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Abstract

Radio Frequency (RF) switches of Micro Electro Mechanicgbt&ms
(MEMS) are appealing to the mobile industry because of tarergy effi-
ciency and ability to accommodate more frequency bands.ederythe elec-
tromechanical coupling of the electrical circuit to the im@&gical components
in RF MEMS switches is not fully understood.

In this paper, we consider the problem of mechanical defbomaf elec-
trodes in RF MEMS switch due to the electrostatic forces ediny the differ-
ence in voltage between the electrodes. It is known fromipusvstudies of
this problem, that the solution exhibits multiple deforioatstates for a given
electrostatic force. Subsequently, the capacity of théctmthat depends on
the deformation of electrodes displays a hysteresis bebaagainst the volt-
age in the switch.

We investigate the present problem along two lines of attadekst, we
solve for the deformation states of electrodes using nwalemethods such as
finite difference and shooting methods. Subsequently,aioekhip between
capacity and voltage of the RF MEMS switch is constructede Jaiutions ob-
tained are exemplified using the continuation and bifuocagiackage ATO.
Second, we focus on the analytical methods for a simplifiegdioe of the

LUniversity of Twente

2Norwegian Institute of Science and Technology, Norway
3VU University, Amsterdam

4Eindhoven University of Technology

SDelft University of Technology

6|_eiden University

"University of Amsterdam

*corresponding authos,vanderstelt@uva.nl

65



4 Some studies on the deformation of the membrane in an RF M&dltsh

problem and on the stability analysis for the solutions dbdeation states.
The stability analysis shows that there exists a continyeatis of equilibrium
deformation states between the open and closed state.

4.1 Introduction

Radio Frequency switches (RF) of Micro Electro Mechanicgt&ns (MEMS)
have achieved considerable attention in the mobile ingistcause of the need for
an increase in frequency bands and energy efficiency. RF M&Mt8hes have sev-
eral advantages over traditional semiconductors suchwasrgmnsumption, lower
insertion loss, higher isolation and good linearity. Hoerea thorough understand-
ing of the electromechanical coupling between the eledtaccuit and mechanical
component of an RF MEMS switch is not fully established ansl fibrms the sub-
ject of the present paper.

Problem description: RF MEMS switches typically consist of two electrodes
which are thin membranes parallel to each other as showreirrigure 4.1. In
the schematic cross-section of the switch, Figure 4.1if@)thick black lines indi-
cate the bottom and top electrodes in which the bottom eléetrs fixed and the
top electrode is free to deform with its ends fixed. In the @neg of equal and op-
posite electric charg® in the electrodes, the top electrode deforms to balance the
electrostatic forceejectrostaticinduced with its mechanical spring foré&pring for
equilibrium. To avoid the contact between the two electspdedielectric of thick-
nessdgiel is provided on the top of the bottom electrode as indicatetl dashed
lines in Figure 4.1(a). Further, the thickness of the toptetele ish and it is sepa-
rated by a distancg from the dielectric in the unforced state. The deformed shap
of the top electrode at equilibrium is described by the dispinenti(x).

The equilibrium states are the critical points at which thetotal energy is min-
imized. The total energ¥;qt is given by the sum of the electrical energy and
the mechanical energ§¥mech

Etot = Eel + Emech

The electrical energieg is given as

2

Q , / €o dxdy
Eei= — with C(u(x, = )
= 2C . ) Apor 9+ U(X, Y) + diel/€diel

whereC is the capacitance the electric charge, u(x,y) the displacemesntthe
vacuum permittivity coefficientlyie the thickness of dielectriegiel the dielectric
constant andAyo; the area of bottom electrode. In determining the capaatanc
C, the two electrodes are assumed to be parallel under noeiratye unforced
state. Taking only the bending forces into account and asguthe thickness of

66



4.1 Introduction

the electrode to be very small with zero initial stress, tleehanical energy is given
by

2h3Y

D
Emech= —|Aul?dxdy, where D= -——
mech /top 5 |Aul| Y, 31— vz)a

h is the thicknesshyp area of the top electrod¥, is Young’s modulus and is the
Poisson ratio of the top electrode.
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Figure 4.1: (a) Schematic cross-section of a capacitive REMS® switch. (b)
Scanned electron microscope picture of a capacitive RF MEWM&h.

