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The proceedings of this week are provided twice, in two different formats.
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aimed at a scientific audience, they present the problems, the approach, and
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In the companion volume, Bennie Mols provides a different view on the
week, aimed at a more general audience, and written in Dutch.
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MEASURE UNDER PRESSURE

Calibration of pressure measurement

Magdalena Caubergh!, Jan Draisma?, Geert-Jan Franx?,
Geertje Hek*, Georg Prokert?, Sjoerd Rienstra®, Arie Verhoeven?

Abstract

Piston-cylinder assemblies are used to create a calculable pressure in a container,
which can then be used for calibration of other instruments. For this purpose one
needs to calculate the pressure in the container so accurately that both imperfections
in the piston, and the leakage of fluid or gas through the small space between cylinder
and piston have to be taken into account. Because of these effects, the piston behaves
as if its area was slightly larger than it actually is. This slightly larger area is called
the effective area of the piston-cylinder assembly, and its computation is the subject
of this report.

We derive a formula for this effective area, which under some simplifications leads
to the formula used by four European metrological institutes. The formula used by
NMi is based on a further simplification. We conclude with some recommendations
to NMi concerning which formula to use and how to compute the uncertainty in the
results.

KEYWORDS: effective area, piston-cylinder assemblies, pressure balance, thin film
approximation.

1.1 Problem description

Six European metrological institutes have compared their respective methods
of calculating the effective area of piston-cylinder assemblies, which are used for
calibration of pressure measurements [6]. Among them was NMi (Nederlands
Meetinstituut = Dutch metrological institute), whose method and results were
quite different from those of the other five institutes. NMi asked the study
group Mathematics with Industry: first, to explain the differences between the

1: Universiteit Hasselt, 2: Technische Universiteit Eindhoven, 3: Vrije Universiteit
Amsterdam, 4: Universiteit van Amsterdam
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Figure 1.1: Basic geometry of the piston-cylinder [2].

six methods, and second, to recommend a method for computing the effective
area. In this note we do this and more: In Section 1.2 we give an introduction
to the wirtual piston model for piston-cylinder assemblies. This model itself is
well known and well described in [1], on which most of the remaining sections
are based. In Section 1.3 we show how, under certain simplifications, the model
yields the various formulas used by the metrological institutes. In Section 1.4
we give a mathematically rigorous treatment of the Navier-Stokes equations
for incompressible Newtonian fluids, which also lead to the same formula. Of
course, our model itself still depends on certain simplifications, and in Section
1.5 we argue, at least for two of these simplifications, that there is no point in
relaxing them, since that would only have higher order effects on the results.
In Section 1.6 we comment on the computation of uncertainty limits; in Section
1.7 it is described how the formulas for the effective area should be evaluated
in a numerical sound way and finally, in Section 1.8 we present the desired
recommendations to NMi.

We start with a simplified description of the piston-cylinder unit used for
the pressure measurement. Figure 1.1 shows the basic geometry of this device.
It consists of a vessel containing a viscous fluid (air or oil) with a (nearly)
cylindrical opening in which a piston can move up and down.
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Inside the vessel, the fluid is under pressure p; = ps + Ap where ps denotes
the ambient pressure outside the device. A pressure measurement is done by
the weight of the piston so that an equilibrium is reached between this weight
and the forces exerted by the fluid on the piston. The largest part of this force
results from the pressure acting from below onto the piston.

Between the piston and the surrounding cylinder, however, there is a narrow
interstice in which a small amount of fluid is pressed upward. This leads to a
frictional force exerted by the fluid to the flanks of the piston, and this force
contributes to counterbalancing the weight of the piston.

The so-called effective area Aog of the device is the area which would be
needed in an idealized situation to counterbalance the weight W of the piston
just from the pure pressure force:

w
A= —.
eff Ap
Let [ denote the length of the piston. We assume that both the piston P
and the surrounding cylinder C' are perfectly round, i.e., they are given by

P = {(z,y,2)|2€(0,L), 2> +y* <r(2)},
C = {(z,y,2)|2€(0,L), 2> +1° < R(2)},

respectively.
Our crucial assumption here is that both R and r have small variations and
that their difference h := R — r is small compared to the radii:

h
e=—-<<1.
T

In practice, € is of the order 10™* to 10~°. Hence, in the situation we are
interested in, terms which are of order €2 (or higher) can safely be neglected.
Note that in Section 1.2 and in [1], a slightly differing approach to the
concept of effective area is taken: The concept of a so-called wvirtual piston is
introduced, consisting of the actual piston together with an annular column of
liquid between the actual piston and the neutral surface between cylinder and
piston at which no shear forces act inside the liquid. For this virtual piston, the
friction force between the piston and the liquid is an internal force, and there
is no need to calculate it explicitly. Now in [1] the effective area is defined as

W+ w
S = Ap

where w is the weight of the annular liquid column. In our situation, however,
including the gravitation force term in the lubrication equations (see Section
1.4) shows that w/Ap is of order €2, therefore no difference to order ¢ exists
between A.g and S. Due to this fact, the different approach taken by SMU
in their calculation of the effective area does not lead to essentially different
results.
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Figure 1.2: A piston-cylinder assembly.

1.2 The virtual piston model

First of all we give a gentle introduction to the wvirtual piston model, using the
concept of a virtual cylinder. We are given a cylinder and a cylindrical piston
of radius r moving in it. The piston has a certain weight W (which includes the
so-called applied weights on top of the piston). An ambient buoyancy correction
has to be done because of the ambient buoyancy effect on the submerged part
of the floating component. This W depends, of course, on the gravity g, but
we assume that it can be measured or computed very accurately. In the naive
model, depicted on the right in Figure 1.2, the piston and the cylinder are
perfect (vertical) cylinders with a perfect fit. In this case, when one knows the
area A of the piston, the pressure p can be calculated from the force equilibrium

pA=W.

Hence it suffices to know, in addition to W, the nominal area A = mr? to
calculate the pressure p.

However, as suggested on the left in Figure 1.2, there is a small gap between
the piston and the cylinder, through which the medium moves upward, exerting
an upward frictional force on the piston. Let R be the radius of the cylinder,
and set h := R —r and € := h/r. The parameter ¢ will always be assumed
small, and in fact our formulas will be exact up to terms of order €2. To get rid
of this frictional force, one defines the neutral surface between the cylinder and
piston to be the surface where the velocity of the medium is maximal, and one
replaces the piston by the wirtual piston, which is the actual piston enlarged
with the annular column of the medium bounded on the one side by the piston
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Figure 1.3: The neutral surface and the virtual piston.

and on the other side by the neutral surface—see Figure 1.3. The reason for
working with this virtual piston is that no friction is exerted on it anymore:
there is no friction among the layers of medium at the neutral surface. Let
w be the weight of the annular column of medium between the piston and
the neutral surface; again, we assume that w can be measured or calculated
very accurately. Now the effective area Aeg of the piston-cylinder assembly is
defined as the area that would explain why the virtual piston of weight W + w
s in equilibrium with the pressure from below. In a formula, we must have

Acg(p1 — p2) =W 4w,

where p; is the pressure below the piston and p- is the ambient pressure. Hence,
to compute the pressure p; it suffices to know W, w, po and Aeg-.

If the piston and cylinder are still assumed perfect cylinders as in Figure
1.3, then the neutral surface is also a cylinder, whose radius we denote by 7*.
It follows from the classical theory of viscous flow between cylindrical surfaces
[4] that

R? —r?

(r)? = 2log(E) (1.1)

Writing R = r(1 + ¢€), we get the following expansion for (r*)2.

2
)2 =r2(1 + e+ % +O(eY).
In fact, 7* is equal to the arithmetic mean (R +7)/2 plus terms of order O(€?)
due to the roundness of cylinder and piston. Other expressions that agree with

(R+7)/2 up to terms of order €2 are the geometric mean v Rr or \/(R? + r2)/2.
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All these expressions are used in the literature. The next combination of rR
and (R + r)/2 gives a second order approximation for A = %.

r+ R
2

In this perfect-cylinder case the formula for A.g is easy:

Aegt = 7(r")2 = 7((R +1)/2)? + O(e?).

(7’*)2 =4X( )2 +(1—-4NrR = 7’2(1 + e+ >\62). (1.2)

From the six European metrological institutes only NMi uses this formula.
However, the piston-cylinder assemblies under consideration are not perfect.
We do assume that they have perfect rotational symmetry around a vertical
axis (see Model B in Section 1.5 for a discussion of this assumption). Then
the piston and the cylinder are described by their radii » and R as a function
of the vertical coordinate x; see Figure 1.4. The neutral surface will also have
rotational symmetry, hence be given by its radius r* as a function of x € [0,].
Furthermore, the pressure p is a function of z, as well, and so is h. Following
[1] we sometimes write 7o, Ro, 7§, ho for the values of 7, R,7*, h at 0, and p1, p2
for p(0), p(1).

Now the virtual piston has weight W + w, and this is in equilibrium with
the following forces exerted on it:

1. A force equal to 7r*(0)%p; — 7r*(1)?>p2 due to the pressure working on
both ends of the virtual piston, and

2. a force equal to fol p(f)%(g)dé due to the vertical component of the
fluid pressure acting on the inclined flanks of the virtual piston.
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Equilibrating these with W + w and partial integration yields

dm(r*)?
dzx

l
W+ w = ar*(0)2py — 71 (1)%ps + / p(€) (€)de

l
— 1 (0)p1 — 7 (1) + [p(€)mr* (©)?]! / (62 2 (¢)de

0 dx

l
- [ w6 (13)

This formula has a nice intuitive interpretation: the infinitesimal pressure dif-
ference _% at height ¢ pushes upward against the circular horizontal cut at
height & of the virtual piston; and all these forces together are in equilibrium
with W 4+ w.

Dividing by p; — p2, we find that

l
A=~ = p2) ™ [ (€2 L) (1.4
0 i

Now we will often use the geometric mean v/ Rr as an approximation for r*.
Moreover, we introduce the two new variables u := r — rg and U := R — Ry,
which are also assumed to be O(¢). Then (r*)? = rR+ O(¢?) = (r — u)(R +
u) + O(u) + O(e?) = ro(ro + ho + U + u) + O(u) + O(€?). Substituting this
approximation, we find that the effective area is approximately

l
Ao~ 773 {1 +2—— [ul) + U(é))dpdg} NG

ro  ro(p1 — P2 d¢

Most European metrological institutes use equivalent or simplified versions of
this formula. The goal is now, given r and R as functions of x (or rather,
lists of their values measured at finitely many levels in [0,]), and assuming a
suitable model for the pressure p, to compute the effective area Aqg using the
formula above.

1.3 Simplifications under further assumptions

Having determined the formula (1.4), it is still not possible to calculate the ef-
fective area of the piston: the formula contains the unknown pressure p; (which
is to be determined!) and, even worse, the derivative p’(£) of the pressure in
the thin layer between the piston and the cylinder. In this section we show
that from formula (1.5) one can, under additional assumptions, derive various
other formulas in which all variables are known.

Since the annulus between the cylinder and the piston is very small (h/r =
€ < 1) the fluid motion in this gap is at zeroth order well described by the so-
called thin film or lubrication approximation of the Navier-Stokes equation. For
the derivation we use (again) the rotationally symmetric nature of the problem
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and the fact that the ratio h/r is small. These two features allow us to consider
the problem as a 2D one and then apply the rotational symmetry to obtain a
full 3D picture. The fluid in a vertical 2D slice has velocity v = (v1, v2), where
v1(x,y) is the velocity component in the vertical z-direction and va(z,y) the
component in the horizontal y-direction. The equations are then

dp 0%, dp 8%vy ovy  Ovg

- =H55s A =MFbas: -+t =0

ox dy oy oy or y
where p is the viscosity, that is assumed independent of the pressure p. For
a viscous fluid the natural boundary conditions are v; = vo = 0 on the walls,
soony =0+u(r) and y = h+ ng) In first approximation this yields the

. _ d .
solution vy = 0, p = p(x), v1 = ﬁﬁ(y —uw)(y—h-U) = iﬁy(y —h)ifu
and U are much smaller than h.
The fluid velocity flux @ through through a horizontal slice of the annulus

is the fluid velocity integrated over this area. The rotational symmetry and
small fraction h/r yield that this flux is at leading order

h h
Ldp 1, 1.,
=2 dy =2rr—— |-y’ — =h
Q wr/o v2(y)dy ™ o di [3y 5 o
which yields the formula
Q 1dp, 4
— = ———h". 1.6
mr 6u dx (16)

Since the fluid in the annulus is a thin film between two metal side walls,
the temperature of the fluid can be assumed constant, so that isothermic laws

apply.
Assemblies operating with incompressible fluids

For incompressible fluids, the flux @ is constant. Since r is constant at leading
order, this implies that the right-hand side of (1.6) is constant at leading order,
so that %[—j—zlﬁ] = 0. Integration leads to

Jo wep €

p(x) =p1—(p1 —p2)——"—— (1.7)
fO h(é)d d£
and L
dp h(@)®
— == -p) - (1.8)
de Jo memdé
Substitution into (1.4) gives the formula
l * 1
T (8)? g dé
Ao = Jo RO > (1.9)

L 1
Jo medé
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This formula only contains variables that are known by measurements and
interpolation between the measured data. It is, under the assumption of
pressure-independent viscosity, valid for all values p1, p2. In other words, for in-
compressible fluids the resulting effective area is pressure-independent, which,
of course, is what makes the effective area a useful characteristic of piston-
cylinder assemblies! This formula and variations on it are used by IMGC,
LNE, PTB, and UME. This seems reasonable for liquid-operated assemblies
under not too high pressure, as under low pressure liquids in general behave
as incompressible fluids. The formulas below for gas-operated assemblies look
similar to (1.9), but are slightly more complicated. In particular, the constant

|
C::/O @dg (1.10)

will appear over and over again, and we will abbreviate it to C.

Gas-operated assemblies

For gas-operated assemblies, and also for liquid-operated assemblies under very
high pressure, the assumption of incompressibility is no longer realistic. For
such fluids it is no longer the flux @, but the value @p that is constant, where
p is the density. From (1.6) we then derive that

@ = _£d£h3

mr 64 dx
is constant at leading order. According to the gas law pV = mRT the quotient
p/p is constant under isothermic conditions, so that —&g—gh‘?’ is constant and

has zero derivate as well. For pressure-independent viscosity integration now
leads to

2 _ 2 gz 1/2
|2 _pi—p / 1 }
z) = |p? — | 1.11
) = [t = PP [ e (111)
where C is the constant defined in (1.10); hence
T —-1/2

dp pi-pi 1 [, p?pi/ 1 1
—(x) = — - d . 1.12
iz @ 20 n@p P @ ) wep® (1.12)

This formula can again be substituted in (1.4). The resulting effective area Aeg
is no longer independent of p; and py and can in theory not be determined as
long as the pressure p; is unknown. However, Aqg is in fact just a function of the
ratio p1/pe. Under the assumption that lim, . Aeg(z) exists, this means in
particular that limy, .o Aeg(L?) is independent of the value p;: if the assembly
is immersed in vacuum, so with p, — 0, the effective area is independent of p;.

The institute PTB used the resulting expression for Aeg (their formula (3)
plugged into their (2)), and then extrapolated for p; — ps — 0.
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Small applied pressure

The expression for Aqg for a compressible fluid has two limits, in which the for-
mula becomes more attractive. If we assume that p; > (p1 — p2), we consider
the situation in which the pressure difference is small compared to the pressure
p1 (or pa). Equivalently, one can consider the limit po — p;. If, after substitu-
tion of (1.12) into (1.4), this limit is taken, then the result is precisely equation
(1.9), the formula that gives the effective area in case of an incompressible fluid.

Thus one can conclude that under small pressure differences any fluid, com-
pressible or incompressible, leads to the same effective area. This makes it even
more attractive to use this formula and validates the choice of IMGC, LNE;,
PTB, and UME in a sense.

Large applied pressure

The other limit we take is the limit for large applied pressure, so p; > po. Since
for compressible fluids A.g is a function of p;/ps, the limit p; — 0 describes
this situation. In this limit (1.12) reduces to

T —1/2
@(Qz) = L 1-— 7f0 h(é)s %
dx 2C h(z)3 C ’

which in turn leads to an effective area

U2 @1 e\ 2
Aeﬂ:/ () (1 _ o ) dz. (1.13)
0

2Ch(z)? C

In deriving these formulas we implicitly assumed that the linear (isothermic)
gas law is still valid for these high pressure conditions. The limit (1.13) thus
obtained is useful for gas-operated assemblies with high p; — ps. Note that the
effective area is (again) independent of the values p; and ps, but differs from
the effective area for the low applied pressure or incompressible case. Note also
that it involves computing a double integral, where the bound x of the inner
integral is the variable of the outer integral; this makes numerical evaluation
of the expression above rather awkward.

1.4 The Navier-Stokes equations for incompressible
fluids

After the rather informal approach using the virtual piston model, we will now
derive formula (1.9) more rigorously, making precise what simplifications of
reality underly the model.

The motion of air of oil between the inner r and outer radius R can be
described by the Navier-Stokes equations for incompressible Newtonian fluids,
given by [5, 3]

p(%—kv-Vu) = —Vp+ uV3?v — pge,, V.-v =0, (1.14)
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where p, v, p and g denote density, velocity, pressure and the gravitational
acceleration. This expression is valid for a uniformly constant viscosity pu.
This appears to be a reasonable assumption, as the large heat capacity of the
metal cylinder is probably able to absorb any generated heat and to keep the
temperature, and thus the viscosity, of the fluid constant.

