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Abstract

In this paper we consider the problem of shunting train umits railway
station. Train units arrive at and depart from the staticcoeting to a given
train schedule and in between the units may have to be stoithbe atation.
The assignment of arriving to departing train units (caleakching) and the
scheduling of the movements to realize this matching i€dashunting. The
goal is to realize the shunting using a minimal number of shuwvements.

For a restricted version of this problem an ILP approach keas Ipresented
in the literature. In this paper, we consider the generahshg problem and
derive a greedy heuristic approach and an exact solutiomaddbased on
dynamic programming. Both methods are flexible in the semeiethey allow
the incorporation of practical planning rules and may besreotéd to cover
additional requirements from practice.
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1.1 Introduction

In this paper we study a practical train shunting problenppsed by Dutch Rail-
ways. This problem has already been studied by Kroon et hlb[it their work
does not exploit the full potential of shunting trains.

Shunting of trains is a process that supports the execufitimearain schedule
at the station. Trains arrive at and depart from the statmmoming to the train
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schedule. Each arriving and departing train may consistwfipte and possibly
different types of train units. This composition of the s specified in the train
schedule. For an arriving train it now has to be decided whatntext duties of
the arriving train units are and for a departing train it hmbé guaranteed that the
corresponding train units are available on time on the @tatf During rush hours
almost all train units available are required to transpadsgengers and, thus, are
on duty, but in between, and especially during the night, yrteain units are not
needed for transporting passengers. Thus, train units raeay to be parked at a
shunt yard of a station for a certain period. An example ohsaishunt yard is
givenin Figure 1.1, which represents the infrastructurthefstation and shunt yard
of Alkmaar.

[Am_} 42050

Figure 1.1: Shunt yard and station of Alkmaar.

The train units are classified according to their types abtyges. Train units of
the same type can be combined into longer trains, even if shbditypes differ. An
example of a train unit is an ICM (Inter City Material) with &rtiages, as shown
in Figure 1.2. ICM denotes the type, and the subtype is spdcidy the number
of carriages. There also exist ICMs with 4 carriages, whih lse combined with
the ICM with 3 carriages since they are of the same type, agthamot of the same
subtype.

Figure 1.2: Train unit of type ICM with 3 carriages.

To park a train unit, a crew has to take several actions. Ifrdia has to go only
forward, the driver can stay on one side of the train and dheetrain directly to
the shunt yard. This is not always possible and it may e.gh&edse that the train
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has to go forth, back, and forth again to be parked. In thas taes engine driver
has to switch places two times, since he always has to be iftdheof the train.

Each time going back or forth is called a shunt movement. fSeeionly need to
go forth, this is counted as one shunt movement and if we hage forth, back,

and forth then this is counted as three shunt movements.

When a train unit parked at the shunt yard is needed againeirs¢hedule to
transport passengers, it has to be taken out of the shunapargut at the platform
from which the corresponding train will depart. Again it miagppen that several
shunt movements are needed to transport the unit to theptatBut it may even
be worse in the sense that no train unit of the desired typ&eastty reachable on
a shunt track. In this case, before getting the desired trai first some other
blocking train units of another (sub)type have to be remdvenh a shunt track.
This can also take several shunt movements.

As a consequence, to execute the train schedule, a feakilh¢ schedule is
required at each station. A shunt schedule consists of aflesttions that indicate
which train units are shunted and between which places. fdehkts, also the exact
shunt movements of the train units can be specified. A shineidade is feasible if
all arrivals and departures of the train schedule can beués@dn the desired way.
This implies for example that a platform has to be empty whémia is passing
through or that train units of the desired (sub)types andhéndesired order are at
the right time at the right platform for a departing train.

However, not every feasible schedule is desirable: if thenshchedule consists
of many shunt movement, the schedule causes a high workbodke crew and is
very sensitive for disruptions. This can cause delays irtrdie schedule, which
should be avoided. Therefore, the goal is to have a shuntdatdheith a minimal
number of shunt movements.

