
The ING problem: a problem from the financial
industry

Cornelis W. Oosterlee∗

In the 2007 Mathematics with Industry workshop, ING posed a challenging problem from fi-
nancial mathematics. For a system of stochastic differential equations, representing an advanced
model for asset prices, the question was whether a closed, or semi-closed, form of a pricing for-
mula for call options could be derived. The asset price model of interest was the so-called hybrid
Heston–Hull–White model.

The industrial interest comes from the fact that valuing and risk-managing derivatives demands
fast and accurate prices. As the financial models used in practice are becoming increasingly complex,
efficient solution methods have to be developed to cope with such models. Needless to say that
working with a closed form solution is highly efficient.

The basis of modern option pricing theory is found in the famous Black–Scholes model, which
itself is based on a one-factor stochastic model for asset prices,

dS t = rS tdt +
√

vS tdWt.

Here S t denotes asset price, and Wt denotes Brownian motion. Interest rate r and ‘volatility’
√

v are
assumed to be constant in this model which is a major model simplification. Based on this model
derivatives, like options, can be priced highly efficiently.

The motivation behind using more general processes is the simple fact that the Black–Scholes
model is not able to reproduce important empirical features of asset returns and at the same time
provide a reasonable fit to the so-called implied volatility surfaces observed in option markets. Over
the past few years it has been shown that several models that incorporate stochastic volatility are, at
least to some extent, able to reproduce the volatility skew or smile. The particular model we will
consider here is a more advanced form of the well-known Heston stochastic volatility model. The
model is a generalization as also the interest rate is modeled by a stochastic differential equation.
The hybrid Heston–Hull–White asset price model reads:

dS t = rtS tdt +
√

vtS tdW1,t ,
dvt = κ(η − vt)dt + λ

√
vt dW2,t ,

drt = (θ(t) − art)dt + σdW3,t

for 0 ≤ t ≤ T with T the maturity of the option. Here S t, vt, rt denote the random variables asset
price, its variance and interest rate, respectively, at time t ≥ 0. The model constitutes an extension
of the well-known Black–Scholes model as the volatility and the interest rate both evolve randomly
over time. The quantities κ, η, λ, a, σ are positive real constants, that can be calibrated to market
data. Furthermore, θ(t) is a deterministic, continuous, positive function of time which can be chosen
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as to match the so-called term structure of interest rates. Finally, W1,t, W2,t, W3,t denote Brownian
motions with a positive covariance matrix

varP(W̃t) :=

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 t.

By means of the risk-neutral valuation formula, the price of any European option can be written as an
expectation of the discounted payoff of this option. Starting from this representation one can apply
several techniques to calculate the price itself. Broadly speaking one can distinguish two types of
methods: Solution of the corresponding partial differential equation (PDE) or stochastic differential
equation (SDE) by integration. Both solution approaches may rely on techniques from numerical
mathematics, including Monte Carlo simulation, in particular when pricing early exercise options or
complex option contracts.

Quite a few mathematicians took up this ING challenge, and during the week three subgroups
were formed, each approaching the problem from a different side. A particular challenge here was
that some Dutch professors in financial mathematics in earlier attempts were not able to come up
with a closed form option pricing solution for this particular model. It is therefore no surprise
that the problem in its full generality could not be solved within the workshop week. However,
three high-quality approaches with interesting insights are presented hereafter that allow for different
dependency structures. We believe that based on the results in the contributions the pricing of options
under the dynamics of the complete hybrid Heston–Hull–White model, such as by classical Monte
Carlo simulation, can be significantly accelerated1

On behalf of the group participants we would like to thank in particular Dr. Antoine van der
Ploeg from ING for his detailed technical note on the problem and for his assistance during the
workshop.

1We would also like to point to work by N. Kunitomo and Y-J Kim, which can be found at http://www.e.u-tokyo.ac.jp/ ku-
nitomo/Effects.pdf, which contains interesting aspects for our problem, but which we did not study during the workshop.



Three approaches to extend the Heston model

Michael Muskulus∗

1 Introduction
The stock price in the Heston model [8] is given by the following stochastic differential equation

dS t = rS tdt +
√

vtS tdW1,t, S 0 > 0,

where r > 0 denotes the risk-free interest rate, which is assumed to be constant in time. Since S t

follows a geometric Brownian motion, it is advantageous to consider Xt = ln S t instead. By the
Itô–Doeblin formula one then has

dXt = d ln S t = (r −
1
2

vt)dt +
√

vtdW1,t.

The volatility of the instantaneous stock returns dS t/S t follows the process

dvt = κ(η − vt)dt + λ
√

vtdW2,t, v0 > 0,

in which κ > 0 determines the speed of adjustment of the volatility towards its theoretical mean
η > 0, and λ > 0 is the second-order volatility, i.e., the variance of the volatility. Note that this has
exactly the form as the Cox-Ingersoll-Ross (CIR) [6] interest rate process.

The money-market account evolves according to the ordinary differential equation dMt = rMtdt
with solution Mt = M0ert. The importance of the Heston model comes from the fact that it allows
for a semi-analytical solution in terms of characteristic functions (see Section 3).

2 Extension of the Heston model
Although the Heston model incorporates stochastic volatility, the fixed interest rate is an unrealistic
assumption. Let us therefore consider (following [14]) a generalized Hull–White process [9] for the
interest rate,

drt = (θt − art)dt + σdW3,t,

where θt > 0, t ∈ R, is a nonconstant drift term. Usually, stock rate, volatility, and interest rate are
correlated; a phenomenon known as the leverage effect [2, 3]. Assume that

dWi,tdW j,t = ρi jdt,

∗Universiteit Leiden, muskulus@math.leidenuniv.nl
∗We would like to thank the other participants of our group: Joris Bierkens, Fang Fang, Karel in ’t Hout, David Kan, Coen

Leentvaar, Kees Oosterlee.
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where

C = (ρi j)1≤i, j≤3 =

 1 ρ12 ρ13
ρ21 1 ρ23
ρ31 ρ32 1


is a constant1 covariance matrix, and therefore positive semi-definite. In fact, for the application in
finance, we can assume that C is nonsingular2.

From the spectral theorem of linear algebra we see that C, being positive definite and symmetric,
has a unique matrix square root A = (ai j)1≤i, j≤3, such that

C = UΣU t = (UΣ1/2)(UΣ1/2)t = AAt, (2.1)

where UΣU t is the singular-value decomposition of C. Explicitly, we have

3∑
k=1

aika jk = ρi j, for all i, j = 1, 2, 3.