Problem formulation: ~ The main problem is the following: find all the displace-
ment states of the top electrodeleq g, (X, y) for which the forces on the top elec-
trode are in equilibrium at a fixed chargg on the top electrode (or for a fixed
voltageV between the electrodes). Several sub-problems are posektbas:

e Is there always a continuous path of equilibrium statgsy i (X, y) between
the open stateleqg,i = 0 for all X, y € Awp and the closed stateqoo,n =
—gforall x,y € Apot.

e Isthere a functiorf (ueq i (X, ¥), Q) that is monotonically increasing along
this path?

e Can it be shown that along this continuous pdti,e.dC > O is always
valid? HereEmecnis the mechanical energy a@is its capacitance.

e Is there a simple way to determine whether a state is stahlasiable at a
fixed voltage or charge?

e For which geometries and boundary conditions is the proldealytically
solvable? Most interesting is the situation in which the étgrtrode springs
are clamped (zero displacement and zero slope) at somesdiits bound-
ary.
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e The dynamics of the structure under the presence of gas dgrigoa related
interesting problem.

Finite element method: ~ The deformation shapes at equilibrium are often solved
using finite element packages. However, it is not straighiéod to find multiple

or all deformation shapes at equilibrium for a given volt&gas some of them are
unstable. Given the deformation shape of the electtqaey), the capacitance of
the RF MEMS switch is determined. SuclCa/-curve is shown for two examples
of RF MEMS switch in Figure 4.2(a) and (b). Multiple valuesocafpacitancé& for

a given voltageV are clearly seen in Figure 4.2; a phenomenon cdliederesis

Overview: The equilibrium problem of a RF MEMS switch is interestingttbo
from a practical as well as a mathematical point of view. kgl be stressed,
however, that the entire problem is too general and diffidd#nce, in the present
paper, we have considered a one dimensional version tonobtane interesting
insights and solutions.

First, we prove that under certain conditions on the totargy of RF MEMS,
the deformation states at equilibrium are stable. Secoadpmnulate an inequality
from which the stability conditions are derived. Third, weoye that when the
top electrode touches the dielectric, its deformation shaii have no gaps in the
contact area with dielectric. Finally, we prove the exiseenf a continuous path of
equilibrium states under some given mild conditions on tiergy of the system.

Besides these theoretical results, we make use of numerithilods such as the
finite difference and shooting methods to solve for the dispinents of the defor-
mation shape of the top electrode. To acquire insight irgatture of solutions, we
generate several sets of deformation shapes using thengatiin and bifurcation
package ATo. AuTO [3] typically generates sets of solutions to a given problem
by continuation, i.e., it calculates a solution for any giy@rameter of the system.
The main advantage of this approach as opposed to usingdieiteent packages
is that the non-unique or multiple solutions for a given peot are easily found.
In addition, an article on modeling MEMS by using continoatis in preparation
(see [14])).

The paper is divided into two parts. In the first part, we pnéslee numerical
methods to the present problem to gain some insight into #tere of solution.
We then employ the continuation method 70 and a shooting method to generate
numerical solutions. In the second part, we discuss vaaoasytical approaches
to the problem. We derive full solutions to the linearizediem. Linear problems
with any suitable boundary conditions have a unique satugiond hence, no hys-
teresis is found. Finally, we present various other regattthe nonlinear problem.
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Figure 4.2: Calculate@ V-curve (capacitance-voltage characteristic) of two diffe
ent switches. (alL V-curve of the switch of Figure 4.1. (1§ V-curve
of the so-called “seesaw” RF MEMS switch.
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4.2 Numerical Methods

4.2.1 Finite difference scheme

We consider a one dimensional model problem of the RF MEMScbwiwhich
exhibits the important qualitative aspects of the systeih igs1non-dimensional
form follows from the minimization of total energy:

o%u Eon

ax4=—1_’7+u+¢(u) onx € [0, 1] (4.1)

0
Withu=—u:0atx:0andx:1,
oX

whereu(x) is the displacement; a small parametegg the vacuum permittivity,
V the voltage between the electrodes a@d) the contact force between the plate
and the dielectric which is non zero far < —1, i.e., when the scaled downward
displacement is greater than the scaled gap 1 between the electrodes.