Next to the main goal to create shunt schedules with a low mub shunt
movements, some other practical aspects have influence gutity of a schedule
and lead to additional rules to be taken into account in orgaghunt schedules. For
example, for the crew it is convenient to have similar traiitsiclose together. This
implies for instance that shunt tracks of the shunt yard khloeiused only for train
units of the same type. Another practical aspect focuseiontsnovements just
before a departure. Small disruptions in a shunt schedule suich movements
directly may lead to delays of departing trains and, theefmay disturb the train
schedule. As a consequence, it is desirable that the nurhbeunt movements for
a train that needs to depart is minimized. It would even beéibd®e train units are
already waiting in the needed composition for the depadtitee shunt yard.

1.1.1 Problem Description

The input for the shunting problem at a given railway statonsists of the train
schedule at that station and the layout of the station @otai$ and shunt yard).
The given train schedule prescribes the train arrivals aphdures at the railway
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station. Each of these events is characterized by a timepti@osition of the train,
its direction, required platform and whether the train\aasior departs. Since not
all arriving train units are scheduled to leave the statlmmediately, the train units
that stay behind may have to be stored at the shunt yard tothke@latform for the
next train.

The shunt yard consists of a number of shunt tracks to stane tmits. Most
of the shunt tracks are dead-end tracks. This implies that tmits are blocked
by train units parked at a later time. Thus, train units @awnd depart ihast in
first out (LIFO) order. The shunt tracks and platforms have a limitepacity for
storing train units. There is a network of tracks connectiregshunt tracks with the
platform tracks.

Between successive events of the train schedule, it may ¢essary to move
train units to make the next event possible. Such movemeatsaied shunt move-
ments. A one-directional movement is counted as one moveaneievery change
of direction is counted as an extra movement. A solution istaof shunt move-
ments that take place between the events such that all es@mttake place. The
objective is to find a solution with minimum number of shuntvements.

In this paper we assume a timeless model; i.e. we assumeghanamovement
takes zero time. This implies that an unlimited number ofnshmovements can
be performed between two events. However, it is possibl&ldbextra constraints
within the developed methods, which restrict the numbethoihs movements be-
tween two events.

1.1.2 An Example

To illustrate the shunting problem we give a small examplensider a railway
station with the layout given in Figure 1.3. In this example e@onsider four types

"Shijh't"tl'ré'ck 2
Shunt track 3

[ plattorm1 |

X X

b | platform 2 |
Shunt track 1

Figure 1.3: Layout of the example station.

of train units, denoted by, B, C andD. Each train consist of some train units of
these types. When we talk about a traiB we mean a train consisting of a train unit
of type A and a train unit of typd3, where the typeA unit is positioned to the left
of the typeB unit. This is regardless of the direction the train is trangin. Thus,



1.1 Introduction

trains AB and B A are different in composition. We assume that the capacigllof
shunt tracks and platform tracks is limited to accommodateid units. According

to the train schedule the following trains are arriving amgatting in the given
order.

Train AB arrives from the left-side at platform 1.

Train AAarrives from the right-side at platform 2.
Train CCC arrives from the right-side at platform 1.
Train CC departs from the platform 1 to the left-side.
Train AAdeparts from the platform 2 to the right-side.
Train DC arrives from the left-side at platform 1.
Train C DC departs from platform 1 to the right-side.
Train B Aarrives from the right-side at platform 2.
Train B B departs from platform 2 to the right-side.

e;p Train AAdeparts from platform 1 to the left-side.

SRPLILLLRP

In this small example there are already a number of nonatrskiunting decisions
to make. It is not difficult to verify that the following solon is a valid shunt
schedule.

Betweene, andes  Shunt trainAB from platform 1 to shunt track 2.
Betweenes andeg  Shunt trainC from platform 1 to shunt track 1.
Betweeneg ande; Shunt trainC from shunt track 1 to platform 1.
Betweeneg andey  Shunt trainA from platform 2 to shunt track 2,
and shunt trairA A from shunt track 2 to platform 1,
and shunt trairB from shunt track 2 to platform 2.

The solution contains six shunt movements. In this exantf@echoice whether
to shunt to the tracks on the left-hand side or to the trackihemight-hand side is
the most important decision. Observe that shunting train@ro any of the shunt
tracks on the right-hand side is not a good decision. Whenmgdte unit back, it
has to go around thB C train, to connect to it from the left to form tl@DC train.
Going around thé®C train implies a change of direction in the shunt movement and
is counted as two shunt movements. Furthermore, ifABetrain is shunted to the
shunt track on the left-hand side, the efficient moves batvwg@andeg would not
be possible. It turns out that the above solution is indeditnah for the example.

