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Abstract

In this note, we study the magnetic field pattern in an MRI scanner, in order to ultimately im-
prove the resolution of the image. We model the situation in 2-D, with a simplified model for the
patient, consisting of two regions bounded by ellipses with constant dielectric properties. The so-
lution to the Maxwell equations is described in terms of two different bases: Bessel and Mathieu
functions. By expansions in Bessel (cylindrical) modes, that are matched at the boundaries, the
magnetic field can be computed in a few seconds on a PC or Mac. By optimizing the distribution
of antenna currents the homogeneity of the magnetic field can be improved.
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1 Introduction
In an MRI scanner a patient is placed in a strong constant magnetic field. We give a brief heuristic
(mixed classical and quantum-mechanical) description of the main physical process. The magnetic
field aligns all dipoles (for practical purposes, the spin-1/2 hydrogen nuclei) in the patient’s body
parallel or anti-parallel to this field. However, this alignment is not perfect and therefore the dipoles
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precess around the radial axis of the field with a typical frequency, called the Larmor frequency,
proportional to the size of the external field.

Subsequently, electromagnetic waves are created in the cavity of the scanner (by sending currents
through antennas placed inside the MRI scanner), which excite the hydrogen dipoles. The frequency
of these waves is chosen to be the Larmor frequency to maximize the number of excitations. The
electromagnetic waves temporarily cause some of the dipoles to leave their parallel/anti-parallel
state, and when the wave field subsides, these dissidents “fall back” to a parallel/anti-parallel state.
This causes the emission of a photon, a scanner detects these photons, and from this information
a computer constructs an image of the object or person in the MRI scanner. What is effectively
measured here, is the density of dipoles with fixed Larmor frequency — in practice, hydrogen nuclei.

As the strength of the magnetic field increases, so does the Larmor frequency, and hence the
frequency of the electromagnetic waves. Advances in superconducting magnet design and in MRI
technology have increased the field strength to such an extent that nowadays the wavelength of
the electromagnetic waves is of the order of the size of the patient. This causes the field to be
significantly altered from the field in an empty MRI scanner if a patient is inserted. Moreover, the
homogeneity of the magnetic field is reduced. This has the disadvantage that the received image is
distorted: it will show too many hydrogen atoms where the induced field is big and too few where
the field is small. Moreover, the induced electric field may lead to significant currents which heat up
the patient.

Therefore, the question is how to create an induced electromagnetic field whose magnetic field
is homogeneous and whose electric field is small. As constraints we assume the geometry of the
MRI scanner (i.e., size of the scanner, size of the patient, location of the antennas etc.) to be given,
and we are only allowed to change the phases and amplitudes of the currents through the antennas.
In practice, changing the size of the scanner would be prohibitively expensive, and one cannot really
change the size of the patients either. However, the antennas could be moved around a bit, but for
mathematical simplicity we do not consider this option here.

To answer this question we first have to be able to find a “simple” expression for the induced
field generated by the antennas when a given current runs through them. After some introductory
remarks about electromagnetic waves in Sections 2 and 3 we present two methods to obtain an
approximation of the induced field. In Section 4 we discuss an expression using Bessel functions.
This has the advantage that Bessel functions are well-known and many good numerical packages
exist for them. In Section 5 we consider an option using Mathieu functions, which are less easy
to work with numerically, but fit the geometry of the situation better. Finally, in Section 6, we
consider how to optimize the currents, given the fields generated by the individual antennas, such as
to maximize the homogeneity of the induced magnetic field.

2 Geometric considerations

The outer cylinder of the MRI scanner itself has, to good approximation, a rotation and translation
symmetry along the central axis. We choose coordinates so that the z-direction corresponds to the
translation symmetry, and x = y = 0 on the central axis. The edge of the scanner will therefore be a
circle at radius r (typically r ≈ 35 cm).

We consider a cross-section of the patient’s abdomen. In this region the patient is modeled
by two (confocal) ellipses. The outer one denotes a surrounding fat layer, while the inner one
denotes the inside of the patient with organs and muscles and bones. In each layer we consider
the electromagnetic properties to be constant; in particular, we use an average of the electromagnetic
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Figure 2.1: Cross-section of the MRI-scanner.

properties of the different tissues in the inside layer. The typical size of the inner ellipse is an outer
radius of 15 cm and an eccentricity of 0.85, while the outer ellipse can vary a lot, but is generally
not more than 10 cm thick.

Finally, the antennas are modeled as point/line sources located in a circle at a distance of a few
centimeters from the edge of the scanner. The currents running through the antennas will have
constant frequency, and we assume that the electromagnetic properties of the different layers are
time-independent for this fixed frequency.

3 Maxwell equations
We will show that in the case at hand, the Maxwell equations, which describe the electromagnetic
field in general, reduce to a single Helmholtz equation in each of the three regions. The theory used
is well-known, so we shall go through the derivation rapidly. For references on our notation, consult
[1].

We begin by writing down the Maxwell equations for the four fields: the electric field E, the
magnetic field B, the so-called displacement field D and the auxiliary field H1. The free charge and
the current are denoted by ρ and J respectively.

∇ · B = 0, ∇ × E +
∂B
∂t
= 0, (3.1a)

∇ · D = ρ, ∇ × H −
∂D
∂t
= J. (3.1b)

The equations on the first line are known as the homogeneous Maxwell equations, and are universally
valid. Those on the second line – the inhomogeneous Maxwell equations – depend on free charges
and currents, and on the different materials in our system.