In view of the geometry of piston and cylinder, we choose cylindrical coor-
dinates (r, ¢, x), while v, w, u will denote the r, ¢,  component of the velocity
v. Note the difference between r and r: the latter is, as always, the radius of
the piston as a function of x, while the former is the radial coordinate! The
stationary problem becomes in axial, radial and circumferential components

u wdu o) _
P\%or r 0¢ Yor ) T
10 ou 10%u 0%u dp
H <I'61‘ (I'ar) + I‘GW + 8.’132> - % - PY; (115&)
W wlu _w? v
P or 1 0¢ T or)

10 1020 0% 20w Op
" (a <rar<“’>> teoe T r28¢> ~ o (115D)

2 2
,u(a <1a(rw)>+ 10w+8w+28v>16‘p (1.15¢)

or \r Or 2962 | 922 ' r20¢ rd¢’
ou 190 10w

Both the slowly sinking piston and the rotation can be completely modeled by
the boundary conditions! It is convenient to combine p and pg into the reduced
pressure

p=p+ pgr. (1.16)

When we scale the axial velocity on a typical (as yet unknown) velocity U,
the radial velocity on hU/l, the circumferential velocity on the given rotational
velocity, say U/ (where ¢ is small), radial derivatives on the typical width
h = R — r, radial distance r and axial derivatives on the slit length [, the
circumferential derivatives on a small paramete v, the (reduced) pressure on
uUl/h?, while we call the small parameter € = h/l and the Reynolds number
in axial direction Re = pUh/u. Notice that ¢ # ¢ = % but has the same order
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of magnitude. Then we get in dimensionless form
ou  ywou ou
R e — T —_— =
e (“ar ST 00 +“ax)
10 [ Ou 9 9 2 0%u  Op
rar<far)+“ 2052 o aw

2
Reé? (gvav + suwoy 1w +€uav) =
r x
0 (10 1 0% 0%v ey 2 dw op
2 (9 (1O 2. 21 070 07U ey 2ow) Op
€ ( ( (rv)) tae g 952 +e 2 " 512 8¢> B (1.17Db)
Rec (vawﬂwawﬂvw + 3w) _

(1.17a)

o srop T r o Vow
9 (10 5 o 1 0%w  ,0%w 320v 60D
i (r@r(rw)) +7% r—QW—i—E w-ﬁ-w& 206 1 00 (1.17c)
ou 10 710w
£+;a(rv)+g;a—¢—0 (117d)

Thus the order of magnitude estimates of the both sides of the equations equal

Ree, Reevy/6, Ree = 1,722, €%, 1, (1.18a)

Ree?, Ree3y /6, Rec? /62, Ree® = €2, 4% e, e3~/6,1, (1.18b)
Ree, Reey/6, Ree?, Ree = 1,722, €2, v6e3, 74, (1.18¢)
1,1,7/6 = 0. (1.18d)

So if € is small, with Re < O(¢), 72 < O(5-¢*), 62 = O(Re) and 70 =< O(e?)
then all small terms are equal to or smaller than O(g?), and we are left with

po (Ou\ 9Op
op
=0, (1.19b)
0 (10 ( Ow
du 10 v 10w

All this is to be verified a posteriori, because the order of magnitude of U
is unknown yet. Equation (1.19a) is the most important equation here, and
known as Reynold’s lubrication equation. Equation (1.19b) says that the pres-
sure only depends on x. Equation (1.19c) says that circumferential velocity
component w is decoupled from the rest of the problem, so it can be ignored
as it doesn’t contribute to the pressure difference between top and bottom.
Equation (1.19d) relates v and w to u, but can also be ignored for the present
problem.
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The inner cylinder is slowly but steadily moving down by its own weight
W, and we assume at time ¢ the bottom to be at height x, with (constant)
velocity u,, given by

dx
= 2,(t), ==L 1.20
p=apl),  uy= (1.20)
The position of the inner cylinder is conveniently described by
r=r(r—xp). (1.21)

The boundary conditions along the cylindrical surfaces r = r and r = R, taking
into account the same approximation as before by ignoring all O(&?)-terms,
become [7]

u=1u, at r=r(x—zx,), (1.22a)
u=0 at r=R(z). (1.22Db)

Conservation of mass requires that as much mass is squeezed out of the cavity
as corresponds to the incoming volume of the inner cylinder [7]:

R
27r/ u(r,z)rdr = —ru,r?. (1.23)

Note that the above expression is the volume flux at height x. This is not the
same for every x, because the slit width h may vary with x.

The total force on the inner cylinder [7] is now given by the pressure dif-
ference between top and bottom (multiplied by the respective areas) plus the
shear and normal stresses of the flow in the slit. Re-expressed in terms of p
this is given by

T+l au zp+1
F = 277/ {ﬁr’r + uar} dz + Trpg/ r(z — x,)dx
ZL’p r xr

+ 7 [r*(0)p(ap) —r*(Dp(zy + 1))
zp+l = l
B » dp , ou 9
= W/xp [ o + 2/1&7"} . dz + ﬂpg/o r*(s)ds. (1.24a)

From equations (1.19a, 1.22a, 1.22b) and (1.23) we have

_ 1dp/p2 2
QTM@ :r2dp 5 L (R? —17) + 2uu,

or dz log(R/r)

dp _ 4puy,
dz ~ (RZ+r2)log(R/r) — (R2 —1?) (1.25b)

(1.25a)

(Note that velocity u, is as yet unknown.) This leads to the total force on the
inner cylinder to be given by

F=-2 / l dahas
= —2muu
0 Jo (RS log(R/r) = (B2 = 17)

I
ds+7rpg/ r?ds.  (1.26)
0
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The unknown velocity u, is obtained from the condition that for a steady
situation the force I’ should be equal to the weight of the cylinder W. So we
have

1
W — mpg / r?ds
0
2 / l B 412 ds
T
" Jo (BZ+ ) og(R/r) — (B2 — 1)
This yields all the information necessary to determine the pressure difference

between top and an bottom. If u, is known it is also possible to estimate the
value of U. From (1.23) it follows that m(R?* — r?)U ~ m|u,|r?, so

(1.27)

Up = —

|up|
U=0(=).
(ol
If |u,| =< O(e?) the previous assumption that Re < O(e) is correct. Because of
(1.31a) and (1.31b) we can estimate that

3
~ ——¢”.
p 6mpl

If we use the following estimates (for air):

r=1[0=6 cm,

W = 5000 g,
p=178-10"* g/cms,
p=12-10"% g/em®,
e=5-10"°

we obtain

u, =3-107% cm/s,
U=3-10"" cm/s,
Re=6-10"",

so indeed Re < ¢. The order condition v? < (’)(ﬁe‘l) is fulfilled if v < 3-1079,
a very small number. For § ~ 8-10~* the side-effects can be neglected because
then 62 = O(Re) and 7§ = O(e?). Because § = U/2nrf ~ 7.96 - 107¢/f,
it follows that the rotational frequency f ~ 1072 rev/s = 0.6 rev/min. This
result is different from the results of Michels [1], who found much higher critical
speeds lying generally within the range 28 to 32 rev/min. This diference could
be explained by the fact that we used different parameter values. However, it
is also mentioned in [1] that there is evidence that considerably lower speeds
are quite practical with well-made piston-cylinder assemblies.
We have
- - T+l dl_)
pan) = play +) = [ P (1.28)

e, dz
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Thus we get
p(xp) — p(zp +1) = pgl+

1 /l ! ds
i(WW /d> o (2 + ) og(B/r) (R =) (1 o)

! RZ4r
/o (B 1 ) log(R/r) — (B2 2"

This is a complete and, within the theory of lubrication flow with slowly varying
walls [5] and moderate Reynolds number, exact result. We can make consider-
able progress, however, by using the fact that the slit is not only slowly varying
but also very close to, and very thin compared to, a typical cylinder radius.
We choose a fixed radius Reg, which will be chosen in a convenient way and
which will correspond to the effective area, and introduce

7(s) = Ret — ha(s), (1.30a)
R(s) = Rest + ha(s), (1.30b)
h(s) = hi(s) + ha(s), (1.30¢)

R(s) = r(s) + h(s), (1.30d)

where hy and ho are both of the same order of magnitude as h. Then we can
approximate for small A

287y — ho) o R,
3Rt | /3R% eft)s

(1.31a)
R2 + 7’2 = 2R§ﬁ‘ - 2Reff(h1 - h2) + O(h2) (131b)

(R +r2) log(R/r) = (B2 = 1*) =

This yields the rather unwieldy expression

p(p) — p(ap +1) >~ pgl+
1 1hy —he

ds
w 2pg / o M3 2 Regh?
—pgl + == [ hids . (1.32
(WREH P Ren o ™ ) T ghhy )

— — = d
o B 2 Regh®
A clever choice of Reg, however, is the one which makes
l
h1 — ho

ds = 0. 1.33

This is achieved by
I
R
h—g rds
Reyg=20 "~ (1.34)
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Notice that Reg can be viewed as the radius of a generalized neutral surface.
In this case our expression greatly simplifies to

W 2pg /l
— l) ~ hid 1.35
play) — pap +1) TR R J, (1.35)

This can be interpreted as the well-known effective area, see [1] and Section
1.1. If we define
Ao = TR?; (1.36)

and note that l
w = 27TReﬁpg/ hids (1.37)
0

is (to the order of approximation) equal to the weight of the cylinder of fluid
between Reg and r, then

Acgt(p(zp) —p(zp + 1)) 2 W +w (1.38)

In conclusion: the systematic and most general definition of effective area,
for piston-cylinder assemblies operating with incompressible fluids, is given by
equations (1.34) with (1.36). Up to order €2, this approach leads to the same
expression as formula (1.9) in Section 1.3.

1.5 Further side effects

The model (1.4) which has been derived in section 1.2, is based on a lot of
assumptions.

e The piston and cylinder are axisymmetric.

e The vertical velocity of the piston is zero in the stationary case.
e The system converges sufficiently fast to the stationary state.

e There is no rotation because the stationary case is stable.

e The piston and cylinder have the same axis.

e The elastic properties of the material of the piston and cylinder are not
important.

e The temperature variations because of the friction can be neglected.

In practice these assumptions are not fulfilled, as we now explain. We will
shortly describe the physical aspects of the piston-cylinder unit and enumerate
the side-effects which are not modelled by Dadson’s theory, which is described
in Section 1.2.

There is a fluid/gas below the piston and also between the walls of the piston
and cylinder. In what follows, we will concentrate on the case of incompressible
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fluids. We start from an initial state, for which there is no fluid between the
walls. Because of the gravity force the piston will sink rather fast. Fluid will
flow between the moving walls, which implies an upward force as reaction on
the gravity force. This upward force will grow when the piston sinks until
both forces are equal (stationary case). Because this equilibrium should be
unstable, the piston is rotating with fixed angular frequency around its fixed
axis. Because of the viscosity the cylinder will also rotate. It follows that the
walls of the piston and cylinder do not touch each other.

The first side-effect is the fact that the radii of the piston and cylinder
depend on z and ¢. Second, the piston falls with a constant speed in the
stationary case. In Dadson’s theory it was assumed that this speed is zero but
this is not always true. We are interested in the stationary case for which the
piston falls with this constant speed and is still rotating. A third side-effect is
that the piston is rotating in order to get rid of the instability.

In section 1.4 a general formula for the effective area is given. It is directly
derived from the Navier-Stokes equations for incompressible Newtonian fluids.
The model includes the fact that the piston is slowly sinking. Furthermore,
conditions are given, such that the model can be assumed to be axisymmetiric.

In [2, 8] one considers finite element models which also include the elasticity
of the material of the piston and the cylinder. If we take care with moving axes
we should also consider the dry friction forces if the cylinder and piston touch
each other. In [1] it is shown how to deal with the rotation and the moving
axes. It has been shown that the resultant of the viscous forces is zero by
symmetry.

We will consider the following two extended models.

A This model assumes that the piston and cylinder are perfect cylinders
around the same axis. There is no rotation. We only consider the ef-
fect that the piston slowly sinks in the stationary case.

B This model assumes that there is no rotation and it is assumed that the
piston does not sink in the stationary case. We only assume that the
radius of the piston and cylinder depends on z and ¢.

Model A: sinking of piston

Consider the piston and cylinder of constant radius r and R. We are interested
in the stationary case where the upward wet friction force is equal to the
downward gravity force. Note that the force have to be corrected because of
the buoyancy force on the piston below the fluid level. For moving axes it has
been proved in [1] that the exact value of r* satisfies

(r*)? :r2(1+e+1—7262+0(e3)). (1.39)

Thus the influence of the sinking piston is O(e?).
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Model B: variable radius for piston and cylinder

Assume that the radii depend on z and ¢. Then the neutral surface will also
depend on z and ¢! It is very hard, to compute 7*(z, ¢) in an analytical way. It
is defined as the radius of the virtual cylinder between the piston and cylinder
for which the force between adjacent layers of fluid will be zero. This means
that there the tangential component of the force is zero! Note that formula
(1.4) can be written as

l
d
Aei(p2 — p1) = /0 w(r*)QﬁdQS.

Because now r* and P also depend on ¢ we get

I 27
Acsi(p2 — p1) :/0/0 W(r*)Qj—];d¢dx. (1.40)

In [1] it is stated that p satisfies the two-dimensional continuity equation:

0 [,3p0p O [, 3p0p\ _ K 0

where z and ¢ are the axial and circumferential coordinates and U and V
are the relative velocities of the two surfaces in the axial and circumferential
directions respectively.

From practice it follows that the non-roundness is of the same order as
the measurement errors. This implies that it indeed can be assumed that the
piston and cylinder are axisymmetric.

1.6 Uncertainty limits

Standard uncertainty of measurements

In all measurements, we have to deal with measurement errors. These are
usually modeled as normally distributed uncertainties A(x;), that are super-
imposed to the ‘real’ values of each measurement x;. The standard uncertainty
of measurement x; is then defined as the standard deviation of A(x;), which
we denote by o(z;).

For every measuring instrument, some standard uncertainty of measure-
ment is specified, which can be used to calculate the overall uncertainty of
some physical entity A, that is derived from the measurements x;.

If all measurement errors are independent from each other, we can use the
following first order approximation to calculate the overall uncertainty in A :

a2=3 (st

=1
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The piston measurement uncertainties

The NMi has provided us with piston and cylinder measurement data and
their standard uncertainties. The piston diameter was measured at 13 dif-
ferent heights (£-coordinates), with a standard uncertainty of 50 nm, which is
determined by the standard uncertainty of the measuring equipment. However,
the sample standard deviation of these 13 measurements is only 14 nm. Even if
there are only small fluctuations in the ‘real’ diameter of the piston, we would
expect a sample standard deviation of at least 50 nm. The fact that we find
a so much smaller sample standard deviation can not be attributed to chance.
No matter what statistical test we apply, we allways find p-values smaller than
10719, The same phenomenon appears in the piston measurements that were
performed at all other metrology institutes.

We conclude that the standard uncertainties of both piston and cylinder
measurements must have a systematic and a random component. Both com-
ponents are unknown, but the systematic component is always the same for
all measurements, whereas the random components are independent from one
another. This kind of situation can occur for instance in mass measurements,
where the unknown mass is compared to a standard mass. This standard mass
has some unknown deviation from the exact value. All measurements per-
formed with the same standard mass will therefore have a systematic error
equal to the deviation of the standard mass.

When confronted with systematic uncertainties, we have to adapt the for-
mula for the first order approximation of the overall uncertainty of some phys-
ical entity A:

o(A)? = z": (U(a:i)gji>2 +

i=1

2
, (1.42)

=1

where o(z;) is the random (uncorrelated) component and o (x;) is the system-
atic component of the uncertainty in the measurement of x;.

It is also possible to model the uncertainties in a more general way, by
introducing certain correlations between every pair of seperate measurements.
This will however lead to quite complicated mathematical models. Another
major drawback of this approach is in the fact that it is very hard (if not
impossible) to make good estimates for these correlations.

Numerical calculation of the propagation of measurement
errors

In this section we give an example of how the propagation formula (1.42) can
be handled in a comprehensive numerical way.

We make two assumptions in the computation of uncertainties. First, we
assume to deal with the case of an incompressible fluid. Second, we suppose
that the approximation S for the effective area A.g, is obtained by replacing the



20 Measure under Pressure

integrals by Riemann sums (i.e. the integrand is approximated by a staircase
function).

These choices are not very restrictive. Indeed, from the analytic formulas,
it is derived in section 1.3 that the formula for incompressible as well as the
one for compressible fluids coincide in the limit of small applied pressure (i.e.
in case p; — p2 < p1, that we are dealing with). Hence the restriction to the
case of an incompressible fluid does not imply loss of generality. Concrete, we
assume that the effective area is expressed by formula (1.43):

oy (u(z) + U (2)) h(z)"* da
fé h(z) % da

Furthermore, we calculate the uncertainty of measurement when the inte-
grals are approximated by Riemann sums. Although it is a primitive approxi-
mation technique, it is the root of most other techniques when approximating
integrals. As a consequence, the formula (1.44) derived below, can serve as
a first order approximation of the random component of uncertainty of the
effective area in general.

The Riemann sum approximation is obtained by dividing the interval [0, ]
first in n subintervals of equal length, say [x;, x;11],0 < <n—1 with o =0
and ;11 — z; = [/n, Then, the expression in the right-hand side of (1.43) can
be approximated by

Aegr = T3 4 Troho + 10 (1.43)

Yiso (@) +U () b ()" L
Z?:o h(z;)~ ’ %
Yisg (i +Ui) hi®
Yiohi?
= S‘ (7“07 RO; T1, R17 B ) Rn)

where u; = w(x;),U; = U(x;),h; = h(x;),V0 < i < n; recall also that
h; = R; — r;,¥0 < i < n. Let us denote by o (y) the random component of
uncertainty of y and by & (y) the systematic component of uncertainty of y.