A simple finite difference scheme for the 1D model probleni)4s developed
and implemented in MTLAB. The numerical solutions of this scheme are com-
pared to the analytical approximations and they can sengehasis for more ad-
vanced 2D simulations in the future. To obtain the finiteatéince scheme, we first
divide the domain intm — 1 grid cells with grid sizeAx andn grid points. The dis-
placement at each grid poirt is denoted asi(x;) = u;. The biharmonic operator
in (4.1) is discretized using a central difference schenfelasvs:

% Uj_p —4ui_1 + 6U;j — 4Uj41 + Uit o
~ O(AX I=2,....,n—1
ox4 Ax4 +0(AX%)
4.2)

Near the boundaries, we employ the boundary conditians u, = 0,up—ug =0
andun.1 — Un—1 = 0 which are second order central difference approximations
the boundary conditions in order to get a consistent appration. Substituting the
approximation of biharmonic operator (4.2) in (4.1), thetérifference discretiza-
tion takes the following form:

€oV?
AU= ——— u), 4.3
i) (4.3)
where A is a constant matrix and is the displacement vector at the points=
Xi,i = 2,...,n— 1. The discretized biharmonic operatdrcan be efficiently

inverted using an iterative solver such as conjugate gnadiethod (CG). However,
the right hand side of the equation is non-linear and hendas,typically treated
with a fixed-point iteration. The fixed-point iteration sameis easily described by
rewriting (4.3) as follows:

2
utl = A1 (—% + ¢(uk)) . (4.4)
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Now given a guessX for displacementi, we compute for displacement*! using
(4.4) per grid cell and iterate with respectkauntil the solution converges. From
a physical point of view, it is clear that the equation is notquely solvable for

a certain range of voltageg. In fact, this is reflected in the fixed-point iteration
scheme as it could converge to two different solutions ferdisplacement vector.
Typically, the solution to which it converges depends ondtating point for the
iteration. This suggests thatGV-curve with stable solutions of the system can be
drawn. To draw th€ V-curve, we start with a low voltagé for which the solution

is unique and stable. Subsequently, we increment voNaged use the previous
solution as the starting for the fixed-point iteration sckemnich resulted in a quick
convergence to the nearby solution. Similarly, to obtam témaining branch of
solutions, we started with a high voltayeand repeated the previous procedure by
decreasing the voltagé. This has lead us to construct a “continuous” branch of
theCV-curve.

4.2.2 Shooting method

In this section, we consider a shooting method to solve thdimear one dimen-
sional model problem of RF MEMS switch. The shooting methodame sense
is the easiest method to find numerical solutions for a boyndgaue problem of
a nonlinear ordinary differential equation. It relaxes geblem by ignoring one
of the boundary conditions and replacing it by a “free” ialitthoice instead. This
initial choice is adapted until the obtained solution gessthe boundary condition
that was ignored. We refer to [11] for a detailed descriptibthe shooting method.
We distinguish three situations for the shooting method:

1. The top electrode touches the dielectric over some iakerv

2. The top electrode touches the dielectric at one point.

3. The top electrode does not touch the dielectric.
Each of these cases contribute to different parts ofdkecurve. We describe the
shooting method in detail for the first situation, i.e., wite plate touches the
dielectric on some interval, and solve the shooting probldme remaining two

situations are solved analogously and hence, we omit theigaen. Finally we
compute theC V-curve according to

Aeg [1 dx
C = . 4.5
)= /_11+u(x;u>—n (4-2)

For all computations, we employ MHEMATICA 6.