By assumption, our materials are linear and isotropic, which means that, in each region, D and
H are scalar multiples of E and B respectively. We write D = εE and H = µB, where the dielectric

1Although different authors may use different names for these fields, there is consensus about the symbols.
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constant ε and the magnetic permeability µ are constants of the materials in the different regions. In
the situation of the MRI scanner, µ is constant throughout, and equal to µ0, the permeability of the
vacuum.

Next, we discuss the boundary conditions. Since the conductivity in the inner regions (patient)
is much smaller than that of the metal cylinder, the losses in the latter will be small, hence we will
assume it to be superconducting. Further, we will neglect the penetration depth of the current in the
metal. Let n be a vector normal to the boundary between two media 1 and 2, and let Di, Ei, i = 1, 2,
be the displacement and electric fields, respectively, then

n · (D1 − D2) = Σ, n × E1 = n × E2.

Here Σ is the free surface charge between the media. In particular, the tangential component of E
vanishes on the outer boundary (i.e., the MRI scanner itself). The boundary conditions for B and H
are similar, and, since µ is constant, they imply that B is continuous on the entire domain.

The two inhomogeneous Maxwell equations (3.1b) imply the conservation law

∂ρ

∂t
+ ∇ · J = 0.

In the current term J, we must distinguish between the externally imposed current Jext, and the
current Jind induced in the medium by the electric field. We assume that the induced currents are
governed by Ohm’s law, i.e. Jind = σE, where σ is the conductivity of the medium. We note that
different sources approach this in different ways: some include the induced currents in the J, others
redefine ε, which is then commonly referred to as the complex permittivity. The externally imposed
current is assumed to consist of N line sources, located at positions (xl, yl) to be specified later:

Jext = Jext(x, y, t) =
N∑

l=1

 0
0

Il exp(iωt)δ(x − xl)δ(y − yl)

 , (3.2)

where the constants Il determine the amplitude and the phase of the currents (obviously, in reality all
the physical quantities are real, but this complex formalism simplifies the formulas).

The homogeneous Maxwell equations (3.1a) imply the existence of potential functions: a vector
potential A and a scalar potential Φ. They are related to the electromagnetic fields via

B = ∇ × A, E = −∇Φ −
∂A
∂t
. (3.3)

We note that A and Φ are not uniquely defined: if (A,Φ) are potentials, then one can check that
(A + ∇ f ,Φ − ∂ f

∂t ) are potentials of the same fields, for any function f . This non-uniqueness, called
gauge-freedom, can be used to impose some conditions on A and Φ. There are several choices for
this, but we will use the so called Lorenz2-gauge:

∇ · A +
1
c2

∂Φ

∂t
= 0, where

1
c2 = εµ.

This gauge is chosen so that the inhomogeneous equations would separate if the domain were ho-
mogeneous, which our domain is not; nevertheless, we stick with the Lorenz gauge.

2Although often erroneously called Lorentz gauge, supposedly after Hendrik Lorentz, it was in fact Ludwig Lorenz who
first published the idea.
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Based on the symmetries of the problem, the expression (3.2) for Jext, and physical intuition, we
now take the Ansatz

Φ = 0, and A =

 0
0

Az(x, y, t)

 .
For notational convenience, we write x for the pair (x, y), and we replace Az by A, hence Az(x, y, t)
becomes A(x, t), with x ∈ R2. The governing equation for the vector potential is

εµ
∂2A
∂t2 = ∆A + µJ, (3.4)

which is to hold globally, i.e., A is continuously differentiable throughout the domain (in particular
across the boundaries between the regions), except at the antennas, where singularities occur. As
boundary condition we take A = 0 on the outer boundary.

In view of the time dependence of the currents through the antennas, we expect waves of fixed
frequency ω. This means that all functions under consideration (and in particular A) are a product of
a function that depends only on space, and eiωt. The spatial part of a function will be denoted by the
same letter as the function itself, e.g., the electric field is from now on of the form Eeiωt. We thus
replace ∂A

∂t by iωA and ∂2A
∂t2 by −ω2A.

Recalling that

Jind = σE = −
∂A
∂t
= −iωA

and by combining (3.4) and (3.2) we obtain an elliptic (Helmholtz) equation, for ~x ∈ Ω ⊂ R2,(
∆ + ζ2

)
A = −

N∑
l=1

clδ(~x − ~xl), A|∂Ω = 0, (3.5)

for the nonzero component of the vector potential. Here

cl = µIl,

and
ζ2 = εµω2 − iσω

is (a complex) constant on each of the regions. We will also use the notation ζ2
k = εkµ0ω

2 − iσkω
for the three regions k = 1, 2, 3. Note that to good approximation ε1 = ε0, the dielectric constant of
vacuum/air.

Equation (3.5) indeed has a (unique) solution, from which we can recover the fields B and E
using (3.3). It is easily checked that these fields then satisfy the Maxwell equations as well as the
boundary conditions, hence they represent a solution to our original problem. In fact, general PDE
theory for Maxwell equations implies that it is the unique solution. We are thus left with the task of
finding the solution of the Helmholtz equation (3.5).

4 Cylindrical modes
Within each region the coefficients ε, σ, and µ are constant. For the constant coefficient PDE, an
infinite number of solutions can easily be found by separation of variables. Since the Helmholtz
equation (3.5) is linear, with an inhomogeneous right-hand side, we solve the equation for one an-
tenna at a time, and we may restrict our attention to cl = 1. Based on this, the strategy in this section
will be as follows:
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1. In region I (see Figure 2.1 for the geometry of the various regions), write A = Ã+ F, with F a
fundamental solution. The function Ã then satisfies a homogeneous PDE, with inhomogeneous
boundary conditions.

