization: m:= 0.
Iterative Step:
Ym+1 :=arg yrg;(n Pmissed (Y1, - - -5 Ym. ¥))

=argmin> | f00g((Ya. - ym. ¥) 1 %),
XeX

whereg((y1, ..., ¥m, Y) | X) is computed by (5.3) for alt € X;

m:=m-+ 1.

Termination:

e MSD: pmissed (Y1, - - -» Ym)) < f, then STOP;

e MPD: m = n, then STOP.

Output: YV := (Y1, ..., Ym).

Note that there is a strong connection between the propdgedtam and the
no-overlap principle (see Lemma 5.2.1). Indeed, (3) sagsttie deployment of a
new sensor at a positionreduces the non-detection probabilityx)g(y|x) by a
factor 1— p for all x such thad(x, y) < r. Since, ideally, we would like to reduce
the highest values of (x)g(y|x), the equivalent formulation of the iterative step is
as follows:

Ymiri=argmax > FO0G((YL, - Ym) | ). (5.4)
ye x:d(x,y)<r

Now assume that we have deployed two sensors, and our &lgoaliowed an
overlap. Denote the sensing range of semserl, 2 by §. Then, since (5.4) holds
for the deployment of sensor 2, it follows that

> a-pfeo+ D =D fx

XeS§ NS XeS\S XeS
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5.2 Optimal coverage of the area

Figure 5.3: The hexagonal deployment of 105 sensors.

for any possible sensor rangén the area that does not overlap wiéh (Otherwise,

S could have been chosen insteadf) Since the density in the first term of the
left-hand side is taken with the factor-1 p we see that for the inequality to hold,
the values off (x) in § N $ and/or iInS\ S should be considerably larger than in
their neighborhoods. This can be seen as the condition afdk®verlap principle,
applied in two dimensions: overlap is possible only if thexést positionsx such
that the densityf (-) varies considerably (by a factor of1p) within a sensor range
of a sensor deployed ix.

In case two positiony would reduce the maximum non-detection probability
by the same amount, we can break the tie arbitrarily, e.g.doyguthe first such
position encountered, or by doing this randomly. The adiadbreaking procedure
does not matter too much on a global scale, because in thet@etton it is most
likely that the other position will be chosen, except if thetpositions are close
(within a distance ). Locally, there may occur significant effects of tie-break
We did not study this, but this topic warrants further iniggstion.

We have implemented the proposed algorithivathematica Below we present
two examples of the deployment which is the output of our @iigo. Another
example will be given in Section 5.5.

Example 5.2.4. Supposet = {1,...,200 x {1,...,195, p = 0.9 andr = 10.
Moreover, suppose thdtis the uniform distribution. We can construct a hexagonal
deployment of 105 sensors i such that an intruder cannot be within the range
of two different sensors (see Figure 5.3). It is easy to sattthis deployment is
optimal for the given number of sensors, and a simple calonlahows that the
non-detection probability of this deployment i285. Deploying the 105 sensors
according to our algorithm leads to the deployment showngure 5.4. The non-
detection probability of this deployment i287 which is close to the non-detection
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Figure 5.4: Deployment of 105 sensors according to the MBrahm: uniform
distribution of the object location.

probability of the optimal hexagonal deployment.

Example 5.2.5. Supposet = {0, ..., 100} x {0, ..., 100, p = 0.8 andr = 10.
Moreover, defines = 25 and defingy as the distance of to the north-east axis
(the liney = x) of X for eachx € X. Now suppose that (x) = ce~3()? for all

x € X, wherec is the normalization constant makirfga probability distribution
on X. In other words, the signed distance between the intrugession and the
north-east axis aft follows a discrete version of the normal distribution witkeam

0 and standard deviatian = 25. Here, the sign is positive for positions above the
line, and negative for those below.

Having 200 sensors at our disposal, applying our algoritwl$ to the deploy-
ment in Figure 5.5. As one would expect, the density of thessedeployment
increases when approaching the north-east axis. Moreav@mple calculation
shows that the non-detection probability of this deploytme0.066.

We conclude that our heuristic algorithm can be used to fimdogenents which
result in a good detection probability and are in line witl #malytical results from
Section 5.2.1. In particular, in the case of a uniform a ppoobability distribution
of the intruder position we found a nearly optimal solution.

5.3 Statistical methods for intruder detection

Optimal sensor deployment studied in the previous secsiamportant for increas-
ing the overall detection probability, that is, the numbfetree alarms produced by
the system. However, since the false alarm probahijigan be high in practice
(e.g.q can be about 2%, which already has a considerable impanfosaetworks
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Figure 5.5: Deployment of 200 sensors according to the MRDrahm: normal
distribution of the signed distance between the objecttionaand the
north-east axis.

may even produce multiple false alarms at each moment in tigtidl, the pres-
ence of an intruder increases the number of alarms, andssteral observations
one should be able to recognize an intrusion and report amalo this end, we
present in this section two statistical methods for intrudkgection: one is based
on classical hypothesis testing, and the other employs asay approach.

The hypothesis testing approach in Section 5.3.1 providiesision making tool
for reporting an intrusion alarm after a single observatém identical sensors.
In practice, false alarm reports are highly undesirableer&fore, we bound the
probability of a false report by choosing a high confidenaell®f the test. This
sometimes leads to a poor performance of the test in a seatseith high proba-
bility, after one observation af sensors, an object will stay undetected. In practice,
however, this is not a big problem because there is usuatiygimtime to produce
several observations, not necessarily by the same senken the probability of
the intruder’s presence can be updated after each obseryédr instance, using
the Bayesian approach described in Section 5.3.2.

