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Abstract

In patients with acute heart failure, the heart can be assisted by the insertion of a mechanical
device which takes over part of the heart’s work load by pumping blood from the left ventricle, one
of the heart chambers, into the aorta. In this project, we formulate a model that describes the effect
of such a device on the cardiovascular dynamics. We show that data for the pressure–volume re-
lationship within a heart chamber that have been obtained experimentally can be reproduced quite
accurately by our model. Moreover, such experimental data can help in calibrating unknown pa-
rameters that specify the characteristics of the pump. A key parameter turned out to be the extra
friction that is encountered by the blood flowing through the heart pump.
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1 Introduction
Nowadays it is possible to use mechanical devices to assist the pumping action of the heart in patients
with cardiovascular problems. A particular class of these, left ventricular assist devices, move blood
from the left ventricle (one of the heart chambers) into the aorta, to take over part of the heart’s work
load. Developments in the emerging field of cardiovascular medicine have led to the availability of a
wide range of instruments, from temporary assist devices to devices for long-term support and from
left or right ventricular assist devices to biventricular assist devices and even total artificial hearts.
This report will focus on the effects of a left ventricular assist device called the Impella, manufac-
tured by Abiomed Europe (GmbH, Aachen, Germany). Two versions are currently being used by
the Academic Medical Centre (AMC) in Amsterdam: the Impella 2.5 and the Impella 5.0, which are
able to produce a flow of 2.5 and 5.0 liters per minute, respectively. The problem considered here
has been formulated by cardiologists and cardiothoracic surgeons from the AMC.

The insertion of a mechanical device in the cardiovascular system obviously influences the dy-
namics of the blood flow through the arterial system. The contraction and relaxation of the heart
muscles in the heart chamber causes two valves, called the mitral and aortic valve, to open and close
due to pressure differences. When modeling the cardiac cycle, one can distinguish four phases.
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1. Isovolumic contraction phase, when the mitral and aortic valves are closed. Pressure is being
built up in this phase, until the left ventricular pressure rises sufficiently above the aortic
pressure to open the aortic valve.

2. Ejection phase, when the mitral valve is closed and the aortic valve is open. Blood flows out
of the chamber into the aorta.

3. Isovolumic relaxation phase, when the mitral and aortic valves are closed. Pressure in the
chamber decreases until it is so low that the mitral valve opens.

4. Filling phase, when the mitral valve is open and the aortic valve is closed. Blood flows into
the chamber, and the cycle then repeats itself.

Table 1: The cardiac cycle.

The first two phases are known as diastole and the last two phases are known as systole.
In patients, the influence of a mechanical device which assists the heart during this process is

difficult to quantify, since only a limited number of direct measurements can be performed on the
cardiovascular system with and without the blood pump. Typically, only the pressure and volume of
the blood in a heart chamber can be measured. The questions whether the pump really takes over a
substantial part of the task of the heart and whether it reduces the amount of work the heart has to
perform cannot be answered directly from such measurements. The amount of flow produced by the
heart, the cardiac output, is 5 to 7 liters per minute in healthy people. It can be indirectly determined
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by means of a method called thermodilution, which represents the gold standard in clinical practice.
However, it is uncertain if this method is reliable in the presence of a continuous flow pump, since
the normal physiology of the heart is altered, changing the premisses on which the method is based.
Moreover, it is not possible to determine directly the individual contributions of the heart and the
pump to their combined cardiac output, since detailed information about certain key parameters in
the system is unavailable. Information about the cardiac output and the contribution of the pump are
important to assess, and some form of mathematical modeling is therefore indispensable to obtain
information about these quantities.

2 Problem Formulation

In this project, the study group was asked to develop a mathematical model for the influence of the
Impella on the cardiovascular dynamics. More specifically, the group was asked to focus on the
estimation of the blood flow through the pump during the cardiac cycle, since this is an important
monitoring variable that can be used to establish how much the work load of the heart can be relieved.
To validate the model and to make it possible to calibrate unknown parameters, a PV (Pressure–
Volume) loop of a patient with and without the blood pump and an exact specification of the pump
had been made available.

The distinguishing characteristic for this problem is the specific placement of the pump across
the aortic valve. In order to obtain a realistic model, it is important that the pumping action of the
heart itself, the dynamics of the pump, and the rest of the body, i.e. the arterial system, are modeled
with sufficient accuracy. Moreover, the problem formulation suggests that the model should not
be too complicated or detailed, since we would like to be able to explain the change in qualitative
behaviour of the system in direct terms.