Then, the random component of uncertainty of the effective area Aqg is defined
by

o(Aeﬂf:(o(r)gi) +( (R) aR) +Z( >)<§Z>

< Z%) <(R)l gg). (1.44)

The partial derivatives that are encountered in ( 1.44) can be computed as
follows. Put VO <i<mn

S = 7 + mroho + 7o

2
= 7wry + mroho + T

n 3
C; = —3mrg - >0l " [(ui + Us) — (g] + Uj)]'
hi (Z?:O hg‘_s)
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Then, ]
ST:S; =mRy + Wzy—g?i:hg;) hi? _ Oy
8350 = mrg + Co
h = mro + Co and g}i =C;,V1<i<m;
0 B B icica

o, ~ “on M PR T an,

If higher order integration methods are used (like Simpson’s rule), every
term in the Riemann sum will receive its own coefficient and nothing else will
change. Therefore, the same approach can still be applied to the calculation of
the partial derivatives.

1.7 Numerical implementation of Dadson’s formula

For incompressible fluids the formula (1.9) has been shown in section 1.3 to be
a proper approximation of the effective area. The following equivalent formulas
are used by four institutes [6]. They are all equivalent and can be derived from
(1.9).

1 [l hde 2 [l d
Ag = w21+ — Jo fxde ¥ 7f0l ik (1.45)
"o fo pzdr 70 fo %dw
1 u+Ud
Aeﬂr = Ty {1 + — fO 1 x} (146)
To 7’0 0 h3da;
7‘+Rd
A = mo{ fo : x} . (1.47)
0 padr

The integrands of the integrals are continuous functions which have to be ap-
proximated by use of the measurements. It is possible to create the integrand-
functions themselves directly by interpolation or to create the functions r, R :
[0,]] — RT first. Therefore the cylinder and piston radii are measured for
z = z;, resulting in the set {(R;,7;),i =1,...,N}. The grid {z;,i=1,...,N}
of the length axis of the piston-cylinder unit can be used to control the accu-
racy of the resulting continuous functions in an adaptive way. If r, R behave
very smoothly it is more efficient to use higher order interpolation, while low
order interpolation is better for less smooth surfaces. Furthermore linear in-
terpolation could be used in order to conserve the monotonicity.

Each integral can be evaluated with a numerical integration technique,
like Newton-Cotes or Gaussian quadrature formulas. The most straightfor-
ward numerical integration technique uses the Newton-Cotes formulas (also
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called quadrature formulas), which approximate a function tabulated at a se-
quence of regularly spaced intervals by various degree polynomials. Common
Newton-Cotes formulas include the Trapezoidal Rule (Linear), Simpson’s Rule
(Parabolic) and Simpson’s 3/8 Rule (Cubic) . If the functions are known
analytically instead of being tabulated at equally spaced intervals, the best
numerical method of integration is called Gaussian quadrature, which uses
non-uniformly spaced grid points. Common Gaussian quadratures include the
Gauss-Legendre Formula and the Gauss-Chebyshev Formula. It could be more
efficient to use an adaptive grid, which is more dense where h(x) =~ 0. Also
it can be synchronized with the grid {z;,i = 1,..., N} of the measurements
in order to minimize the interpolation errors. The Newton-Cotes formulas are
less accurate but significantly less complicated to implement.

If we compare the three unscaled formulas we see that no cancellation errors
occur. In all cases the denominator can become very small if the clearance h
tends to zero. Therefore we have to scale the variables in order to avoid serious
trouble because of roundoff errors. Write h = e, h,u = €,a and U = ey U,
where h,u,U are O(1). Then the formulas (1.45),(1.46),(1.47) can be written

as
! I g
Ag = m2d1+ s 12dx+2&f0 il (1.48)
0 Ofo lgd:r ro fol ;L%dx ,

L @ U
h ]. €uts + € fdx
Ag = mrill+ eh—o + Lo i U k3 : (1.49)
To To Jo 75 dz
T+Rd$
Aeff = To {_TO + fO h13 } . (150)
0 hgdx

Formulas (1.48) and (1.49) have the advantage that the effective area is ex-
pressed in the zeroth order term 772 and two first order corrections. From
literature [9] it appears that the piston shape deviations are much smaller than
the cylinder shape deviations, which implies that ¢, < ey. Therefore it is
recommended to use the scaled formula (1.48).

1.8 Recommendations

In this document we have shown several models for the piston-cylinder unit.
First, there is the wvirtual piston model which has a very useful form, which
is given in (1.4). The models in [1] and [6] are specific cases of this model.
Second, a formula for the effective area has been derived directly from the
Navier-Stokes equations for incompressible fluids. Then it is even possible to
get exact results. However, we also proved that the formula (1.9) is sufficiently
accurate for incompressible fluids, because the error is of order €2, where € is a
small number.

Clearly one should always make use of the fact that one can measure the
dimensions of the piston and cylinder with much higher accuracy than can be
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achieved in the production process. Therefore we recommend NMi to use a
more advanced model for the effective area, like the first order approximation
(1.9). It is also used by four other European institutes. A sound numerical
integration method should be used like described in Section 1.7. Finally we
advise to make a distinction between systematic errors and random errors,
which makes it possible to get much sharper uncertainty bounds.
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Modeling the proportion of bullets that pass through a vest
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Abstract

In order to compare different fibers used in bullet proof vests the velocity V,, at
which p percent of the bullets pass through the vest is of high importance, in particular
when p = 50%. The objective of this research is to find good estimates for V,. The
available data have been analyzed to examine which aspects influence the probability
of perforation and have to be taken into consideration to determine V,. Next, a
general framework has been developed in which the notation is introduced. Several
approaches are proposed to find good estimates for V,,. All methods are numerically
illustrated. We recommend to use smoothing splines. But a logistic model or an
isotonic regression approach with linear interpolation performs also well. The paper
ends with a new procedure how the data should be gathered to determine V/,.

KEYWORDS: quantile estimation, classification tree, generalized linear models,
isotonic regression, smoothing splines, loss function, bootstrap method

2.1 Introduction

Until recently, effective body protection was an uncomfortable compromise
between ballistic protection (i.e., bullet proof vests) and restricted freedom
of movement. The need for such a compromise was swept away when a new
generation of fibers was developed. The modern vests are made using high
performance fibers as p-aramids and high density polyethylene. Protective
vests are made out of these fibers, using different technologies as multi-layered
fabrics or uni-directional laminates.
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Universiteit Hasselt, 5: Universiteit Utrecht, 6: Teijin Twaron
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When a new kind of fiber has been developed a bullet proof vest is made out
of it and the quality of the vest is tested. There are two international standards
to determine the ballistic performance, the STANAG based standard and the
NI1J standard. All commercial vests currently fulfill the high demands required
by these international standards.

The STANAG based test is used to determine the bullet speed where fifty
percent of the bullets are stopped by the vest. This velocity will be denoted by
Vs0. This is the easiest way to compare the quality of two vests, where a higher
V50 means a better quality vest. The determination of the Vsg is rather easy,
since the event for a bullet to perforate the vest is equal to non-perforating
the vest at this velocity. The result of the STANAG based test is obtained by
firing projectiles in a limited speed range. When 3 stops and 3 perforations are
registered, the Vi is defined as the average of the 6 corresponding speeds.

With the N1J standard, the highest stop speed is determined under different
pre-described conditions. Using a minimum number of shots (6 or 12) within a
given speed range, both stop and perforation shots are required. The maximum
stop speed is used as the speed where all projectiles are stopped by the vest.

The disadvantages of both methods will be clear; the number of observations
is low. This will lead to a result with a limited accuracy. Unfortunately,
the error in the estimated values is not part of the methods. Also, the two
independent methods are present for obtaining the characteristics of a vest.
For practical reasons, it is desired to use one method only. These disadvantages
are nowadays widely recognized by fiber producers, vest manufacturers and the
end-users.

The objective of this research is to find a robust method for determining
V50 and a “highest stop speed” in order to perform quality testing or judging
further improvements on fibers. The following characteristics for this method
must be used:

e multiple shots on one vest and

e one shooting method for obtaining the speed and the 95% confidence
interval for a predefined perforation probability p.

The probability of perforation as a function of the projectile speed does not have
to be symmetrical. It is however required to use the same function to determine
the velocity at which an arbitrary percentage p of the bullets perforates the
vest, in particular for p equal to 1%. This velocity is denoted by V1 and for a
general p by V.

Since data obtained by the standard testing methods are not likely to fulfill
the requirements for developing a complex method, different sets of ballistic
data have been made available. Within each set, a different ballistic vest (fiber
and construction) and bullet has been used. Per situation, 7 individual packs
(or vests) have been shot 6 times with one speed per pack. The speed range
has been selected in such a way that the range from 0% perforations to 100%
perforations was fully covered equidistantly. It must be noted that these data
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sets have been generated for experimental use only, and that they are not
according the current standards.

Kneubuehl [14] proposes a method to estimate Vsg. First the author groups
the data records in intervals based upon the velocity, with an interval length of
5 m/s. For each interval he estimates a perforation probability by dividing the
number of perforations by the total number of shots. Next, a cumulative den-
sity function of the normal distribution is fitted through the new data points.
The result is the perforation probability as a function of the projectile speed.
How to fit such a function is explained in more detail in Section 2.4. Based
upon the inverse of this function Vsq is determined.

In toxicology we find studies that are similar to this research. A general
introduction can be found in Agresti [1], Agresti [2] and Emmens [8]. In these
toxicology studies, the interest lies in determining models to describe the re-
lationship between the probability of reacting to a certain toxic chemical as a
function of the given dose of this chemical. More specifically, for different dose
levels, the researchers observe whether the dose results in a toxic reaction.

In this paper we will improve the procedure to determine V,, once the data
is provided. But we will also design a new test procedure to gather the data
that is used to determine V). In Section 2.2 we start with an analysis of the
available data. A general framework is presented in Section 2.3, in which we
also introduce notation and a general set-up to compare different techniques.
In Section 2.4 until Section 2.6 we present different techniques to derive a
function that maps a velocity on the probability of perforating a particular
vest. In Section 2.4 we will use Generalized Linear Models (GLMs), while
the techniques discussed in Section 2.5 do not impose a predefined functional
form. The last technique to estimate V), is a bootstrap method. This approach
determines V), based upon a characteristic at this velocity instead of finding
the inverse of a function. In Section 2.7 we propose a new procedure to gather
the data. In Section 2.8 we compare the different solution techniques and give
a conclusion which method we recommend.

2.2 Covariate Analysis

The available data set contains the 42 data records as explained in Section 2.1
for 10 different vest types. Each data record consists of whether the bullet
perforated the vest (this is also called the perforation status), the velocity of
the bullet which was shot at the vest, the shot number (1 to 6), the vest number
(1 to 7) and the vest type. For one particular vest type the data set contains
126 data records and for one only 36 data records.

The objective of the statistical analysis of the data is to provide an overview
of the relationships between the perforation probability (also called the re-
sponse variable) and its four explanatory variables or covariates, i.e. the bullet
velocity, the shot number, the vest number and the vest type. The model em-
ployed in this analysis explains the observed variability of the data without
making any assumption on the physical or chemical mechanisms which might
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have played a role in generating the samples. This means that all data records
for the different vest types under investigation are used all together in this
analysis.

In the analysis the entire sample is modeled according to a classification
tree (Breiman et al. [4]). This is a semi-parametric statistical model in which
the data is partitioned among several subsamples with significantly different
perforation probabilities. The data subgroups are defined by a binary tree
where the splits are functions of the covariates. For instance, two groups can
be obtained by considering the samples with a bullet velocity smaller than
400 m/s and those with a velocity larger than or equal to 400 m/s. Within
the latter group, two clusters of data points can be formed by dividing the
samples associated to a particular vest type versus those corresponding to all
other vest types, and so on. We will refer to the groups of data generated
by a given tree structure as its leaves. In this analysis we do not assume any
specific distribution on the space of tree structures, whereas within each leaf we
model the perforation status as a Bernoulli random variable with a leaf-specific
perforation probability.

In order to estimate the tree structure we perform a stochastic search us-
ing the probability of the tree given the data as the score function. This is
a simulation-based computationally intensive method which evaluates the un-
certainty on the specification of the tree structure conditionally on the sample
(Chipman et al. [5], Chipman et al. [6], Denison et al. [7], Holmes et al. [13]).
Given the best tree structure found by the stochastic search, we estimate the
leaf-specific perforation probabilities in a Bayesian fashion. In particular, for
each leaf we assume a uniform prior perforation probability. By combining this
prior with the Bernoulli likelihood we obtain a Beta perforation probability
given the samples falling in the leaf. The Beta distribution can be summarized
analytically, providing both a point estimate of the leaf-specific perforation
probabilities and their confidence intervals.

Figure 2.1 shows the results of the estimation of the tree structure when
all data is analyzed. The tree has a total of eight leaves, which cluster the
samples as a function of the bullet velocity and shot number. Notice that
this tree structure does not depend on the vest type. This surprising result is
emphasized in Table 2.1. For each of the four available covariates, the table
shows its estimated probability of inclusion in the tree structure. The covariates
with the highest predictive power are the bullet velocity and the shot number
but the vest type does not appear to discriminate groups of samples with
significantly different perforation probabilities.

Finally, the estimated perforation probabilities for the eight leaves of the
tree are presented in Table 2.2. The interpretation of a posterior interval is the
probability that the parameter lies in the interval equals (1-«) under the chosen
model and prior structure and conditionally on one particular data set. It can
be noted that the estimated perforation probability appears to be increasing
in the bullet velocity. Moreover, at any given bullet speed, the estimated
perforation probability of the first shot is lower than of the second shot, which
in turn is higher than any of the other shot numbers.



2.2. Covariate Analysis 29

: @ SPLITTING RULES
L1:V>481
@ e @ L2:V <= 398
L3: V in (466,481]

Q L4: V in (398,466] AND SHOT == 2
L5: V in (430,451] AND SHOT == [3,4,5,6]

L6: V in (398,466] AND SHOT == 1
@ L7: V in (451,466] AND SHOT == [3,4,5,6]
L8: V in (398,430] AND SHOT == [3,4,5,6]

Figure 2.1: The tree structure which fits the data the best.

covariate
velocity | shot number | vest type | vest number
et T
stimated inclusion 1 0.92 0.08 0.02
probability

Table 2.1: The estimated inclusion probabilities for the four covariates to in-
corporate them into the classification tree.

Leaf number Estuyated 95% Posterior Interval
perforation prob.
1 0.95 [0.87;0.98]
2 0.21 [0.12; 0.35]
3 0.77 [0.65;0.87]
4 0.60 [0.46;0.72]
5 0.48 [0.34;0.63]
6 0.28 [0.17;0.42]
7 0.25 [0.17;0.35]
8 0.56 [0.44;0.69]

Table 2.2: The estimated perforation probabilities including the 95% confidence
intervals for the eight leaves of the tree.

Although Figure 2.1 and Table 2.1 make clear that only the velocity and
shot number are of relevance to determine the probability of perforation, we
consider the velocity and vest type as explanatory covariates in this research.
The main reason to take the vest type into consideration is because the per-
formance of vests is required to be compared. The shot number is not used
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as covariate, since the shooting pattern should result in independent shots.
Apparantly this is not the case. Therefore, the shot number is an important
parameter which needs to be looked at. But in the remainder of this paper,
we will use all data records of one particular vest type to determine V5o based
upon the speed of the bullet. A motivation not to take the shot number into
account is to have a bigger sample set for a fixed combination of covariates.
Otherwise there are only 7 data records available per covariate combination.

2.3 General Framework

A procedure has to be developed to determine V,; the velocity at which p
percent of the bullets perforates the vest. Since we do not take the shot number
or the vest number into account (see Section 2.2), the data records of one vest
type are presented by (X, Y;)-pairs. The velocity of the i-th shot (expressed
in m/s) is denoted by X; and the event of a perforation by Y;, where

v — { 1, if shot ¢ perforated the vest,

0, otherwise. (21)

The number of data records is denoted by N, so ¢ = 1,...,N. Whenever
the data set is rearranged into intervals with an interval length of 5 m/s, the
(X, Y;)-pairs are transformed into (X7, Y/)-pairs where X7, = X/ + 5. The
new response variable Yj’ becomes the average probability of perforating the
vest where the velocity of the bullet is in interval j:

N -1
> 1Xi€[X}—2.5,X;+2.5)‘| > Y,
=t iX;€[X

]’.—2.5,XJ’.+2.5)

r_
Y] =

where 1.ondition 1S the indicator function:

1, if condition is satisfied,
Leondition =\ " Gherwise

Figure 2.2 shows the (X, Y;)-pairs as well as the (X7, Y})-pairs for the data set
where 126 data records are available for a particular vest type.

For every vest type we are interested in finding a function f(v) : Ry — [0, 1]
that maps a velocity v onto the probability of perforating the vest when the
bullet has speed v. By taking the inverse (f~(p) : [0,1] — Ry) we find V.
In Section 2.4 and Section 2.5 different approaches are proposed to find an
appropriate f(v). A bootstrap method is described in Section 2.6 to determine
V} directly.

In order to compare the different techniques we have to define a measure
of fitness that relates the differences between the function f(v) and the data
(X;,Y;) for i = 1,...,N. A classical measure of discrepancy is the mean
squared error (MSE) as defined in Equation (2.2).

1 2
MSE = ; [f () =] (22)
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Figure 2.2: The rough data (i.e. the (X;,Y;)-pairs) and the rearranged data (i.e.
the (X ;, Yj’ )-pairs) are represented by block dots and red triangles respectively,
for one particular vest type.

where (z;,y;) are the observed realizations of the stochastic variables X; and
Y;. Small deviations are not penalized as much as large deviations in this
definition for the fitness measure.

2.4 Generalized Linear Model

Generalized linear models (GLMs) are generalizations of the linear model (see
McCullagh, et al. [15]). In its simplest form, a linear model specifies the linear
relationship between a dependent (or response) variable, and a set of predic-
tor variables (or covariates). In this research it is inadequate to describe the
observed data (perforation status Y;) with a linear relationship between the
variables (bullet speed X;). The main reason for this is that the effect of the
velocity on the perforation status is not linear in nature.