2. For each of the regions, find a set of basis functions that satisfy the homogeneous PDE.

3. Write A and Ã as a finite linear combination of the basis functions in each region. Each linear
combination automatically satisfies the PDE. Choose the coefficients such that the boundary
conditions are satisfied, or at least as well as possible, since only a finite number of modes can
be used in practice.

We will use polar coordinates (even if the domain and the different regions (as well as the patient)
are elliptic). Furthermore, we drop the tilde (on A in region I) from the notation.

The fundamental solution F = F(~x, ~xl) satisfies

(∆ + ζ2
1 )F = −δ(~x − ~xl),

where ζ1 = ω
√
ε0µ0 as explained in the previous section. The solution is readily given by

F = −
1
4

Y0(ζ1|~x − ~xl|),

where Y0 is the 0-th order Bessel function of the second kind (notice that F is not uniquely deter-
mined since any smooth solution of the homogeneous PDE can be added to it). With the source at
the antenna position, we have

F = −
1
4

Y0(ζ1 ρ),

where ρ(r, θ) = r2 + R2
ant − 2Rantr cos(θ − θant) is the distance to the antenna, which is positioned at

(Rant, θant), in polar coordinates.
To find the basis functions we use separation of variables in polar coordinates, which can be

found in many textbooks on PDEs. Substituting the Ansatz A(r, θ) = R(r)Θ(θ), we find that Θ must
satisfy the eigenvalue problem

Θ′′ + λΘ = 0, Θ is π-periodic,

with solutions Θ = einθ, λ = n2, n ∈ Z, while R must satisfy the equation

d2R
dr2 +

1
r

dR
dr
−

n2

r2 R + ζ2R = 0.

This equation has two linearly independent solutions for each n:

Jn(ζ r) and Yn(ζ r),

where Jn and Yn are the Bessel functions of order n of the first and second kind, respectively. The
basis functions are therefore φk,n(r)einθ and ψk,n(r)einθ, with

φk,n(r) = κk,n Jn(ζ r),
ψk,n(r) = κ̃k,n Yn(ζ r),

where k = 1, 2, 3 represents the region, and κk,n and κ̃k,n are normalization constants.
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In regions I, II and III we now use the following representation of the solution:

A1(r, θ) = F(ρ) +
n1∑

j=−n1

a1, jφ1, j(r)ei jθ +

ñ1∑
j=−ñ1

b1, jψ1, j(r)ei jθ

def
= Φ1(r, θ) · a1 + Ψ1(r, θ) · b1

A2(r, θ) =
n2∑

j=−n2

a2, jφ2, j(r)ei jθ +

ñ2∑
j=−ñ2

b2, jψ2, j(r)ei jθ

def
= Φ2(r, θ) · a2 + Ψ2(r, θ) · b2

A3(r, θ) =
n3∑

j=−n3

a3, jφ3, j(r)ei jθ

def
= Φ3(r, θ) · a3,

where we define ak and bk, k = 1, 2, 3, to be column vectors containing the ak, j and bk, j, and Φ1 to
be a row vector containing the functions φ1, j(r)ei jθ, and similarly for the other Φ’s and Ψ’s. The ψ’s
are omitted in region III, as they would cause an undesirable pole in the solution. The choice of the
number of basis functions nk, k = 1, 2, 3 and ñk, k = 1, 2 is discussed below.

Using the boundary conditions we try to match the solutions at the boundaries between the
different regions and thus obtain the coefficients ak, j and bk, j. These conditions are evaluated using
a uniform distribution in the angle along the cavity (C) and ellipses (E1 and E2). This leads to the
following over-determined system

Φ1|C Ψ1|C 0 0 0
Φ1|E1 Ψ1|E1 −Φ2|E1 −Ψ2|E1 0
∂Φ1
∂n |E1

∂Ψ1
∂n |E1 −

∂Ψ2
∂n |E1 −

∂Ψ2
∂n |E1 0

0 0 Φ2|E2 Ψ2|E2 −Φ3|E2

0 0 ∂Φ2
∂n |E2

∂Ψ2
∂n |E2 −

∂Φ3
∂n |E2




a1
b1
a2
b2
a3

 =

−F|C
−F|E1

− ∂F
∂n |E1

0
0

 . (4.1)

Here ∂
∂n denotes the derivative in the direction normal to the boundary, and Φ1|C is the matrix with

as its rows Φ1 evaluated at (many) different points in C. To be precise, the elements of the matrix
Φ1|C are given by (Φ1|C) j,k = φ1,−n1−1+k(r j)ei(−n1−1+k)θ j , in which (r j, θ j) are the points along C, and
k = 1, . . . , 2n1 + 1. The other blocks in the matrix in (6) are defined similarly. The coefficients
a1, a2, a3, b1, b2 are obtained by solving the system (4.1) using a least squares approach.