The structure of the paper is as follows. In the next section, the heart and the arterial system are
modeled, using an analogy with electrical circuits. In section 4, some details concerning the opera-
tion of the pump are given. Section 5 combines all these elements in a full cardiovascular model and
section 6 provides numerical results. We end by formulating our conclusions and recommendations
for further research in the last section.

3 Modeling the Heart and Arterial Systems

The cardiovascular system can be described in terms of quite complex fluid dynamics. Different
models have been developed to investigate it and various tools, ranging from rather simple to very
sophisticated numerical techniques, have been employed; see for example [9, 11, 16] and references
therein for an overview of computational methods in cardiovascular fluid dynamics.

A computationally cheap option to obtain information about the overall behaviour of the cardio-
vascular system is provided by so-called lumped parameter models [3, 13, 14, 15]. In these models,
critical parameters are defined by taking averages over many different subsystems without distin-
guishing these subsystems themselves in too much detail. Such models proved to be very useful as
a starting point for the investigation of arterial blood pressure and blood flow.

There is a close correspondence between the cardiovascular system and electrical circuits, which
we intend to exploit here. A description of this correspondence will therefore be given in the follow-
ing subsections.
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Cardiovascular Electrical

blood volume electrical charge
flow rate (F) current (I)
pressure (P) potential (V)

Table 2: The analogy between the cardiovascular and electrical systems.

3.1 Mapping Cardiovascular Elements to Electrical Elements
In the analogy that we will use, electrical charge represents blood volume, while potential (differ-
ence) and currents correspond to pressure (difference) and flow rates. A particular vessel, or group
of vessels, can be described by an appropriate combination of resistors, capacitors, and inductors.
Blood vessels’ resistance, depending on the blood viscosity and the vessel diameter, is modeled by
resistors. The ability to accumulate and release blood due to elastic deformations, the so-called ves-
sel compliance, is modeled by capacitors. The blood inertia is introduced using coils, and finally
heart valves (forcing unidirectional flow) are modeled by diodes. In the following, we will explain
in more detail how the different properties and parts of the cardiovascular system can be modeled by
electrical components.

Vessel Resistance and Electrical Resistance

Blood flowing from wider arteries into smaller arterioles encounters a certain resistance. This resis-
tance can be modeled as follows. Consider an ideal segment of a cylindrical vessel. The pressure
difference between its two ends and the flow through the vessel depend on each other. Although
this dependence will in general be nonlinear, for a laminar flow (which is the type of flow we are
interested in) it can be accurately approximated by a linear relation. If we indicate by Rc the propor-
tionality constant between the pressure difference P and the flow F then we can write

Rc =
P
F
. (1)

Similarly, a resistor is an electronic component that resists an electric current by producing a
potential difference between its end points. In accordance with Ohm’s law, the electrical resistance
Re is equal to the potential difference V across the resistor divided by the current I through the
resistor:

Re =
V
I
. (2)

Vessel Compliance and Capacitance

The walls of blood vessels are surrounded by muscles that can change the volume and pressure in the
vessel. Consider the blood flow into such an elastic (compliant) vessel. We denote the flow into the
vessel by Fi and the flow out of the vessel by Fo. Then the difference F = Fi−Fo which corresponds
to the rate of change of blood volume in the vessel is related to a change of pressure P inside the
vessel. Assuming a linear relation, we have that

F = Cc
dP
dt
, (3)
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where Cc is a constant related to the compliance of the vessel.
The analogy with a capacitor is immediate. A capacitor is an electrical device that can store

energy between a pair of closely-spaced conductors, so-called ’plates’. When a potential difference
is applied to the capacitor, electrical charges of equal magnitude but opposite polarity build up on
each plate. This process causes an electrical field to develop between the plates of the capacitor
which gives rise to a growing potential difference across the plates. This potential difference V is
directly proportional to the amount of separated charge Q (i.e. Q = CeV). Since the current I through
the capacitor is the rate at which the charge Q is forced onto the capacitor (i.e. I = dQ/dt), this can
be expressed mathematically as:

I = Ce
dV
dt
, (4)

where the constant Ce is the electrical capacitance of the capacitor.