Link function

In generalized linear models a so-called link function, denoted by g, specifies
the connection between the response variable Y; and the covariate X;. In this
experiment, the response Y; can take only one of two possible values, denoted
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for convenience by 0 and 1 (see also Equation (2.1)). Therefore, we may write
PY,=0)=1-m PY;=1)=m (2.3)

for the probabilities of non-perforation and perforation respectively. Linear
models play an important role in both applied and theoretical work. We sup-
pose therefore that the dependence of Y on X occurs through the linear pre-
dictor n; given by

m:ﬁo—l—ﬁlXi, Z:L,N
for unknown coefficients Gy and ;. For binary random variables the link
function g should map the interval [0, 1] onto the whole real line (—oo, 00). So,

g(m) =m; =Po+ Xi, i=1,...,N.

A wide choice of link functions is available. Three link functions commonly
used in practice are

1. the logit or logistic function
g(m) =log (r/(1 —)),
2. the probit or inverse Normal function
g(m) = o~ (m),
3. the complementary log-log function
g(m) =log ( —log(1 —)).
The first two functions are symmetrical in the sense that

g(m) = —g(1 —m).

All three functions are continuous and increasing on (0,1). This last charac-
teristic is exactly what is required for this research.
To give an example, we look at the logit function

g(mi) =log <1 iim>

Ur

Bo + Brx;
exp(fBo + frz;)
1+ exp(Bo + Przi)

This expression equals f(v) based on Equation (2.3). By inverting this expres-
sion we can determine V),:

p
e sy, E() =
L+ exp(Bo + 51Vp) i B '
The same can be done for other link functions. The results are summarized in
Table 2.3.
When we combine the probit model with the rearranged data (as described
in see Section 2.3) we get the approach proposed by Kneubuehl [14] to deter-
mine V), (see also Section 2.1).
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link function i Vo
. _exp(BotBimi) oa(125) =60
logit T+exp(Bo+Pizi) 4
probit (B0 + ri) S
log (710g(1*p)) —Bo
complementary log-log | 1 —exp (— exp(fo + f1:)) 5

Table 2.3: The probability of perforation 7; as a function of the observed
velocity x; for the different link functions. From the inverse of this relationship
we get an expression for V.

Alternative Predictor

A disadvantage of all three link functions is that the inverses have support on
the entire real axis. This means that a velocity of 0 m/s results in a strictly
positive probability of perforating the vest. This phenomena is absolutely not
true in the experimental setting. A possible solution is to define an alternative
predictor 7; as

ni = Po + B11og(X;).

For example, the alternative logit function results in

~exp (Bo + Bulog(z:))
™ = )
1+ exp (8o + P log(;))

and

log ( %) — B /6
Vp = exp <1ﬁp1)0 = <1fp> exp(—0Bo/B1)-

Having selected a particular model, it is required to estimate the parameters
Bo and ;. The parameter estimates are the values that maximize the like-
lihood function of the observed data. This principle is explained in the next
subsection.

Maximum Likelihood

The likelihood of the data is the probability of observing the data for certain
parameter values (Ross [18]) and is expressed by Equation (2.4).

N
L(507/61;y17"'7y]\7):Hpﬂ'i(yilﬂ()aﬂl)? (24)

=1

where pr, (i|5o, 1) is the probability of observing y; when the probability of
perforation equals 7; if By and 31 are the parameter values. From the definition
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in Equation (2.3), we should get

_ T, if Yi = ]-a
Pr; (yi‘ﬂmﬁl) - { 1— i, if yi = 0 (25)
and, therefore,
P, (yilBo, B1) = 7" (1 — m) Y (2.6)

This expression can be substituted into Equation (2.4) to define the likelihood
function. A similar expression can be derived when the variable Yj' is used
instead of Y;.

The objective is to find the values of the two estimators, which maximize
the likelihood function. Often it is easier to maximize the log-likelihood func-
tion because of its simpler mathematical structure. Therefore, we derive this
by taking the natural logarithm of the likelihood function. When we use Equa-
tion (2.6) in Equation (2.4) and take the natural logarithm, we get

1(Bo, Br;y1s-- - yn) = log L(Bo, iy -, yn)
N o
= ; [yilog (1 — m) + log(1 — m)} .
For the logit function, the log-likelihood function equals
N
1(Bos B1;y1, -+, yN) = Z [yi(Bo + Brxi) — log (1 + exp(Bo + Przi))]
i=1

which is differentiable in this case. Since the function is concave, the values of
Bo and (31 that maximize the log-likelihood can be found by solving the first
order conditions for the two parameters.

Numerical Results

In Figure 2.3 we show several results of the classical GLMs and alternative
GLMs for different link functions. The dots in this figure are the original
observed (X;,Y;)-pairs (or the rearranged (X/,Y/)-pairs). The classical GLMs
are represented by a solid curve and the alternative GLMs by a dashed curve.
We notice that there is not much difference between the two models. However,
in the tails of the curves the alternative model always has a lower probability
of perforation in the tails of the curves at the same velocity in comparison to
the classical models. This is to be expected since the alternative model only
allows strictly positive velocities. Therefore, it should have a tighter tail at low
velocities and a thicker tail at high velocities.

The maximum likelihood estimators of 5y and f; (e.g., ﬁo and 31 respec-
tively) for each model are presented in Table 2.4, as well as the mean squared
error (MSE).

We notice that the value of ﬁl is strictly positive in both models. This
implies that the curves are strictly increasing. We expected such a result
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Figure 2.3: The fitted curves for the perforation probability f(v) as a function
of velocity v for different link functions. The solid curve is the classical link
function and the dashed curve is the alternative link function. The dots are
the input data records.

because we know that for an increasing speed of the bullet the probability of
perforation will also increase. Based upon these results, we can also conclude
that a logit model performs the best (the lowest MSE). However, these are the
results for only one vest type. Therefore, we compare all techniques and all
data sets (of the different vest types) in Section 2.8.

Based upon the estimated parameter values we determined V,, for the dif-
ferent models with the expressions formulated in Table 2.3. Table 2.5 gives the
estimated velocities at which 1% (V1) and 50% (Vo) of the bullets perforate
the vest. This table also presents a 95% confidence interval for V,,. This interval
is generated with the bootstrap method (or resampling): randomly selecting
N observations from the data with replacement and obtaining estimates for
V,, for the resulting bootstrap sample. We repeated this procedure 1000 times,
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model Bo 01 MSE
logit -23.93 | 0.0553 | 0.1650172
alt. logit -144.2 | 23.760 | 0.1650141
probit -14.09 | 0.0326 | 0.1650477
alt. probit -84.61 | 13.942 | 0.1650921
log-log -16.70 | 0.0375 | 0.1659732
alt. log-log -99.71 | 16.350 | 0.1656465
Kneubuehl [14] | -13.52 | 0.0315 | 0.1667188

Table 2.4: The likelihood estimators for the different models including the

measure of fitness of the model.

calculating estimates for each bootstrap replication. This gives a distribution

for the estimate of V,.
model estimation | 95% Confidence Interval
st Vao 132,81 [425.04; 441.04]
o8l Vor 349.71 [312.22; 376.21]
. Vao 43228 [424.77,439.77]
alt. logit Voo | 356.27 [327.58; 380.58]
it Vo 43274 [424.57; 440.83]
P Vou 361.28 332.69; 384.28]
. Vao 43212 [424.15; 440.18]
alt. probit Vou 365.71 341.26; 386.59]
oo Vao 435.95 [428.00; 443.59]
¢ 1087208 Vou 322.94 [281.11; 356.47]
Tt e loolo Vao 435.29 [427.42; 442 87]
- ¢ 08708 Vor 335.99 302.86; 363.45]
Vso 428.92 [419.90; 437.09)]
Kneubuehl {14}y 355.12 325.27; 382.83]

Table 2.5: The estimated velocities including their 95% confidence intervals.

For V1 we notice that the estimates from the classical models are smaller
compared to those from the alternative models. This is not a surprise since we
mentioned already that the curves for f(v) show lower values in the tails for
the alternative models in comparison to the classical models (see Figure 2.3).
Similarly, the confidence intervals in the alternative models are smaller than
in the classical models. We would like to mention as well that the confidence
interval for Vj; is wider in comparison to the interval for V5g, because there
are less data points available around Vj;.
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2.5 Non-Parametric Models

In the previous section we fitted a relationship between the probability of per-
foration and the velocity by GLMs. However, these techniques place strong
assumptions on the shape of this relationship. When we do not want to make
such assumptions, we have to fit these curves from the data only. The only
restriction we have is that the curve should be monotonic increasing (i.e. non-
decreasing). Most of the time, the data does not have this property (see Fig-
ure 2.2). Therefore, smoothing has to take place. This can be done in two
different ways: either smooth the data first and then find the curve or find a
curve on the rough data with the use of smoothing. An example of the first
approach is isotonic regression and for the second approach smoothing splines
can be used. The third approach we mention in this section is the use of loss
functions, which are based upon empirical distributions. All three applications
are discussed in this section and we end with numerical results on the three
methods.

Smoothing Splines

Splines are piecewise polynomial functions that fit together (Eubank [9]). In
particular, for cubic splines, the first and second derivatives are also continuous
in every point. Smoothing splines are curves that get reasonably close to the
data in a graceful manner such that it gives the appearance of a single curve.

Smoothing splines arise as the solution to the following simple-regression
problem: Find the function f (z) with two continuous derivatives that mini-
mizes the penalized sum of squares,

n Tmax

88 () =3 [y — f(e)> +h / (@) de, (2.7)

i=1 Tmin

where h is a smoothing parameter (Fox [11]). The first term in Equation (2.7)
is the residual sum of squares. The second term is a roughness penalty, which
is large when the integrated second derivative of the regression function f”(x)
is large. The endpoints of the integral enclose the data. At one extreme, when
the smoothing constant is set to h = 0 (and if all the z-values are distinct), f(z)
simply interpolates the data. This function corresponds with the mean squared
error, formulated in Equation 2.2. So, small values of h correspond to more
emphasis on goodness-of-fit. Conversely, when h is large it places a premium
on smoothness. Typically h € (0, 1]. Since we are interested in a monotonically
increasing function, we set h to the smallest smoothing parameter such that
this restriction is satisfied.

Isotonic Regression

Isotonic regression is a non-parametric method that is used when a dependent
response variable is monotonically related to an independent predictor variable
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(Barlow et al. [3] and Robertson et al. [17]). We are indeed looking for an
isotonic (i.e., non-decreasing) function where the probability of perforation
f(v) depends on the velocity v of the bullet. A commonly used algorithm
for computing the isotonic regression is the pair-adjacent violators algorithm
(PAVA), which calculates the least squares isotonic regression of the data set
(Barlow et al. [3] and Robertson et al. [17]).

The basic idea of PAVA is the following: sort the (z;, y;)-data pairs such that
v <xzo<...<zy. Ifyy <y <...<yp, then all points are increasing and
the algorithm stops. Otherwise, select the first data pair ¢ for which y; > y;41.
In that case replace (z;,¥;) and (z;4+1, yi+1) by their weighted average (z7, y}),
where

oo Wit + Wit1Tit1
P T el
w; + Wit1
o WilYi + Wikt
Y = —
Wi + Wiy1
*
w; = w; + Wi41-

This procedure is repeated until the algorithm terminates. The algorithm starts
with weights equal to one (w; = 1for i =1,2,..., N). The algorithm is applied
upon the available data and represented in Figure 2.4.

Now the new data set is such that it is non-decreasing. We can easily find
an interpolation scheme to connect the data points and find f(v). We make
use of two interpolation schemes in Section 2.5: stepwise interpolation and
piecewise linear interpolation.

Loss Function

In this section we describe a method that determines the probability of perfo-
ration (or the function f(v)) entirely based on empirical distributions. Besides
this function f(v), this approach also requires a probability density function
of the velocity v, denoted by g(v). Based on the data we can consider the
empirical density function of the velocity (denoted by G) and the empirical
distribution of f(v) (denoted by F). So,

1, ify =1,
Flw:) = { 0, otherwise.

We want to minimize the result to obtain an estimator for f~!(p). This function
is called a loss function (Mohammadi [16]). Select positive o and § and define
the loss function as

L) =a / C )9 + / T fw)gw)on.

To minimize L, we take the derivative to a and set it equal to 0:

0

5 (@) = (af(a) = B(1 = f(a))) g(a) =0, (2.8)
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Figure 2.4: We transformed the data from rough data (dots) to monotone
increased data (triangle).

Equation (2.8) is solved by a* with

fla) = =2
Note that
T — o+ B)gla) o (0) + (@) — B~ (@) me(a),
such that 5L P

because f(v) is increasing in v and af(a*) — B(1 — f(a*)) = 0, using Equa-
tion (2.8). It means that a* is the minimizer of L. We may set p = 3/(8 + «).
For simplicity, we take § = 1 and @« = 1/p — 1. To estimate the inverse of
f() (ie., f~1(p)), it is now enough to minimize the empirical counterpart of
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L, namely
v = (3-1) [ @ewor+ [T r@)ewor
= (119 - 1) zj: Na<ayi=1 + lo;>a.y=0] -

Numerical Results

All three non-parametric approaches are implemented and the resulting func-
tions f(v) for each approach are presented in Figure 2.5. The inverses of these
functions yield the estimator for V,,. With the use of resampling we constructed
a 95% confidence interval (see also Section 2.4). The results are represented in
Table 2.6. This table also represents the MSE for each technique.

a. smoothing splines b. isotonic regression — stepwise
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Figure 2.5: The estimates for the perforation probability f(v) as a function
of velocity v for different non-parametric approaches. The dots are the input
data records.
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model estimation | 95% Confidence Interval MSE

] o Vso 431.92 [425.02; 440.61]

smoothing spline Vo 365.64 [359.45; 387.52] 0.1618964
isotonic regression Vs 432 [410.82; 440.67] 0.17325

- stepwise Vo1 384 [374;409] ’
isotonic regression  Vsg 432 [418.27; 442.74]
- linear Vo1 385.67 [376.23; 409.12] 0-1643158
- . Vo 432 [432; 443]
loss function Vo 384 [384; 384] 0.157155

Table 2.6: The estimated velocities including their 95% confidence intervals.

2.6 Bootstrap Method

In the previous two sections we were interested in finding a function f(v) in
order to determine V,. In this section we rewrite f(v) as a conditional proba-
bility

flv)=P(Y =1|X =),
the probability of perforation under the condition that the velocity X equals
v. Now,

PY=1X=V,)=p PY=0X=V,)=1-p. (2.9)
Using Bayes rule, we can rewrite Equation (2.9) as

X =V, |y =1)P(Y =1)
P(X=1V,) ’

PY =1X=V,) = il (2.10)

and
P(X =V,|Y =0)P(Y =0)

P(X =1V,)

Dividing Equation (2.10) by Equation (2.11) and use Equation (2.9), we get
the following expression

PY =0|X=V,) = (2.11)

p _ PX=VlY=D)PY=1)
1-p PX=V[Y=0(01-PY=1) (2.12)

Now we have to compute each of the components of Equation (2.12). Let us
first look at P(Y = 1), i.e. the proportion of data records of which the bullet
perforates the vest. This can be estimated directly from the data. The two
other probabilities can also be derived directly from the data for every observed
velocity x;, i = 1,..., N, where

1. P(X = ;Y = 1) is the relative frequency at which we observe velocity
x; when the vest is perforated, and
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2. P(X = z;|Y = 0) is the relative frequency at which we observe velocity
x; when the vest is not perforated.

Since the property of Equation (2.12) holds for V,, we calculate the ratio

P(X =z,]Y = )P(Y =1)
P(X =a,]Y =0)(1— P(Y = 1))’

for each observed velocity z; and the one that is closest to p/(1 — p) is the
estimate for V,.

The main problems with this approach are the few data points in each
conditional distribution of the velocity and the fact that we can find different
velocities that are closest to the property of V,,. To overcome the first problem
we propose to use the bootstrap method to get a distribution for V},, which
allows us to estimate V), with the average and to construct a 95% confidence
interval. The second problem (of multiple velocities satisfying Equation (2.12))
is solved for Vi¢ by taking the median and for Vj; the minimum value of those
velocities is selected.

Verification

In order to verify whether the algorithm performs well, we can generate sam-
ples from known distributions (like normal or Weibull) that can be used as
input. For known distributions, we know what the outcome of the algorithm
should be. With the use of a small Monte-Carlo simulation experiment we can
test the performance. Table 2.7 shows the deviation of the result from the al-
gorithm with the true outcome for different distributions. The parameters for
the distributions are such that the mean and variance are equal to that of the
available data set. Based on these results, we can conclude that the algorithm
works well for most distributions.

distribution | percentage deviation
Vso Vo1

chi-square | 5.35% 6.30%
gamma, 5.51% 6.30%
logistic 5.21% 9.17%
log-normal | 72.1% | 3616.41%
normal 5.34% 6.89%
student 0.33% 1.07%
uniform 5.78% 1.90%

Table 2.7: To verify the bootstrap method, we performed the method with
known distributions and therefore the actual outcome is known as well.
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Numerical Results

When we apply the proposed procedure to the data set, the resulting estimates
for both V5y and Vp; are presented in Table 2.8 including the 95% confidence
intervals. Based on these results we conclude that the estimates for V¢ have a
large 95% confidence interval and for Vj; a rather small interval. This is because
the data is collected in a way to determine V5g. As a result, not much different
velocities are detected satisfying the property as defined in Equation (2.12) for
Vor.

sample | size Vso Vo1
estimation | 95% Conf. Int. | estimation | 95% Conf. Int.