The above algorithm was implemented in Matlab. In Figure 4.1 a plot of the field is given, for
the following parameters. We set the outer cylinder to have a radius of 0.34 m, and the semi-axes of
the ellipses to be 0.2 m, 0.125 m, and 0.175 m, 0.1 m for the outer and inner ellipse, respectively.
The antenna was located at θant = 0, Rant = 0.315 m, with unit current. Furthermore, we set the
frequency at the Larmor frequency ω = 300 MHz, and set material constants of εr = 5, σ = 0.076,
for the fatty layer, and εr = 5, σ = 0.4 for the interior part of the body; see [5]. The number of the
different modes used was (20, 20, 13, 13, 13) for (n1, ñ1, n2, ñ2, n3). With lower orders very similar
pictures were obtained. The computation of the coefficients was done in a few seconds on a PC.
Evaluating all the basis functions to compute an image took more time, in the order of a minute
depending on the resolution and the number of basis functions involved. The remaining errors in
the boundary values were small, up to a few percent of the values of the fundamental solution on
the circle and outer ellipse. A second example is shown in Figure 4.2, where we have two antennas,
located at θ = 3π/8 and θ = 11π/8. The field is seen to have a hard time penetrating the body.
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real part of Az field with (41,41,27,27,27) modes
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Figure 4.1: Real and imaginary part of the simulated A field
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Figure 4.2: Real and imaginary part of the simulated A field, with two antennas.

Two remarks can be made about the numerics. First, the normalization is important, since Bessel
functions are badly scaled on the domain of interest. Also, the rows in the system (4.1) that cor-
respond to derivatives are normalized differently from the other rows. Second, the method breaks
down because of rank deficiency of the matrix if the number of basis functions is too large. By
choosing suitable normalization, quite a large number can be handled, whereas with a poor choice
for normalization the rank deficiency occurs already for much smaller numbers of basis functions.

To conclude, the expansion in these cylindrical modes leads to a very fast algorithm. A compar-
ison with results from finite-difference calculations could provide a final check of the results.

5 Mathieu functions

5.1 Elliptic coordinates

Let Ω ⊂ Rn be a bounded open set, we now focus on the Helmholtz equation:

∆A + ζ2A = 0, in Ω, (5.1)
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Figure 5.1: Elliptic coordinate grid: the ellipses are curves of constant ξ, the hyperboles curves of
constant η.

for ζ ∈ C specified in the previous sections. Since the specific domains we are interested in are
elliptical, we introduce the elliptic coordinates, thus simplifying the form of the boundary conditions.
We set

x = a cosh ξ cos η,
y = a sinh ξ sin η,

where 2a is the distance between the foci, ξ ≥ 0 and η ∈ [−π, π). An impression of an elliptic
coordinate grid is given in Figure 5.1.

Note that the ellipticity of the ellipse for given ξ equals 1/ cosh(ξ) and hence quickly becomes
zero as ξ → ∞. Equation (5.1) in elliptic coordinates becomes

2
a2(cosh 2ξ − cos 2η)

(
∂2A(ξ, η)
∂η2 +

∂2A(ξ, η)
∂ξ2

)
+ ζ2A(ξ, η) = 0, in Ω. (5.2)

Now we use the standard separation of variables technique, i.e., we look for a solution of the particu-
lar form A(ξ, η) = X(ξ)Y(η). Then the partial differential equation (5.2) results in two linear ordinary
differential equations: 

X′′(ξ)
X(ξ)

+ 1
2ζ

2a2 cosh 2ξ = λ,

Y ′′(η)
Y(η)

− 1
2ζ

2a2 cos 2η = −λ,

(5.3)

where λ is the separation constant. These equations are known as the radial and the angular Mathieu
equations, respectively (see e.g. [2], [3], [4] and the references therein). Note that the radial equation
can be obtained from the angular equation by the substitution η = −iξ, hence the solutions of the
radial equations are just those of the angular part with imaginary argument.

As any linear second order differential equation these equations have two independent solutions,
and we can choose as basis of the solution space an even and an odd solution. Denote these by
C(λ, q, η) (even) and S (λ, q, η) (odd) respectively, with (traditionally) q = 1

4ζ
2a2. The angular equa-

tion only has 2π-periodic solutions for specific values of λ, that are denoted by the two (q-dependent)
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sequences λk(q) (k ≥ 0) and µk(q) (k ≥ 1) respectively3, called the characteristic values. The se-
quences λk(q) and µk(q) are defined such that

Ck(q, η) = C(λk(q), q, η), S k(q, η) = S (µk(q), q, η),

are the 2π-periodic solutions, continuous in q, with limq→0 Ck(q, η) = cos(kη) and limq→0 S k(q, η) =
sin(kη). For q = 0 we have λk = µk = k2, but for q , 0 all λk and µk are generically different. For
positive real q we have λ0 < µ1 < λ1 < µ2 < λ2 < µ3 < . . ., see [3].

The angular part of our solution Y(η) should be 2π-periodic, hence we only retain these Ck’s and
S k’s as solutions for that part. Furthermore, using the eigenvalues λk and µk one can write down the
radial solutions X(ξ). Thus, we find that the system of equations (5.3) has the general solution:

A(ξ, η) =
∑

k

(
αkC(λk(q), q,−iξ) + βkS (λk(q), q,−iξ)

)
Ck(q, η)

+
(
γkC(µk(q), q,−iξ) + δkS (µk(q), q,−iξ)

)
S k(q, η),

where the coefficients αk, βk, γk, δk have to be determined in each of the specific domains by matching
boundary conditions and imposing the correct symmetry and regularity for A.

In the domain containing the origin we must also ensure that the solution remains continuously
differentiable on the line connecting the two focal points. For the even angular solutions, this implies
that the derivative at ξ = 0 of the radial part must vanish (for it changes sign when passing the line
between the focal points). For odd angular solutions, the value of the radial part itself must vanish
on this line. More concretely, we lose the S (λk, q,−iξ)Ck(q, η) and C(µk, q,−iξ)S k(q, η) solutions on
this domain, or alternatively βk = γk = 0 on this domain.