Blood Inertia and Inductance

Since blood is inert, it follows that when a pressure difference is applied between the two ends of a
long vessel that is filled with blood, the mass of the blood resists the tendency to move due to the
pressure difference. Once more assuming a linear relation between the change of the blood flow
(dF/dt) and the pressure difference P we can write

P = Lc
dF
dt
. (5)

Note that this is the hydraulic equivalent of Newton’s law, which relates forces to acceleration.
The inertia of blood can be modeled by a coil (also known as an ‘inductor’), since the current

in a coil cannot change instantaneously. This effect causes the relationship between the potential
difference V across a coil with inductance Le and the current I passing through it, which can be
modeled by the differential equation:

V = Le
dI
dt
. (6)

Valves and Diodes

An ideal valve forces the blood to flow in only one direction. More specifically, it always stops the
flow in one direction while it allows the blood to flow in the other direction, opposing only a small
resistance (Rc) to the flow, as soon as the pressure difference is higher than a certain critical pressure
P∗ which is often taken to be zero. For this reason it is common use to model the action of a valve
as follows:

F =
{

0 if P < P∗

P/Rc if P ≥ P∗. (7)

The electrical analogue of a valve is a diode. In electronic circuits, a diode is a component that
allows an electric current I to flow in one direction, but blocks it in the opposite direction. There are
different models in the literature for diodes; we will use the idealized relationship corresponding to
(7):

I =
{

0 if V < V∗

V/Re if V ≥ V∗. (8)
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3.2 Other Relationships

One advantage of modeling the cardiovascular system by an electrical circuit is that Kirchhoff’s laws
for currents and potential differences can be applied:

• The sum of currents entering any junction is equal to the sum of currents leaving that junction
(conservation of blood mass).

• The sum of all the voltages around a loop is equal to zero (pressure is a potential difference).

All these elements, or their nonlinear extensions, are used in different forms in the models for the
heart and its environment, the arterial system. We summarize all the relationships in table 3.

In the following subsection, we discuss the relatively simple models for the cardiovascular sys-
tem that are known as Windkessel models.

P = FRc vessel resistance elec. resistance V = IRe

Cc
dP
dt
= F vessel compliance elec. capacitance Ce

dV
dt
= I

Lc
dF
dt
= P blood inertia magnetic inductance Le

dI
dt
= V

F =
{
0 if P < 0
P/Rc if P ≥ 0 valve diode I =

{
0 if V < 0
V/Re if V ≥ 0

Table 3: Analogy between electrical and cardiovascular behaviour.

3.3 Description of the Windkessel Model and its Use

The Windkessel model consists of ordinary differential equations that relate the dynamics of aortic
pressure and blood flow to various parameters such as arterial compliance, resistance to blood flow
and the inertia of blood. We discuss three forms of the model. In the different forms, the complexity
of the model is increased by introducing extra components, each representing a characteristic of the
cardiovascular system. Thus, closed-form solutions for the aortic pressure and the flow rate become
increasingly difficult to obtain.
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2-Module Windkessel Model

The first Windkessel model was put forward by Stephen Hales in 1733 [7]. He assumed that the
arteries operate like a chamber in an old-fashioned hand-pumped fire engine (in German Windkessel
pump) which smoothes the water pulses into a continuous flow. By conducting blood pressure
experiments on various animals he was able to perform the first direct measurement of arterial blood
pressure.

Hale’s analogy between the cardiovascular system and the water pump was enhanced by the
German physiologist Otto Frank [5]. His 2-module Windkessel model has since been applied in
studies including chick embryos [17] and rats [8]. Figure 1 shows the 2-module Windkessel model

Figure 1: The 2-Module Windkessel model.

consisting of an electrical circuit with a capacitor C corresponding to the arterial compliance and
a resistor R corresponding to the resistance to blood as it passes from the aorta to the narrower
arterioles. This is referred to as the peripheral resistance. As explained in more detail in section 3.1,
P and F represent the aortic pressure and the blood flow rate in the aorta, respectively, and both are
functions of time, t. A differential equation in terms of P and F can be obtained using the equations
given in section 3.2. These equations lead to

F = F2 + F3, (9)
P = F3R, (10)

C
dP
dt
= F2. (11)

Using Kirchhoff’s law for currents, we can eliminate the currents F2 and F3 from this equation,
leading to:

F =
P
R
+C

dP
dt
.

This equation can be solved if we consider just the diastole period of the heartbeat in which the heart
muscles relax, because during this period the left ventricle is expanding and F = 0. We then find

P = P(td)e−
(t−td )

RC . (12)

Here it has been assumed that P(td) is the blood pressure in the aorta at the starting time td of the
diastole.