1.1.3 Complexity of the Shunting Problem

The general problem of integrated matching (to which dépgitains are the units
of an arriving train matched?) and parking of train unitsngoduced in [7] and
in [8] its computational complexity is determined. The gah@roblem as well as
the subproblem of matching the train units and the subpnololieparking the train
units are shown to be NP-hard.
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In the train matching problem we are given a set of arrivimyns and a set of
departing trains. We are supposed to partition the incormaigs into parts which
can later be assembled into departing trains. Since eacluged part is shunted
separately, our main goal is to minimize the number of pattswhich we partition
the arriving trains. This problem is a generalization ofrtiaimum common string
partition problem known from computational biology. In f&e minimum common
string partition problem is shown to be NP-hard even if wdrigtsourselves to
instances with only two strings as input. This means thatrthie matching problem
is NP-hard even if we are given just one arriving and one dijggirain.

Blasum et al. [1] introduce a problem of scheduling the diepas of trams from
a shunt yard in the morning. This problem turns out to be Ni-aad the authors
provide a dynamic program for a special case of the probleimnestricted number
of shunt tracks. This problem can be seen as a subproblenr ehaating problem
where all the trains are already placed in the shunting yard.

Cornelsen et al. [2] study the problem of generating shreg-§chedules in sta-
tions consisting of parallel two-sided tracks. They redtieeproblem to a graph
coloring problem of a conflict graph resulting from the traochedule. For most of
the versions of the problem the conflict graph is perfect amrdbe colored in poly-
nomial time. For other cases efficient approximations atlgars are presented.

In similar setting Dahlhaus et al. [3] consider a problemroiuging of train units.
In this problem a sequence of incoming train units is giveactidrain has to be sent
to one of a given set of parallel tracks and later pulled ouh®other side. The
outgoing sequence has to be ordered in such a way that urthe shme type are
grouped together. Designing a schedule that minimizes uihgber of used tracks
is shown to be NP-hard.

In freight train classification hump yards are commonly usechunting. Jacob
et al. [6] model the shunting task as a problem of finding a btrary codes. It
allows them to find optimal solutions for most versions of pineblem. Some other
versions are shown to be NP-hard.

1.1.4 Current Solution Approach

Currently there is no decision support system to aid thegpers in solving the
shunting problem. However, Dutch Railways is testing thEe-thodel proposed
in [7] on small stations. However, this ILP-model has a nundfelrawbacks. First
of all it does not cover all possible shunting moves. For gxant does not allow
trains to stay at a platform, waiting to be combined with atrieain. It is clear
that such a waiting possibility can be beneficial. Moreoutedpes not model the
possibility of moving train units between different shurgaks. Whenever a train
arrives, it either has to be shunted away or depart immdgiate

Furthermore, in the current ILP-model the number of vagaland constraints is
already very large, and extending this model to cover theabunting possibili-
ties would increase the number of constraints and variables further. Although
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for a typical instance the current model can be solved withmreasonable time,
one may expect that the extensions make the number of vesiabllarge that the
computation time required to solve the problem becomesaamably large.

1.1.5 Goal of the Research

The task of this paper is to present alternative approachtésetshunting problem

which do allow waiting on platforms and rearrangements aintiunits between

shunt tracks. In the following we describe two solution agmhes, one which aims
at finding fast a reasonable cost solution (a greedy algojitmd one which aims
at the optimal solution (a dynamic-programming algorithie conclude with an

outlook on future research.

1.2 First Approach: A Greedy Algorithm

In this section, we present a heuristic approach for the tehgiproblem. This
heuristic has to be fast and has to result in a reasonablygmotion. The basic idea
is to scan the event list and iteratively decide which acitintake. The decisions
in each iteration are based on the situation resulting fleaptevious decisions and
the current event. In this way, the approach tries to loealtgnd the given situation
as good as possible and, therefore, falls in the categayyeeidyapproaches.

From practice it is indicated that planners prefer situstihere the train units of
departing trains are already waiting somewhere (eithermatéorm track or a shunt
track) in the composition they have to depart in. We take ghitosophybe ready
for departure as a guideline for building the greedy approach. As a carsscg,
we scan the event list backwards in time and make the desigissuch a way that
they lead to the desired composition for the departing $rain

For the presentation, we assume that during the planningdmthe arriving
train units correspond one to one to the departing trainsa¥geme that the train
station is empty at the beginning and the end of the plannamzdn. This can be
justified by taking the planning horizon to be form one rushrio the next, since
during rush hour all material is needed in the train schedthe presented heuristic
can easily be adopted when this assumption is dropped.