71



4 Some studies on the deformation of the membrane in an RF M&dltsh

Electrode touches dielectric over some interval

Because of symmetry, we consider the electrode membrahe hetf interval [0 1]
and take that the membrane touches the dielectriczata, wherea is the distance
measured from the fixed end= 0 of the membrane and€ a < 1. The nonlinear
differential equation describing the shape of the membtare between the fixed
end and the contact with the dielectric is

o%u o eoV2

- - 4.6
ox4 1—p+u’ (4.6)

with boundary conditions
ul =0, U@ =0 u@=-1 U@ =0 Uu'@=0. 4.7)

Here, an additional conditiom(a) = —1 is required for the unknown contact point
atx = a on the dielectric.

It is convenient to make a change of varialsléo X = x — a, G(X) = u(x).
Consequently, boundary conditions (4.7) now become as

(l—-a)=0 0(1—-a)=0 G0 =-1 G0 =0 0"0) =0, (4.8
and (4.6) remains the same as

6()V2
1-p+0

~I

(4.9)

In order to solve (4.6) and (4.7), we study the initial valuelgpem for (4.9) with
initial conditions

40)=-1, (0 =0, U0 =0 0”0 =P, (4.10)

which has a solutiofi(X; P) with P an unknown parameter to be found later. Now,
it remains to find a solutiol® = Ps such that the solution of (4.9) and (4.10)
satisfies the following condition at some point O:

G(b; Ps) =0, @'(b; Ps) = 0. (4.11)

Settinga = 1—b, we obtain the solution(x) = G(X; Ps) satisfying (4.6) and (4.7).
Note that, for the casle > 1 a solution of (4.6) and (4.7) does not exist.

The functionl(X; P) increases as function d?, see Figure 4.3(a). For small
P, G(X; P), as a function ofk, increases, reaches a negative maximum and then
decreases, see curves below the red one in Figure 4.3(a)larger P, G(X; P)
increases and has positive first derivative where it crabselnet = 0 for the first
time, see curves above the red one in Figure 4.3(a)PFerPs the functioni(X; P)
has a local maximurd = O (the red curve in Figure 4.3(a). This function satisfies
the conditions (4.11) anldis the value ofk at which has the local maximum.
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a(x; P)
7 P increases—

1.5

(b)

Figure 4.3: (a) The functiod(X; P) for different values of the shooting parame-
ter P andV = 890. Here,l(X; P) increases a$ increases. The
red curve corresponds to a solutid(X; Ps) which satisfies (4.11) and
solves (4.6) and (4.7). (b) The membrane shape for differaioies of
V. The red line depicts a part of membrane in contact with digke
The blue curve is the shape of the membrane between the $wgmubr
the dielectric.
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Next, we present an alternative method for solving (4.6)(@nd). This method is
convenient for fast construction of&V-curve because it requires solving a bound-
ary value problem only once. Then using a scaling argumerget@n easily cal-
culable expression faC.

First we rescalek according toX = X/(1 — a) and((X) = G(X) . Then the
boundary value problem (4.6) and (4.8) becomes

V(1 —a)*
1-n+4a

N

(4.12)

G =0, G'L)=0, G0)=-1, GO0 =0, 0"©0)=0. (4.13)

To solve (4.12) and (4.13) using the shooting method rounnpéemented in MTH-
EMATICA 6 we rewrite (4.12) as follows

oV (R)2

o100 V/(X) = 0. (4.14)

0//// ()’i) —

Here the unknowvV2(1 — a)# is described as an unknown constant funcitiit).

A solution (%) and V(%) = Vs of (4.14) describes the shape of the membrane
u(x) = 0(x) for a = 0, andVs is the minimum value o¥ for which (4.6) and (4.7)
has a solution. A solution(x) for arbitraryV > Vs is written as

V,
UK =0((x-a)/(1-a), a=1-/v
The shape of the membrane is

UG = [ G((xI —a)/(1—a), fora<|x| <1,
-1, for |x| < a,
see Figure 4.3(b).
With increasingV the contact with the dielectric increases and the membrane
shape between the support and the dielectric becomes steepe
The value ofC is computed from (4.5) as

— NV 1 2
C\V) = 2/;]60(1 Vs/V + %Il), where | :/ dx
0

n 1+0X) + 74’

from which follows thatC (V) has a horizontal asymptotic

(4.15)
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Figure 4.4:CV-curve for all three cases. The membrane first touches thecthie
at the pointA. The change between the situations when the membrane
touches the dielectric at one point, and on some intervaldigated by
the pointB.