0 126 | 42681 [407; 458] 361.90 [359; 368]
1 42 | 422,03 [412; 429] 308.82 [398; 402]
2 42 458.42 [438;471] 414.68 [413; 418]
3 42 | 42345 [418; 432] 397.94 [397; 404]
4 42 | 466.59 [448; 483] 434.45 [433; 439]
5 42 | 45954 [445; 468] 438.20 [438; 440]
6 42 | 479.00 [459; 501] 458.60 [458; 460]
7 42 | 491.87 [471; 499.5] 454.95 [454; 458]
8 42 392.68 [373; 402] 346.68 [346; 351]
9 36 | 383.88 [361; 406] 350.92 [350; 353]

Table 2.8: Estimates on different samples.

2.7 Experimental Set-Up

The design of the experiment set-up as explained in Section 2.1 is originally
developed to determine V5. With the same data statements about V,, for arbi-
trary p have to be made. Also in other fields where quantile estimation plays an
important role (like in toxicology) we see a shift towards generalization. In this
section we give some recommendations on the design of future experiments.
The median (p = 50%) is the most commonly used measure of characteristic
of the response curve. In some situations this estimation is of intrinsic interest,
but more often it is because this quantile is the easiest to estimate (Wu [20]).
Recently, several designs have been proposed for estimating quantiles where
10% < p < 90% (Wu [20], Stylianou and Flournoy [19]). The designs that
are typically suggested are so-called adaptive or sequential designs where the
velocity for a run is based on the response (perforation or no perforation)
in the previous run(s). Except in the extreme tails of the quantile response
function, the optimal design for estimating a particular quantile is a one-point
design at the (unknown) target quantile (Ford et al. [10]). Hence, a good
adaptive strategy should result in taking relatively much observations around
the velocity V), of interest. An adaptive strategy, that has been shown to work
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fine for values of p between 10% and 50% is discussed in the next section. We
end this section with addressing the problems that arise when this probability
of interest is small.

Adaptive Design

Stylianou and Flournoy [19] proposed an adaptive design called the up-and-
down Biased Coin Design (BCD). Such a design is such that you tend to be
where V, is. The speed of a random walk, and the mean drift of the random
walk, is equal to 0 at V,, and otherwise the drift is towards V},. Giovagnoli
and Pintacuda [12] showed that the BCD is optimal within a large class of
generalized up-and-down biased coin designs in the sense that the distribution
of the velocities considered in the experiment is most peaked around V/,.

The BCD procedure is as follows. Before the experiment start, a collection
of velocities of interest & = {v1 < v2 < ... < vk} is set. The target velocity V),
should be in the range of €. In the first experiment a bullet is shot at velocity
v € Q. The velocity v may be fixed (e.g. the velocity that is thought to be
closest to the target value V,) or random. If the bullet perforated the vest,
the next velocity to shoot with is one slower from 2. However if the bullet did
not perforate the vest, the procedure randomizes: Since we only consider cases
where p < 50%, the velocity becomes higher according to € with probability
p/(1 —p) and with probability (1 —2p)/(1 — p) the same velocity is used in the
next shot. Appropriate adjustments need to be made at the lowest and highest
velocities in €.

Small perforation probabilities

Not much is known about the design of experiments when the percentage p is
smaller than 10%. A major problem is that the response is binary, which means
that the amount of information that we gather each run is very small. Most
of the bullets fired at velocities around V,, will be stopped for small values of
p. However, some perforations for velocities around V), are needed in order to
estimate the probability of perforation at these velocities and eventually to help
locating velocity V,,. Let us denote N as the number of shots fired at the vest
with velocity V,, until the r-th perforation occurs. Under the assumption that
bullets are fired independently, this random variable has a negative binomial
distribution with parameters p and r. The probability distribution function is
given by Equation (2.13).

r . n—1 r o n—r
P(an)(r_1>p(1 p)" ", n>r (2.13)
The expectation and the variance of N equals

T(l—p).

T r T
K [Np] = »’ Var [Np} = D
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Table 2.9 gives some details of the distribution of IV} for some small perforation
probabilities p and different values of . When the number of experiments is
limited to 150 (or even 500) it will be difficult to locate the velocities V,, for small
values of p using only the binary response. Using the depth of the perforation
(e.g. the number of perforated layers) as a response variable may be a better
way to gather more information from a single shot and to reduce the total
number of shots required to determine V,, for small values of p.

D r| E [N;] \/Var (N;) 95% Confidence Interval
50% | 1 20 4.36 [1; 59]
3 60 7.55 [3; 124]
1.0% | 1 100 9.95 [1;299]
3 300 17.23 [3;628]
0.1% | 1| 1000 31.61 [1;2995]
31 3000 54.75 [3; 6294]

Table 2.9: Some statistics of the negative-binomial distribution of N, for dif-
ferent values of perforation probabilities p and number of perforations 7.

2.8 Conclusions

In this paper we investigated the factors that influence the probability that a
bullet perforates a bullet proof vest. Section 2.2 made clear that the velocity
of the bullet and how many times a vest is shot are most important. However,
independence between the different shots has to be assumed in order to satisfy
the constraint to use all the shots fired at a vest. We recommend to look into
this phenomenon and investigate the shooting pattern that is used. The data
analysis also showed that the vest type is of less importance. This makes sense,
since it must be noted that all different vests used in this study are constructed
for a comparable level of protection. This could well cause the observed absence
of influence of the vest.

Comparing Techniques to Estimate V),

In the remainder of the paper we investigated the relationship between the
velocity v and the probability of perforation for every vest type. In particular
we have developed several procedures to determine the velocity at which p
percent of the bullets go through the vest (denoted by V). In the different
methods a function f(v) is established which describes this relationship.
When we would like to compare the different approaches that are proposed
in this paper, we use the mean squared error as measure of fitness (see Sec-
tion 2.3). This measure can be computed for all data sets corresponding with
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different vest types. In total there are ten data sets. Table 2.10 shows the
performance of the model proposed by Kneubuehl [14] (see Section 2.1).

sample | size | Kneubuehl
0 126 0.166719
1 42 0.127233
2 42 0.162312
3 42 0.068530
4 42 0.145247
5 42 0.131702
6 42 0.120194
7 42 0.113723
8 42 0.121351
9 36 0.163257

Table 2.10: The MSE of the model proposed by Kneubuehl [14] for the different
vest types (or data sets).

The same can be done for the parametric approaches (GLMs) and the non-
parametric approaches, presented in Table 2.11 and Table 2.12 respectively. In
order to retrieve one number for the performance of a method, we looked at
the deviation of each MSE with the lowest MSE of each sample and averaged
this over all samples. The results are shown in Table 2.13.

sample logit alt. logit probit p?(l)git c log-log . lzg—‘log
0 0.165017 | 0.165014 | 0.165048 | 0.165092 | 0.165973 0.165647
1 0.126806 | 0.127032 | 0.127494 | 0.127774 | 0.125250 0.125344
2 0.161179 | 0.161406 | 0.161132 | 0.161374 | 0.159999 0.160042
3 0.068192 | 0.068333 | 0.069782 | 0.069937 | 0.068547 0.068493
4 0.141198 | 0.140954 | 0.141223 | 0.140913 | 0.144903 0.144382
5 0.131761 | 0.131928 | 0.132066 | 0.132292 | 0.131089 0.131081
6 0.121305 | 0.121472 | 0.120707 | 0.120875 | 0.119120 0.119242
7 0.111732 | 0.110691 | 0.114492 | 0.113428 | 0.123853 0.122826
8 0.117431 | 0.117986 | 0.118233 | 0.118817 | 0.112520 0.112991
9 0.155910 | 0.153498 | 0.164483 | 0.160903 | 0.179272 0.175300

Table 2.11: The MSE of the classical and alternative GLMs for the different
vest types (or data sets).

Based on these results we see the smoothing spline technique to have the
lowest average percentage deviation from the lowest MSE. Smoothing splines
tend to perform better around the data points. Therefore, other techniques
have to be considered as well. Loss functions seem to work well, but the
confidence intervals are not convincing. The logistics model (logit model) and
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smoothing isotonic regr. isotonic regr. .
sample . . . loss function
spline (stepwise) (linear)

0 0.161896 0.173250 0.164316 0.157155
1 0.120854 0.154894 0.136643 0.127269
2 0.151425 0.212950 0.160480 0.167148
3 0.069995 0.099286 0.070823 0.064706
4 0.128712 0.137205 0.153609 0.155883
5 0.123416 0.190476 0.137557 0.148669
6 0.117319 0.160788 0.118012 0.135566
7 0.089776 0.090624 0.097533 0.090461
8 0.111329 0.125800 0.104811 0.111609
9 0.145758 0.160601 0.161300 0.140037

Table 2.12: The mean squared error as deviation measure from the real data
for the different non-parametric approaches.

technique average deviation (%)
Kneubuehl 12.78%
logit 8.94%
alt. logit 8.77%
probit 10.22%
alt. probit 9.97%
comp. log-log 11.45%
alt. comp. log-log 40.77%
smoothing spline 2.15%
isotonic regression (stepwise) 26.61%
isotonic regression (linear) 8.83%
loss function 8.01%

Table 2.13: The average deviation as percentage of the lowest MSE for each
vest type

the isotonic regression approach with linear interpolation perform also well.
Especially when the confidence interval is of interest, we recommend the later
two techniques.

The final technique we developed is a bootstrap method in which a par-
ticular characteristic at V), is determined based upon conditional probabilities.
A disadvantage of this procedure is that it will only work nicely for particular
values of p (p = 1% and p = 50% work fine). This procedure will probably
give the same results for p = 1% and p = 10%, since there is not much data
available in the region of these particular V}, values. This is not likely to happen
in reality.
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Experimental Design

The experimental data sets provided for this study are not optimal (equidis-
tant in speed). First we recommend to use different data records in order
to determine V), for different values of p. The data records to determine V,,
should concentrate on the influence of the velocity on the perforation proba-
bility around V},. More specifically, we propose a Biased Coin Design, that has
been proven to work well in practice for values of p between 10% and 50%. If,
however, Vj; is required to be estimated, this design does not produce a good
data set since only perforations of the vest or no perforations are monitored.
Other information, like the number of perforated layers, could improve the re-
sults. Otherwise, the number of experiments to perform becomes more than a
thousand.
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Optimizing the release policy of software versions
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Abstract

In this paper we try to find the optimal number of partitions to be made in a
piece of software. A model is made for the time-to-market, with respect to which
this number is optimized. Refinements are made in this model, taking into account
capacity constraints and waiting times. Also, a suggestion is made to use pairwise
testing.

KEYWORDS: software partitioning, release policy, time-to-market, testing strategy

3.1 Introduction

ASML, located in Veldhoven, is one of the world’s largest producers of lithogra-
phy systems. Its customers are chip manufacturers, including large companies
such as Intel. The chip market is a market with very specific demands. In
these times of rapid technological development, it is extremely important to
be fast in following new developments on the market. Being the first to offer
some feature gives ASML a large advantage over its competitors.

The problem that we are presented with comes from the software depart-
ment of ASML. They want to keep the software of all machines up to date
(the software is such that all machines run on the same software). Currently,
ASML issues about 3 new releases of the entire software per year, each with
a time-to-market (TTM) of 9 months. Here, time-to-market is defined as the
time that elapses between the decision of making a new software release and
issuing the tested software to the market. Such a monolithical release includes

1: Vrije Universiteit Brussel, 2: EURANDOM, 3: Technische Universiteit Eindhoven,
4: Universiteit Utrecht, 5: Universitat Basel
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both bug fixes and new features (Some bug fixes are also delivered in the form
of patches, which can be applied cheaper. However, we will not consider this
form of updating in this paper.) Installing a new release is very costly for the
machine owners. Bringing a machine down could easily cost thousands of dol-
lars per hour. Therefore, some customers choose not to install a new release if
there is no urgent reason for it. ASML still supports all older releases.

This form of updating is undesirable for some clients. Suppose a client
wishes one new feature. It requests the feature to ASML, which will start
implementing it. The update will only be possible in the next release of the
entire software, about 9 months away. Also, when the new software is issued
to the customer, it comes with all kinds of other features—and possibly bugs.

An alternative is to split the software into a number of pieces, which we will
call modules (we were asked to assume this is possible, see e.g. [2]). If a new
feature is limited to one module, clients wishing this feature can immediately
install the new module once it is released. Other clients can wait longer and
install multiple modules at once at a convenient time.

A disadvantage for the software department is that they have to test the
new module in a number of environments. Some customers will have the latest
version of all other modules installed, but others may still have an old version
of another module. Simply requiring all customers to have the latest version
of everything is not an option here. What we will require is that all customers
have some recent version of all modules (where ‘recent’ will mean something
like ‘at most one year old’).

It is easy to see that this approach will lead to an increased testing effort;
in principle the number of tests will grow exponentially with the number of
modules. However, some customers are happier, because the new feature will
be available to them earlier.

The question ASML asks is:

What is the optimal number of modules to split the software into,
such that the time-to-market is minimal, while the amount of work
remains below some upper bound?

In this paper, we focus on various aspects of this problem. In Section 2,
our general model is defined. Next we look at some computational results in
this model in the case without capacity constraint in Section 3. In Section 4
we extend our model to take into account a certain capacity of the company
that cannot be exceeded. In Section 5 we consider a model including waiting
times. Finally we look at some ways of pairwise testing to reduce the cost of
testing a new module against older versions of other modules in Section 6. We
give some concluding remarks in Section 7.

3.2 The general model

The decision to update a software module will be made by the management
based on customer requests. Possibly, by the time of the decision, all develop-
ment resources are already in use and the development of the new release is
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delayed. However, except for Section 3.5, we will assume that the waiting time
is 0. This seems reasonable since when a decision to update a software module
is made, the current workload of the development resources can be taken into
account.

Our aim is to derive a model for the time-to-market when splitting the
monolithic software into k pieces. First we want to introduce and discuss the
model parameters on a general level, and later make assumptions about these
parameters and understand how they influence the outcome.

The proportional size c; of a module. We want to analyse how the
mean time-to-market of the software modules behaves, if we split up the soft-
ware into k modules. The proportional size of module 5 € {1,...,k} is denoted
by ¢;, where 2521 ¢; = 1. We leave open the meaning of size, one could take,
e.g., the number of functionalities.

The development time d; of a module. We denote the development
time of the monolith by D. After splitting the monolith into & modules, the de-
velopment time of a module is modelled proportional to the size of the module.

So we have
dj = DCj.

The testing time ¢; of a module. We denote by 7" the testing time of
the monolith. A new version of a module j will need two kinds of tests prior
to the release. The first one will check all the new features of the module in
combination with the latest versions of the other £ — 1 modules. The duration
of this test is proportional to the size of module j. A second test will verify
whether the new version of module j is compatible with all supported versions
of the other modules, except the configuration tested previously. The duration
of a such test is denoted by A. Thus

tj:TCj—f—A Hll—]. 5
i#]

where [; is the number of supported versions of block 1.
For the time-to-market TTM; of a module j we thus have

TTM; = De; +Te;+ A | ]l -1
i)

The number of supported versions [; of a module. During the com-
patibility test, ASML tests whether the new release of a software module is
compatible with the last [; versions of the other modules. Hereby I; is chosen
such that all software issued in the last year is supported. Denoting the num-
ber of module releases per year by r and writing f; for the probability that a
randomly chosen update request concerns the j-th module, we obtain

l; = Max{1, f; r}.
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We imposed the restriction [; > 1, because we want to support at least the
newest configuration for every software module, even if it is not updated every
year.

Thus we finally obtain

k
E(TTM(k)) =Y fj | Dej +Tej+ A | [[Max{1, fir} -1 (3.1)
j=1 i#j

for the expected time-to-market with k modules.

3.3 A model without capacity restrictions

Choosing model parameters

ASML plans to split the monolithic software into modules of about the same
size. Thus, ¢; = 1/k for all modules j. The development time of a module j
will then be d; = D/k, and the testing time of a new version of a module, in
which all the new features of the module are checked, will be T'/k. Thus (3.1)

simplifies to

k
E (TTM(k)) = % + % + A fi [ [ Maxf1, firy =1 (3.2)
j=1 i#j

Based on the experience from the monolithic approach, we further assume
the following:

e The development time of the monolith is D = 180 days.
e The testing time of the monolith is 7' = 70 days.
e A compatibility test needs A = 2 days.

The mean time-to-market for different values of k depends on the number of
updated modules per year r and on the proportion f; of update requests that
goes to module j. Note that both r and f; depend on k. Depending on the
choice of these functions, the mean time-to-market may change significantly.
We will provide calculations for specific choices of these parameters. However,
these assumptions need to be checked carefully when validating the model.

The number r = r(k) of module releases per year. Here we write (k)
instead of 7 to emphasize the k-dependence. Currently the company releases
each year about 3 new versions of the monolith. As a first guess, the linear
function

r(k) = 3k (3.3)

seems a good candidate. However, it is rather unclear whether a new version of
the monolith would give new features to each of its £ submodules. In particular,
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due to the extra work needed for the compatibility tests, we expect r(k) to
behave sublinear. Nevertheless, (3.3) provides a useful upper bound.

From discussions with ASML representatives we understood that r(k) = 3k
might be realistic though. To understand the impact of this choice, we contrast
(3.3) with the concave function

r(k) = 3kP, (3.4)

where 0 < 3 < 1.

The proportion f; of update requests that go to module j. The
request probabilities for different modules of the monolith are unknown, though
it is expected to be rather uneven distributed. That makes it hard to find a
pertinent probability distribution for our model. We assume here that the
update requests for the k£ modules are distributed according to the Zipf’s law,
i.e., a module j will be requested by the customers with the probability f;,
where

j—Oé

b Zf:l ime
in which we take o = 0.7. Zipf’s law is observed in many applications, e.g.
access of web pages or keyword usage in a search engine. For more information
on modeling internet traffic using Zipf’s law, including technical aspects, we
refer to Cunha et al. [7]. The value of @ = 0.7 as a model for web requests
has been suggested by Breslau et al. [4]. Interestingly, Zipf’s law was originally

used as a model in philology [13].

(3.5)

Computational results

Case r = 3k. Using equation (3.2) together with (3.3) and (3.5), we obtain
for r = 3k and a = 0.7 that E (TTM(k)) achieves its minimal value for k = 3:

E (TTM(3)) = 96.7.