Our algorithm consists of two main steps, step 2(a) and 2¢(bijch we explain
in more detail later.

The Greedy Algorithm:
1. Start with empty platforms and shunt tracks

2. Scan the event list backwards in time, and for each évént

a) IF the eventis a departure evenEN assign the entire train to a shunt
track
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Events L& | 63 &4 & | 6 | € | €
Arrivals C| A| BB AA

Departures B| BA AA
Platform 211 2 (2|1 2 1

N O

Table 1.1: Event list Example 1.

b) ELSE the event is an arrival eveMHEN match the train units to train
units already placed on the shunt track

The most important steps in our algorithm are steps 2(a) énd & these steps
the main decisions are made. In step 2(a) we decide on whight stack we set
the train ready for departure. At this point, we do not care lleese train units
come to this shunt track, but just decide that the units waithe assigned shunt
track for departure. How these units arrive on their posgion the shunt track will
be decided in subsequent iterations. Possible rules fagrasg the trains to shunt
tracks are given later. In step 2(b) we match the train uriiggriving trains to train
units that are already placed for departure from a certagktin one of the previous
iterations. Again, concrete rules for this matching aregilater.

Example 1  To get a better understanding of the basic idea of this grapdyoach
we present an example consisting of two platforms and twatdinacks. The event
list of this example is presented in Table 1.1 (in this takbfprm numbers are
given as well, since we use them later on).

If we scan the event list from the back, we first have to treahéss. Since this is
a departure, we may decide to assign this train to shunt fra€ke situation on the
two shunt tracks after this decision is given in Figure 1).4{&e next everg; is also
a departure, and we may assign the tiailato shunt track 2 (see Figure 1.4(b)). For
shunting the arriving train units of evees we now have the nice option to match
the whole train to the two train units of typ®being assigned to shunt track 2. By
this matching, i.e. shunting the two train units to shuntkra, this shunt track gets
empty and the resulting situation is as in Figure 1.4(c).tNe& may assign the train
of departure everds to shunt track 2 and the train of departure evento shunt
track 1 resulting in the situation as in Figure 1.4(d). If weantreat the arriving
eventes, the train consisting of two typB units cannot be matched as a whole to a
shunt track, but we have to split the train and match the tye Byunits to the two
type B units in front of the two shunt tracks leading to the situaiioFigure 1.4(e).
Note that this matching leads to two separate shunt moveiné&imally, the two
arriving events, ande; are processed by matching the corresponding train units to
the units of the same type still being on the shunt tracks.

As can be seen from the above example, the presented atgaditicides for
each arriving train unit to which departing unit it is couplaend via which shunt
track this assignment takes place. In this way shunt movisveea specified. For
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track 1 C track 1 C track 1 C
track 2 track 2 AA track 2
() (b) ()
track 1 BC track 1 C
track 2 BA track 2 A
(d) (e)

Figure 1.4: Situations on the shunt track for Example 1.

departing trains the shunt movement can be done with thedsaa whole since we
always assign to be ‘ready for departure’. We implicitlywase that there are shunt
tracks long enough to accommodate for departing train. Forirgg trains more
complex shunt movements may be necessary. In the above Exaatighe shunt
movements were directly possible, but in general it may lmes&ary to rearrange
the train units on the shunt tracks at certain moments teegela feasible solution.
If, for instance, the arriving everg would have been that of afAC train, first the
two B units already being at the shunt tracks would have to be rethtovplace the
A andC unit at the dead-end of the shunt tracks.

The advantage of the presented approach is that it alwags gifeasible solution
as long as the list of arrival and departing events is comsisin the sense that there
is never a negative stock of train units of some type, theeeshunt tracks long
enough to accommodate for the departing trains, and thexevesys some empty
(part of) track to move a train unit around. Furthermore,dkparting trains can
always be handled efficiently. The price to achieve thisas the may create costly
shunt movements for arriving events.