There now exist adapted, independent Brownian motions Bi,t, i = 1, 2, 3, such that

dWi,t =

3∑
j=1

ai j dB j,t,

and the general model we consider here is the following:

dS t = rtS tdt +
√

vtS t a1idBi,t or dXt = (rt −
1
2

vt)dt +
√

vta1idBi,t (2.2)

dvt = κ(η − vt)dt + λ
√

vt a2 jdB j,t (2.3)
drt = (θt − art)dt + σ a3kdBk,t, (2.4)

where the Einstein convention for summation of repeated indices is used. The money market account
develops according to

Mt = M0 exp
(∫ t

0
rsds

)
.

In this generality, the model is probably not solvable (semi-) analytically. Therefore three differ-
ent constraints, arising from different strategies are discussed that lead to partial solutions.

3 Independent interest process
The first simplification is to assume that the interest rate process rt evolves independently from the
stock price and volatility processes S t and vt, keeping the correlation between the latter two,

dW1,tdW2,t = ρdt

dW1,tdW3,t = dW2,tdW3,t = 0.

1The decomposition of correlated Brownian motions into independent ones we are about to describe is also possible if
C = C(t) is an adapted process in time.

2This is possible since we will never have a perfectly linear relation between the driving Brownian motions of stock price,
volatility, and interest rate — this would be rather contradictory to the assumption of stochasticity, and in such a case we
could do with a simpler model than the one considered.
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The first relation can be rewritten3 as

dW1,t = ρdW2,t +

√
1 − ρ2dW ′2,t,

where W ′2,t is another Brownian motion, independent of W2,t.

Define the integrated interest Rt =
∫ t

0 rtdt. We want to find the European call option price at
maturity time T , given an initial stock price S 0, volatility v0 and interest rate r0 (and initial time
t = 0),

CT (S 0, v0, r0) = E[e−RT (S T − K)+ | S 0, v0, r0]

= E[e−RT S T · 1(ln S T>ln K)] − KE[e−RT · 1(ln S T>ln K)]

= E[e−RT S T ]
E[e−RT S T · 1(ln S T>ln K)]

E[e−RT S T ]
− KE[e−RT ]

E[e−RT · 1(ln S T>ln K)]
E[e−RT ]

,

where x+ = max(0, x) denotes the positive part of x, and 1A is the indicator function of the event A.
Note that under the risk-neutral measure the process (e−Rt S t)t≥0 is a martingale, such that E[e−Rt S t] =
S 0.

Define an (analytic) function

Ψ(z) = E[e−RT+z ln S T ], z ∈ C,

such that
Ψ(0) = E[e−RT ] = P(r0,T )

is the discount price function, i.e., the price of a zero-coupon bond at time T .
Consider now the two (scaled) characteristic functions

Φ1(z) =
Ψ(1 + iz)
Ψ(1)

=
E[e−RT S T eiz ln S T ]
E[e−RT S T ]

Φ2(z) =
Ψ(iz)
Ψ(0)

=
E[e−RT eiz ln S T ]
E[e−RT ]

for two distribution functions F1, F2.
The particular form of these functions is a consequence of the generalized Bayes theorem [12,

pg. 231] for conditional expectations, when we require

CT (S 0, v0, r0) = S 0

∫ ∞

ln K
dF1(x) − KP(r0,T )

∫ ∞

ln K
dF2(x). (3.1)

Fourier inversion4 then allows to numerically evaluate the probability distributions [4], such that
3This is nothing else than the two-dimensional analogue of the matrix square root decomposition, Eq. (2.1).
4The inversion formula goes back to Gurland [7], who showed that

F(x) + F(x − 0) = 1 −
1
π

∫ ∞

−∞

e−iuxΦ(u)
iu

du,

where the integral has to be interpreted as a Cauchy principal value. For (left-) continuous F(x) this reduces to

P(X ≤ x) = F(x) =
1
2
+

1
2π

∫ ∞

0

Φ(−u)eiux − Φ(u)e−iux

iu
du,

such that

P(X ≥ ln K) = 1 − F(ln K) =
1
2
−

1
2π

∫ ∞

0

Φ(−u)eiu ln K − Φ(u)e−iu ln K

iu
du.
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the option pricing function at time t is

CT−t(S t, vt, rt) = S t

(
1
2
−

1
2π

∫ ∞

0

Φ1(−u)eiu ln K − Φ1(u)e−iu ln K

iu
du

)
− KP(rt,T − t)

(
1
2
−

1
2π

∫ ∞

0

Φ2(−u)eiu ln K − Φ2(u)e−iu ln K

iu
du

)
.

The remaining work is to find an expression for Ψ(z). This method is due to Scott [11], and we
just follow his calculations (see Appendix for details), to arrive at

Ψ(z) = e−z(v0+κηT ) · E[e(z−1)RT ] · E[ewVT+z ρλ vT ], (3.2)

where we used the integrated volatility Vt =
∫ t

0 vtdt, and

w = (z − 1)z
1
2

(1 − ρ2) + z
(
ρ

λ
κ −

1
2
ρ2

)
.

From the theory of Bessel bridges [10, 5] we have the following closed form for the second
expectation:

E[e−s1VT−s2vT | v0] = eaT−bT v0 , Re si ≥ 0, i = 1, 2,

where

aT = 2κη · ln
2γe

1
2 (κ−γ)T

2γe−γT + (κ + γ + s2)(1 − e−γT )

bT =
(1 − e−γT )(2s1 − κs2) + γs2(1 + e−γT )

2γe−γT + (κ + γ + s2)(1 − e−γT )
,

and γ =
√
κ2 + 2s1. The parameters κ and η are taken from the volatility process:

dvt = κ(η − vt)dt + λ
√

vtdW2,t, v0 > 0. (3.3)

This almost solves the problem, since we still need to find an expression for the first expectation
in Eq. (3.2).

If we now replace5 the generalized Hull–White interest rate process with a CIR type interest
process,

drt = (θ − art)dt + σ
√

rtdW3,t,

then this is also of the above form (3.3) (replacing κ by a, and η by θ/a), giving us a semi-analytical
solution.

4 Constrained correlations
We now present an alternative method. Consider the model (2.2-2.4) again.

The change of variable S t = exp(Xt) leads to Gt(Xt, ·, ·, ·) = Ct(S t, ·, ·, )̇, such that (e−RtGt) is a
martingale (under the appropriate, equivalent risk-neutral measure). Following the strategy of the

5In fact, it should be possible to arrive at a similar expression for the (standard) Hull–White interest rate process, too, by
following the lines of the proof of above formula in [10, 5]. This is one possible direction for future research.
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multi-dimensional Feynman-Kac theorem for independent Brownian motions [13], we expand the
differential d(e−RtGt) in dt and dBi,t terms (i = 1, 2, 3), and set the dt term equal to zero, leading6 to
the following PDE:

rtGt =
∂Gt

∂t
+ (rt −

1
2

vt)
∂Gt

∂Xt
+ κ(η − vt)

∂Gt

∂vt
+ (θt − art)

∂Gt

∂rt

+
1
2

vt
∂2Gt

∂X2
t
+

1
2
λ2vt

∂2Gt

∂v2
t
+

1
2
σ2 ∂

2Gt

∂r2
t

+ λρ12vt
∂2Gt

∂Xt∂vt
+ σρ13

√
vt
∂2Gt

∂Xt∂rt
+ λσρ23

√
vt
∂2Gt

∂vt∂rt
.