CV-curve and influence of model parameters

Summarizing the results of tl@V-curves for all three situations, we construct the
CV-curve for allV, see Figure 4.4. The comple@V-curve has discontinuous
derivative at the transition point when the membrane tosithe dielectric for the
first time (pointA in Figure 4.4). At the transition between the situations mvhe
the membrane touches the dielectric at one point and on sot@e/al (pointB

in Figure 4.4), theCV-curve isCl. For some interval ol three values ofc
are possible (see Figure 4.4). This is a consequence of tir@mqueness of the
solution to the original problem far.

4.3 The continuation problem

AUTO is a software package that is used for finding and displayahgtisns, and
tracking bifurcations of solutions of ordinary differesitequations (ODES) by con-
tinuation of some system parametek bifurcation is, loosely formulated, a sudden
change in the qualitative behaviour of ODEs when some syptaameter (obi-
furcation parametéercrosses a certain threshold (tbritical value). For example,

8The package has been developed initially by E. Doedel ansesutently expanded by a range of
authors, see [3]
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an equilibrium solution may loose stability when the bifatrton parameter crosses
a critical value. For more on the notion of bifurcation, sép [

By continuation we mean the process of changing this systeranpeter and
calculating the deformation of a solution when this par&nistchanged. A typical
continuation starts out with some (acquired) solution fa $ystem with a certain
value for the system parameter. Then the parameter is ctiangd the solution
is calculated for each value of the parametew.TA also detects bifurcations when
they take place. So, in order to do a continuation, one hasitbdne solution
for a specific value of the bifurcation parameter (often Zer@ smart choice). By
changing a parameter (i.e. bycantinuationin one of the parameters) the solution
generically changes as well. This solution can be found by@ for each value of
the bifurcation parameter.

Most continuation software, and especially 70, allows for continuation in two
or more parameters as welluAo is not only able to perform continuation of equi-
libria to ODESs, but also the continuation of periodic satas of ODES, fixed points
of discrete dynamical systems, and even solutions to paliffarential equations
(PDEs) that can in some sense be transformed to ODEs, likemkpaniform so-
lutions (i.e. solutions that do not depend on any spatiabb#) of a system of
paraboli€ partial differential equations (parabolic PDES), traivigjlwave solutions
to a system of parabolic PDEs, and even more.

It is presently not of our interesiow AuTO finds this solution. For convenience,
we only note here that all continuation methods basicallyupon some version of
Newton’s method (and therefore the Implicit Function Tlezoy.

We want to stress that continuation always leads to a (diged§ continuum
of solutions. This is an advantage with respect to the othererical methods we
described so far. Moreover, a continuation and bifurcgb@ackage such asx o is
able to detect bifurcations of the system as well. This is#end main advantage.

We show the method of continuation applied to our equilitoriproblem which
consists of a nonlinear ordinary differential equation athis difficult to solve an-
alytically. The nonlinear differential equation for whithe voltageV and capaci-
tanceC are calculated, reads

o%u V& €0 _ou

od = T2 wrdez e (%.16)
with u’(0) = Uu(1) = u(0) = u(l) = 0 anda a dummy parameter to switch
between nonlineax = 1 and linear problem = 0. Settinga. = 0, the associated
linear problem is obtained as

o%u V2 ¢ge

pr i > d (4.17)
with u”(0) = u”(1) = u(0) = u(1) = 0.

9We do not explain the notion of parabolicPDE here; it is of no importance to us. But see any
introductory text on partial differential equations
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By solving the above linear equationyAo knows a solution of the “nonlinear”
problem fora = 0. By continuation inx, it subsequently finds solutions for the
nonlinear problem witle # 0. For each of these solutions the capacita@and
voltageV are calculated and@V-curve is plotted in Figure 4.5. ThH@V-curve in
Figure 4.5 exhibits a hysteresis behaviour.