The Bayesian approach allows for great flexibility, becaaseng with the total
number of alarms, it also takes into account the locatiorie@tlarms. Therefore,
in Section 5.3.2 we analyze a more general model than in@esiB.1. Specifically,
we consider several non-overlapping parts of the coverag, ®ach deploying
a number of completely overlapping sensors. Furthermoeeletvthe intrusion
probabilities, as well as the detection and false alarm glrdities, depend on the
sensor location. The motivation for this model is that alifjo identical sensors
will usually cover parts of the intrusion area with roughlyual sizes, the terrain

95



5 Increasing Detection Performance of Surveillance SelNstworks

in which the sensors are placed may vary, e.g. in altitudésiwtan influence the
local intrusion probabilities and the performance of thesses.

5.3.1 Hypothesis testing for intruder detection

In the following, we consider the two extreme cases:
e Case I:n sensors, all at the same position; i.e. with identical sgnsange;
e Case ll:n non-overlapping sensors.

If there is an object in the area, then Case | is the case inhndlicsensors follow
the same Bernoulli distribution with paramefeand Case 1l is the case that one of
the sensors detects the object with probabititgnd each of the remaining sensors
detect the object with probability.

Assume that there can be at most one object in the area. Withihypothesis
testing formulation, we test the null-hypothesis that ¢hierno intruder in the area
against the alternative that the area is penetrated. Iftm@airnumber of alarms
is observed then we reject the null-hypothesis and repomtamsion alarm. For
I =1,...,nlet[Y; = 1] be the event that sensodetects an object andi[ = 0] be
the complementary event. Assuming that there is an intrundiie range of sensor
I, we haveP(Y; = 1) = p.

Consider Case In sensors deployed at the same position with 100% overlap.
Thus, our hypothesis testing formulation is as follows:

Ho: P(Y;=1)=qforalli=1,...,n,

Case I: [Hl: P(lel):pfora”|:1,,n

In Case Il, the sensors are not overlapping. Thus, the obgetipenetrate the
range of at most one sensor. This leads to the following fornat#on:

Ho: P(Yj=1) =qforalli=1,...,n,
Caselll: Hi: P(Yj=1) = pforexactlyonej =1,...,n;
P(Yy =1 =qfori=1...,n 1 #].

In both cases, as a statistic, we use the stochastic vaifiablé's + - - - + Yj, the
number of alarms produced by the system. We regcif and only if T > c, for
some criticak > 0. Clearly, undeHp, T has a Binomidhh, q) distribution. Denote
the Binomial density function with parametersnd p atk by B, p(K):

Bn.p(k) = (E) p*L - p". (5.5)

In our test, two types of errors can be made: false positindgase negatives (in
statistical terms, type-one and type-two error, respelt)v A false positivaneans

96



5.3 Statistical methods for intruder detection

n|3|4|5|6|7|8|9]10
q

0.02 1111 j1|11(1] 1
0.04 11111 |1(1] 2
0.06 1111|122 |2]| 2
0.08 (12|22 |2|2]| 2
0.10 112|222 |2|3]| 3
0.12 1122|223 |3] 3
0.14 212|121 2|3|3|3] 3
0.16 212]|12(3|3|3|3]| 4
0.18 212]|12(3|3|3|4)| 4
0.20 212]|13|3|3|4|4] 4

Table 5.1: Critical number of alarntsfor Cases | and II.

a false report, i.e., an intruder alarm is reported whilegh no object in the area.
In both Cases | and II, one has

n
Praise = P (false positivg = Py, (T > ¢) = Z Bn,q(K).
k=c

We choose in such a way that the above probability does not exceed aptainle
frequency of false alarm reports. fAlse negativeneans that an intruder is missed
by the system, i.e., the intrusion alarm will not be repoxtéide there was an object
in the area. For Case I, we get

c-1
Phisseq= P (false negative= Py, (T < ¢) = > By p(K),
k=0

and for Case Il, we obtain

c—2 c-1
Prissed= P (false negative= p > Bn_1q(K) + (1— p) D_ Ba1,4(K).
k=0 k=0

In this setting, the detection probabilipgetection0f the system is equal to the power
of the statistical test, i.e.,

Pdetection= 1 — P (false negative

We select some values fgrandq and calculate corresponding valuescadnd
PdetectionSO thatpraise < 0.05. In Tables 5.1 and 5.2 we present the valuesfof
Cases | and Il. Table 5.3 gives the valuegdicciionfor Case |, whereas Tables 5.4
and 5.5 give the values for Case Il. In all the tables, thelsisgnsor detection
probability is fixed atp = 0.9. The values o€ used in Tables 5.3-5.5 are chosen
according to the results of Tables 5.1 and 5.2.