The ansatz7

Gt = eA(T−t)+vt B(T−t)+rtC(T−t)+
√

vt D(T−t)+iuXt

now gives8 the following system of equations:

dA
dt
= θtC(t) +

1
2
σ2C2(t) + κηB(t) +

1
2
λσρ23D(t)C(t) +

1
8
λ2D2(t)

dB
dt
= −

iu
2
−

u2

2
− κB(t) + λρ12iuB(t) +

1
2
λ2B2(t)

dC
dt
= iu − aC(t)

dD
dt
= iuσρ13C(t) −

1
2
κD(t) + iu

1
2
λρ12D(t) + λσρ23B(t)C(t) +

1
2
λ2B(t)D(t)

0 = 8D(t)
(
4κη − λ2

)
which is a system of ODEs, either (i) if we set

λ = 2
√
κη (Forced volatility variance),

or (ii) if we set D(t) = 0. The latter is possible, if we let B(t) = −iu ρ13
ρ23

1
λ
, which gives us two

constraints on the parameters (from dB
dt = 0):

ρ23 =
2κ
λ
ρ13, ρ12 =

4κ2 + λ2

4κλ
(Forced volatility correlation).

In this case, the equation in A(t) can be integrated easily, since C(t) is readily available,

C(t) =
iu
a

(
eat − 1

)
, when C(0) = 0.

Furthermore, if θt is assumed constant, the solution is given analytically by the characteristic function
of Gt, as in the solution of the Heston model.

6Note that aikdBk,t · a jldBl,t = aika jlδkldt = aika jkdt = ρi jdt, where δkl is the Kronecker delta.
7Which fulfills the necessary boundary condition GT = eiuXT , given the initial conditions A(0) = B(0) = C(0) = D(0) = 0.
8Use that

∂Gt

∂vt
= Gt

[
B(t) +

1
2
√

vt
D(t)

]
∂2Gt

∂v2
t
= Gt

[
B2(t) +

B(t)D(t)
√

vt
+

1
4vt

D2(t) −
1

4(vt)3/2 D(t)
]
.
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5 Volatility-interest coupling

The third method discussed considers an interest rate process that is coupled9 to the volatility, via

drt = (θt − art)dt + σ
√

vta3kdBk,t.

The Feynman–Kac partial differential equation for the martingale (e−RtGt) then reads

rtGt =
∂Gt

∂t
+ (rt −

1
2

vt)
∂Gt

∂Xt
+ κ(η − vt)

∂Gt

∂vt
+ (θt − art)

∂Gt

∂rt

+
1
2

vt
∂2Gt

∂X2
t
+

1
2
λ2vt

∂2Gt

∂v2
t
+

1
2
σ2vt

∂2Gt

∂r2
t

+ λvt
∂2Gt

∂Xt∂vt
ρ12 + σvt

∂2Gt

∂Xt∂rt
ρ13 + λσvt

∂2Gt

∂vt∂rt
ρ23.

Following Heston, we make a similar ansatz for the characteristic function:

Gt = eA(T−t)+B(T−t)vt+C(T−t)rt+iuXt .

Grouping together terms with vt, respectively rt, we get the following system of ordinary differential
equations,

dA
dt
= κηB(t) + θtC(t)

dB
dt
= b0 + b1B(t) +

1
2
λ2B(t)2 +

1
2
σ2C(t)2

+ λσρ23B(t)C(t) + iuλρ12C(t)
dC
dt
= (iu − 1) + aC(t)

where b0 = −
1
2 iu(1 − iu), and b1 = iuσρ13 − κ.

The initial conditions are A(0) = B(0) = C(0) = 0, and the last equation has solution:

C(t) =
1 − iu

a
(e−at − 1).

The second equation is a Riccati equation of form

dB(t)
dt
=

1
2
λ2B(t)2 + g(t)B(t) + h(t)

with coefficient functions

g(t) = g0 + g1e−at

h(t) = h0 + h1e−at + h2e−2at

9The form of this coupling is only motivated by the mathematical structure. In fact, whether this coupling is of any value
in the modelling of real-world finance, is quite unclear, though one might expect it not to be.
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where, setting q = (1 − iu),

g0 = iuσρ13 − κ − λσ
q
a
ρ23, h0 = −

1
2

iuq +
q2σ2

2a2 − iuλ
q
a
ρ12

g1 = λσ
q
a
ρ23, h1 = iuλ

q
a
ρ12 −

q2σ2

a2

h2 =
q2σ2

2a2 .

Although the quadratic term B(t)2 makes it impossible to split this equation into real and imaginary
parts, there exists10 an analytical solution of this equation in terms of Whittaker functions [1], such
that it can be evaluated efficiently with tabulated values. Yet the equation for A(t) makes it necessary
to solve the whole system numerically. Still, this is more efficient than integration of the partial
differential equation or direct (Monte-Carlo) simulation, and makes this approach also interesting.

6 Discussion
In this short note we have discussed three different ways of obtaining efficient solutions to extensions
of the Heston model. Unfortunately, the page limitation in this contribution does not allow for
numerical experiments with these methods.

A The method of Scott
Write

ln S t =

∫ t

0
rsds +

∫ t

0

√
vs

(
ρdW2,s +

√
1 − ρ2dW ′2,s

)
−

1
2

∫ t

0
vsds

= Rt +

(
ρ

∫ t

0

√
vsdW2,s −

1
2
ρ2

∫ t

0
vsds

)
+

(√
1 − ρ2

∫ t

0

√
vsdW ′2,s −

1
2

(1 − ρ2)
∫ t

0
vsds

)
= Rt + ηt + ξt.

Since vs develops independently from dW ′2,s, we can calculate

E[ξt | W2,t] = −
1
2

(1 − ρ2)Vt,

Var[ξt | W2,t] = (1 − ρ2)Vt,

where Vt =
∫ t

0 vsds.
Furthermore, we now can use

√
vtdW2,t =

1
λ
(dvt − κ(η − vt)dt) to write

ηt =
ρ

λ
(vt − v0 − κηt + κVt) −

1
2
ρ2Vt.