10.0 \

0.00 2.00 4.00 6.00 8.00 10.0

\

Figure 4.5:CV-curve generated by #vo.

4.4 Analytical results

4.4.1 The linearized problem

It is possible to fully solve the linearized problem for tardifferent cases: (i) the
case in which the membrane does not touch the dielectrit(@) #he case in which
the membrane touches the dielectric in one point only and{g case in which the
membrane touches the dielectric on an interval. Since nmuesard problems have
unique solutions, itis clear from the outset that the tylhgateresis behaviour does
not show up in the linearized model. Some of those calculatinay nevertheless
be of interest, we have placed a summary of the linearizell@moin the appendix

4.4.2 Collected analytical results

We prove some results for a functiortakhat may be interpreted as the total energy.
The functional can be written as an integral over some dorfain R?. To read
this section, it might be necessary to consult a text on wtanal methods, see for
example [4] or [5].

First, it is proved that the solution for the membrane caooth the dielectric
“with holes”, i.e. in one dimension, the membrane is stuctheodielectric between

77



4 Some studies on the deformation of the membrane in an RF M&dltsh

every two points where the membrane touches it. Seconddgrised that every
critical pointu for whichu = 0 on some open s&€; c Q, hasAu = 0 on
0Q1. Third, we prove that stationary solutions for the enelgfor which it holds
thatdC/dV < 0 are necessarily unstable. The final result is argued duneti
completely proved. It states that if for both largeand smallV a unique critical
point exists, then under some conditions on the energy ifumadt a continuous
family of solutions connects the two solutions.
Just for notation’s sake: the main functional we consider is

2 [ frn

whereQ is a domain (e.g. a rectangle, or a circleRfior an interval inR, depend-
ing on the question considered. The second integral isdpacity

C_/Q(u+d/e)'

The boundary conditions ate= g andou/on = 0 onoQ. Unless stated otherwise,
all integrals are oveQ.

Short list of results

1. For any minimizer (or general critical point)of the infinitely-hard bottom
problem
(D , V2
mln{E/A u-— 7C ’ u> O} (4.19)

there exists10 nonempty open sef; C Q satisfyingu|q, > 0 andu|sq, =
0. In particular, in dimension = 1, the contact s€ix € Q|u(x) = 0} is a
(possibly empty) interval; in two-dimensions it means tih&t contact set has
only simply connected components (no rings).

2. If u is minimizer of (4.19), or more generally a critical poirfienh ifu = 0
on an open se®1 C Q, thenAu = 0 onoQ; (also of course on the interior
of Q1).

3. Stationary points oE lying on a branch for whiclC/dV < 0, are neces-
sarily unstable That is, there exists a perturbatiensuch that

E'(u) - w-w <0.

More generally, consider energies of the form

F(u,C,V) =/ f(x,u, Vu, Au, ...)dx+ G(V, C),
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4.4 Analytical results

whereC = [c(u(x))dx andV is a parameter (the Voltage for example).
Then if6°G/aCaV < 0, any solution lying on a branch for whictC/dV <
0, is unstable.

4. The last result is more tentative; it should be true, bquires additional
work to prove: if there exists a unique critical point Bf both for small
V and for largeV, and provided that some type of coercivity holds for the
energy functional (4.18), then there exists a continuouoslyaof solutions
connecting these two.

Sketches of the proofs

Ad 1 In 1D: letu be a stationary point, satisfying, whare- 0,

m_ €0

~ (u4d/e)?

Note that the right hand side of (4.20) is strictly positi@eipposel has two contact
pointsx; < Xp. Sinceu(xj) = U (Xj) = 0 andu > 0, we must havel”(x;) > 0.
Furthermore—(u”)” > 0 and it follows from the maximum principle that (x) >
min{u”(x1), u”(x2)} > 0 for x € (X1, X2). This implies, again by the maximum
principle, thatu < 0 on(x1, X2). We thus conclude that= 0 on [X1, Xo].

In more dimensions exactly the same (pair of maximum priegiprguments
prove that the contact region can have no holes, as asserted.