In the following we sketch some possible improvements oftieedy method and
give some more detailed information on possible implententa of the assignment
and matching in steps 2(a) and 2(b).

Leaving train units on platform tracks One of the goals of this research is to
develop methods which allow the option of leaving train sioih platform tracks or
to move it from one platform to another platform without packit in between at
the shunt yard. A simple approach is to scan the solutioresehiby the greedy
heuristic and to search for 'shortcuts’. In the above exanspch a short cut is for
example possible between the evemtande;. The AA train arriving on platform

2 (eventes) may be passed directly to platform 1 from which it departs\ante;.

In this way, theA A train does not have to be moved to the shunt track 2, probably
saving shunt movements. Another short cut is possible lwrigane of the arriving
type B units of events on platform 2. In this way the departing train of evenis
already on the platform without any movement.



1 Shunting passenger trains: getting ready for departure

A more effective method than a scan after finishing the gresggyroach may
be to take such possibilities already into account durirggtreedy algorithm. If
we have to assign a departing event in step 2(a) of the aigoritve may scan the
event list some positions further back in time to detect dréhis an assignment
of this train to a shunt track which allows using shortcutacisan assignment is
preferable over other assignments.

Delaying the shunt movement If for an arriving event the shunt movements of
possible matchings take a large effort (e.g. the correspgnehits do not occur at
a reachable end of a shunt track), we may scan the event tiktibdime to see
if we can improve the situation by letting some other argvtrains wait on their
platform. To clarify this possibility, let us assume thathe given example the train
of evente, is a B train and that ogz an AB train. If we now deal with everds, no
easy matching is possible since on shunt track 2 the trais are not in the correct
order (see Figure 1.4(d)). But we may delay the movementsgaig to eveney,
since this event is on a different platform. For the greedyr@gch this means that
we consider everd, beforees. By matching theB unit of that train to theB unit

in front of shunt track 2, we achieve a situation where on strack 1 we haveBC
and on shunt track 2 we havie Now we can match the two units in front of the
two shunt tracks to form thAB train of eventes.

Formally, in step 2(b) of the greedy approach we may seaelevhnt list back-
wards and consider for each platform the first occurring evérthis event is an
arrival, we may treat this event before the current eventellwat it is not possible
to delay departure events or two arriving events on the sdati®pn.

Assignment rules in step 2(a) Up to now, we have not specified the way how we
assign in step 2(a) the trains to shunt tracks. The most sim@y is to assign them
in someround robinway (meaning that the tracks are used in a given cyclic order)
or to assign them based on some priorities of the tracks.illegsiorities may be:
smallest number of shunt movements to reach the platfongeda free capacity,
et cetera. However, it may be worthwhile to incorporate gdsmning rules of
the planners of Dutch Railway into this step. One such ruldoisexample: do
not park more than two different unit types on the same shaokt Furthermore, a
backward scan in the event list by a few positions may helpéoeamme problems in
the next iterations. Consider, for example, the eventiistable 1.2. Two possible
shunt track assignments after treating the evegtss, e; are given in Figure 1.5.
The first assignment is made using round robin, but has nenhtaio account the
arriving B train. The second assignment does not have this problem.

Matching rules in step 2(b)  As in step 2(a), also in step 2(b) there may be some
freedom in matching the arriving trains to units alreadygrs=d to the shunt tracks.
Again, this decision may be based on priority rules like thenber of necessary

10
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Events €| € | €3 €| 6|6
Arrivals Al A|B
Departures A|lA|B

Table 1.2: Event list Example 2.

track 1 AB track 1 AA
track 2 A track 2 B

Figure 1.5: Situations on the shunt track for Example 2.

shunt movements but, as in the previous case, it may also ldéwlale to incor-
porate some backward scan to see which resulting remairurggien on the shunt
tracks forms the better situation for the next events. Teithte this consider Ex-
ample 2.

Example2 This example is the same as Example 1, with the differendetients

e andes are interchanged and that after considering eggnte have the first shunt
track assignment in Figure 1.5. If we now have to deal witméeg, matching the
type A unit of this event to théA unit in front of shunt track 1 allows a direct access
to the B unit on that track in the next iteration. Having chosen fa funit on
shunt track 2 would not have given this possibility leadim@ situation where units
on the shunt tracks have to be rearranged.