10The commercial software package M can be used to derive the analytical solution of this ODE.
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Considering Ψ(z) = E
[
e−RT+z ln S T

]
, we see that Ψ(z) = E

[
e(z−1)RT

]
· E

[
ezξT+zηT

]
. Now ξT , being an

Itô integral, is normally distributed. Therefore ezξT has a log-normal distribution, such that

E[ezξT | W2,t] = e(z−1)z 1
2 (1−ρ2)Vt (conditional on W2,t)

and we arrive at the formula given in the text, Eq. (3.2).
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A semi closed-form analytic pricing formula for call
options in a hybrid Heston–Hull–White model

Karel in ’t Hout∗ Joris Bierkens† Antoine P.C. van der Ploeg‡

Jos in ’t Panhuis§

1 Introduction
We consider the valuation of European call options under the general Heston–Hull–White asset
pricing model. The model constitutes an extension of the well-known Black–Scholes model [3]
where the volatility and the interest rate both evolve randomly over time. The process for the variance
vt has been proposed by Heston [5]. The process for the interest rate rt was formulated by Hull and
White [6] and forms a generalization of the Vasicek model [8]. In this contribution we assume that
the process W3,t is independent from W1,t and W2,t. The two Brownian motions W1,t, W2,t are allowed
to be correlated; their correlation is denoted by ρ ∈ [−1, 1].

The purpose of this note is to derive an analytic pricing formula in semi closed-form for Eu-
ropean call options under the Heston–Hull–White asset pricing model. The availability of such a
pricing formula is particularly useful in a calibration procedure. In practice, option pricing models
are calibrated to a large number of market-observed call option prices. It is important that such a
parameter estimation procedure is fast. Therefore a (near) closed-form call option pricing formula
is very desirable.

Our analysis in this note follows the lines of Heston [5]. The formula that we obtain forms a
direct extension of Heston’s pricing formula for call options, which can quickly be evaluated.

2 A semi closed-form analytic formula for call option prices
Let C(t, s, v, r) denote the price of a European call option at time t ∈ [0,T ] given that at this time the
asset price equals s, its variance equals v and the interest rate equals r.

From standard no-arbitrage arguments it follows that C satisfies the parabolic partial differential
equation (PDE)

0 =
∂C
∂t
+ 1

2 s2v
∂2C
∂s2 +

1
2λ

2v
∂2C
∂v2 +

1
2σ

2 ∂
2C
∂r2 + ρλsv

∂2C
∂s∂v

+rs
∂C
∂s
+ κ(η − v)

∂C
∂v
+ (θ(t) − ar)

∂C
∂r
− rC, (2.1)
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for 0 ≤ t < T , s > 0, v > 0, −∞ < r < ∞. This PDE can be viewed as a time-dependent advection–
diffusion–reaction equation on an unbounded, three-dimensional spatial domain. The payoff of a
call option yields the terminal condition

C(T, s, v, r) = max(0, s − K), (2.2)

where K > 0 is the strike price of the call option. Further, a boundary condition at s = 0 holds,

C(t, 0, v, r) = 0 (0 ≤ t < T ). (2.3)

We note that at v = 0 no condition is specified.
It is convenient to first apply a change of variables. Define

Ĉ(t, x, v, r) = C(t, ex, v, r). (2.4)

Then Ĉ satisfies the PDE

0 =
∂Ĉ
∂t
+ 1

2 v
∂2Ĉ
∂x2 +

1
2λ

2v
∂2Ĉ
∂v2 +

1
2σ

2 ∂
2Ĉ
∂r2 + ρλv

∂2Ĉ
∂x∂v

+(r − 1
2 v)

∂Ĉ
∂x
+ κ(η − v)

∂Ĉ
∂v
+ (θ(t) − ar)

∂Ĉ
∂r
− rĈ (2.5)

for 0 ≤ t < T on the spatial domain (x, v, r) ∈ R × (0,∞) × R with terminal condition

Ĉ(T, x, v, r) = max(0, ex − K). (2.6)

As in [5], we guess a solution of the form similar to the Black–Scholes formula:

Ĉ(t, x, v, r) = exP1(t, x, v, r) − KB(t, r)P2(t, x, v, r). (2.7)

Here B(t, r) denotes the time-t value of a zero-coupon bond that pays off 1 at maturity, given that at
time t the short rate equals r. It satisfies the PDE

0 =
∂B
∂t
+ 1

2σ
2 ∂

2B
∂r2 + (θ(t) − ar)

∂B
∂r
− rB (2.8)

for 0 ≤ t < T, r ∈ R and a semi closed-form solution is given by

B(t, r) = eb(t,r) , (2.9a)

b(t, r) = −
r
a

(
1 − e−a(T−t)

)
−

1
a

∫ T

t
θ(s)

(
1 − e−a(T−s)

)
ds

+
σ2

2a2

(
T − t +

2
a

e−a(T−t) −
1

2a
e−2a(T−t) −

3
2a

)
. (2.9b)

By linearity, the guess (2.7) satisfies the PDE (2.5) if its two constituent terms satisfy (2.5). As such,
P1 satisfies the PDE

0 =
∂P1

∂t
+ 1

2 v
∂2P1

∂x2 +
1
2λ

2v
∂2P1

∂v2 +
1
2σ

2 ∂
2P1

∂r2 + ρλv
∂2P1

∂x∂v
+

(r + 1
2 v)

∂P1

∂x
+ [κ(η − v) + ρλv]

∂P1

∂v
+ (θ(t) − ar)

∂P1

∂r
, (2.10)
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and by invoking (2.8), P2 satisfies

0 =
∂P2

∂t
+ 1

2 v
∂2P2

∂x2 +
1
2λ

2v
∂2P2

∂v2 +
1
2σ

2 ∂
2P2

∂r2 + ρλv
∂2P2

∂x∂v
+

(r − 1
2 v)

∂P2

∂x
+ κ(η − v)

∂P2

∂v
+

[
θ(t) − ar + σ2 ∂b

∂r

]
∂P2

∂r
. (2.11)

Further, (2.6) yields for the PDEs (2.10), (2.11) the terminal conditions

P j(T, x, v, r) = 1 (x > ln K) , P j(T, x, v, r) = 0 (x < ln K) (2.12)

for j = 1, 2, respectively.
From the undiscounted, multidimensional version of the Feynman–Kac Theorem (cf. [7]) it fol-

lows that the solutions P1, P2 to (2.10), (2.11) with (2.12) can be written as expectations of the
indicator function corresponding to (2.12), and thus can be regarded as probabilities1. We next de-
rive semi closed-form formulas for P1 and P2 by solving for their characteristic functions. From
these characteristic functions the probabilities P1, P2 can be retrieved with the inversion theorem
(cf. [4, 5]):

P j(t, x, v, r) =
1
2
+

1
π

∫ ∞

0
Re

[
e−iu ln K f j(t, x, v, r; u)

iu

]
du for j = 1, 2 (2.13)

where i2 = −1.
The Feynman–Kac theorem directly yields that the functions f1, f2 satisfy the same PDEs (2.10),

(2.11), respectively, but with the terminal condition

f j(T, x, v, r; u) = eiux. (2.14)

For f1 we guess a solution of the form (cf. [5])

f1(t, x, v, r; u) = exp[F1(t; u) +G1(t; u)v + H1(t; u)r + iux]. (2.15)

Substituting this into the PDE (2.10), it follows by perusal of the coefficients of v, r and 1 that (2.15)
is a solution if the functions F1, G1, H1 satisfy the system of ordinary differential equations (ODEs)

F′1(t) + κηG1(t) + θ(t)H1(t) + 1
2σ

2H1(t)2 = 0 , (2.16a)

G′1(t) + 1
2 ui − 1

2 u2 + (ρλui + ρλ − κ)G1(t) + 1
2λ

2G1(t)2 = 0 , (2.16b)
H′1(t) + ui − aH1(t) = 0 , (2.16c)

with the terminal condition F1(T ) = G1(T ) = H1(T ) = 0.