(4.20)

Ad 2 We do not give a full proof, but illustrate the main idea. Oma-aimensional
domainQ = [—L, L], let ur(x) be a smooth family of symmetric solutions with
“forced” contact region +R, R], with R < L. By symmetry, we only need to
consider the left half of the solution:

. €
—Du/g/—m for —L<X<—R,
Ur(—L) =g, ug(-L) =0,
UR(=R) =0, ux(=R) =0.

Now, ur is a critical point ofE if and only if d E(ur)/d R= 0.
- -

b\tN'mmg E(u) = [, %u/ﬂ + g(u)dx, whereg(u) = Jl?(uf% + kge ke, we

obtain

-R D -R
E(uR) = 2/ Eu’,’qzdx - 2/ g(ur)dx + 2Rg(0).
—L -L
Calculating this derivative with respect RBwe infer that
dE(UR)
dR

sinceur(—R) = 0 andEy(ur) = 0, becauser is a critical point when keeping
fixed It follows thatu”(—R) = 0 if u is a critical point ofE.

= Ey(uR) 1 ~ DURA(~R) ~ 20(UR(~ R)) +29(0) = ~DUK’(-R),
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This argument can be extended to higher dimensions quitky,easder theas-
sumptionthat the solution for fixed contact region varies smoothlihwie geom-
etry of the contact region. Without this assumption, momaglicated arguments
are needed.

Remark 4.4.1. We note that if the contact set is a single point, then thersico
derivative in this point needot be zero. Indeed, in one dimension for example,
there is a branch of solutions with contact only in the midpoif the domain (in-
terval) and with varying second derivative.

Ad 3 Let us first give the argument for the specific enegiy the one-dimensional
case. Consider

€0 —kou
— - — kie 2",
/ u+rdeo T

Let us look at stationary points, i.e., solutions of
V2 €0

2 (U+d/e)?
which are, on the branch under consideration, paramethbyed. Let us writeu

for the derivative of the solutions with respect tov along the branch. Taking the
derivative of (4.21) along the branch, we obtain

Du” = + kakoekeY, (4.21)

eou Vv €0
(U+d/e)s (U+d/e)?
The second variation of the energy in the directiogives
E// 0.1 — D —//2 _ V2 GOU k k / k2U 2
ot /u Utdje?

After performing partial integration twice on the first terwe can substitute (4.22)
and, with most terms cancelling, we obtain

DU = V? — kikZe~*elg (4.22)

/" —= — eou
E'(u)-u-u= 7(u+d/e)2'
This simplifies as
, o eou P dC
w-u-u U+ d/e)? U=V

Hencedv < 0 implies thatu is unstable.
For the general case, critical points= u(V) satisfy, subscripts denoting partial
derivatives,

Fuu(V)) - w + Ge(V, Cu(V))) Cyu(V))-w =0 for anyw.
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Taking the derivative with respect ¥ gives (always evaluating at= u(V)),

(4.23)

On the other hand, the second variation (for fix€dgives
FN(U)'U)'U)/: Fuu'w'w,‘i‘GCCCu'wCu'U)/+GCCuu'w'w,,

hence, using (4.23), we obtain for= w’ = uy

FN(U) Uy - Uy = =Gy Cy - uy.
When we writeC(V) = C(u(V)), this reduces to
dC
F”(U) - Uy - Uy = —Gey—.
(U) - uy - uy Vv

Hence, if3°G/aCoV < 0 then solutions on branches whet€/dV < 0 are
always unstable.

Remark 4.4.2. One can also consider the problem where we put a ch@rgeV C
on the switch. In that case the physically relevant energgdotinclude the energy
stored in the battery, which is given byW2C. The energyEq thus becomes

D » Q2 _
Eqn = — u// < /k e kzu’
Q=7 / txet /.

and the arguments above show that solutions on curvesiitd Q < 0 are always
unstable.

Ad 4 Such a result follows from degree theory, see e.g. [8]. Henetstill needs

to be checked rigorously that there indeed does exist a amiqtical point for very
large and very smaW. ForV = 0 this is obvious, the energy being convex in that
case, but the situation for largéis less straightforward, since the energy contains
both convex and concave parts, although in numerical ex@geris uniqueness is
observed.