As we see in Case IpgetectioniS very high. This is not surprising because in
fact, in this case we have to distinguish between Binofmjgb) and Binomia(n, q)
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n| 15| 30| 45|60 | 75| 90 | 105 | 120 | 135 | 150
q
0.02 1 2 3 3 4 4 5 5 6 6
0.04 2 3 4 5 6 7 8 9 9 10
0.06 3 4 6 7 8 9 11 12 13 14
0.08 3 5 7 8 10 | 12 13 15 16 18
0.10 4 6 8 10 | 12 | 14 16 18 19 21
0.12 4 7 9 12 | 14 | 16 18 20 23 25
0.14 4 7 10 | 13 | 16 | 18 21 23 26 28
0.16 5 8 11| 14 | 17 | 20 23 26 29 32
0.18 5 9 12 | 16 | 19 | 22 26 29 32 35
0.20 6 10| 14 | 17 | 21| 24 28 31 35 38
Table 5.2: Critical number of alarntsfor Cases | and Il.
n 3 4 5 6 7 8 10
q
0.02 0.9990 | 0.9999 | 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000
0.04 0.9990 | 0.9999 | 1.0000| 1.0000| 1.0000 | 1.0000 | 1.0000 | 1.0000
0.06 0.9990 | 0.9999 | 1.0000| 1.0000| 1.0000 | 1.0000| 1.0000| 1.0000
0.08 0.9990 | 0.9999 | 0.9995| 0.9999 | 1.0000 | 1.0000| 1.0000 | 1.0000
0.10 0.9990 | 0.9963 | 0.9995| 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.12 0.9990 | 0.9963 | 0.9995| 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.14 0.9720 | 0.9963 | 0.9995| 0.9999 | 0.9998 | 1.0000 | 1.0000 | 1.0000
0.16 0.9720 | 0.9963 | 0.9995| 0.9987 | 0.9998 | 1.0000 | 1.0000 | 1.0000
0.18 0.9720 | 0.9963 | 0.9995| 0.9987 | 0.9998 | 1.0000 | 0.9999 | 1.0000
0.20 0.9720 | 0.9963 | 0.9914 | 0.9987 | 0.9998 | 0.9996 | 0.9999 | 1.0000
Table 5.3: Values 0pgetectionfor Case I;p = 0.9.
n 3 4 5 6 7 8 10
q
0.02 0.9000 | 0.9001 | 0.9002 | 0.9004 | 0.9006 | 0.9008 | 0.9010| 0.9013
0.04 0.9002 | 0.9005 | 0.9009 | 0.9015| 0.9022 | 0.9029 | 0.9038 | 0.2772
0.06 0.9004 | 0.9010| 0.9020 | 0.9032 | 0.2795| 0.3170| 0.3524 | 0.3857
0.08 0.9006 | 0.9018 | 0.2554 | 0.3073 | 0.3551 | 0.3993 | 0.4402 | 0.4780
0.10 0.9010 | 0.2440 | 0.3099 | 0.3694 | 0.4233 | 0.4721 | 0.1687 | 0.2035
0.12 0.9014 | 0.2868 | 0.3609 | 0.4265| 0.4846 | 0.1816 | 0.2242 | 0.2672
0.14 0.2344 | 0.3278 | 0.4087 | 0.4788 | 0.1807 | 0.2310 | 0.2817 | 0.3318
0.16 0.2650 | 0.3670 | 0.4534 | 0.1654 | 0.2232| 0.2818 | 0.3396 | 0.1473
0.18 0.2948 | 0.4044 | 0.4951| 0.2006 | 0.2672 | 0.3332 | 0.1454 | 0.1907
0.20 0.3240 | 0.4400| 0.1629| 0.2371| 0.3119| 0.1337| 0.1838 | 0.2376
Table 5.4: Values 0pgetectionfor Case Il;p = 0.9.
n 15 30 45 60 75 90 105 120 135 150
q
0.02 0.9031 | 0.4010| 0.1989 | 0.3008 | 0.1680 | 0.2404 | 0.1421| 0.1975| 0.1208 | 0.1648
0.04 0.3935 | 0.2944 | 0.2346 | 0.1922 | 0.1599 | 0.1344 | 0.1138 | 0.0968 | 0.1569 | 0.1337
0.06 0.1841 | 0.2288 | 0.1114 | 0.1298 | 0.1429 | 0.1526 | 0.0876 | 0.0945 | 0.1004 | 0.1053
0.08 0.2811 | 0.1813 | 0.1252 | 0.1759| 0.1255| 0.0909 | 0.1183 | 0.0875| 0.1094 | 0.0822
0.10 0.1434 | 0.1448 | 0.1339 | 0.1213| 0.1091 | 0.0980 | 0.0879 | 0.0789 | 0.1135| 0.1009
0.12 0.2103 | 0.1157 | 0.1393 | 0.0836 | 0.0943 | 0.1020 | 0.1077 | 0.1117 | 0.0741| 0.0772
0.14 0.2836 | 0.1952 | 0.1424 | 0.1065| 0.0810 | 0.1040 | 0.0798 | 0.0971 | 0.0754 | 0.0891
0.16 0.1583 | 0.1567 | 0.1438 | 0.1297 | 0.1164 | 0.1044 | 0.0935| 0.0839 | 0.0753 | 0.0677
0.18 0.2143 | 0.1253 | 0.1440 | 0.0908 | 0.0987 | 0.1036 | 0.0691 | 0.0722 | 0.0743 | 0.0756
0.20 0.1180 | 0.0995| 0.0792 | 0.1084 | 0.0833 | 0.1020 | 0.0790 | 0.0925| 0.0725| 0.0828
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5.3 Statistical methods for intruder detection

distributions. This can be done with a good precision bezafiga large difference
betweenp andg. For instance, for 10 sensons,= 0.9, q = 0.02, andc = 5, the
probability Pgetectionis 0.9999 whileprase is as small as @ x 1077,

In Case I, pgetectioniS low except for the cases when= 1, that is, a detection
signal of one sensor already triggers an intrusion alarne.vEtuec > 1 is obtained
when the probability of just one alarm is reasonably highmef/there is no intruder
in the area. Effectively; > 1 means that at least— 1 false alarms are needed to
detect the intruder. This is an undesirable result, whighars, in particular, the
low power of the test. We conclude that in Case Il one obsenvas simply not
enough for efficient intruder detection, because in thie ¢he observations with
and without the intruder differ by at most one signal, whigldlifficult to reveal by
classical hypothesis testing. One either has to make seosgerlap (as in Case |)
or use several observations in a row. The latter can be dosevieral ways, for
instance, one can use the Viterbi algorithm as in Section 5.4