3-Module Windkessel Model

An extension of the 2-Module Windkessel model, the 3-Module Windkessel model, was formulated
by the Swiss physiologist Ph. Broemser together with O. Franke and it was published in an article in
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1930 [2]. This model, which is also known as the Broemser model, introduces an extra resistor Ra

which represents the resistance encountered by blood as it enters the aortic valve. The corresponding
electrical circuit is shown in figure 2.

Figure 2: The 3-Module Windkessel model for the systemic circulation.

Adopting the same approach as before we obtain

(1 +
Ra

Rp
)F + RaCc

dF
dt
=

P
Rp
+Cc

dP
dt

(13)

and during diastole, when F and its time derivative are zero, we may again simplify (13). This leads
to the same expression for the aortic pressure during diastole as in the 2-Module Windkessel model.

4-Module Windkessel Model

The 4-Module version of the model was developed for the study of the systematic circulation in
chick embryos [17] and pulmonary circulation (i.e. the circulation relating to the lungs) in cats [10]
and dogs [6]. This model extends the 3-Module version by adding a coil Lc to represent the inertia
of the blood, see figure 3. The approach used previously and some tedious but trivial algebra then

Figure 3: The 4-Module Windkessel model.

results in the following equation:

(1 +
Ra

Rp
)F + (RaCc +

Lc

Rp
)
dF
dt
+ LcCc

d2F
dt2 =

P
Rp
+Cc

dP
dt
.

In section 5, the elementary Windkessel models will be expanded to include the pumping action
of both the heart and the mechanical pump. But first we will give a description of the pump itself
and its most important operating characteristics.
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Figure 4: The Impella 2.5 LP device.

4 Description and Specification of the Pump

In this section, we give some specifications which will turn out to be relevant for the mathematical
model of the blood pump. Part of the information about the heart pump was obtained from the
instruction manual [1] and some was provided by Krischan Sjauw (AMC).

As described earlier, the Impella Recover LP 2.5 is a catheter mounted micro-axial rotary blood-
pump, designed for short-term mechanical circulatory support. It is positioned across the aortic valve
into the left ventricle, with its inlet in the left ventricle and its outlet in the aorta; see figure 5. The
driving console of the pump allows management of the pump speed by 9 gradations and it displays
the pressure difference between inflow and outflow, which gives an indication of the pump’s posi-
tion. Expelling blood from the left ventricle into the ascending aorta, the Impella is able to provide a
flow of up to 2.5 litres per minute at its maximal rotation speed of 51000 rpm. To prevent aspirated
blood from entering the motor, a purge fluid is delivered through the catheter to the motor housing
by an infusion pump (see figure 6). Table 4 gives some further specifications.

The flow created by the pump depends mainly on the pressure difference between the outlet
in the aorta and the inlet in the ventricle, and on the speed of the rotor. The flow decreases if
the pressure difference increases or the rotor speed decreases. Figure 7 shows these dependencies,
obtained experimentally, between the flow through the pump and the pressure difference for different
pump speeds varying from the maximum possible 51000 rpm to 25000 rpm.

To describe the action of the rotary pump, we need to expand the Windkessel models discussed
above to model the valves and the heart chamber, and the dynamics which lead to the cardiac cycle.
An example of this is given in [4], where the left ventricle is described as a time varying capacitor
with an elasticity function E(t) for the heart, thereby providing a model for the heart capacitance
which is time-varying. This time-varying function is calibrated to the end-systolic pressure and
volume values and the end-diastolic pressure and volume values.

The pump itself is modeled as a bypass around the diode that represents the aortic valve with
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Parameter Value
Speed range 0 to 51000 rpm
Flow-Maximum 2.3±0.3 l/min
Catheter diameter max. 4.2 mm (nom. 4.0 mm)
Length of invasive portion (w/o catheter) 130±3 mm
Voltage max. 18 V
Power consumption less than 0.99 A
Maximum duration of use 5 days

Table 4: Pump parameters.

resistance and inertia at both ends of the pump. We remark that this means that even when the aortic
valve is closed, the pump can still pump blood from the left ventricle into the aorta and there may
even occur some backflow: blood flowing back from the aorta into the left ventricle due to adverse
pressure differences.

The rotator speed in the pump was assumed to be constant, since this was the explicit design
objective of the pump considered here.