4.4.3 Functional estimates

In this section, two estimates for the first and second vanatf the total energy
are derived.

The energy functional modeling the deformation of a clampkde @ under
influence of an electrical field due to a potential differenctn a fixed plate reads

E[u] = Emech+ Eel
1 1 2 &0

— ~D(Au)® — ZV2—" | dxdy, 4.24
/Q[Z()ZUHH%} y (4.22)
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whereu € Hg(Q), implyingu = g—g = 0 onoQ. Equilibria for the system are the
zeroes of the first variation,

JE[0,h] =0, Vh e HZ(Q).

These can be stable and unstable equilibria (e.g. saddiespoh stable equilibrium
is a minimum of the functional. Such states are charactdigethe fact that the
second variation at the equilibrium state is strictly posit

0%E[d,h] > 0, Vhe H3(Q)

We here wish to give a sufficient condition for an equilibritorbe stable.
The first variation is found by putting = G + ¢h, whereh e Hg(Q) is a test
function, and taking the derivative with respectiate = 0. We then obtain

SE[d, h] = / [DAZU + }VZLO'} h dxdy.
Q 2 (u+g+ %)2
The variation lemma yields the boundary value problem fergistem from this
functional. Let us assume we have a solution for the systewmw thie question
is whether the solution is stable or not. The second vanadtidhe directiorh e
HZ(Q) is found to be

2
5°E[u, h] :/Q |:D(Ah)2 _ Vzﬁ} dxdy. (4.25)

In this form it is difficult to check positivity. However, weaa prove a Cauchy-type
inequality for the test functions in the spddé(Q) whenQ has a simple shape. For
the case of a rectangle with sides andL, we have

4
Ah)2dxdy > / h2dxd
/Q( ) y‘max[L“,zLiLg, L3l Ja y

Using this inequality together with equation (4.25) we hthefollowing estimate
for the second variation,

2E[u.H] > / 4D2 i B VZLO. h?dxdy
o | max[Ly, 2L5L3, L] U+g+:)°

Necessary conditions for the stability of the functionah ¢e obtained from this
estimate. For example, také = min(u), then

SE[u, h] > 4D2 o — V2 © /hzdxdy,
max[L{, 2L2L2, L3] W +g+:)% /e

and it is sufficient to check the positivity of the constant.
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Appendix

As said in section 4.4.1, the linearized problem can be felaborated for three
different cases: (i) the case in which the membrane doesnohtthe dielectric at
all (ii) the case in which the membrane touches the dieleatst = 0 only and (iii)
the case in which the membrane touches the dielectric orsamglifor 0 < a < 1.
We will make a few remarks on how to do this, in the case of aathdsymmetric
MEMS switch. We consider case (iii). It will be clear from thesult that the typical
hysteresis behaviour does not show up in the linearized mode

To focus on the right parameter combinations in the probleenrescale it. For
example, in the 2-D radially symmetric version of the problene obtains for the
capacitance:

2 1
Clw) = 220 / ' dr.
g o 1+ 7+ w()

and, by computing the Euler-Lagrange equation correspgnid this energy we
find

ov?

ANow=———" .
r 1+ 7+ w)?

(4.26)

whereA, = %%, 0 some algebraic expression in terms of the other parametars,
non-dimensionalized voltage anda scaled version of the distangeThis problem
can subsequently be linearized aroumé- O:

1
Aw = o (—% -I—w) )

wherew =4 (fjr’;z)s is just a scaling. Regarding as a radially symmetric function
depending om only we get

w(r) = Ad(wr) + BYo(ar) + Clo(ar) + DKo(or) + 1%'7 (4.27)

where Jg and Yy are Bessel functions of the first and second kind respegtavadi
lo and Ko are modified Bessel functions of the first and second kind. tdethe
following boundary conditions:

wl) =w@l)=vE@=w'@=0w@=-1

By rewriting this system as a four-dimensional first-ordgstem, one obtains the
constantsA, B, C andD.
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