5.3.2 Bayesian approach for intruder detection

Consider Case Il from the previous section, where N different sensors are
placed in such a way that the sensing ranges of differenosg® not overlap.
Let X € {0, 1} denote the number of intruders present, WitbiX = 1) = a an

a priori probability of the intruder being present in thearé\s before, lefl be
the stochastic variable denoting the total number of sisglesor alarms given at a
particular time instant, sd € {0, 1, ..., n}. We have

P(X=0|T =k)
B P(T =k | X =0)P(X = 0)
T PT=k[X=0PX=0+P(T=k|X=D)P(X=1)

Let F be the (unobservable) number false alarms among th&. Then for all
k > 0 we obtain

P(T=k|X=1)=P(T=kF=k-1|X=1)
+P(MT=kF=k|X=1)
= PBr_1q(k—=1) 4+ (1 = p)Bnr_1,q(k)
_ kp , (n=k(1-p
= Bn,q(kK) [—q + 7] ,

0 n-q)
P(T =k | X =0) = Byq(K).
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5 Increasing Detection Performance of Surveillance SelNstworks

Hence, the a posteriori probability of the presence of araib$

PX=1|T =kK)
P(T=k|X=0)P(X=0)

—1—

P(T=k| X=0PX=0+P(T=k|X=1)P(X=1)

1
=1-
P(T=k|X=1)P(X=1)
1+ Br=xix=0)P(x=0)
-1

— kp , (=K (1-p)
=1- (l+ ]ﬁa |: + n(l—q)]) . (5.6)

This formula can be generalized to the case combining Caaed Il from Sec-
tion 5.3.1 as follows. Assumenon-overlapping ranges. Range- 1, ..., n con-

tainsm; € N completely overlagping sensors. Likte {0, ..., m;} be the number
of alarms for rangé and denotd = (Ty, ..., Tp).

The stochastic variables; € {0, 1},i = 1, ..., n, indicating the presence of an
object in range, have a priori probabilitie® (X;j = 1) = ¢; i.e., we allow certain
parts of the area to have a higher a priori probability foruston than others. Also,
we allow the detection and false alarm probabilities to delpen the sensor range;
we usep; andg; to denote these respectively.

Since we assume that there can be at most one intruder at\aytgne instant,
the vectorX = (Xg, ..., Xp) can attain values inthe sg; : j =0, ..., n} where
gj is the jth unit vector inR" andey the zero vector in that space. We will use the
notation\V = {0, 1, ..., n}. We then calculate

3

1L
~

PX=g|T=

{

B P(T=k|X=¢)P(X=¢g)

CP(T=Kk|X=g¢)P(X=¢)+P(T=k|X£e)P(X#eg)
P(T=Kk|X=¢)P(X=¢)

KIX=e)PX =€)+ Xspyj P(T =k X =e)P(X =6

/.\
—u
I

Further, we immediately have fgr> 0 that

P(T=K|X=¢)=Bm.pk) [[ Bmngk). (5.7)
ieN\{j}

If we definemg = kg = 0, this formula also holds fof = 0. Furthermore, if we
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defineag = 1 — > .\ (o) @i, WE Can state

B P(T=k|X=€j)P(X=gj)
- P(T:k|X:ej)P(X:ej)+zse/\/\{j} P(T=k|X=65) P(X=6s)

_ (14 Zsewy PO=KIX=0) P(X=ey) -
o P(T=k|X=¢j)P(X=gj)

-1
— (14 2 sen\(j) @sBms, ps(ks) [Ticary sy By (ki)
aj ij »Pj (kJ) HueN\{j} Bmv,CIv (kv)

-1
ks, 1— —k. i\—Ki 1—p;i « — Dk
=1+ Z 2_?(%) S(l—gz)ms S(S_JJ) 1(_1_8;) (mj—k;j)
seNM\{j}

-1
= s ( Ps\Ks ¢ 1=Psyms—ks ¢ Pj y—kj 1= Pj y—(mj—k;)
_(Z aj(QS) (1—CIS) (Qj) (1—CIj)
seN
~(Pivkj (1=Pi \mj—k;
B a](q—j) ](l——qj) I
= T —.
ZSeNaS(%)ks(l——gz)ms ks

For j = 0, we thus find

(5.8)

1-25 eN\{0} i
1_ _ b
1= 2heano % + 2seanio) as(%)ks(l__gz)ms ks

so the conditional probability of an intruder given the abee area alarms vector
T equals

PX=g|T=k =

PX#e|T=K = 1-P(X=g|T=k)

s \Ks 1- s—Ks -1
11, Zs=nv0 as(g) (=)™
1-2; eN\{o} ¢i

Notice that the Case Il treated in Section 5.3.1 corresptnds
pi=p G=49 m=1 oa =a/n,

for alli € A and we then find back our earlier formula (5.6) for the coodil
probability of an intrusion.