For f2 we guess a solution of the form (cf. [2, 5])

f2(t, x, v, r; u) = exp[F2(t; u) +G2(t; u)v + H2(t; u)r + iux − b(t, r)]. (2.17)

Substituting this into the PDE (2.11) and using (2.8),(2.9), it follows analogously as above that (2.17)
is a solution if the functions F2, G2, H2 satisfy the system of ODEs

F′2(t) + κηG2(t) + θ(t)H2(t) + 1
2σ

2H2(t)2 = 0 , (2.18a)

G′2(t) − 1
2 ui − 1

2 u2 + (ρλui − κ)G2(t) + 1
2λ

2G2(t)2 = 0 , (2.18b)
H′2(t) + ui − aH2(t) − 1 = 0 , (2.18c)

1We omit the details, which are completely analogous to those explained in [5].
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with the terminal condition F2(T ) = G2(T ) = H2(T ) = 0.

The equations (2.16c), (2.18c) are easy to solve. Let δ1 = 0, δ2 = 1. Then

H j(t; u) =
ui − δ j

a

(
1 − e−a(T−t)

)
for j = 1, 2. (2.19)

The equations (2.16b), (2.18b) are identical2 to the first line of equation (A7) in [5] and closed-form
solutions were obtained in loc. cit. For completeness, we include these formulas here. Let

α = κη , β1 = κ − ρλ , β2 = κ , γ1 =
1
2
, γ2 = −

1
2

and for j = 1, 2

d j =

√
(β j − ρλui)2 − λ2(2γ jui − u2) , g j =

β j − ρλui + d j

β j − ρλui − d j
.

Then the solutions to (2.16b), (2.18b) are given by

G j(t; u) =
β j − ρλui + d j

λ2

[
1 − ed j(T−t)

1 − g jed j(T−t)

]
for j = 1, 2. (2.20)

The equations (2.16a), (2.18a) can finally be solved by integration. Using the result from [5] for the
integral of G j, it follows that

F j(t; u) =
α

λ2

{
(β j − ρλui + d j)(T − t) − 2 ln

[
1 − g jed j(T−t)

1 − g j

]}
+

ui − δ j

a

∫ T

t
θ(s)

(
1 − e−a(T−s)

)
ds

+
σ2

2

(
ui − δ j

a

)2 (
T − t +

2
a

e−a(T−t) −
1
2a

e−2a(T−t) −
3
2a

)
(2.21)

for j = 1, 2. Of course, for many functions θ the integral in (2.21) may be explicitly computed.
The formulas (2.4), (2.7), (2.9), (2.13), (2.15), (2.17), (2.19), (2.20), (2.21) together constitute

the semi closed-form pricing formula for European call options under the hybrid asset pricing model.
This pricing formula is easily seen to be a proper extension of Heston’s formula, upon considering
θ(t) ≡ ar0 and σ = 0.

If the integrals in (2.9b), (2.21) involving θ(s) can be explicitly computed, the pricing formula
consists of two single integrals over u, see (2.13). Otherwise, one has an additional single integral
over s, ∫ T

t
θ(s)

(
1 − e−a(T−s)

)
ds .

Note the useful property that the latter integral does not depend on u. In all cases, the pricing formula
can be quickly approximated to any accuracy with a suitable numerical integration method. For a
discussion of some computational issues relevant to the pricing formula, we refer to the paper [1] on
the Heston formula.

2With the proper change of notation and removing a typo in [5].
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Finally, we remark that two issues are not addressed in this note, namely whether the solution
obtained above is unique and whether it satisfies the condition (2.3). These two issues are left for
future research. We note that it is plausible that the probability P2(t, x, v, r) in (2.7) vanishes as
x→ −∞, and therefore that (2.3) holds. But, this requires a careful analysis of course.
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Characteristic function of the hybrid
Heston–Hull–White model

Fang Fang∗ Bas Janssens†

In our contribution the goal is to find the analytic solution of the characteristic function (ch.f.)
of xT , given the initial data under the hybrid Heston–Hull–White model. That is, we want to find a
closed form expression for

Φ(ω; x0, v0, r0) := E(exp(iωxT )|x0, v0, r0).

A first observation on the model is the following: If xt satisfies

dxt = (rt −
1
2 vt)dt +

√
vtdW̃1,t ,

then S t = exp(xt) satisfies the Heston–Hull–White model, as can be seen by applying Itô’s lemma.
This paper has a twofold aim:

- Solve the problem under the assumption ρ13 = ρ23 = 0.

- Solve the problem under the assumption ρ23 = 0, and under the additional assumption that
κη = λ2/4, in which case

√
vt is governed by an Ornstein–Uhlenbeck process.

It is organized as follows: in section 1, we decompose the three correlated Wiener processes into
three independent ones, and establish some notation. In section 2, we eliminate two noises by
exploiting the Gaussianity of the rt-distribution, as well as the fact that xt does not occur on the r.h.s.
of the equations. In section 3, we obtain the ch.f. of xT in the aforementioned two cases.

1 Reformulating the Model
With the assumption that ρ23 = 0, we can write W̃i,t, i = 1, 2, 3, as a sum of independent processes
Wi,t:

W̃3,t = W3,t

W̃2,t = W2,t

W̃1,t = α1W1,t + α2W2,t + α3W3,t,

where α2 = ρ12, α3 = ρ13, and α2
1 + α

2
2 + α

2
3 = 1. Thus the model is reformulated as

dxt = (rt −
1
2 vt)dt + α1

√
vtdW1,t + α2

√
vtdW2,t + α3

√
vtdW3,t (1.1)

dvt = κ(η − vt)dt + λ
√

vtdW2,t (1.2)
drt = (θ(t) − art)dt + σdW3,t . (1.3)

∗Technische Universiteit Delft, f.fang@ewi.tudelft.nl
†Universiteit Utrecht, janssens@math.uu.nl
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Equation (1.2) gives
√

vtdW2,t = (dvt − κ(η − vt)dt)/λ. Insert it into (1.1) to obtain

dxt = rtdt +
(
α2κ

λ
− 1

2

)
vtdt −

α2κη

λ
dt +

α2

λ
dvt + α1

√
vtdW1,t + α3

√
vtdW3,t (1.4)

(cf. [1].) We introduce the notation

Rt :=
∫ t

0
rsds and Vt :=

∫ t

0
vsds .