Improvements  Several of the suggested improvements contain some sodatrof p
tial backward scan of the event list to improve the decismmtlie current event.
In principle this means that some sort of simultaneousrireat of several events
is considered. Based on the outcome of this, a decision ctirent event is
fixed. This treatment of several events simultaneouslybeaseen as a new opti-
mization problem on its own. This problem gets harder theenewents are taken
into account. An interesting topic of further research igydo find a good balance
between the effort spent on this backward scan and the ireprert in quality. Fur-
thermore, concrete decision rules for the treatment ofraéegents simultaneously
have to be developed.

To sum things up: the greedy algorithm we have developed les tabcreate
feasible schedules for the shunting problem quite fast. édew without additional
improvements, the achieved solution may not be of much jgedaise. Above we
have shown, that the basic structure of the method forms d fyamework which
easily can be extended by more sophisticated elements andigth rules used by
planners.

11
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1.3 Second Approach: A Dynamic Programming
Algorithm

To solve the shunting problem, a response to each eventalaor departure, has
to be given. This response has some influence on the positioaiio units on the
different tracks and platforms and has to guarantee, tleahéxt event can take
place.Getting ready for a departunmeans that the right train composition is on the
departure platform, angetting ready for an arrivameans that the arrival platform
can accommodate for the arriving train.

To describe the given situation of train units on the différshunt tracks and
platform tracks (called a configuration), we define a ve&o6 is called the state
of the system and is an ordered list of train type units on eddhe tracks. For
the example given in Section 1.1.2, the first elemer gescribes the train units
on platform 1, the second on platform 2, the third on shurtktdy et cetera. With
(S, g) we indicate that the train units are in st&gqust before eveng happens.
The pair(S, g) is valid if and only if eveniy can take place with the given stede
i.e. in stateSwe are ready for ever.

With this notation we can describe the solution for the exianop Section 1.1.2
as in Table 1.3.

— AB - CcccC C
_ - AA AA AA

c=0 c=1 c=0 c=0 c=1
- |.a— - |.e— - |.e = - , 84— - |.es =
_ - AB AB AB
- cDC - AA AA
~ c=1 - c=0 - c=3 BB c=0 -
C |.e& - , 87 = - |.e8—> - € — - |.ew
AB AB AB - -

Table 1.3: Solution of the example.

1.3.1 Network of (S, g)-pairs

The basic idea behind the dynamic programming algorithrhaddllowing. From
the initial state and the first event we can determine alliptsseesponses which are
compatible with the second event. In this way a set of newsg&ire,) are created
which are then treated recursively in the same way. For adbdascription, let
each pair(S, g) be a node and let each transition (set of shunt movementihtga
to a following node be an arc. This way we get a network in whiehcan move
from one pair(S, ) to an other paifS, g1). In this network we only allow
valid pairs, and each transition has an associated costaeni to the number of

12
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shunt moves required for carrying out the transition. ltasdifficult to see that the
shunting problem is equivalent to finding a shortest pathigmnetwork.

level 1 level 2 level 3 level 4
AB - '
— AA
- - b e3
— AB
— AA
AB AB &
- , € -
A
B

Figure 1.6: Dynamic programming network.

Although the network becomes very large, the network isligigtructured. The
network consists of a number of levels, where each leveksponds to one event,
see Figure 1.6. Hence, there are only arcs going from iet@leveli + 1. This
means that the cost of getting to a particular state is giyetié cost of the states
in the previous level plus the cost associated with the arcs.

To obtain the optimal solution, we just have to constructribévork level by
level and calculate the cost of getting in each of its nodesweéver, though this
would work in theory, in practice the running time of thisalghm may explode as
the instances get larger (remember that the problem is M#-ha

1.3.2 Eliminating Nodes

To make the dynamic programming approach work in practicenaed to bring

down the size of the dynamic programming network. In thisieaave present sev-
eral suggestions to speed up the dynamic program algoridmwever, by applying
some of these suggestions we can no longer guarantee thagtiheal solution is

found.

13
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Eliminate symmetry ~ Whenever there are two tracks with the same characteristics
(same capacity and reachable with the same number of shwsmamts from the
platforms), there are many nodes in the network that arealhsithe same. In the
example given earlier we have not used shunt track 3. If alluhits assigned to
track 2 are assigned to shunt track 3, we have a differentisolwhich is essentially

the same. So, in the network we can delete many states wigiglyarmetric without
affecting the solution.