If we split the monolith into 3 modules, the mean time-to-market for the release
of one module would be 96.7 days.
Here we have that

e the most popular module would have 4.3 new versions per year;
e the second one would have 2.6 new versions per year;
e the last one would have 2 versions per year.

Comparing 96.7 x 3 = 290.1 with D + T = 250, we see that the splitting
requests a supplementary volume of work equivalent to approximately 40 days.
These are the compatibility tests. Depending on which module is updated,
there will be necessary maximum 11, respectively minimum 5 compatibility
tests. To overcome the problem, the testing resources could be extended, or a
model with capacity restrictions as in Section 3.4 could be considered.
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Figure 3.1: The mean time-to-market E (TTM(k)) in days for o = 0.7, and
B =1 (solid) or 8 = 0.9 (dashed).

Case r = 3k%°. In the case 8 = 0.9, the minimal time-to-market is achieved
for k =4 and
E (TTM(4)) = 87.5.

The mean time-to-market for a module would be 87.5 days. Now
e the most popular module would have 4.2 new versions/year;
o the second one would have 2.6 new versions/year;
e the last two would have 2, respectively 1.6 versions/year.

The supplementary volume of work would be equivalent to about 12 days,
but the number of cross tests increases considerably: depending on which mod-
ule is updated, there are maximum 23, respectively minimum 11, cross tests
necessary.

3.4 A model with capacity constraint

Theory

In the last section, we have not yet taken into account the capacity constraint
of ASML. Let us assume that the total effort of developing and testing the
different modules must stay within the current capacity of the company. The
current capacity can be taken as 3 times the total time needed for one new
release of the monolith (since at the moment, all ASML’s machines and people
are working on 3 releases of the full software program per year). This means
that the available capacity is

cap=3(D+1T).
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As before, we assume that we know f;, the proportion of feature requests
for module j, and 7, the total number of feature requests per year. So to
make every customer happy, we should have a new release each time there is
a request. This would be f;r per year for module j. However, to stay within
our capacity the management should decide to put an upper limit M on the
number of releases for one module. This means that, in case there are many
requests for a certain module, we won’t release new modules at each request
but rather have M releases of that module per year. So we put

r; = 7 releases of module j per year = Min{ f;r, M},
. oy
f; = proportion of releases of module j = k737
i=1"i
M := maximal number of releases of each module per year.

We can now divide our modules into three groups, namely very popular mod-
ules, medium popular modules and least popular modules (with respect to
feature requests). If we order the modules according to r; (from high number
of releases to low number of releases), we get

Module: 1 m m+1 n n+1 k
fire | (3;00) (3,00) | (1,3] (1,3 (0,1] (0,1]
r; = M M fir fir fir fir
l; = T r; T r; 1 1

The idea behind this is to release as many versions of the less and medium
popular modules as are requested (which per module is at most the current 3
releases per year), and spend the time that is left on releasing M versions of
each popular module per year. One can immediately see that this can only
give an advantage to the current approach when M > 3 is within reach.

So let us compute for a given k, the maximal M to satisfy the capacity
constraint. The total time needed to develop and test a new release of module
j is given by

D T
TTM; = — + -+ A Hli_l :
7]
where A is the (small) testing time needed to test the new version of module j
against the previous versions of all modules. Since the total time spent on the
r; releases of module j per year is r; TTM;, the total time that we spend on
all releases of all modules per year is

ZTJ

++A

I1u-1

i#]
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Notice that M appears in the product H#j l;. Hence, for a given k, we can
find the maximal value of M such that

k
D T
> oy T tA [[ti-1]]<3D+1).
Jj=1 i#]
For this optimal value of M, we can determine the mean time-to-market for a
module

E (TTM(k Zf] I;+T+A ITe-1)].
i#£j

and compare these for the different values of k£ to see which choice for k is best.

Examples

In practice, the outcome of the analysis will, of course, depend on the constants
D, T, and A, for which we will for now substitute D = 180, T'= 70 and A = 2.
But most importantly, it will depend on the ‘popularity rate’ f; of the modules,
which ASML should evaluate thoroughly before making a decision. The two
examples that we consider in this section are

e The f; are distributed according to Zipf’s law, and 7 (the total number
of requests when splitting the program into k parts), is considered to be
r = 3k:

fir = sz_

i=1%

-3k, where o = 0.7 (see Section 3.3).
i

e The f; are distributed according to a ‘toy example’, that originates from
the fact that for £ =5, ASML can give a guess for a suitable approxima-
tion of f;r:

1

1
fir=12, for =12, far =1, far =, for = 3

27

In the first example, we have

fir | for | far | far | fsr | fer | far | fsr | for | fior
3 _ _ _ _ _ _ _ — —
3.71 ] 2.29 — — - — — — _ _

433|266 | 201 | — — — — — — —
4881301 |226|18 | — — — — — —
5.39 1332|250 (204|175 | — — — — —
5.87 13.61|2.721222|190|1.67| — — — —
6.32 | 3.89 293|229 205|180 |1.62| — — —
6.75 | 4.15 | 3.13 | 256 | 2.19 | 1.93 | 1.73 | 1.57 | — -
7.16 | 4411332271 232|204 |183|1.67|154| —
7.55 | 4.65 | 3.50 | 2.86 | 2.45 | 2.16 | 1.93 | 1.76 | 1.62 | 1.51

© 00 3O Ui Wi =

—
o
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As explained, we will divide the modules for a given k into three groups, the
very/medium/least popular modules. The first group, namely the one for which
fir > 3, consists of typically one, two or three modules. For these most popular
modules, we will fix the number of releases per year at M, so the expected
number of releases of the modules will be

klri| ro | r3 | ra | T5 | T¢ | T7T | Ts | T9 | Tio
1 |\ M| — - — — - - - - -
2 | M|229| — — - - - - - —
3 | M|266|201] — — - - - - -
4 |M| M |226]18 | — - - - - -
5 | M| M |250 204|117 | — — — - -
6 | M| M |272]222]190|1.67| — - - -
T\ M| M |293229]205|1.80|162| — - -
8 | M| M | M 256219193 |1.73|157| — -
9 M| M | M 271232204 |183]1.67|154| —
10| M| M | M |286|245|216|193|1.76 | 1.62 | 1.51
Assuming [; = Max{1,7;} we can determine the maximal M for each k to
satisfy
Zr] + +A [[t-1]]<3@+1).
7]

We obtain the following maximal values of M:

k 2 3 4 ) 6 7 8 9 10
M 3551326246 | 1.77| 1.17 ] 0.76 | 0.93 | 0.71 | 0.53

One can see that only k = 2 or K = 3 might be an improvement on the current

k = 1. Suppose we split in two modules, and we schedule 3.50 releases of the

most popular module per year, and 2.29 releases of the least popular module.
Then the mean time-to-market is

k
E(TTM(2) = > f; —+ Tia [1u-1

j=1 i£]
oy D T

= ij | % + = —|—A HMaX{l ri}—
j=1 2ui=1Ti i#j
3.50 70 180

= — |=4+——+2-(229-1
5.79 (2 T 222 )>

229 (70 180

—_— — +2-(3.55—-1) ) =~ 129 days.

5.79 (2 T2 )> s

So, while staying within the current capacity, it is possible to split into two
modules such that the time that elapses after the management has asked for
an update of a module is about 4 months on average.
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If we split in three modules, we find

3
Z ) D+T+A HMax{lrz}fl

E(TTM(3)) =
j=1 z lrl i#£]
3.26 70 180
= — | —4+—+2-(2.01-266—-1

79 <3 + 3 +2-(20 66 )>
2.66 70 180
— | —+ —4+2-(2.01-326—1

+ 703 <3 + 3 +2-(2.01-3.26 ))

2.01 /70 180
703 < 3 + 3 +2-(2.66 - 3.26 1)) =~ 95 days.
We conclude that for a popularity rate that is Zipf-distributed, & = 3 is optimal,
as in the previous chapter where the capacity constraint was not taken into
account.

Now let us take a look at the second example, the so-called ’toy example’.
Recall that this is the case where the popularity rate f; of the modules is not
distributed according to Zipf’s law, but that we have

1 1
f17": 12, fg?": 12, f37": 1, f47“: 5, f5’l“z g

In other words, we assume that ASML can create 5 modules of approximately
the same size, such that one has to be changed once every three years, one has
to be changed once every two years, one has to be changed once a year, and
the two most popular modules need changes every month.

Now that we have a good approximation of the number of requests in the
case that ASML splits the monolith into five parts, can we use that to conclude
something in comparison with other values of k7?7 It seems logical to assume
that for k = 2, it is possible to create one module that has to be changed once
a year, and one module that still has to be changed 12 times a year (because to
make two modules out of the five proposed by ASML, we would take the first
two together with a part of the third so there will be requests to change this
big module once every year). For k = 3, k = 4, or k = 6, it is harder to say
something reasonable, because we cannot guess how the number of changes per
year for each module would be distributed. So let us compare k = 1, k = 2,
and k = 5 for this ‘toy example’:

k 71 T9 T3 T4 Ts5
13 -1-1-1-
2\ M| 1| — — —
5| M| M| 1]0.50]0.33

As before, we need to find the maximal values of M such that

er + +A HMaX{l ri}— <3(D+1).
i#]



3.5. A model including waiting times 61

We obtain that:

k] 2 | 5
M | 4.93]6.22
It follows that
4.93 (70 180
E(TTM(2)) = 5.93-(2+2+2-(1—1))
1 70 180
— (4 ==4+2.(493-1) | ~126d
5.93 (2 T2 )> ays’
6.22+6.22 (70 180
E (TTM(5)) = JW-<S+5+2-(1-1-1.6.22—1))
1+5+5 (70 180
2ty (Y 1 0.(1-1-6.22-6.22 — 1
14.27 575 T2 0220 )
~ 69 days.

One can clearly see that for this example, splitting into five modules gives the
best results.

We have shown in this section that splitting into modules while staying
within the capacity is possible and can result in a shorter mean time-to-market.
However, it is essential for the validity of the results to have reliable information
on the distribution of the number of requests over the modules.

3.5 A model including waiting times

In this section we introduce a queueing model to study the mean time-to-
market of releases of modules. Assume that the number of modules in which
we divide the monolith is equal to k. The model is a closed queueing network
with two stations, one consisting of k parallel servers and one consisting of a
single server and a request queue (see Figure 3.2).

The first station represents the modules for which no new releases are re-
quested. The second station represents the modules for which a new release
is requested. After the release of a new version of module 4, the next request
for a release of module ¢ occurs after an exponentially distributed time with
parameter \;, i = 1,..., k. Here, 1/); is the mean time until the next request
for module 7 occurs. Typically, the As are different because not all the modules
have the same rate of being requested for a new release since there are mod-
ules that are more popular than others. Modules requested for a new release
queue up in the request queue until they can be served. The server in the sec-
ond station represents the group of approximately 400 employees working on
the modules. We assume that the server works in a processor sharing fashion.
Whenever there are j requests in the request queue the server splits its capacity
equally over the j requests. The service time of module ¢ in the second station
is exponentially distributed with parameter p;, ¢ = 1,...,k. Here 1/p; is the
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requests

e (0

L (O—

Figure 3.2: The closed queueing network

mean time a request would spend in the second station whenever there would
be no other requests at the same time at this station.

The random variable Xt(z),i = 1,...,k, denotes the state of module 7 at
time ¢, i.e.,

‘ 0 if a new release for module 7 is requested at time t,
X =
1 otherwise.

The stochastic process X(t) = (Xt(l), Xt(z), e ,Xt(k)) is a continuous-time
Markov process. The equilibrium distribution of this continuous-time Markov
process can be obtained by solving the balance equations, equating the inflow
and outflow of each state, together with the normalization equation. This is
illustrated by the following example.

Example 3.5.1. Let us consider the case k = 3. We write p;, 4,4, where
i1,12,13 € {0,1}, to denote the equilibrium probability of the system to be in
the state (i1,i2,13). For example po oo is the probability that new releases for
all modules are requested and py,1,1 s the probability that no new releases are
requested. The balance equations are given by
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(El + % + %) P0,0,0 A1D1,0,0 + A2P0,1,0 + A3P0,0,1,
(% + A+ %) D1,0,0 %po,o,o +X2p1,1,0 + A3 P11,
(% + A2 + %) P0,1,0 % P0,0,0 t A1p110+ A3P101,
(% + A3+ %) 00,0,1 %po,o,o + A1 P1,0,1 +A3Do,1,1,
(u3+ A1+ X2)pr1o0 = % P1,00 t %po,m + A3p1,1,1,
(B2 + M+ A3)pro1 = % Po,1,0 + %po,o,l + X2 p11,1,
(1 +A2+A3)pri1 = %Po,l,o + %po,m +A1p1a,
(At + A+ A3)p1ig = M3Pi1,0+ p2Pr,01 + 1 DP01,1s

and the normalization equation is

P0,0,0 +P1,0,0 + Po,1,0 + Po,0,1 +P1,1,0 +P1,01 +Po11 +p1,11 =1

Solving the above system of equations we obtain

D0,0,0 = 6C A1 A2A3, p1,0,0 = 2CA 2301, Po,1,0 = 2C A1 Azpi2,
D001 = 2CA1Aaps, po.11 = CAipaps, p11,0 = CAspipie,
p1,0,1 = Chapipiz, p1,1,1 = Cprpiops.

where

1
o = 6A1 A3 + 2X0 301 4 21 Agpa + 2A1 Ao pui3
+Asp 2 + Aopia i3 + A fafis + pa flafis.

In the case of an arbitrary number of modules we can also obtain a closed
expression for the equilibrium distribution, see [1]. The equilibrium probabili-
ties are given by

k k
. 17‘. ) .
pihiz,.u,ik — C . k _ E ’Lj l . | | (AJ LV /J/;J> .
j=1 j=1

where C' is chosen such that the sum of the probabilities equals one.

Once we know the equilibrium distribution, we can obtain other perfor-
mance measures for the system. We denote by E (L(k)) the mean number of
modules in the request queue and by E (TTM(k)) the mean time-to-market
for an arbitrary module, i.e., the time between the instant that the release is
requested and the instant the new version of the module is released. We can
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easily relate these two measures using Little’s formula, see e.g. [10]. If §(k)
is the rate at which new releases for modules are requested, Little’s formula
gives E (L(k)) = 0(k)E (TTM(k)). The mean number of modules in the re-
quest queue and the rate at which new releases for modules are requested can
be calculated using

k
ELE) = Y P [F=> 05 |
Jj=1

i€l

(R

§(k) = thlgzk

il J

(45 - Aj)

1

with
I={i=(i1,...,i) :3; € {0,1} for all j}.

The mean time-to-market finally follows from Little’s formula.

In the model described in this section, for each module only one request
for a new release can be in the request queue. If two or more requests for
a module can be simultaneously in the request queue, the model should be
adapted. When there can be at most a fixed number of requests for a module
simultaneously in the request queue, this can be included in the model by
increasing the number of modules in the closed queueing network (e.g. from k
to 3k if there are at most 3 requests for a module simultaneously in the request
queue). If the number of requests simultaneously in the request queue for a
certain module is unlimited, probably an open queueing model instead of a
closed queueing model is more appropriate. For these open models also results
are available for the mean time jobs spend in the system (see e.g. [11] for a
formula for the mean time a job spends in the system in an M/G/1 processor
sharing queue).

3.6 Pairwise Testing

In this section we introduce a method for reducing the number of test cases and
therefore for reducing the test effort. We are not interested in functional unit
testing but in cross testing, i.e., testing different versions of modules against
each other. The testing effort depends on the number of versions of the other
modules because a new version of a module should be tested with all combi-
nations of all versions of the other modules. This testing method is known as
exhaustive testing. This way of testing covers all test cases. Due to its high
cost, to accomplish exhaustive testing in practice is in most cases not feasible.
In contrast to exhaustive testing, pairwise testing is only covering all pairwise
combinations of versions of modules. This means that for any two modules M;
and M, and any two versions V; of M7 and V5 of My, there is a test in which
M has version V] and M> has version V5.
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Different test generation strategies have been published for pairwise testing.
Here we briefly describe three of them. In the first approach, if all the pairs
in a given combination exist in other combinations we drop that combination,
see [3]. Table 3.1 shows the test cases if we consider to divide our software
into three modules and to support two versions. In practice we should drop
the test cases number two and number four since pairwise they exist already.
The second case exists in the test cases 3, 5 and 6. The fourth case exists in
the test cases 1, 5 and 6.

Test Cases | Module 1 | Module 2 | Module 3
Version 1 | Version 2 | Version 2
Version 2 | Version 1 | Version 1
Version 2 | Version 1 | Version 2
Version 1 | Version 2 | Version 1
Version 2 | Version 2 | Version 1
Version 1 | Version 1 | Version 1

ST W N~

Table 3.1: Test cases for 3 modules and 2 supported versions using pairwise
techniques.

A combinatorial design approach is used by the Automatic Efficient Test
Generator (AETG). This strategy requires that every pair is covered at least
once. It does not specify how many times each pair is covered. For further
details, see [5] and [6]. A third approach is to use orthogonal arrays to gen-
erate test cases. Orthogonal arrays are combinatorial designs used to design
statistical experiments that require that every pair is covered the same number
of times, see [8].

There are many tools available for generating test cases based on pairwise
testing. Each of them is using some specific algorithm for generating pairs.
The examples shown in this section are generated using a free GUI based tool
for generating test cases called CTE-XL. This tool generates the pairs using the
Classification-Tree Method which is a testing method used by DaimlerChrysler
AG. For further details about the tool, see [12].

Suppose we divide the software into 3 modules and we want to support 3
versions for each of them. Exhaustive testing requires 27 test cases to cover all
possible combinations. However using pairwise testing techniques only 9 test
scenarios are required, see Table 3.2.