In the case where we use only one time instant to observe énes| it seems
natural to conclude that an intruder is present whenever

Ps ks (1=Psyms—ks -1
2senio) %s(q) (=g ) (5.9)

AK) =P(X#e|T=k=1-(1+
1=l ¢
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satisfiesA(E) > y for some critical thresholg, where e.g. we can choose
(0.5, 1), which means that we raise an alarm whenever the conditmoabbility
of an intruder is sufficiently larger than the conditionabipability that there is no
intruder. The probability of a false intrusion alarm thecdmes

Prase = P((A(T) = 7)A (X =ep))
= D Liags PT =k X =e)P(X = eg),

O<k<m

where we use the shorthand notatf(bri k < m for {R c0<k <mj,i e N\
The probability of a missed intrusion is

Pmissed = P((A(T) <) A (X # eg))

= Z Liagy<y) Z P(T=Kk|X=g)P(X=e¢).
O<k<m jeN\{0}

By substituting (5.7) and (5.9) in these expressions, wencancalculate explicitly
what the probabilities of a false intrusion alarm or misgeduision are (based on a
single observation in time) for the given a priori probai®k in p andd and a given
sensor configuration vectar.

We note that the Bayesian approach can be also extendedqoense of obser-
vations. For instance, the a posteriori probabilities imleta by using (5.8) after the
first observation, can be substituted back into (5.8) imktéa j's to recompute the
probabilities of the intruder’s presence after the secdrsbovation, and so on.

5.4 Viterbi algorithm for intruder detection

In this section, we present a novel method of using sequenitiservations for
intruder detection. We model the signals from the sensoms s&-called hidden
Markov model. This is a stochastic process, based on a Makain to which
noise is added. Using this representation we can distihduesween the signals
that should have been given off by the sensors, i.e. the’ ‘sta¢e of the system,
and the signals that are actually given off, including tHedalarms and missed
detections.

Given a sequence of signals we determine the most likelyesemguof true states,
using the so-called Viterbi algorithm. In this way, we dexidhether the signals
indicate indeed an intruder, or are only false alarms. Filnewre derive a decision
rule for when to report an intrusion alarm, thus reducingtineber of false reports.
All calculations needed to obtain this rule can be pre-caenghu

We outline the proposed method for the case of one sensorarticylar, we
explain the hidden Markov model, and illustrate how, based ¢ew signals from
the sensor, we decide if an intrusion alarm should be givea.intficate how the
method can be extended to networks of sensors. As the state,sand so the
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5.4 Viterbi algorithm for intruder detection

number of calculations, increases exponentially with tbenber of sensors, we
show how to truncate it in a clever way.

5.4.1 A one-sensor model

Consider the case of one sensor, where an object possitdggphy. Assuming a
low speed of the object, the object is in the range of the geiesanultiple time
steps. Let the stochastic procds§ }ien denote if an object is in the range of the
sensor, where

1 if an objectis in the range of the sensor at time

X=10 otherwise.

So X; gives the ‘true’ state of the system at time

We assume that the proceSs;} is a Markov chain, so the probability law for
Xi+1 only depends orX;. Denotepjj = P(Xi+1 = j | Xt =i). The speed of
the object and its path through the range of the sensor arelliaddn the transition
probabilities. The number of consecutive ones in a Markaircfollows a geomet-
ric distribution, withE (# of steps in sensor range- 1/ p1o. We want the stationary
distribution of{ X}, say X, to be suchthaP (X, = 1) =1 — P(Xs = 0) = «a,
the a priori probability that there is an object in the systdimis gives the following
transition probability matrixA:

A— ( 1- 155 P10 1f—ap10).
P10 1-po

We take the initial distribution foXg to be equal to the stationary distribution.

To the procesgX;} we add noise, which consists of false alarms and missed
detections. This gives the process of signals given off leysénsor, sayY; }ten-
Let

v 11 if the sensor gives an alarm at tirhe
7] 0 otherwise.

SoY; is the observed state at tiheThe noise is such that only depends oiX;, in
an independent and identically distributed (i.i.d.) wayfafse alarm occurs when
[Y; = 1] given [X; = 0], and this happens with probability A missed detection
occurs if [Y; = 0] given [X; = 1], and this happens with probability-1 p.

We now have that the procef%} is ahidden Markov moddlL1]. We can inter-
pret{Y;} as observingX;} via a noisy channel. Only the proced§} is observed,
while the states of the proce§X;} are not known, i.e. hidden, which explains the
name of this model. The procegX;} is often referred to as the underlying or hid-
den process. Whereas for a Markov chain it holds that thestate of the process
depends only on the previous state, or a fixed number of prs\gtates, for a hid-
den Markov model the transition probabilities depend onehtire history of the
process.
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5.4.2 The Viterbi algorithm for the one-sensor model

Given a sequence of observed states, ®@y= {O1, Oo, ..., Or}, the question
now rises, what is the most likely sequence of underlyingué? states,Q =
{Q1, Q2, ..., QL}. There is an efficient algorithm for solving this probleml|ed

the Viterbi algorithm[6]. This algorithm, based on dynamic programming, calcu-
lates

mgxP(Q | O).

Applying this algorithm we are able to correct false alarmd eissed detections
for a given sequence of observations. For example, a simgarobetween many
zeros is likely to be a false alarm, while a zero in betweenynwares is probably a
missed detection. If we, for instance, observe the sequéd@E11011000 then itis
not surprising that the most likely underlying state seqeas 000111111000, i.e.,
a missed detection is corrected. More important are thectons of false alarms.
The observed sequence 0001000 will most likely have an Gynidgrsequence of
all zeros, so a false alarm is corrected. In this way, we priekeporting a false
intrusion alarm. While for these two examples the most \ikelderlying states are
straightforward to see, the algorithm also helps with cike©0010100. Here, itis
not immediately clear whether the ones are two false alasntbe zero in between
represents a missed detection.