5.2 Matching
It still remains to determine the constants αk, βk, γk and δk on all domains. Denote the solutions
on the different domains by A1 + F, A2, A3 for the domains I, II, and III, respectively, and the
corresponding constants by αk, j, βk, j etc. for j = 1, 2, 3.4 Here F is the solution in free space for the
Helmholtz equation including the sources. We set ξ1 to be the outer boundary of the scanner, and ξ2
and ξ3 to be the radii of the outer (resp. inner) ellipse of the patient. The boundary conditions then
become

A1 + F = 0 on ξ = ξ1, (5.4a)
A2 = A1 + F on ξ = ξ2, (5.4b)
A3 = A2 on ξ = ξ3, (5.4c)

∂ξA2 = ∂ξA1 + ∂ξF on ξ = ξ2, (5.4d)
∂ξA3 = ∂ξA2 on ξ = ξ3, (5.4e)

Heuristically, this will give us ‘5 sets’ of conditions that can be used to determine the ‘10 sets’ of
constants α j,k ( j = 1, 2, 3), β j,k ( j = 1, 2) etc..

Concerning condition (5.4a), as written down here we force our solution to vanish at an ellip-
tical boundary, while the actual MRI scanner is circular. However, since the ellipticity of ξ-levels

3In the literature, these sequences are usually called ak(q) and bk(q), but in this paper we already use those symbols for
different purposes.

4The indexing is a bit different from the one in the previous section.
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decreases with ξ, the shape of the ellipse for ξ1 is already close to a circle, and this will provide a
rather good approximation. With a little extra work the matching can be performed on a circular
interface as well.

The idea of the matching is to take a basis of the angular part of the solution on each interface,
write the solutions on both sides in terms of this basis and then match the corresponding coefficients.
When we started researching this method we hoped that the angular Mathieu functions in the differ-
ent regions would give the same basis, so that we would not have to perform any base-change before
the actual matching. This would reduce the boundary conditions to equations involving only 4 or 3
parameters each. However, as the functions Ck and S k do depend on q, we were out of luck. This
forces us to perform a basis transformation on the angular part of at least one side for each interface.

We considered two methods. One method is to use as a basis the Mathieu functions Ck(q, ·) and
S k(q, ·) for the value of q on one of the two sides of the interface. Since these Mathieu functions are
orthonormal with respect to the standard L2 inner product given by

〈 f , g〉 =
1
π

∫ 2π

0
f (t)g(t)dt,

we can find the expansion of the functions Ck(q′, ·) and S k(q′, ·) in this basis by simply calculating the
inner products 〈Ck(q′, ·),Cl(q, ·)〉 and 〈S k(q′, ·), S l(q, ·)〉 (since arguments of oddness of the integrand
show that 〈Ck(q′, ·), S l(q, ·)〉 = 0). Unfortunately, not much is known about the coefficients obtained
in this way.

Another method is to express both sets of solutions in the basis given by cosines and sines.
The advantage is that the expansion of the angular Mathieu functions in cosines and sines has been
studied previously. The disadvantage is that we now have to perform two basis transformations,
which implies we make approximation/numerical errors twice. We will expand on this method
further (the analysis of the first method is quite similar).

We need to find an expansion

Ck(q, x) =
∞∑
j=0

c j(k, q) cos( jx),

where sines do not occur since Ck(q, x) is even. Indeed, since Ck is either π-periodic or anti-periodic
depending on the parity of k, only the cos( jx) occur where k− j is even. Good algorithms to calculate
these coefficients exist. Similarly we want the coefficients in

S k(q, x) =
∞∑
j=1

s j(k, q) sin( jx),

where again s j(k, q) = 0 if k − j is odd.

We remark that most of these coefficients are quite small, namely both c j(k, q) = O( q|k− j|/2

k|k− j|/2 ) and

s j(k, q) = O( q|k− j|/2

k|k− j|/2 ) for fixed k, with small constants. For the specific values of q encountered in this
problem we can therefore approximate Ck(q, x) very well by cos(kx) for large enough k (for example
ck−2(k, q) = q/4(k − 1) + O( q3

k3 ) if k > 2).
Matching the solution on each interface can now be done by equating the coefficients of each

cos( jx) and sin( jx). For example, for the continuity on the interface between the second and third
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layer we obtain ∑
k

[αk,2C(λk(q2), q2,−iξ3) + βk,2S (λk(q2), q2,−iξ3)]c j(k, q2)

=
∑

k

αk,3C(λk(q3), q3,−iξ3)c j(k, q3),

as a relation between the coefficients of cos( jx) on both sides of the interface (recall that βk,3 = 0).
Similarly the continuous radial differentiability at the interface gives us the relation∑

k

[αk,2C′(λk(q2), q2,−iξ3) + βk,2S ′(λk(q2), q2,−iξ3)]c j(k, q2)

=
∑

k

αk,3C′(λk(q3), q3,−iξ3)c j(k, q3),

where the C′ and S ′ are the derivatives of the radial solution.
In order to take F into account we will have to express that solution also in terms of cosines

and sines on the interfaces. Since the solution F is generally not immediately given in terms of
elliptical coordinates, there is no simple formula expanding this function in terms of cosines and
sines. However we can always numerically calculate the Fourier coefficients to express

F(ξ2, η) =
∑

j

ψ j,2c cos( jη) + ψ j,2s sin( jη),

and a similar equation on the outer boundary.
If the assumption that the circular outer boundary can be approximated by an ellipse of suffi-

ciently low eccentricity fails we can also use a similar calculation to express the basis functions
of the solution on region I in terms of Fourier coefficients on an actual circle. However, calculating
these coefficients involves (numerically) calculating many integrals for each basis function, and since
each integral involves the slightly intractable Mathieu functions this could become computationally
expensive.