Disallow costly transitions Given a transition with a high number of shunt move-
ments, one might not want to allow this transition from a picat point of view. We
can incorporate this, by simply deleting the arcs corredpanto these costly tran-
sitions from the network. This may reduce the number of aatgarcs from nodes
and may even lead to nodes which are not reachable anymduejmg the number
of nodes in the network. Note, that disallowing costly titoss may exclude the
optimal solution.

Upper bounding the solution For each node in the dynamic programming net-
work we know the cost of getting to this node. If by some (h&tia) procedure we
know that there exists a solution with castwe do not have to proceed with nodes
in the network that have cost exceedird.e. these nodes can be deleted from the
network. Reducing the dynamic programming network in thég/\does not affect
the optimal solution.

Detecting bad paths  Suppose we have created the dynamic programming net-
work up to leveli. If we now compare the cost of all nodes in levelwe may
expect that the costly ones have only a small chance to riestlie overall opti-

mal solution. Deciding not to continue from the nodes withhh¢osts reduces the
dynamic programming network. However, this may excludedghimal solution.

Rolling horizon ~ To make a decision for level 1, we may restrict ourselvesdater
ing the dynamic programming network only up to leveBased on the information
up to leveli we may decide which arc to take leaving level 1. Starting vl
resulting node on level 2, we now may create the network ugvell + 1 and
use this network to decide upon the level 2, et cetera. This ¢f decision making

is calledrolling horizon Each time we make a decision, only a small part of the
network is considered. Again, we may exclude the optimaltgmh.

1.3.3 Computational Results

We have made a proof-of-concept implementation of the dympanagramming ap-
proach in C++, comprising about 1000 lines of code. The exawiSection 1.1.2
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is used to test both the implementation and some of the dditioim rules. The
results are summarized in Table 1.4.
In this table,

e clm indicates the maximum allowed cost between each level,
e sym indicates whether or not symmetry elimination is used,

e ntp indicates whether or not states, in which more than 2 typésaof units
are on the same shunt track, are forbidden,

e tp indicates whether or not states, in which unit of tyge8 andC/D are
mixed, are forbidden,

e #states givesthe number of states on each level in the network. Iri pases,
only state counts up to level 4 are given, as the runtime asg®dramatically
after that,

e runtime gives the runtime for those computations that we ran to cetigui
(the running times are after various optimizations of theegcmn a 2.16 GHz

laptop),

e cost gives the resulting costs for those computations that wea@omple-
tion.

The number of valid states does not tell the entire storyygho The number of
intermediatestates, i.e. those states that have to be computed and magyanoh
be valid, has a large impact on the runtime as well. In casach ef the 128 states
in level 2 generates about 25000 new states, of which in ¢otigd about 1500 are
valid. This is quite a large number compared to e.g. case 4®&revthe number
25000 is already reduced to about 3700.

The impact of limiting the costs between levels in the nekwsrclear: If we do
not enforce any limits, the network is simply too large to gaie. If we limit to
4, we can complete the computation, but if we limit to 3 theesjup is almost a
factor of 5 without losing the optimal solution. Limitingelcosts of the arcs to 2
removes the optimal solution, but could provide a good ls¢igrior upper bounding
the solution (see Section 1.3.2).

The other elimination rules also cut down the number of staignificantly, al-
though not as dramatically as limiting the costs of arcs.

One of the major advantages of this approach is that addinguies (e.g. heuris-
tics used by Dutch Railways planners) is extremely easyuimroplementation it is
literally a matter of minutes. Furthermore, the chosen Ppr@ach is very suitable
for parallelization.
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Elimination rules run-
id | cim | sym | ntp | tp || #states time | cost
~25000
L oo | - | - | - |28 1282 1500 ...
an. | 4 | - | - |- | 285 128721500 180 ... - | 7375 6
141
~2410
4B. | 4 y -/ -119->72 - 780— 108 —> ... > | 280s| 6
10> 1
~2410
4C. | 4 y y | -|19> 72 -5 630> 90 > ... > | 242s| 6
10> 1
~2410
4D. || 4 y y |y|19—- 72 - 178—> 40— ... —» |153s| 6
10— 1
Al 3| - | - | - |28 1287%%1500— 180 ... — | 1465 6
141
3. 3y | - -]195710%77%65 108> ... 5|63 6
10— 1
3c.| 3y |y | -]195 7156285 90 ... |54s| 6
10— 1
3D.| 3| y |y |yll195 71 %8%178 540> ... 5| 245| 6
10— 1
oA | 2| - | - - |19 1207 %%1196-5 180 ... — | 185 | 7
12— 1
D 2y |y | yll1zo645%166540-... 58| 35| 7
1