In Tables 3.3 and 3.4 we compare the number of test cases produced us-
ing pairwise testing with the number of test cases produced using exhaustive
testing. We consider different number of modules and different number of old
supported versions. Table 3.3 shows the number of test cases needed using
pairwise testing for 2, 3, 4 and 5 modules supporting 2, 3 and 4 old versions
respectively. The number of test cases needed using exhaustive testing for 2,
3, 4 and 5 modules supporting 2, 3 and 4 old versions respectively are shown
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Test Cases | Module 1 | Module 2 | Module 3
1 Version 3 | Version 2 | Version 3
2 Version 1 | Version 3 | Version 2
3 Version 2 | Version 1 | Version 1
4 Version 1 | Version 1 | Version 3
5 Version 2 | Version 2 | Version 2
6 Version 3 | Version 3 | Version 1
7 Version 1 | Version 2 | Version 1
8 Version 2 | Version 3 | Version 3
9 Version 3 | Version 1 | Version 2

Table 3.2: Test cases for 3 modules and 3 supported versions using pairwise
techniques.

in Table 3.4. Clearly, the number of test cases increases with the number of
modules and with the number of supported versions. Furthermore, we see that
if we split up the monolith, for example, into four modules supporting four
versions the number of test cases using exhaustive testing grows much faster
(256) than using pairwise testing (20).

2 Modules | 3 Modules | 4 Modules | 5 Modules
2 Versions 4 4 5 6
3 Versions 9 9 9 13
4 Versions 16 19 20 23

Table 3.3: Number of test cases using pairwise testing

2 Modules | 3 Modules | 4 Modules | 5 Modules
2 Versions 4 8 16 32
3 Versions 9 27 81 256
4 Versions 16 64 256 1024

Table 3.4: Number of test cases using exhaustive testing

Of course, it is possible that pairwise testing alone does not detect all bugs.
Sometimes they can be found out only by inspecting three or more module
interactions. The possible solution could be to complement pairwise testing
with another kind of testing or to extend it to all 3-module (or n-module)
combinations, but this could also be costly.
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Finally let us remark that in the examples we have presented in this section
we have assumed for simplicity that we support the same number of versions
for each module. In practice this assumption is not always true since we can
support different number of versions for every module. In this case we will have
some repeated pairs. Another approach, however, could be to use orthogonal
arrays to generate the test cases in which all the pairs are covered the same
number of times. For further details and applications, see [9].

3.7 Conclusions

We have translated the problem given to us by ASML into a general model
that can be extended to include capacity constraint or waiting times. A lot of
parameters appear in this model for which a suitable value should be chosen.
One of the most important parameters relates to the popularity rate of the
different modules which needs to be investigated by ASML to draw the right
conclusions. To illustrate the model we worked out a few examples. For this
examples it seems that splitting the monolith into a small number of modules
can certainly be an improvement. Other techniques, such as pairwise testing,
can be used to further reduce the testing time. We should note that once
the optimal number of partitions is derived, a lot of work remains to be done.
Actually splitting the software into & more or less independent pieces can be
very hard. It may be desirable to deviate from the optimal value to make space
for natural partitions (such as splitting firmware and user interface).
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from ASML, and with Nebojsa Gvozdenovic (CWI), Malwina Luczak (Lon-
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CATCHING GAS WITH DROPLETS

Modelling and simulation of a diffusion-reaction process

Simon van Mourik!, Yves van Gennip?, Mark Peletier?,
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Erwin Vondenhoff?, Pieter Eendebak?, Jan Bouwe van den Berg?

Abstract

The packaging industry wants to produce a foil for food packaging purposes,
which is transparent and lets very little oxygen pass. To accomplish this they add
a scavenger material to the foil which reacts with the oxygen that diffuses through
the foil. We model this process by a system of partial differential equations: a
reaction-diffusion equation for the oxygen concentration and a reaction equation for
the scavenger concentration. A probabilistic background of this model is given and
different methods are used to get information from the model. Homogenization theory
is used to describe the influence of the shape of the scavenger droplets on the oxygen
flux, an argument using the Fourier number of the foil leads to insight into the
dependency on the position of the scavenger and a method via conformal mappings is
proposed to find out more about the role of the size of the droplet. Also simulations
with Mathematica were done, leading to comparisons between different placements
and shapes of the scavenger material in one- and two-dimensional foils.

KEYWORDS: pde modeling, chemical reaction, simulation, homogenization, conformal
mapping, Fourier number

4.1 Introduction

In the food packaging industry people are interested in developing materials
that can shield food from certain gasses, like oxygen. If too much oxygen comes
into contact with the food, the rotting process will set in. For a lot of food the
tolerable oxygen concentration is in the order of ten parts per million, as listed
in figure 4.1. An additional demand on the packaging foil is transparency, since

1: Universiteit Twente, 2: Technische Universiteit Eindhoven, 3: CWI, 4: Universiteit
Utrecht, 5: Vrije Universiteit Amsterdam

69
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customers like to see the food before they buy it. As a solution satisfying both
demands DSM considers a polymer sheet which contains droplets of a material
that reacts with oxygen, the so called scavenger material. Through reaction
with this material the concentration of oxygen in the foil decreases and the
flux of oxygen through the packaging material is less than it would be in the
absence of scavenger droplets.
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Figure 4.1: Tolerable oxygen concentrations for different types of food.

The question posed by DSM to the 55th Furopean Study Group Mathematics
With Industry was twofold. Firstly they asked the participants to model the
diffusion of oxygen gas through a foil containing scavenger droplets. Since DSM
is mainly interested in the flux of oxygen through the foil and not so much in
the specifics of the diffusion inside the foil, the hope was that the Study Group
would come up with a model of the full three-dimensional process, rooted in
physics, which could then be simplified to a one-dimensional effective model
describing the oxygen flux across the foil. One difficulty in describing the
process at hand is the fact that due to reaction with oxygen the scavenger
concentration decreases with time.

Secondly DSM was interested in predictions of this model about the in-
fluence of the concentration, shape and size of the scavenger droplets on the
oxygen flux. The production process is such that after the droplets are added
to the packaging material, the foil can be stretched in one of two ways, either
uniaxial or biaxial. In the former case the stretching is done in one direction
in the plane of the foil, which results in cigar-shaped droplets, in the latter
case the stretching takes place in two perpendicular directions in the plane of
the foil, resulting in pancake-shaped droplets. In the absence of stretching the
droplets remain spherical in first approximation. Furthermore, during addition
of the scavenger material, the amount of added scavenger can be controlled as
can the size of the added droplets, but the spatial placement of droplets in the
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foil cannot. Thus a homogeneous spread of droplets in the material should be
assumed.

The problem owners from DSM already came up with a one-dimensional
model of the process themselves, which they hoped could be either validated
or improved upon during the Study Group. This model consists of a reaction-
diffusion equation for the oxygen concentration ¢&(x,t) coupled to a reaction
equation for the concentration of scavenger material §(x,t):

0é(x,t) D 0?¢(x,t)

_ o o~ P
at 912 Ke8(z,t)"e(z, )7, (4.1a)
88(;{ ) = —kg §(w,t)¢(x, 1), (4.1b)

where D is the diffusion coefficient for oxygen in the polymer foil, . is the
reaction rate of oxygen and kg is the reaction rate of scavenger material. All
these coefficients as well as a and (8 are taken to be constant in space and
time. The values of these constants are fully determined by the properties
of the foil, the scavenger material and oxygen and are not dependent on the
placement, size or shape of the scavenger droplets. Multiplying equation (4.1a)
by ks and equation (4.1b) by k. and subsequently re-scaling the oxygen and
scavenger concentrations as c¢(x,t) := ks¢(x,t) and s(z,t) := k.5(x,t) leads to
the following system of partial differential equations, where now the reaction
constant « := kT k77t is the same in both equations:

de(z,t) D32c(x, t)

8t - 81'2 -k S(JZ, t)ac(:L‘, t)ﬂa (42&)
Os(x,t) N
o —k s(z,t) c(:c,t)ﬁ. (4.2b)

According to DSM, experimental results indicate that a =~ g and 0 =~ 1.
However in our treatment of this model we will often take both these constants
to be 1 for simplicity. The system of equations (4.2a) and (4.2b) will be called
the DSM model from here on.

Both questions DSM asked the Study Group sparked a lot of different ini-
tiatives which led to some useful insights into the problem. In this report the
different approaches to the proposed problems are discussed and practical re-
sults useful for DSM as well as possible new directions for research will be given.
The setup for this report will be as follows. In section 4.2 a probabilistic model
for the physics on the micro scale is given and the relation between this model
and the DSM model of partial differential equations is discussed. Section 4.3
applies the theory of homogenization to a three dimensional generalization of
the DSM model with constant scavenger concentration. This approach results
in, among other things, a limit problem in which the influence of the shape of
the droplet is felt via the first eigenvalue of the Laplacian on a cube with a
droplet shaped cavity. In section 4.4 the effects of the position of the scavenger
are investigated analytically. The final analytical approach which was under-
taken comprises the use of conformal mappings to transform the stationary
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problem, i.e. the Laplace equation, on an infinite strip with a rectangular hole
to a similar problem on the complex half plane and can be found in section 4.5.
The strip with the rectangular hole models the polymer foil with a rectangular
droplet of scavenger material in it. The last of the approaches proposed during
the Study Group week that will be discussed in this report is the numerical one
and can be found in sections 4.6 and 4.7. Simulations in Mathematica of the
DSM model in one and two space dimensions were made, leading to some new
insights in the effects of placement and shape of the scavenger material on the
oxygen flux through the foil. In the final section 4.8 the results and conclusion
that we think are of greatest interest to DSM, will be restated.

4.2 Probabilistic approach

In this section we propose a possible idealized stochastic microscopic model
of catching oxygen by droplets. The model is based on the following three
assumptions regarding the chemistry and the physics of the phenomena.

e A1l: Oxygen molecules move independently. The free individual dynam-
ics of any oxygen molecule is simple diffusion that has no preferential
directions.

e A2: Oxygen molecules interact with droplets independently of each other.

e A3: When a particle (molecule) hits a droplet, then there is a chance
that it can be annihilated. If the reaction takes place, then it affects the
droplet too. Namely, it makes the droplet’s catching properties worse.
Therefore the effectiveness of the reaction process decreases in time.

As operator space, we take the lattice Z?, where Z is a set of integers and
d can be 1,2 or 3. For definiteness we assume d = 1 in the sequel. Assumption
A1 suggests that we can model the oxygen molecules by independent simple
symmetric random walks {z;(t) € Z,t > 0,i = 1,2,...}. Let us explain
informally what a simple random walk on the lattice is. One can think of a
particle that moves on Z as follows. Assume that a particle is at point k € Z
at time ¢ > 0. The particle sits at this point for a random time ¢ (which is
an exponentially distributed random variable with parameter A > 0), then it
jumps to either site k — 1 or k + 1 chosen with probability 1/2. It occupies
the new location for another exponentially distributed random time (which
is independent of ¢ ), and jumps again to one of the nearest neighbors chosen
equally likely and so on. Formally, a simple symmetric random walk z(t), ¢ > 0,
on the lattice Z is a continuous time Markov chain whose dynamic is specified
by the following infinitesimal probabilities

Dét/2+0(dt), if |z —y| =1,
P{z(t+0t) = ylz(t) =z} = (1 — Dst + O(6t), ifx=y,
0, if |z —y| > 1,
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where x,y € Z, D is a diffusion coefficient and O(dt) — 0 as 6t — 0. D
specifies the intensity of jumps and it is equal to A~ ".

The random walks interact with a random medium modelling scavenger
droplets. In the DSM model the distribution of the scavenger material is spec-
ified by its concentration at every point inside the foil. In our model we in-
troduce a system of independent nonnegative integer valued random processes
{nk(t), k € Z, t > 0} which are interpreted as amounts of scavenger material
at the lattice points at time t.

Let us describe an interaction between particles and droplets. Denote by
&k(t) a number of particles at point k € Z at time ¢. Consider a point k such
that &,(t) > 0 and ng(¢) > 0. Within the time interval [¢,¢ + dt) any oxygen
molecule at this point can react with a droplet with probability F'(n(t))dt +
O(dt), where O(8t) — 0 as 6t — 0. Here F(-) is some nonnegative function,
such that F(0) = 0. With probability 1 — F(nx(t))ot + O(6t) the molecule
does not react. As a result of the reaction the oxygen molecule and a certain
amount of scavenger material annihilate each other, therefore & (t) — & (t) —1
and 7 (t) — ng(t) — 1 respectively. When all the scavenger material is reacted
away, then subsequently the oxygen molecules diffuse passively through without
being affected.

Let us compute the probability of the event that at least one of the oxy-
gen molecules reacts at point k& during the time interval [t,¢ + 0t). Assump-
tion A2 yields that the probability of the event that exactly 0 < j < m =
min (& (t), nx(t)) molecules react during time interval [¢, dt) is given by

(j‘) (F(me(t))5t + O(31)) (1 — F (1))t + O(8))™

and it is negligible in comparison with F(nx(t))dt as 6t goes to 0. Therefore
the probability of the event that at least one molecule reacts during the time
interval [t,t + dt) is equal to

k(0 F (i (1))0t + O(61), (4.3)

and it is the probability of the event that exactly one of the molecules reacts
within the same time interval. The coefficient in front of ¢, i.e. & (¢)F (nx(t))
is, by definition, the total reaction rate at point k at time t.

Back to the continuum equations

In this section we show the connection between the microscopic probabilistic
model and the following system of partial differential equations

Jc(x,t) D@%(m,t)
ot Ox?
Os(x,t)
ot

— F(s(z,t))e(x,t), (4.4a)

= — F(s(x,t))c(z, t). (4.4b)
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In particular, if F(z) = xz®/3, then we get the DSM model. We would like
to highlight the main idea and will not go into many technical details. The
idea is to consider the stochastic system at points k(e) ~ [z/e], where x € R,
after time t(¢) = t/e? and then pass to the limit ¢ — 0. It is a so-called
hydrodynamic limit in the standard terminology of statistical physics. Points
k(e) are microscopic points, t(¢) is microscopic time. Respectively, continuous
point z is called a macroscopic one and t is the macroscopic time. The reaction
rates should be rescaled respectively, since the impact of the reaction at any
microscopic point should be negligible at macroscopic scale, but the effect of
the reaction is visible in a continuum domain with positive volume. Namely,
we put the reaction rate equal to 2 F(+) (in a few lines this choice will become
clear). Formally, the pair of random processes (£(t/g2),n(t/e?)) forms a Markov
process with the state space S = {(§,n) € (Z4 U {0})™ x (Z; U {0})>*} and
with the following infinitesimal operator

Gf(&m) =€ DY (f(E+exsr—ex,m) — f(6m) & (4.5)
k
’QDZ (€4 er—1 —exym) = f(&,m)) &

‘QZ € —enyn—ex) — £ (6,1m) & F (1)<

where e, € Z° are infinite dimensional vectors with all zero components except
the kth, which are equal to 1. Existence of this process can be proved by the
general methods of the theory of interacting particle systems, we refer to [5]
for more details. The factor =2 in front of the sums manifests the fact that
we speed up the process time. Obviously, in the third sum it cancels out with
its reciprocal in the reaction term &, F(ny)e2. For any ¢ > 0 consider a random
process
(5) —EZ@skfk t/s)

keZ

where ¢ : R — R is an integrable bounded function (test function). Jf) (t) is
nothing else but an integral of the function ¢ with respect to the measure

/’Li =€ Z gk (t/€2) 6{616}(')7 (46)

keZ

where d¢,}(-) is a delta function at point # € R. It follows from the theory of
Markov processes that we can write

JE ) =JE(0 / G.J¢ (4.7)
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Direct computations show that

G.JP(s)=¢"'D Z( (ke +¢) — p(ke)) & (s/€?)

keZ
+e7'D Y (p(ke — ) — p(ke)) &k (s/<°)
keZ
+ Y (p(ke — &) = p(ke)) & (s/€%) F(m (s/<%)).

k

Assuming that function ¢ is smooth enough we can use the Taylor expansion
and obtain that

GJS(s) = DY ¢"(ke)éi (s/) =Y ¢/ (ke)é (s/€%) F (i (s/¢7))

keZ kEZ
+Ry(e),

where R,(¢) — 0 in probability as ¢ — 0. Substituting it into the equation
(4.7) we obtain

529051{:& t/?) fszgaskfk feD/Zcp (ke)ék (s/e®) ds (4.8)

kEZ kEZ kEZ
75/290 (ke)ék (s/€%) F(ny (s/e?))ds + Ry (e).
kEZ

Repeating the same arguments for a random process

e wickym (t/<?)
kEZ
which is an integral of test function v with respect to another measure
v =3 e (/%) ey (),
keZ

we obtain that

e S wehyme (t/62) — & 3 wlek)m (0) (4.9)

keZ kEZ

= *E/Zw (ke)ék (s/€%) F(ny (s/e?))ds + Ry (e),

keZ

where Ry (¢) — 0 in probability as e — 0. So, informally, we can conclude that
the pair (£(t/e?),n(t/e?)) "mimics” a weak solution of the system of equations
(4.4a) and (4.4b). To see this, one should replace in equations (4.8) and (4.9)
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the random processes & (7/¢?) and n(7/e?) by functions c(z,7) and s(z,T)
respectively, and the sums over k should be replaced by integrals. If functions
(¢(z,7) and s(x, 7)) satisfy such integral equations for any smooth enough
finitely supported functions ¢ and ), then, by definition, they form a weak
solution of the system of equations (4.4a) and (4.4b).