Note that the resulting system of equations splits in four systems of equations. Indeed, we have
one set of equations relating the αk,i and βk,i for even k, one set for αk,i and βk,i with odd k, one set for
γk,i and δk,i with even k and one set for γk,i and δk,i with odd k. These sets of equations correspond to
solutions which are even/odd in η (i.e. symmetrical or anti-symmetrical with respect to reflection in
the horizontal axis) and π periodic/anti-periodic (i.e. symmetrical or anti-symmetrical with respect
to the vertical axis). Since all sets are very similar we will focus on the first one.

5.3 Approximation
In order to obtain a finite set of equations we only consider a small number K of modes. This means
we set αk,i = 0 and βk,i = 0 for k ≥ K. Note that here we only consider the equations between the αk,i

and βk,i with k even (as announced in the previous section), so in particular we forget about γk,i and
δk,i. To obtain a system with the right amount of equations we moreover only consider the equations
related to the coefficients of cos( jx) with j ≤ K. Indeed, in the equations of the coefficient of cos( jx)
for j > K the terms with α j,i are very dominant since c j( j, qi) ≈ 1, while c j(k, qi) � 1 for k , j and
j > K, so including that equation without including the α j,i term would probably lead to very bad
results.
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We now have to solve the system of equations
A1(ξ3) 0 0
A1(ξ2) −A2(ξ2) 0

0 A2(ξ3) −A3(ξ3)
A′1(ξ2) −A′2(ξ3) 0

0 A′2(ξ3) −A′3(ξ3)



α1
β1
α2
β2
α3

 =

−F(ξ3)
−F(ξ2)

0
−F′(ξ2)

0

 .

Here Am(ξn) denotes the matrix

Am(ξn) = {C(λk(qm), qm,−iξn)c j(k, qm), S (λk(qm), qm,−iξn)c j(k, qm)}0≤k, j≤K, k, j even

and similarly for Am(ξn)′ (containing the derivatives of C and S ). Moreover

αn = (αn,k)0≤k≤K, k even,

and finally
−F(ξn) = (−ψ j,nc)0≤ j≤K, j even.

The problem thus involves solving a system of 5b(k + 1)/2c equations in as many variables.
Considering the matrix is nearly sparse (i.e. involves many small terms as cl(k, q) is small for |l−k| >
0) this should be feasible, but we have not implemented it.

A numerical problem might occur since the columns in the matrix corresponding to α1,k and
β1,k are nearly identical, so the matrix becomes almost singular and likewise for α2,k and β2,k. The
problem is that C(λk(q), q,−iξ) and S (λk(q), q,−iξ) (the basis of the solutions to the radial Mathieu
equation) are very similar for large ξ. Indeed they are the generalizations of the hyperbolic cosines
and sines, which both behave as exp(x)/2 for large x. While C(λk(q), q,−iξ) and S (λk(q), q,−iξ) do
not behave like exp(ξ)/2 for large ξ, they still are very similar. In order to find a less near-singular
matrix it would therefore be good to find a different basis of the radial solution to the Mathieu
equations. Indeed the arguments given above apply to any basis of solutions (in the radial part), so
the method would not need to change.

One convenient basis would be the one which intuitively is associated to exp(x) and exp(−x),
namely C(λk(q), q,−iξ) + S (λk(q), q,−iξ) and C(λk(q), q,−iξ) − S (λk(q), q,−iξ). Unfortunately we
have been unable to find any good algorithms to actually calculate these functions (other than calcu-
lating C and S and taking their difference, which does not behave well numerically as the difference
of these two functions is much smaller than their values itself).

6 Optimization

We continue our semi-explicit approach to the problem and consider here the task of making the
field in the patient as uniform as possible. We combine the separation-of-variables method in polar
coordinates (i.e., using Bessel functions) from Section 4, with the handling of the boundary condi-
tions between regions from Section 5. In particular, we use a discrete Fourier transform technique
to match the solutions in the different regions at their common boundaries. Furthermore, we refrain
from “normalizing” the Bessel functions (as was done in Section 4). Instead, we precondition the
matrix that governs the matching of the Fourier modes, which reduces rank deficiencies (mentioned
in Sections 4 and 5).
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More precisely, for each of the N antennas, uniformly distributed on a circle of radius Rant, we
solve the Helmholtz equation with source term (3.5) using 2M + 1 angular modes in the Fourier-
Bessel expansion in each region (and correspondingly also 2M + 1 modes in the Fourier expansion
for the matching conditions at the boundaries), i.e.,

A =
M∑

m=−M

(
ak,mJm(ζkr) + bk,mYm(ζkr)

)
eimθ,

for the three regions k = 1, 2, 3. We will only consider optimization of the field in (a subregion
of) the core of the patient (region III). There, only Bessel functions of the first kind contribute
(b3,m = 0), and for the jth antenna we denote the coefficients a3,m from now on by a j

m. In region III,
the expression for the potential then becomes

A =
N∑

l=1

cl

M∑
m=−M

al
mJm(ζr)eimθ, (6.1)

where ζ = ζ3, and the complex amplitudes cl = µ0Il appear as complex control parameters.
The magnetic field corresponding to A is given by

B =

 Bx

By

0

 = ∇ ×
 0

0
A

 =


∂A
∂y
− ∂A
∂x
0

 .
The part of the field that we are interested in is B+ = Bx+iBy, since this is the (polarized) combination
that turns the spins. This field, induced by the antennas, is often called B+1 to distinguish it from the
much bigger constant field B0 in the axial direction (generated by the superconducting magnet). We
are thus interested in

B+ = Bx + iBy =
∂A
∂y
− i

∂A
∂x
= eiθ

(
1
r
∂A
∂θ
− i

∂A
∂r

)
.