Equation (1.4) is then integrated to

xT − x0 = RT +

(
α2κ

λ
− 1

2

)
VT −

α2κη

λ
T +

α2

λ
(vT − v0) + α1

∫ T

0

√
vtdW1,t + α3

∫ T

0

√
vtdW3,t.

From now on, unless otherwise specified, all expectations are understood to be conditioned on x0, r0
and v0, i.e.

E(X) := E(X|x0, v0, r0).

Using the tower property of conditional expectations, we have

Φ(ω; x0, v0, r0) = E
{
E

[
eiω(xT−x0)|RT , {vs; s ∈ [0,T ]}

]}
= E

{
exp (iω[RT +

(
α2κ

λ
− 1

2

)
VT −

α2κη

λ
T +

α2

λ
(vT − v0)])

× E

[
exp (iω[α1

∫ T

0

√
vtdW1,t + α3

∫ T

0

√
vtdW3,t])|RT , {vs; s ∈ [0,T ]}

] }
.

(1.5)

Note that vt and RT are only driven by their own noises, but Φ(ω) is still driven by all three Wiener
processes.

2 Elimination of Two Noises
As the title suggests, two driving noises will be eliminated in this section.

2.1 Distribution of RT

The dynamics of the interest rate rt can be rewritten as follows:

drt = (θ(t) − art)dt + σdW3,t

d(eatrt) = eatθ(t)dt + eatσdW3,t

rτ = e−aτr0 +

∫ τ

0
θ(s)ea(s−τ)ds + σ

∫ τ

0
ea(s−τ)dW3,s.

Thus for RT :=
∫ T

0 rτdτ, we have nested integrals. Fubini’s theorem yields∫ T

0

(∫ τ

0
θ(s)ea(s−τ)ds

)
dτ =

1
a

∫ T

0
θ(s)

(
1 − ea(s−T )

)
ds.
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For the stochastic part, we have∫ T

0

(∫ τ

0
ea(s−τ)dW3,s

)
dτ =

1
a

∫ T

0

(
1 − ea(s−T )

)
dW3,s.

Patching these together, we obtain

RT = Fr0,a,θ(T ) +
σ

a

∫ T

0

(
1 − ea(s−T )

)
dW3,s, (2.1)

with

Fr0,a,θ(T ) :=
r0

a

(
1 − e−aT

)
+

1
a

∫ T

0
θ(s)

(
1 − ea(s−T )

)
ds .

Since the Itô integral in (2.1) is a weighted Wiener process, RT has a Gaussian distribution with
mean F(T ) and variance

Var(T ) :=
σ2

a2

∫ T

0

(
1 − ea(s−T )

)2
ds =

σ2

a2 (T −
2
a

(1 − e−aT ) +
1
2a

(1 − e−2aT )).

2.2 The Correlation
Recall the expression for Φ in (1.5). Let us first focus on the inner expectation, which is conditioned
on RT and the complete path {vs}0≤s≤T .

We fix a function w : [0,T ] → R+ such that vs = w(s) and introduce the notation Wi( f ) :=∫ T
0 f (s)dWi,s.

Since there is no restriction on xs, the process W1,t is still a Wiener process. With fixed vs = w(s),
the random variable W1,t(

√
w) is just a weighted Brownian motion. For W3,t however, there is a

restriction, since we have fixed RT . When we define g(s) := (1 − ea(s−T )), we have fixed

W3,t(g) =
a
σ

(RT − Fr0,a,θ(T )) .

Apart from the fixed x0 , r0 and vs, this is the only relevant restraint. And since W3,t( f ) is independent
from W3,t(g) if f ⊥ g we simply decompose

W3,t(
√

w) = W3,t(
√

w‖) +W3,t(
√

w⊥)

with
√

w‖ =
〈
√

w, g〉
〈g, g〉

g and
√

w⊥ =
√

w −
〈
√

w, g〉
〈g, g〉

g.

Thus, for fixed vs and RT , we know that W3,t(
√

w) is Gaussianly distributed with mean

a
σ

(RT − Fr0,a,θ(T )) ×
〈
√

w, g〉
〈g, g〉

and variance

〈
√

w⊥,
√

w⊥〉 = 〈
√

w,
√

w〉 −
〈
√

w, g〉2

〈g, g〉
,

where 〈g, g〉 = T − 2
a (1 − e−aT ) + 1

2a (1 − e−2aT ). If we define

µT :=
∫ T

0
(1 − ea(s−T ))

√
vsds ,
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we have

W3,t(
√

w) ∼ N
 aµT

σ〈g, g〉
(RT − F(T )) , VT −

µ2
T

〈g, g〉

 .
Recall that W1,t, W2,t and W3,t are independent Wiener processes. The process Rt is only driven

by W3,t, and vt only by W2,t. For fixed RT and vs = w(s), we therefore know that W1,t(
√

w) and
W3,t(

√
w) are independent Gaussians. The conditional characteristic function (CCF) of their sum,

φ(ω; RT , vs) := E
[

exp
(
iω(α1W1,t(

√
w) + α3W3,t(

√
w))

)
|RT , {vs; s ∈ [0,T ]}

]
,

is therefore the product of the individual CCF’s for α1W1,t(
√

w) and α3W3,t(
√

w). These we know;
the characteristic function of a Gaussian with mean µ and variance u is

fµ,u(ω) = exp (iµω −
u
2
ω2) .

Adding the means and variances of the two independent Gaussians, we write

φ(ω; RT , vs) = f
α3

aµT
σ〈g,g〉 (RT−F(T )),(α2

1+α
2
3)VT−α

2
3
µ2

T
〈g,g〉

(ω)

which only depends on RT , µT and VT .
Returning to (1.5), we have

Φ(ω; x0, v0, r0) = E
[

exp (iω
(
RT +

(
α2κ

λ
− 1

2

)
VT −

α2κη

λ
T +

α2

λ
(vT − v0)

)
)

× exp (iω
(
α3

aµT

σ〈g, g〉
[RT − F(T )]

)
)

× exp (− 1
2ω

2
(α2

1 + α
2
3)VT − α

2
3
µ2

T

〈g, g〉

)] . (2.2)

We now use the tower rule to get an inner expectation conditioned on µT , VT and vT . That is:

Φ(ω; x0, v0, r0) = E(. . .) = E(E(. . . |µT ,VT , vT )).