5 The Full Model
Our model for the environment of the heart and blood pump is based on a paper by Ursino [12], in
which a nonlinear lumped parameter model of the cardiovascular system is proposed. The first order
differential equations in this model describe pressures, volumes, and flows in the lumped subsystems.

These subsystems are the pulmonary arteries, pulmonary peripheral circulation, pulmonary veins,
systemic arteries, peripheral systemic circulation, extrasplanchnic venous circulation, the left and
right atrium of the heart, and the left and right ventricle of the heart. This means a distinction is
made between veins, which carry blood to the heart, and arteries, which take blood from the heart
to the organs, and between the pulmonary system, which corresponds to the lungs, the splanchnic
system, which corresponds to abdominal internal organs, the peripheral system, corresponding to
the outer part of the body, and the extrasplanchnic system, which corresponds to other organs.

Figure 5: Placement of the pump between the aortic valves.
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The Ursino model offers the possibility of parameter adjustments based on physical specifica-
tions for individual patients, whereas in a Windkessel model more parameters and state variables
are modeled implicitly, and are therefore not adjustable in a straightforward way. Moreover, in the
expanded model, blood flow in or out of the right and left ventricles is only possible if the corre-
sponding valves are open. A valve opens one way, i.e. it is opened or closed, depending on the sign
of the pressure difference over the valve.

In the model, a distinction is made between the capacitance, inertia, and other characteristics in
the different components of the system. For example: the capacitance and resistance for blood flow
obviously depend on the width of the arteries and veins, which may vary considerably within the
human body. Different compartments of the system are denoted by different subscripts to make the
model equations easier to read, see table 5. The electrical circuit corresponding to the model is given
in figure 8. Notice that in this figure the time-varying pressures generated by the heart muscles in
the left and right ventricle are indicated by capacitors with arrows through them, while we have also
used the standard symbol for electrical earth to indicate a point of zero voltage, which corresponds
to a reference pressure based on which all other pressure differences are stated.

The model for pressures, volumes and flows then becomes as follows. Conservation of mass and
balance of forces in the different compartments lead to

dPpa

dt
=

1
Cpa

(Fo,r − Fpa) (14)

dFpa

dt
=

1
Lpa

(Ppa − Ppp − RpaFpa)

dPpp

dt
=

1
Cpp

(Fpa −
Ppp − Ppv

Rpp
) (15)

dPpv

dt
=

1
Cpv

(
Ppp − Ppv

Rpp
−

Ppv − Pla

Rpv
)

for the pulmonary arteries in the upper cycle in figure 8, while it leads to

dPsa

dt
=

1
Csa

(Fo,l − Fsa) (16)

dFsa

dt
=

1
Lsa

(Psa − Psp − RsaFsa)

dPsp

dt
=

1
Csp +Cep

(Fsa −
Psp − Psv

Rsp
−

Psp − Pev

Rep
)

dPev

dt
=

1
Cev

(
Psp − Pev

Rep
−

Pev − Pra

Rev
)

Figure 6: Left: Purge fluid preventing blood from entering motor housing. Right: Rotor positioned
above the motor housing.
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Figure 7: Dependencies between the flow through the Impella LP 2.5 pump and the pressure differ-
ences for different speeds of the motor.

for the lower cycle in that figure. Finally, for the left and right atrium

dPla

dt
=

1
Cla

(
Ppv − Pla

Rpv
− Fi,l) (17)

dPra

dt
=

1
Cra

(
Psv − Pra

Rsv
+

Pev − Pra

Rep
− Fi,r).

Here, Fi,l and Fo,l are the flow into and out of the left ventricle (in ml/s), and Fi,r and Fo,r are the
flow into and out of the right ventricle. Assuming a known and constant total blood volume V0 we
can express the last remaining pressure, the splanchnic venous pressure Psv, in terms of all the other

pa pulmonary arteries pp pulmonary peripheral
pv pulmonary veins sa systemic arteries
sp systemic peripheral ev extrasplanchnic venous
sv splanchnic venous ep extrasplanchnic peripheral
ra right atrium la left atrium
rv right ventricle lv left ventricle
i in o out
l left r right

Table 5: Subscripts of the variables.
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Figure 8: The full model.

pressures:

Psv =
1

Csv
[V0 −CsaPsa − (Csp +Cep)Psp −CevPev −CraPra − Vrv (18)

−CpaPpa −CppPpp −CpvPcp −ClaPla − Vlv − Vu].