Using the identities

Jm−1(r) + Jm+1(r) =
2m
r

Jm(r), and

Jm−1(r) − Jm+1(r) = 2
dJm

dr
(r),

for Bessel functions, the expression (6.1) for the potential implies that the approximation of B+ in
the inner region III is

B+ =
N∑

l=1

cl

M∑
m=−M

iζal
mJm+1(ζr)ei(m+1)θ. (6.2)

We have attempted to find those values of cl for which B+, rather than |B+|, is as uniformly
distributed as possible. We make this choice because this problem is much easier to solve and still
leads to reasonably uniform |B+|. The reason it is easier is that minimizing the variation in B+,
as formulated below, is in essence a least square problem, i.e., a linear algebra problem, while
minimizing the variation in |B+| is a fully nonlinear optimization problem. Even if one eventually
would like to optimize |B+|, it would not be a bad idea to start that optimization procedure from
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the easily computable configuration that optimizes B+. Let us also remark that, to keep the method
tractable, we did not consider the issue of minimizing the electric field.

Recalling that
>
Ω

B+ =
∫
Ω

B+/
∫
Ω

1 is the average of B+ on Ω, a simple and apparently satisfying
approach is to use >

Ω

∣∣∣B+ − >
Ω

B+
∣∣∣2∣∣∣>

Ω
B+

∣∣∣2
as a measure for the variation in B+. We can rewrite this as>

Ω

∣∣∣B+ − >
Ω

B+
∣∣∣2∣∣∣>

Ω
B+

∣∣∣2 =

>
Ω
|B+|2∣∣∣>
Ω

B+
∣∣∣2 − 1.

Since this expression is clearly invariant under scalings of B+, and since
∫
Ω

1 is just the (fixed)
measure of Ω, one may reformulate the problem as finding the minimizer of

min
{∫
Ω

|B+|2 :
?
Ω

B+ = 1
}
,

i.e., minimization is over all cl such that
>
Ω

B+ = 1.
We first consider the case where the optimization domain Ω is a disk D of radius ρ around the

origin, where ρ is sufficiently small, so that the domain lies entirely in region III. This choice of
domain reduces the integral formulas considerably (we will review the general case below). In view
of (6.2) the constraint becomes?

Ω

B+ =
2
ρ2

N∑
l=1

clal
−1iζ

∫ ρ

0
J0(ζr)r dr = 1.

The expression to be minimized reduces to (complex conjugation denoted by a star)∫
D
|B+|2 =

∑
l,k,m,n

clc∗kal
mak∗

n ζζ
∗

∫
D

Jm+1(ζr)J∗n+1(ζr)ei(m+1)θe−i(n+1)θ

=
∑
l,k,m

clc∗kal
mak∗

m ζζ
∗2π

∫ ρ

0
|Jm+1(ζr)|2r dr

=

M∑
m=−M

∣∣∣∣∣∣∣∣
N∑

l=1

clal
mζ

√
2π

∫ ρ

0
|Jm+1(ζr)|2r dr

∣∣∣∣∣∣∣∣
2

.

To ease notation we introduce

qml = al
mζ

√
2π

∫ ρ

0
|Jm+1(ζr)|2r dr,

and the matrix Q = (qml), as well as the vector c = (cl). Then

∫
D
|B+|2 =

∑
m

∣∣∣∣∣∣∣∑l

clqml

∣∣∣∣∣∣∣
2

= |Qc|2 .
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To write the constraint in linear algebra terms as well, define the vector p = (pl) with

pl =
2
ρ2 al
−1iζ

∫ ρ

0
J0(ζr)r dr.

Then we may reformulate the problem as finding the least-square solution of Qc = 0 under the
constraint pT c = 1.

With a final reformulating step the constraint can be absorbed into the matrix, namely define

Q̃ =
(

pT

Q

)
,

and let e1 be the standard unit vector. Find the least-square solution of Q̃x = e1, say x = c̃ = (c̃l),
then, using the linearity of the problem, it follows that the optimal c = (cl) of the constraint problem
above is given by a rescaled version of c̃, namely

cl =
1

pT c̃
c̃l.

For general domains Ω this can be generalized as follows. Let us describe the method for a two-
dimensional integral using polar coordinates, but it is straightforward to extend. We first want to
discretize the integral. Let Ω lie inside some (large) disk DR, and let ∆r and ∆θ be discretization step
sizes, so that n1 =

R
∆r and n2 =

2π
∆θ

are integers. The grid points are now given by r j1 = ( j1 − 1
2 )∆r

and θ j2 = j2∆θ for 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2. Let I be an enumeration of all the grid points that lie
inside Ω, and 1 ≤ i ≤ NΩ (with NΩ ≤ n1n2) indexes I, i.e., (ri, θi) ∈ Ω.5 Then∫

Ω

f (r, θ) ≈ ∆r∆θ
NΩ∑
i=1

f (ri, θi)ri,

where the final “weight” ri is due to the polar-coordinate Jacobian. With this discretization in place,
we may write, with δ = ∆r∆θ∫

Ω

|B+|2 ≈
∑

l,k,m,n,i

clc∗kal
mak∗

n |ζ |
2δJm+1(ζri)J∗n+1(ζri)riei(m+1)θi e−i(n+1)θi .