Recall that RT is independent of VT , vT , or µT . So what remains as the inner expectation is
E(eiωc(RT−F(T ))|µT ,VT , vT ), with c = (1 + α3

a
σ〈g,g〉µT ). Since RT − F(T ) is N(0, σ

2

a2 〈g, g〉)-distributed,
we have

E(exp (iωc(RT − F(T )))|µT ,VT , vT ) = f0, σ2

a2 〈g,g〉
(cω) = exp (−

σ2

2a2 〈g, g〉c
2ω2) .

In writing this out, the term − 1
2

α2
3

〈g,g〉µ
2
Tω

2 mysteriously vanishes;

Φ(ω; x0, v0, r0) = exp (iωF(T ) − iω
α2κη

λ
T − 1

2ω
2σ

2

a2 〈g, g〉)

×E
[
eiω α2

λ (vT−v0) × eiω[( α2κ
λ −

1
2 )+ 1

2 iω(α2
1+α

2
3)]VT × eiω[iωα3

σ
a ]µT

]
. (2.3)

We simplify the expression by introducing the notations

C0 := eiωF(T )−iω α2κη
λ T− 1

2ω
2 σ2

a2 〈g,g〉, C1 :=
α2

λ
,
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C2 :=
α2κ

λ
−

1
2
+

1
2

iω(α2
1 + α

2
3), C3 := iωα3σ/a,

and
ZT − Z0 := C1(vT − v0) +C2VT +C3µT . (2.4)

Thus we have
Φ(ω; x0, v0, r0) = C0E

[
exp (iω(ZT − Z0))

]
. (2.5)

Therefore, finding the ch.f. of xT at ω is equivalent to finding the ch.f. of ZT −Z0 at ω (where Zt still
depends on ω through the constants Ci(ω)).

Integrating dvt over [0,T ] gives

vT − v0 =

∫ T

0
κ(η − vs)ds +

∫ T

0
λ
√

vsdW2,s.

Substituting this into (2.4) yields

ZT − Z0 =

∫ T

0

[
C1κ(η − vs) +C2vs +C3g(s)

√
vs

]
ds +C1

∫ T

0
λ
√

vsdW2,s. (2.6)

Equivalently, the dynamics of Zt read

dZt =
[
C1κη + (C2 −C1κ)vt +C3g(t)

√
vt

]
dt +C1λ

√
vtdW2,t. (2.7)

We have a small subtlety here. In principle, g(s,T ) depends both on s and on T . In the dynamics
of Zt, this would give rise to terms involving ∂g/∂T . We circumvent this problem by defining, for
each fixed T , a process t 7→ Ẑ(T )t which is defined according to equation (2.7), in which g(s,T ) has
fixed T . Then ZT = ẐT (T ). From now on, we work with equation (2.7), omitting the hats.

All in all, we are left with Zt, which is driven by a single noise, W2,t.

3 Analytic Solution
We denote the ch.f. of ZT conditioned on Ft by

Ψt(ω;Ft) := E
[
exp (iωZT ) |Ft

]
.

By definition, Ψt is a martingale: E [dΨt |Ft] = 0. It is clear that Ψt depends only on Zt, vt,
√

vt, t.
Therefore, Itô’s lemma yields, setting τ = T − t:

dΨ(ω; Zt, vt,
√

vt, τ) = −
∂Ψ

∂τ
dt +

∂Ψ

∂Zt
dZt +

∂Ψ

∂vt
dvt +

∂Ψ

∂
√

vt
d
√

vt +
1
2
∂2Ψ

∂Z2
t

(dZt)2

+
1
2
∂2Ψ

∂v2
t

(dvt)2 +
1
2
∂2Ψ

∂
√

vt
2 (d
√

vt)2 +
∂2Ψ

∂Zt∂vt
dZtdvt

+
∂2Ψ

∂Zt∂
√

vt
dZtd

√
vt +

∂2Ψ

∂vt∂
√

vt
dvtd
√

vt. (3.1)

Given the dynamics of
√

vt, this gives rise to a PDE for Ψ. We proceed with the two cases in which
we can solve this.
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3.1 Case 1: ρ23 = 0 and ρ13 = 0

This is essentially the Heston model. Indeed, it is immediately clear from equation (1.1) that xt =

xH,t + Rt − r0t, where xH,t denotes the logarithmic price in the Heston model. Therefore,

Φ(ω; x0, v0, r0) = χ(ω)ΦH(ω; x0, v0, r0),

with χ(ω) = eiωF(T )−iωr0T− 1
2ω

2 σ2

a2 〈g,g〉 the characteristic function of RT − r0T .

3.2 Case 2: ρ23 = 0 and κη = λ2/4

We will now solve a different set of equations:

dxt = (rt −
1
2 vt)dt + ΘtdW̃1,t (3.2)

dΘt = −βΘtdt + δdW2,t (3.3)
drt = (θ(t) − art)dt + σW3,t (3.4)

The relevance is as follows: if we set B2,t :=
∫ t

0 sn(Θs)dW2,s, with sn(x) the sign of x, then t 7→ B2,t
is again a Wiener process by Levy’s Martingale characterization of Brownian motions. We then see
that vt = Θ

2
t satisfies (the 2nd equation of) the hybrid Heston–Hull–White model for the particular

case κη = λ2/4.
Indeed, dΘ2

t = (δ2 − 2βΘ2
t )dt + 2δΘdW2,t and dW2,t = sn(Θt)dB2,t, so that

dvt = (δ2 − 2βvt)dt + 2δ
√

vtdB2,t.

(Recall that
√

vt = |Θt | = sn(Θt)Θt.) This requires λ = 2δ, κ = 2β and κη = δ2, and thus
κη = λ2/4. This subclass of the model, in which Θt is an Ornstein–Uhlenbeck process, was in fact
Heston’s way of justifying the more general model [2]. Notice that we have changed

√
vt into Θ in

equation (3.2). This seems to be essential unless ρ13 = 0.
We change to a new measure, under which Θt is simply Brownian motion [3]. Define the Radon-

Nikodym derivative as

Mτ = exp(−Yτ) := exp
(
−

∫ τ

0

−βΘt

δ
dW2,t −

1
2

∫ τ

0

β2Θ2
t

δ2 dt
)
.

Substitute
∫ τ

0 ΘtdW2,t by 1
2δ

[
(vτ − v0) +

∫ τ

0 2βΘ2
t dt − δ2τ

]
, we have

Yτ = −
β

2δ2 (vτ − v0) −
β2

2δ2 Vτ +
β

2
τ.