The left and right ventricles are modeled using state variables that represent volumes instead of
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pressures and the flows through the valves:

dVrv

dt
= Fi,r − Fo,r (19)

Fi,r =

{
0 if Pra ≤ Prv

Pra−Prv
Rra

if Pra > Prv

Fo,r =

{
0 if Pmax,rv ≤ Ppa

Pmax,rv−Ppa

Rrv
if Pmax,rv > Ppa

dVlv

dt
= Fi,l − Fo,l

Fi,l =

{
0 if Pla ≤ Plv

Pla−Plv
Rla

if Pla > Plv

Fo,l =

{
0 if Pmax,lv ≤ Psa

Pmax,lv−Psa

Rlv
if Pmax,lv > Psa,

where the pressures and resistance in the ventricles are given by

Rlv = kr,lvPmax,lv (20)
Plv = Pmax,lv − RlvFo,l

Rrv = kr,rvPmax,rv

Prv = Pmax,rv − RrvFo,r

Pmax,lv(t) = φ(t)Emax(Vlv − Vu,lv) + [1 − φ(t)]P0,lv(exp(kE,lvVlv) − 1)
Pmax,rv(t) = φ(t)Emax(Vrv − Vu,rv) + [1 − φ(t)]P0,rv(exp(kE,rvVrv) − 1).

The parameter Emax is the ventricle elasticity at the instant of maximal contraction, and Vu is the
unstressed ventricle volume. The constants kr and kE describe the ventricle resistance and the end-
diastolic pressure–volume relationship for the heart. Parameter values that were not explicitly given
by the AMC cardiologists were taken from [12].

The heart is activated by the ventricle activation function

φ(t) =

 sin2
[
πT (t)
Tsys(t)

u
]

0 ≤ u ≤ Tsys/T
0 Tsys/T ≤ u ≤ 1

(21)

that steers Pmax,lv, the isometric left ventricle pressure. The ventricle activation function is controlled
by the baroreflex control system, which is a highly complex function of the sinus nerves.

For simplicity, we approximate the ventricle activation function by a simple sine function, which
is shown in figure 9,

φ(t) =
{

sin(2πω) 0 ≤ sin(2πω)
0 sin(2πω) < 0, (22)

with ω = 1.25 rad the signal frequency which corresponds to the cardiac cycle.
The rotary pump is modeled as a tube which creates a pressure difference depending on rotational

speed. It is assumed that the aortic valve closes perfectly around the tube, so when the valve is open,
blood is allowed to flow through the aorta and the pump, and when the valve is closed, blood is only
allowed to flow through the pump. The purge fluid is not modelled explicitly. The corresponding
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Figure 9: Approximated ventricle activation function φ.

equations for the outflow of the left ventricle are therefore modified to

Fo,l =


Pmax,lv+Ppump−Psa

Rpump
if Pmax,lv ≤ Psa

Pmax,lv+Ppump−Psa

Rpump
+

Pmax,lv−Psa

Rlv
if Pmax,lv > Psa.

(23)

The first equation describes flow through the pump when the aortic valve is closed and the second
equation describes the flow through the pump and the aorta when the aortic valve is open. The
quantity and direction depend on the pressure difference between the left ventricle and the aorta, and
on the pressure difference created by the pump. Here, Rpump is the flow resistance inside the pump.

As mentioned before, figure 7 shows the flow in l/min for the Impella LP 2.5 pump as a function
of the pressure difference over the cannula. The different lines represent different rotational speeds.
The exact experimental details were unknown to us, but it is our strong belief that the pressure
difference at the horizontal axis is artificially induced. Figure 7 suggests that locally around an
operating point a linear relation

F =
Ppump − ∆p

Rpump
(24)

for the flow through the cannula is reasonable. Here ∆p is the artificial pressure difference at the
horizontal axis of the experimental data, and Rpump is the flow resistance of the pump. We only
consider the highest rotational speed of 51000 rpm here. Two data points from the experimental
data available during the week (which differed from the ones presented in figure 7) were chosen to
determine Rpump around the operating point, which resulted in Rpump = 2.25 s · mmHg/ml.