To simplify notation we introduce

gim = Jm+1(ζri)ei(m+1)θi
√

riδ,

and the matrix G = (gim), as well as hml = al
mζ and H = (hml). Then the above expression reduces to

∫
Ω

|B+|2 ≈
∑

l,k,m,n,i

clc∗khmlh∗nkgimg∗in =
∑

i

∣∣∣∣∣∣∣∑m,l gimhmlcl

∣∣∣∣∣∣∣
2

= |GHc|2.

The remainder of the argument is now analogous (with Q = GH) to the case Ω = D.

5A formal description is as follows: let I = {( j1, j2) | (r j1 , θ j2 ) ∈ Ω}, and NΩ is the number of elements in the set I. Then
there are “enumeration” functions ̃1(i) and ̃2(i) such that I = {(̃1(i), ̃2(i)) | 1 ≤ i ≤ NΩ}. Now set ri = r ̃1(i) and θi = θ

̃1(i).
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A amplitude, region 1
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Figure 6.1: The amplitude and phase of the fields A and B+ in the different regions. The antenna
currents are not optimized.

6.1 Results

The computational parameters in the simulation were chosen as follows: 65 Fourier-Bessel modes
are used in each region (for both types of Bessel functions), and 28 discretization points on each
boundary. The optimization computation in this case only takes a few seconds. For the physical
parameters we used realistic values provided by the problem presenters: ε2 = 10ε0 and σ2 = 0.076
for the fatty layer, and ε3 = 34ε0 and σ3 = 0.4 for the interior part of the body. The parameters
that determine the geometry of the MRI scanner are the same as in Section 4. Note that since the
problem is linear the absolute size of the fields is fairly irrelevant (although it is of course important
in practice), since it can be tuned by an arbitrary multiplicative constant.

For comparison, we first look at the non-optimized fields in Figure 6.1. There the amplitudes
of the currents in the antennas are all equal and the phase is rotated uniformly (Il = I1e2πi(l−1)/16).
We indeed see the phase of A nicely rotating, while the field does not penetrate the body very well.
Looking at the crucial B+ field, we see that its amplitude is nonuniform and very small in certain
central parts of the body.

In Figure 6.2 we have optimized (in the sense explained above) the B+ field in a disk of radius
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Figure 6.2: The amplitude and phase of the fields A and B+ in the different regions. The antenna
currents are optimized as to make B+ optimally uniform in the indicated disk inside the inner ellipse.
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A amplitude, region 1
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Figure 6.3: The amplitude and phase of the fields A and B+ in the different regions. The antenna
currents are optimized as to make B+ optimally uniform in the entire inner ellipse.

0.1 m around the origin (the optimization region is indicated in the figure). We see that although
our method makes B+ optimally uniform, in fact the amplitude |B+| is much more uniform than the
phase. This is a bit unexpected, but it is very welcome in view of the original aim of making this
amplitude uniform, and we are pleasantly surprised by how uniform the amplitude of the field is: the
fluctuations are within a factor 2. When we look at the antennas, we see quite a spread in current
amplitudes, and the complicated phase pattern illustrates the subtleness of the optimal configuration.

Next we optimize the B+ field on the entire inner ellipse (the interesting not-fat part of the body).
In Figure 6.3 we see that the amplitude of the resulting field is less uniform, which is to be expected
since we are trying to make it uniform on a bigger domain, but the results are still much better than
the non-optimized case in Figure 6.1.

Finally, we optimize on a domain whose size is in between the disk and the entire ellipse. The
results are depicted in Figure 6.4, where also the domain of optimization is indicated. The results
show a fairly uniform |B+|: within a factor 3 over the entire ellipse representing the inner region of
the body. This demonstrates that the relatively simple optimization procedure performs satisfactorily
even on non-circular domains. We note however that perhaps the optimization in Figure 6.2 is
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Figure 6.4: The amplitude and phase of the fields A and B+ in the different regions. The antenna
currents are optimized as to make B+ optimally uniform in the indicated domain.
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preferable. Furthermore, the pattern in the (amplitude and phase of) antenna currents is quite similar
to Figure 6.2.

7 Concluding remarks
After completing the report we asked Ir. Bob van den Bergen and Dr. Ir. Nico van den Berg of
the Department of Radiotherapy of the University Medical Center in Utrecht to write the concluding
remarks on the results obtained for the problem they submitted to the study group:

The UMC Utrecht problem consisted of finding a semi-analytical method to calculate and opti-
mize rapidly the radiofrequency (RF) field of an MRI scanner. According to the UMC Utrecht this
goal has been fully achieved. The developed model allows an evaluation of the full electromagnetic
field in less than a minute. This enables an on-the-fly optimization procedure for patients. At the
moment we are designing the RF hardware to implement this procedure for our 7 Tesla MRI scanner.

As an extra bonus we obtained a rapid optimization method which is based on a simple least
squares method in stead of the conventionally applied non-linear optimization procedures which
suffer from lengthy calculation times and local minima. Currently, we are using this to study the
ultimate RF homogeneity as a function of various physical parameters. Furthermore, the short com-
putation time opens up the new possibility to find the optimal coil geometry in an automated fashion.
Concluding, we can state that the SWI workshop has been a great success for the UMC Utrecht and
has resulted in much new research.

The UMC Utrecht would like to express their gratitude for being able to take part in this work-
shop. It is quite unique that such mathematical talent and knowledge is brought together to solve
such a complex modelling problem in the medical industry. The rigorous mathematical methodol-
ogy of the participants applied to this physical problem has been an eye-opener. On a more personal
level, we would like to thank to all the participants for their work and great character. Enlighten all
these mathematical heathens out there!
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