Based on the results of this algorithm, we give a decisioa whether or not to
report an intrusion alarm for a given sequence of obsemstid/e illustrate this for
two and for three consecutive observed states, but it carmbe fibr every desired
number of observations. We give an intrusion alarm if the tntikely underlying
state sequence contains at least one 1 in it, signifyingithtite most likely sce-
nario, an intrusion took place in at least one moment in tile.also calculate the
probability that the underlying state sequence consistgbyf zeros, given the ob-
servation. One minus this quantity equals the probabiif there was an intruder.
The latter is equal to the probabilifymisseqthat the intruder will pass undetected
in case the sequence of all zeros happens to be most likelycalulations can
be done off-line, resulting in a list of observed states forch an intrusion alarm
should be given.

For the valuep = 0.9,q = 0.02,a = 0.01 andE (# of steps in sensor range-
10, the probabilities for all possible combinations of esafre given in Table 5.6
for two and three consecutive observations. For two obsens we only give an
intrusion alarm in case both observations are a 1. With fnitiha0.9441 this is
indeed the underlying sequence, and the probability theetivas no intruder is
about 005. Giving no intrusion alarm when the observed sequencearwd two
or one zeros turns out to be correct with probabiliti€2997 and B2, respectively.
For three observations, there are four cases for which we aivintrusion alarm.
To improve the probability of correct decisions furthereaould make use of more
consecutive observations.
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O Q alarm? P(Q|O) P(Q=0]|0)
0 0 0 0 No 0.9997 0.9997
0 1 0 0 No 0.9196 0.9196
1 0 0 0 No 0.9196 0.9196
11 11 Yes 0.9441 0.0512
0 0O 0 0 0 No 0.9998 0.9998
0 01 0 0 0 No 0.9491 0.9491
010 0 0 0O No 0.9833 0.9833
011 0 1 1 Yes 0.4016 0.2177
1 00 0 0 0O No 0.9491 0.9491
1 01 1 1 1 Yes 0.6060 0.3577
110 1 1 0 Yes 0.4016 0.2177
111 1 1 1 Yes 0.9936 0.0013

Table 5.6: Hidden Markov Model for the case of one sensor. daah observed
stateO the most likely underlying stat® is given.

For this model we have assumed thX;} is a Markov chain. The number of
steps in the range of the sensor is geometrically distributdnich models a vari-
able speed and direction of the object. We can improve thiketiyng {X;} be a
Markov chain of ordek, where the probability law oK;;1 depends on the la&t
states: Xi—k+1, ..., Xt. This allows us to vary the distribution of the number of
steps in the sensor range. For instance, in this way one cdelraaleterministic
number of steps. The state space then increase’s stafes, but the problem re-
mains numerically tractable since the calculations fordeeision rule need to be
done only once.

5.4.3 A sensor-network model

We can extend this method to networks of several sensorssi@arfor instance
the following example witth = 4 non-overlapping sensors as given in Figure 5.6.
Let X = (Xut, X2, X3, Xat), WhereX;; = 1 if there is an intrusion in the
range of sensarat timet, and X; 1 = 0 otherwisej = 1,2,3,4;t > 1. Assume
that there is at most one object in the area at any moment & 8mthat the state
space of{ X;} consists oin + 1 = 5 states: the all-zero state and theﬁstates where
the object is in the range of one of thesensors. We assume the procgsg again

to be Markov. The path and the speed of the object are modaellgt transition
probabilities. This can be based on historical data, or bardknowledge about the
system. If the object can remain in the range of one sens@efggral time steps,
pii is positive. Here, we assume that the object always entarsessor 1, and
then continues its path through sensor 2, 3 or 4, or outs@leatiige of any of these
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&

Figure 5.6: A network with four sensors. Indicated are daedransitions.

sensors. The transition probabilities and the correspaystiates are given by

1—a o 0 0 0 (0,0,0,0)

1-p. P11 P12 P13 P14 (1,0,0,0

A= 1-p2 0 p2o O O |, (0,1,00)
l1—ps3 0 O p33 O (0,0,1,0
1-pss 0O O O pgs (0,0,0,1)

with the necessary conditions on tpg imposed to letA be a stochastic matrix.
Here,p1e = Z?zl P1j-

The probability law of observin& given X: follows a multinomial distribution.
As before, there are four possibilities for the p@¥; +, Yi.t), specifically,P(Yi+ =
1Xit=0)=qgandP(Yi; =0Xjt=1) =1—p.

The state space ¢i/;} now consists of 2 states: each sensor can give an alarm
or not. As the size of the state space grows exponentiallly witalready for a
moderately large number of sensorthe problem becomes huge. Because of this,
but moreover because many of these states are very unlikelgcur, we truncate
the state space ({)f?t}. For this, we calculate the number of false alarms,csdlyat
has a probability of occurring less than sag@..:

P (# false alarms>- c¢) < 0.001

Now we allow only the vectorg’t in the state space Qﬂ?t} that are at Hamming
distance< c away from any of the states ({)ﬁt}, where theHamming distance
between two zero-one vectors is the number of indices intwttiey are different.
In this way, we drastically reduce the state spacg€Ypf, making the calculations
more tractable.