6 Numerical Results
The full model was simulated in Matlab with a Runge-Kutta difference scheme with varying timesteps.
Figure 10 shows the PV loop (left) and the cardiac output (right) in millilitres per second for a normal
patient with and without a pump. The pump pressure was taken to be constant at Ppump = 25 mmHg
after calibration based on the experimental data from PV-loop measurements. This means that the
pump creates a constant pressure difference of 25 mmHg, and therefore also implies that for pressure
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differences between the left ventricle and the aorta that are higher than 25 mmHg, backflow through
the pump arises. Other unknown constants were taken from [12]. We took initial conditions which
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Figure 10: Left: Simulated PV loop. Right: Cardiac output for a normal patient with pump (dash-
dotted line) and without pump (solid line). Ppump = 25 mmHg.

differ slightly from the normal operating conditions of the heart to show that the dynamics converge
to a stable limit cycle.

In the left plot of figure 10, we observe that starting from some initial value for Plv and Vlv,
the cardiovascular system stabilizes, and the PV loop converges to a steady cycle. The PV loop
of the patient with pump shows a higher maximal volume, which is caused by backflow through
the cannula during relaxation. The constant suction induced by the pump also allows less pressure
buildup inside the left ventricle at the end of the systolic phase. The right plot of figure 10 shows that
the peaks are higher for the patient with the pump, because the pump induces extra outflow during
contraction. This increases the cardiac output. On the other hand, during relaxation there is a small
backflow through the pump, decreasing the overall cardiac output, since the pressure Ppump is too
small here to prevent backflow during relaxation.

We also simulated the system with a higher pump pressure of Ppump=160 mmHg. Figure 11
shows experimental data for the PV loop of the heart of a patient with coronary artery disease, with
and without the Impella LP 2.5 pump at the highest rotational speed. The left plot of figure 12 shows
that for a normal heart the maximal volume of the left ventricle and the bottom left corner in the PV
loop are shifted to the left after insertion of the pump, in correspondence to figure 11. The upper arcs
in the PV loop of the simulated normal heart are absent in the measured PV loop of the weak heart.
The right plot of figure 12 shows that there is no backflow anymore, and due to the constant outflow,
the left ventricle volume is smaller at the end of the systolic phase, which results in a smaller peak
in the cardiac output during contraction.

The area below the cardiac output graph equals the total cardiac output in ml, and a comparison
of figures 10 and 12 shows that the total cardiac output has increased when a stronger pump is used.
More specifically, the pump caused an increase from 73.9 ml in one cardiac cycle of 0.8 seconds
without the pump to 79.3 ml when the pump was used, corresponding to an increase from 5.54 litres
per minute to 5.95 litres per minute. This increase of approximately 7% is the result of almost 1.5
litres per minute extra cardiac output during the relaxation phase, and roughly 1 litre per minute less
cardiac output during the contraction phase.

Further increase of Ppump to Ppump = 1000 mmHg gives negative volumes in the PV loop, which
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Figure 11: PV loop of the heart of a patient with coronary artery disease, with and without a pump
(Measurements provided by AMC).
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Figure 12: Left: PV loop, and Right: Cardiac output for a normal patient with pump (dash-dotted
line) and without pump (solid line). Ppump = 160 mmHg.

can be explained as follows. Due to the linearity of the differential equations, state variables are
allowed to be negative. The resistances, compliances, and inertances are either measured for normal
blood flow or calibrated to fit the model, and therefore the model is only realistic whenever the state
variables do not deviate too much from the values of a normal blood flow.

7 Conclusions and Suggestions for Further Research
In this project, we have modeled the effect of a rotary blood pump on the behaviour of a cardiovas-
cular system. It turns out that the resistance encountered by the blood flowing through the pump is
a very important design parameter when one tries to calibrate such a model to existing experimental
results for the pressure–volume relationships. By varying the pressures generated by the pump, we
were able to see phenomena such as backflow through the pump in our simulations.

Under normal operating conditions we found an increase in the cardiac output by 7% as a result
of the pump, which is the net result of a substantial increase in output during the relaxation phase
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but also a substantial decrease in output during the contraction phase.
There is obvious room for more complex models in future research. We believe that such mod-

els should not necessarily involve more detailed modeling of the environment such as the artery
systems, since its dynamics seem to be captured quite well, but should rather investigate the exact
relationship between pressure and flow through the pump under more extreme circumstances. The
design specification of the pump that we investigated during this project focusses on maintaining a
constant rotational speed but one might easily envisage control systems for the pump in which other
specifications are formulated, to enable an even more beneficial contribution from the mechanical
device.
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