Table 1.4: Dynamic Programming Results.
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1.4 Alternative Approaches

Besides the presented Greedy Algorithm and Dynamic PragiagAlgorithm,
other solution approaches may be possible. In this secteogive some comments
on such approaches.

1.4.1 Local Search

One might expect that a local search approach is useful @rofgbod solutions,
since each solution is a list of shunt movements compatilille the event list.
However, we feel that defining small local operations onlikisvhich resultin new
compatible lists of shunt movements, is extremely difficiithen a small change
is made in the movement list, many repair operations may dpained to keep the
list compatible with the event list. Consider the examplegiin Section 1.1.2,
where between evengs andes train AB is shunted to track 2. Suppose we modify
this first shunt movement by movingB to shunt track 1 instead of moving it to
shunt track 2. This small change makes the remainder ofghmtiompatible with
the events, i.e. the shunt movement between esgraadey cannot be performed.
This example shows that changing a single movement is nogjlgcal change,
it requires repair operations that can be much further ddwerlist. Furthermore,
it seems to be difficult to calculate the resulting changehi abjective value in
a simple way since we know nothing about the amount of regarations. This
convinces us that a local search approach may be not an eggy ga.

1.4.2 Integer linear programming

A possible approach is to extend the model from [7] by othemsimoves. For
example, to include the possibility to wait at the platforndalelay shunting, we
need to include the ‘shunting time’ explicitly. The currembdel includes a variable
zjs which equals 1 if train unif is parked at or retrieved from tracks We could
replace these variables by signaling if train unitj is parked at or retrieved from
trackss at timet. Another possibility is to add variablésrepresenting the shunting
time of train unitj. Although the number of reasonable shunting times for a trai
unit is limited, both options significantly complicate thedel: the first by strongly
increasing the number of variables and the second by thefaeadditional ‘nasty’
constraints. The computation time will probably increaseoadingly.

A different LP-based approach is to apgglumn generationin [4] a column
generation algorithm for the planning of aircraft at gateplatform stands at Ams-
terdam Airport Schiphol is presented. Because of the siityilvith the problem of
planning train units on a shunt yard, i.e., shunt tracksaspond to gates at an air-
port, the idea seems useful to explore. The idea is that thi@gm is decomposed
into two levels. At the highest ‘master’ level we have valesrepresenting a com-
plete shunting plan for one shunt track and the most impbc@amstraint is that the
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retrieval of each departing train unit and the parking ofheariving train unit is
included in exactly one shunting plan. At the detailed osablem level we deter-
mine feasible shunt plans for one track which are expectée toeneficial for the
optimization at the master level. Column generation apgres have been success-
ful to solve large optimization problems in many differepplcations. However,
certain shunt moves such as rearrangements of trains betifesrent shunt tracks
seem to be quite complicated to include in the model and fitvereve are not con-
vinced that it is worth to investigate this approach further

1.5 Further research

In this paper we have presented two approaches for shum#imgunits. The first
one is a greedy algorithm that can find a feasible shunt plarkiyuThis algorithm
typically chooses one single possibility that looks besthat current moment in
time. The second one is a dynamic programming algorithncidrafind the optimal
shunt plan and typically explores many possible states. septed an outline
and a basic version of the algorithms and developed a pradirpiprototype of the
dynamic programming algorithm.

Each of the algorithms can be improved by moving more towHrdther ap-
proach. The greedy algorithm can be improved by includingrsfook-ahead rules
and rules used by operational planners. The dynamic pragmagrcan be improved
by rules to prune non-promising states and in this way ma&esét of states that
have to be explored smaller. To have the best of both wordsiwo algorithms
can also be combined. For example, a state within the dynprogram can be
extended to a complete feasible solution by the greedy ighgor This solution can
then be used as an upper bound to prune non-promising skavestigating these
possible improvements is a topic of future research.
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