We now again have a hidden Markov model, for which we can daidecision
rule when to give an intrusion alarm in the same way as for #se ©f one sensor.
We can list all possible sequences of a number of obsengtibtine proces§Y;}.
By the Viterbi algorithm, we calculate the most likely unigerg state sequences
of the procesg X;}. If it contains at least one 1, for such a sequence an intmusio
alarm should be given. By calculating the probability theg tinderlying states are
only zeros, the probability of making an error is found.
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The hidden Markov model method of the present section carseé in combi-
nation with the heuristic algorithm for placement of sesgmesented in Section 2.
One way of doing this to use the Viterbi method to combine #waiits of multi-
ple single-sensor readings into one result, giving impdoxedues forp andq that
can be used in the placement algorithm. This is done in sonikeohumerical
experiments of the next section.

5.5 Numerical results

We verify and combine the proposed methods for sensor deydoyand intruder
detection using a simulation model of a network consistifg wumber of individ-
ual sensors, which perform under uncertainty. The perfoneaf each individual
sensor is characterized by the probability of true detagi@nd the probability of
false alarmg. As before, we use similar performance measures for cleraicly
the performance of the sensor network. Thus, our perforsmameasures are the
probability of true detection of the networgetectionand the probability of a false
intrusion alarmpsase

The objective of a surveillance wireless sensor network $8Mdesign is to get
a value pgetectionthat is as high as possible and a valuepgjse that is as small
as possible. In this study, we explore numerically the pmlitsi of affecting the
valuespgetectionand pPraise Of the sensors by arranging their locations as well as by
exploiting multiple readings. In the numerical experinggnte estimat@getection
and prgise for an SWSN. Numerically, these measures are defined asviallo

Ng '
Pdetection= %n, (5.10)
Ntal
Pralse = Islse’ (5.11)

where Ngetection@Nd Niaise are the number of true and false detections respectively,
while N is the total number of experiments, with or without the objadhe area,
respectively.

The experimental setup is as follows. The presence of arcbinjeghe SWSN
is simulatedN times, and the intrusion alarm is reported based on themngadif
n individual sensors, according to the criteria of detectieig. as in Sections 5.3
and 5.4. ThempgeteciioniS computed by formula (5.10). In this study, is set to
1000. To account for the variability of the simulation réspive have repeated all
experiments 100 times. The estimatemkiectioniS represented by the average of
the results as well as by the standard deviation. The reatdtalso presented as
a histogram, where the-axis gives the values of the estimates obtained and the
y-axis represents the relative frequency of occurrenceetttimates. The same
experimental setup is used for computing fftgse of the SWSN by setting the
object to reside outside of the SWSN coverage areaNfamonsecutive times and
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then using (5.11). In all the experiments presented heeentlividual sensors are
identical withp = 0.9 andqg = 0.02. The other parameters are varied in the
different examples to obtain the most demonstrative result

To verify that our simulation gives correct estimatespgétectionand Praise, We
first perform an experiment using a simple sensor networknefsensor but with
two consecutive readings. In this case, as suggested byitdgrdialgorithm from
Section 5.4, the criterion of an intrusion alarm is that tees®r raises an alarm in
two consecutive readings. Since the two readings are imdkgpe of each other, we
havepgetection= P? = 0.81 andpraise = g2 = 0.0004. The numerical results shown
in Figure 5.7 demonstrate that the numerical method givesrate estimates.

.
0.5
1 04
1 0.3
0.2
| 0.1
m | B B _

Figure 5.7: (Left) Estimate OpgetectionfOr one sensor with two consecutive read-
ings. The mean is 0.8093, the standard deviation is 0.01Bigh{)
Estimate ofprase the mean of the estimate is#dx 10~* and the stan-
dard deviation is ® x 1074

In the example above, we have verified that our simulatiogiamm gives correct
estimates 0fgetectionand Praise AS a next step, in our simulation model we will
combine the results on sensor deployment and intrudertit@ifocom the previous
sections to detect a moving target. The area of interestsisnasd to be the unit
square, defined by € [0, 1] andy € [0, 1], where(x, y) represents the location
of a point. We describe the motion of an object using the wiitise acceleration
model described e.g. in [3, p. 263]:

Xo(tk+1) = Xo(tk) + vxdt + \/aax’?x(tk), (5.12)
Yoltict1) = Yo(ti) + vydt + Vdtayny (o), (5.13)

where(Xo(tk), Yo(tk)) represents the object coordinate at tigelt the time stepyy
andvy the velocity in thex andy direction, respectivelya, anday the acceleration
terms, andyy and 7y the noise terms, which are independent standard-normally
distributed at each time step. The valuesygf vy, ax anday are all set to 0.01
anddt is equal to 0.1. For illustration, we presented two realiret of the object’s
motion in Figure 5.8.
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Figure 5.8: Some realizations of the object path used in xperénentsyg is the
starting point and, is the end point.

Now we would like to investigate the impact of sensor deplegitn To this end,
consider an SWSN consisting of eight individual sensorste@&ldifferent sensor
arrangements are studied. In arrangements A and B, thedosatdf the sensors are
determined randomly. In arrangement C, the sensors artetbeacording to the
MPD deployment algorithm from Section 5.2.2. Therefore, sensors in arrange-
ment C are located along a diagonal of the area of interese shese are the most
likely locations of the object. The SWSN arrangements apaotied in Figure 5.9.
The position of the object is depicted by an asterisk and émsa that gives an
intrusion alarm by a highlighted circle.

In this study, we have computed tipgetectionand praise Of the three sensor net-
works by exploiting the multiple readings by each sensarc&the sensing ranges
practically do not overlap, we are in the situation of Casaf bection 5.3.1. How-
ever, since each sensor raises an alarm based on the rédutesaglings according
to the decision rule from Table 5.6, we have to adjust the givdities p andq to
the detection probabilityp(k) and the false alarm probability(k) for k = 1, 2, 3.
Simple calculations give:

pl) = p, q@l = g;
pR2) = pi a2 = 93
pl) = p3+3p*1-p), a® = g3+3g%1-q).