By Girsanov’s theorem, if E
[
exp

(∫ T
0

β2

δ2 vtdt
)]
< ∞, then

B̂τ :=
∫ τ

0

−βΘt

δ
dt +W2,τ; τ ≤ T

is a Brownian motion w.r.t. dQ = MT dP, where P denotes the old measure. Moreover, in terms of
B̂t, the process Θt has the representation of

dΘt = δdB̂t.
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Thus
dvt = dΘ2

t = 2ΘtdΘt + dΘ2
t = 2δΘtdB̂t + δ

2dt.

The derivation of equation (2.7) goes through word for word in this new system, except that all
√

v’s
are replaced by Θ’s. (In particular, µ should be defined as µt =

∫ t
0 g(s)Θsds.) We obtain

dZt =
[
C1κη + (C2 −C1κ)Θ2

t +C3g(t)Θt

]
dt +C1λΘtdW2,t. (3.5)

For the expectation w.r.t. P, one has

EP
[
exp(iω(ZT − Z0))

]
=

∫
Ω

exp (iω(ZT − Z0)) M−1
T dQ

=

∫
Ω

exp (iω(ZT − Z0)) exp(YT )dQ := EQ
[
exp(iω(Z̃T − Z̃0))

]
,

with (we use vt for Θ2
t and Vt for its integral)

Z̃T − Z̃0 = (C1 + i
β

2ωδ2 )(vT − v0) + (C2 + i
β2

2ωδ2 )VT +C3µT − i
β

2ω
T,

and

dZ̃t =

[
C1δ

2 + (C2 + i
β2

2ωδ2 )vt +C3g(t)Θt

]
dt + (2δC1 + i

β

ωδ
)ΘtdB̂t.

Let us then set τ := T − t. Our ansatz for Ψ will be

Ψ(Z̃t, vt,Θt, τ) = exp
[
C(τ) + D(τ)Θt + E(τ)vt + iωZ̃t

]
, (3.6)

with initial conditions
C(0) = 0,D(0) = 0 and E(0) = 0.

For this we have
∂Ψ

∂τ
/Ψ =

∂C
∂τ
+
∂D
∂τ
Θt +

∂E
∂τ

vt,
∂Ψ

∂Z̃t
/Ψ = iω,

∂Ψ

∂vt
/Ψ = E,

∂Ψ

∂Θt
/Ψ = D,

∂2Ψ

∂Z̃2
t
/Ψ = −ω2,

∂2Ψ

∂v2
t
/Ψ = E2,

∂2Ψ

∂Θ2
t
/Ψ = D2,

∂2Ψ

∂vt∂Z̃t
/Ψ = iωE,

∂2Ψ

∂Θt∂Z̃t
/Ψ = iωD,

∂2Ψ

∂Θt∂vt
/Ψ = DE.

Substituting these into (3.1), factoring out Ψ and remembering E(dΨ) = 0, we come to the following
equation:

0 =
(
−
∂C
∂τ
+ iωC1δ

2 + δ2E + 1
2δ

2D2
)

+vt

(
−
∂E
∂τ
+ iωC4 −

1
2ω

2C2
5 + 2δ2E2 + 2iωδC5E

)
+Θt

(
−
∂D
∂τ
+ iωC3g(t) + iωδC5D + 2δ2ED

)
, (3.7)
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with C4 := C2 + i β2

2ωδ2 and C5 := 2δC1 + i β
ωδ

. Since (3.7) has to hold for every vt and Θt, we obtain
three ODEs:

−
∂C
∂τ
+ iωC1δ

2 + δ2E + 1
2δ

2D2 = 0 (3.8)

−
∂E
∂τ
+ iωC4 −

1
2ω

2C2
5 + 2δ2E2 + 2iωδC5E = 0 (3.9)

−
∂D
∂τ
+ iωC3g(t) + iωδC5D + 2δ2ED = 0 . (3.10)

With γ := δ
√
−2iωC4, we find

E(τ) = e+
1 − exp[2δ2(e+ − e−)τ]

1 − e+
e−

exp[2δ2(e+ − e−)τ]
, (3.11)

D(τ) =
iωC3eγτ

e+
e−

e2γτ − 1
×

((1
γ

(e−γτ − 1) −
1

a + γ
(e−(a+γ)τ − 1)

)
+ e+

e−

(1
γ

(eγτ − 1) −
1

γ − a
(e(γ−a)τ − 1)

))
, (3.12)

C(τ) = (e+ + iωC1)δ2τ −
1
2

log( e+
e−

e2δ2(e+−e−)τ − 1) +

1
2

∫ τ

0
D2(s)ds . (3.13)

We briefly sketch how to arrive at this. Reformulate (3.9) as

d
dτ

[
log(E − e+) − log(E − e−)

]
= 2δ2(e+ − e−),

with e± =
−iωC5±

√
−2iωC4

2δ . This yields (3.11). For (3.12), we first solve the homogeneous equation

dD0

dτ
= iωδC5D0 + 2δ2ED0.

Explicitly,

D0(τ) = exp(iωδC5τ + 2δ2
∫ τ

0
E(s)ds),

and1 ∫ τ

0
E(s)ds = e+τ −

1
2δ2 log(

e+
e−

e2δ2(e+−e−)τ − 1).

Thus

D0(τ) =
exp((2δ2e+ + iωδC5)τ)

e+
e−

exp(2δ2(e+ − e−)τ) − 1
.

From ‘variation of constants’, we see D(τ) = iωC3D0(τ)
∫ τ

0 g(T − s)D−1
0 (s)ds, with g(T − s) = (1 −

e−as). The result of this laborious but simple integration is shown above. (One uses 2δ2(e+−e−) = 2γ
and 2δ2e±+ iωδC5 = ±γ.) The result for C(τ) is obtained by integration, where we have left the term∫ τ

0 D2(s)ds intact.
Substituting the above into (3.6) and (2.5), we obtain the analytic solution for ch.f. of xT given

x0, v0 and r0.
1In principle, the logarithm should be interpreted carefully, in the sense that the function should not jump at branch cuts.

However, since it occurs inside an exponential eventually, this remark belongs in a footnote.
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4 Conclusion
Towards a solution to the problem of finding the characteristic function of the Heston–Hull–White
model, we have made the following observations:

- With ρ13 and ρ23 equal to zero, the problem is essentially equivalent to Heston’s model, and
can be solved.

- With ρ23 = 0 and κη = λ2/4, but with arbitrary ρ13, the problem can also be solved. This is an
extension of the model by Stein and Stein [4]. It is tractable because the process underlying
the volatility is an Ornstein–Uhlenbeck process, and not a Bessel process as in the Heston
model. This is exactly the special case used by Heston to motivate the general model.

With only ρ23 = 0, the problem seems to be less simple. Still, we have been able to eliminate two
out of three driving noises, which may result in faster numerical simulation.
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