According to Table 5.1, the critical value fqr= 0.02 is 1, that is the SWSN should
give an intrusion alarm if the alarm is coming from at least ofthe sensors. Since
g(2) andq(3) are smaller thaig = 0.02 the critical value remains the same if we
use multiple readings from each sensor. Thuk réadings of each sensor are used
at each time point, for our three SWSN arrangements we have

Pdetection= Pcoverage: P(K), (5.14)
Praise = 1 — (L — q(k))®, (5.15)
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Figure 5.9: Example of sensor networks: (top) network A;dghe) network B;
(bottom) network C.
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where peoveragels the probability that the object is within the network coage,
i.e., within one of the sensor ranges. Cleagdyk) in (5.14) andpsase in (5.15) are
identical for the layouts A, B and C if the same number of regsdlis used. In this
case, the performance of the SWSN is determined by how ltkelpbject will pass
through the network coverage, allowing the network to detee existence of the
object. This relative frequency is the estimate of the pbdlig pcoveragethat affects
Pdetectionin (5.14).

To estimatepcoverage We Simulate the object’s motion into the area for each sen-
sor network and compute the relative frequency of the olgassing through the
sensor network coverage. As in the previous experimergsplbfect is allowed to
move inside the area of interest for 1000 time steps. Momretive experiments are
repeated 100 times to account for the variability in thenestes. The results are
presented in Figure 5.10. The estimate®gferageare 0.2884, 0.1420, and 0.6367
for sensor network A, B, and C, respectively. The conclugdhat the SWSN C is
more likely to detect the object than the others.

Now, consider an SWSN of 50 sensors deployed by means of tiizaigdrithm
from Section 5.2.2 (see Figure 5.11). As before, the adwanai the object in the
area is described by (5.12) and (5.13), where we chogse 0.02,vy = 0.02,
axy = 0.001,ay = 0.01. Again, we report an intrusion alarm if a sensor signals
an intruder in two consecutive readings, as suggested ile Tab in case of two
observations. In Figure 5.11, we show one time instant ofrauksition run. An
asterisk denotes the object position. The two overlappigiglighted circles depict
the two sensors that give a correct intrusion alarm. Theligigted circle that does
not contain the object, gives a false alarm.

For this network, the rate of false intrusion alarms.3004. Furthermore, since
the SWSN consists of an ample amount of sensors, our deplaygtrategy ensures
that peoverage(@lmost) equals one. The histogram for the detection pritityaat
each time point is given in Figure 5.12. The high valuep@fectionare due to a
considerable overlap of sensor ranges for the most liketjtipos of the object.

5.6 Conclusions

In this paper, we addressed two problems concerning desijperformance of an
SWSN: sensor placement and object detection. For the fioblgm, we suggest to
use a hexagonal placement for optimal coverage. Furthere@@mmend to cover
most vulnerable locations first, but avoid an overlap in eemanges unless the
distribution of the object position is highly irregular. Asrule of thumb, one may
call a distribution highly irregular if there exist pairsdints such that the distance
between two points in such a pairds2r while the value of the density differs by a
factor 1— p.

For the detection problem, we state that several obsenstibthe same object
are absolutely necessary to report an alarm with reasowcabiainty. A classical
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Figure 5.10: Estimate 0fcoverage0f SWSN. (Top) Network A. The mean of the
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estimate is 0.2884 and the standard deviation is 0.069&Ide)j Net-

work B. The mean of the estimate is 0.1420 and the standardtasv
is 0.0631. (Bottom) Network C. The mean of the estimate iS®76
and the standard deviation is 0.2658.



5.6 Conclusions

0.8
0.6+
0.4r

0.2r

_0. 1 1 1 1 1 1 1 1
04 02 0 0.2 0.4 0.6 0.8 1 1.2

Figure 5.11: One time instant of a simulation run of the SW$B0sensors con-
taining a moving object«). Highlighted circles: two correct intrusion
alarms and one false alarm.
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Figure 5.12: Estimate OfgetectionOf the SWSN in Figure 5.11. The mean of the
estimate is 0.9205 and the standard deviation is 0.0224.
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hypothesis testing works well only if multiple sensors dapilin the same location.
Otherwise, one must use information from consecutive regdof the SWSN. In
the latter case, either a Bayesian approach or a hidden Mankadel (HMM) ap-
proach can be used for object detection. To the best of ouvletige, the HMM
approach involving the Viterbi algorithm to filter out theis® of non-detections
and false alarms, has never been used in an SWSN before. Vastage of this
approach is that it allows to pre-compute off-line all olvs¢ion patterns that sig-
nal an intruder. Then the decision rule is very simple: reporintruder if one
of the alarming patterns is observed. The HMM techniquesiégnSWSN context
definitely deserve further study.

In this research, one could clearly see that the two problemdsr consideration
are closely related. Although each of the proposed methadsba useful in its
own right, it is essential to develop an integral approacsetasor deployment and
intruder detection, in order to enhance the SWSN performamahe last numerical
example (see Section 5.5), we demonstrated that our tagks@pn be successfully
combined, thus considerably increasing the efficiency eftstwork.

We would like to add that, potentially, our methods can be aked for tracking
a target advancing through the area. For instance, by dbgeavsimulation run
of a moving object in the last numerical example, one couldtbat in spite of
occasional false alarms, the correct intrusion alarmsatdia clear path that can
be easily deciphered from multiple sensor readings.
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