The reasoning above can be placed in a rigorous setting of the modern
theory of hydrodynamic limits for interacting particle systems [4]. Using the
general methods of this theory it is possible to prove that the Markov process
(£(t/e?),m(t/e?)), t > 0, converges in some rigorous sense to a weak solution
of the system of equations (4.4a)—(4.4b) as ¢ — 0. It can be shown (using
the methods of the theory of partial differential equations) that there exists a
unique weak solution in this case. Then, it remains to note that any strong
solution is a weak solution. Hence, uniqueness of the strong solution implies
that the obtained weak solution is in fact a strong solution of the system of
equations (4.4a)—(4.4Db).

Experimental results of DSM show that the equation for the oxygen con-
centration c(t,x) should be linear in c¢(t,z). We have just shown that our
microscopic probabilistic model leads to this type of equations. This is deter-
mined by the fact that the total reaction rate (see equation (4.3)) is linear in
the number of oxygen molecules at a point due to Assumption A2.

We would suggest a simulation study of the proposed stochastic model. In
this study the described particle system can be simulated in a finite lattice
volume with certain boundary conditions and the droplet shapes can be taken
into account. The parameters of the simulated model should be specified in
collaboration with DSM in order to have a plausible approximation to the real
situation.

4.3 Homogenization

In this section we study the limit of small length size and derive a description
in terms of homogenized quantities.
The starting point for our discussion is the system of equations

¢t = DAc — kcs forz e, t>0 (4.10a)
sy = —kcs forze, t>0 (4.10b)
c=cyp for t > 0 and x € 90 (4.10¢)
(¢, 8) = (¢4, 81) for t =0 and z € Q. (4.10d)

Here ) is a domain in R"™ representing the foil; ¢, is a given boundary value
function, ¢; and s; are the initial data for the oxygen and scavenger concentra-
tions, and k and D are reaction and diffusion parameters. The assumption that
the scavenger is contained in small inclusions is encoded in the initial datum
S;-
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The relevant dimensionless parameter that indicates whether the problem
is diffusion- or reaction-dominated is
D
T e2kS

where ¢ is the typical microscopic length scale (the distance between scavenger
inclusions) and S is a typical scale of s. If this number is large, then the
diffusion is fast enough to homogenize differences on length scales ¢; if it is
small, then the fast reaction creates large local variations of c.

Diffusion-dominated

If « is large, then the concentration c¢ varies little between regions with and
without scavenger; one can directly write down the homogenized problem

(cf. [2]),

¢t = DAc — kes forx e Q, t>0 (4.11a)
sy = —kes forze, t>0 (4.11b)
c=qp for t > 0 and = € 9 (4.11c¢)
(¢,s8) = (¢,55) for t =0 and z € Q, (4.11d)

where now ¢; and s; are locally averaged (macroscopic) concentrations. Note
that in this problem the length scale of the scavenger inclusions no longer
appears (it is involved indirectly in determining ;).

Reaction-dominated

On the other hand, if « is small, then the reaction forces the concentration of
¢ to zero wherever s is non-zero.
In the limit o — 0 problem (4.10) converges to a Stefan problem:

¢ = DAc in {¢> 0} (4.12a)

c=cp t>0, €0 (4.12b)
1 0c

Up = ~% on on d{c > 0}\ 90 (4.12¢)

where n is the outward normal to {¢ > 0} and v, is the velocity of the interface
0{c > 0}. Recall that s; is the initial s-concentration; in the limit the concen-
tration of s at any point « does not change until the interface reaches x. (This
convergence result is proved in [1] for one dimension). The domain thus splits
in two parts: one where ks = 0 and one where ks ~ co.

As an intermediate problem, we consider the case in which ¢ solves (4.12a)
and (4.12b), on a fixed perforated domain, with zero interior boundary condi-
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Figure 4.2: Geometry of the unit cell (left) and the perforated domain (rigth).
We have indicated the boundary I' = Y N 0A in the unit periodic cell on the
left.

tions:
cc=DAc  forzeQ., t>0 (4.13a)
c=0 fort >0 and z € I'. (4.13b)
c=0p fort >0 and z € 90, \ T. (4.13¢)
c=c fort =0 and xz € Q.. (4.13d)

Here Q. is a perforated version of €2, constructed in the following way. Let
A C R™ be a 1-periodic subset of R™ (i.e. A+ e; = A for all unit base vectors
e;), and set A, = ¢A. We write Y for the unit periodic cell of A, Y = [0, 1]"NA.
Define 2. by

Q. =0nNA..

The internal boundary T'; is given by I'. = Q N JA., see also Figure 4.2.

In the limit € — 0, the ratio of the area of I'; to the volume €2, is unbounded,
and therefore the solution of (4.13) converges pointwise to zero as € — 0. We
take this fast decay of the solution into account by posing the following Ansatz

of the solution c°: , .
(1) = e~ PA/E co(:r,t)w(g)7

where A is the first eigenvalue of —A on A with homogeneous Dirichlet bound-
ary conditions. Here ¢q is defined on Q x [0,00) and w on Y. On substitution
into (4.13a) we find, writing y for z/e,
0=c"?co(z,t)[ DAw(y) + DAw(y) ]
+ 71 2DVey(z,t) - Vuw(y)
+ % w(y)[ DAcy(z,t) — cor(z,t) | (4.14)
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By the choice of ), the equation at level e~2 forces w to be a multiple of the
first eigenfunction. This function w is therefore also the first eigenfunction of
—A on Y with the following boundary conditions:

periodic conditions on Y N 9|0, 1]™;
homogeneous Dirichlet conditions on 9Y \ 9]0, 1]".

Since we can multiply w by a constant, and divide ¢y by the same constant
without changing ¢, we choose to normalize w by assuming

/Yw(y) dy = 1.

Integrating (4.14) over Y and using the periodicity of w, the integral at
level e ! vanishes, and we are left with

cor = DAcy forz € Q, t > 0.

The function ¢* is therefore approximated by the solution of the equation

DX

et = DAc— —-c forx € Q, t > 0. (4.15)
€

To make the connection back to the Stefan problem, we note that the pa-
rameter A in (4.15) is determined by solving an eigenvalue problem on the
perforated unit cell Y. We now need to make an assumption on how we may
deduce the microscopic geometry from a given macroscopic scavenger concen-
tration s—for instance, we could assume that in the unit cell the scavenger is
contained in a sphere of concentration s; the macroscopic concentration then
determines the radius of this sphere (see also below).

Under such an assumption, the parameter A is a function of the macroscopic
scavenger concentration s, and the macroscopic oxygen concentration c satisfies
the equation
DA(s) .

Ct = DAc — 22

By mass conservation—the difference ¢—s is conserved locally in (4.10a), there-
fore the same is true for the homogenized concentration—the equation for s
is

DA(s)
-5

St = C.

By doing this we are treating the geometry as quasi-static in the c-equation,
i.e. we assume that the geometry does not change on the time scale of the
c-equation. This depends on the concentration of s, as can be seen in (4.12c);
it means that the ratio C'/S is small, where C' and S are typical scales of the
initial concentrations ¢; and s;.

Finally, let us analyse the asymptotic behaviour of the eigenvalue A for small
scavenger concentrations s. We will approximate the eigenvalue problem for
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the Laplacian on a unit cell Y = [0,1]" N A by one on a unit ball with a much
smaller ball B, (0). inside. Furthermore, we replace the periodic boundary
conditions by Neumann boundary conditions. It is our firm believe that these
approximations do not influence the asymptotic result for small s. Since the
first eigenfunction will be symmetric, we arrive at the problem

cr,.—i—%cr—i—)\c:O forrg <r<1
c(ro) =0
¢r(1)=0

The general solution of the differential equation is

%) sin(;f/\r) O cos(;ﬂr) .

e(r) =

Applying the boundary conditions leads, after some calculations, to A ~ 3rg
as rog — 0. In terms of the scavenger concentration s this translates to A(s) ~
C's'/3 for small s.

When we compare this to the analogous two-dimensional problem, repre-
senting very elongated droplets, we find A\(s) ~ C|Ins|~! for small s. This
suggests that small elongated droplets lead to higher values of A and thus a
more effective scavenger in this limit problem.

Summary

If we assume that the parameter o = D/e2kS is large, then we find in the limit
€ — 0 the homogenized equations

¢t = DAc — kes forxeQ, t>0
sy = —kes forz € Q, t > 0.

On the other hand, if « is small, then we find as limit equations

DX
¢t = DAc — 52(5)6 forze, t>0 (4.16a)
DX
8 = — €2<s>c forx e Q, t>0 (4.16b)

where ) is determined from s as described above, and the asymptotic behaviour
for small concentrations is A ~ Cs'/3 and A ~ C|Ins|~" for small spherical
and thin elongated droplets, respectively.

There is a paradox in this: the parameter « itself depends on €. For the
diffusion-dominated case this does not matter, since the limit ¢ — 0 is con-
sistent with the assumption that « is small. In the reaction-dominated case,
however, the limit ¢ — 0 entails large values of o. The statement above should
therefore be understood as a description of intermediate asymptotics: in the
parameter regime in which both « and ¢ are small, the problem (4.16) is ex-
pected to approximate the problem (4.10). For any fixed k and D, in the limit
€ — 0 the system will eventually be diffusion-dominated.
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4.4 Behavior of the penetration time in one dimension

Although the reaction-diffusion scheme described by equations (4.2a) and (4.2b)
is hard to analyze (mainly because of the nonlinearities and the absence of
nonzero equilibrium points), it is possible to do so under some physical as-
sumptions, that are explained below. These assumptions were discussed with
the problem owners and seemed valid. In section 4.3 the effects of the shape of
the droplets is discussed. In this section we consider the one-dimensional case
where the packaging material consists of two layers of foil (without scavenger
material) and one layer of pure scavenger material (Figure 4.3).

S0

Co S(x.b)

outside \ inside

0 X1 X2 L

Figure 4.3: One-dimensional cross-section of packaging material

In this figure, Cy denotes the oxygen concentration on the outside, Sy the

initial scavenger concentration, x; and s the initial boundaries of the scav-
enger layer, ¢(z,t) the oxygen profile within the packaging material, and L the
thickness of the material.
The objective is now to express the time that the oxygen needs to penetrate
the material (penetration time) as a function of the physical coefficients. We
consider three time intervals; t1, t5 and t3, that denote the penetration times
for layers 1,2 and 3 respectively.

Penetration time for a layer of foil

The typical penetration time for the first layer of foil is expressed in terms of
the Fourier number for mass transport

Dr
where D is the mass diffusion coefficient, and 7 the penetration time for a
layer with thickness d; see for example [3] or any standard book on physical
transport phenomena. This number relates a specifically chosen ’critical’ flux
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after time 7, to the penetration time for the same flux with different values
for parameter d. For some critical flux, Fo can be measured experimentally.
Theoretically, we would like to know the time before some oxygen reaches the
scavenger boundary, but since the process is modelled by a diffusion equation,
the oxygen concentration is nonzero over the whole layer of foil instantly. Hence
the assumption of a critical flux to mark the penetration time. From equation
(4.17) it follows that the penetration time for the first layer of foil is

7Fox%
T

(4.18)

Penetration time for a layer of scavenger material

When oxygen reaches z1, the scavenger reacts with the oxygen and vanishes.
The left side of the layer of scavenger will start reacting away and leave a layer
of pure foil. This means that boundary z5(t) will move to the right. In order
to compute the penetration time for a layer of scavenger material, we make
two extra assumptions. The first assumption is that Sy is ’large enough’, so
that once the oxygen reaches 1, ¢(z, t) settles quickly to an equilibrium profile,
while z5(t) moves only a little. The second assumption is that the scavenger
reacts very quickly with oxygen, so that at z2(t) the oxygen concentration is
approximately zero. (The second assumption holds true if the Thiele modulus
Th = d,/7 is large. This dimensionless quantity indicates the dominance of
chemical reaction rate over diffusive mass transfer rate). These assumptions
lead us to the following. Once a critical amount of oxygen reaches z1, c¢(z,t)
settles quickly into its equilibrium profile, which is a time-varying linear func-
tion with boundary conditions ¢(0) = Cy and c¢(z2(t)) = 0. According to Fick’s
law [3] the oxygen flux at xo(t) is

de(za(t)) DCO'

_ = 4.19
d.]?g (t) X9 (t) ( )
The amount of scavenger that disappears after reaction is
dl‘g (t)
S . 4.20
ezt (4:20)

Since an amount of 3 particles of oxygen react with « particles of scavenger,

the mass balance reads Do dz ()
0 T2
=as 4.21
/8 Ty (t) (7%} dt ) ( )

with initial condition z(0) = x;. The solution to equation (4.21) is

2BCo Dt
2o (t) = ‘/ﬁaTOO + 22, (4.22)

The penetration time %5 is obtained by solving

[23C, Dt
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which gives

aSo(zt — o)

t 4.24
2 26DC, (4.24)
_ OéSods(Il + 1‘2) (4 25)
26DCy ’ '
with d, the thickness of the scavenger layer.
Total penetration time
The penetration time for the third layer, ¢3, is computed similarly to t;
Fo(L — x4)?
ty = % (4.26)
Fo(ds + 11)?
= — 4.27
- (427)
The total penetration time is now
For?  aSyds Fo(d, °
brota = 0L 4 @S0ds(@1 +23) | Folds +21)” (4.28)
D 26DCy D
Equation (4.28) is of the form
a1xr] + GQSOdi + a3zSox1ds + asdy, (429)

with a; positive. The total penetration time increases with dg quadratically,
and with x; and Sy linearly.

For further investigation, we would like to pose the idea of relating the pene-
tration time of the scavenger layer to a dimensionless number, similar to the
Fourier number. As was mentioned before, the assumptions are discussed with
DSM, but of course need scientific validation.

4.5 Solution procedure for the stationary problem via
conformal mapping

To test the effect of changing the shape and form of the scavenger droplets
inside the foil, a simplified model is assumed, where the foil is modeled as an
infinite strip with one block of scavenger in the middle of height 2h and width
2L (see figure 4.4). The thickness of the strip is rescaled to 2. Obviously we
are interested in those values of h and L for which we have the smallest flux of
oxygen reaching the food.

The stationary problem

The system of equations (4.2a) and (4.2b) is difficult to solve analytically and
does not have any non-trivial stationary solutions. However, a stationary so-
lution can be found if we look at a slightly different problem. We consider
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- ERE=
2L
Food

Figure 4.4: Foil modeled as an infinite strip with a rectangular piece of scav-
enger.

the case of a high reaction speed, so that any oxygen reaching the scavenger
boundary will react away immediately. Furthermore the block is assumed to
be saturated, so that there is an unlimited supply of scavenger. As a result the
oxygen concentration at the boundary of the block will always be equal to zero
and the scavenger concentration will be constant in time. Outside the block
the oxygen concentration can be described by the diffusion equation, of which
the stationary solutions satisfy Laplace’s equation. Finally we also assume that
the oxygen reacts away with the food immediately so that at the side of the
food we also have ¢ = 0. At the other side of the foil the concentration of
oxygen can be assumed constant and is scaled in such a way that ¢ = 1.

y
@ Tl ___J— Ac=0
c=10

Figure 4.5: Boundary value problem on an infinite strip excluding a rectangular
piece of scavenger.

Now let €2 be the two-dimensional domain that consists of an infinite strip
excluding a rectangle of length 2L and width 2h:

Q:={(z,y) eR*: -1 <y <1}\ ([-L,L] x [=h,h]),

and let I' =T'y UT'y UT'3 be the boundary of 2, where I'y is the boundary with
the environment, I'5 is the boundary with the food and I's the boundary of the
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block, as indicated in figure 4.5. On this geometry we want to solve

Ac=0, (z,y) € 9, (4.30a)

subject to
c=1, (r,y) €Ty, (4.30b)
c=0, (z,y) €T UTs. (4.30¢)

This problem can describe the oxygen concentration for small time, when
none of the scavenger has reacted away completely. Moreover data provided by
DSM indicated that initially the amount of permeated oxygen did not change
much in time, suggesting stationary behaviour.

The boundary value problem in (4.30) still seems difficult to solve because
of the complexity of the domain. However, using the theory of conformal
mappings [6], solving Laplace’s equation can be reduced to solving a potential
problem on an easier domain in the complex plane.

Solution using conformal mappings

We identify the geometry in figure 4.5 with the complex plane. Because of
symmetry we can restrict ourselves to that part of {2 where x is positive, which
will be denoted by € (see figure 4.6):

Q1 :={2€C:(Rez,Imz) € QARez > 0}.

Consequently an extra Neumann boundary condition dc¢/dn = 0 arises at
x = 0, where n is the outward normal vector. We introduce the points
A, B,C,D,E,F and Gby A=i, B=hi,C =L+ hi, D=L — hi, E = —hi,
F = —iand G = oo £ 1, as indicated in figure 4.6.

A map f:Qq — Qs is called a conformal mapping if f(z) is analytical and
one-to-one in y. Furthermore f~': Qs — Q) exists and is also a conformal
mapping. Throughout this section we will implicitly use the following two
theorems [6]:

Theorem 4.5.1. Riemann mapping theorem:

For any two simply connected open subsets )., L, of the complex plane C that
are not all of C and for given zo € Q,, wo € Qy, a € R, there exists a unique
conformal map f: Q, — Q, such that f(z0) = wo and arg(f'(20)) = a.

Theorem 4.5.2. Carathéodory’s theorem:

For any pair of simply connected open sets 2, and €, bounded by Jordan
curves ', and Ty, a conformal map f: Q, — Q,, can be extended continuously
to the boundary, giving a homeomorphism F : ', — I'y,. Furthermore, if z
follows the boundary T, in a positive way, then also w = f(z) will follow the
boundary in a positive way.
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Figure 4.6: Right part of the foil identified with a subset of the complex plane.

Note that in theorem 4.5.1 the conformal map f is uniquely determined by the
three conditions: Re(f(z0)) = Re(wo), Im(f(20)) = Im(wp) and arg(f’'(z0)) =
a.

We would like to use conformal mappings to map ; to the upper half
plane, on which a solution is easier to compute. By the Schwarz-Christoffel
formula [6] we can construct a conformal mapping f; from the upper half
plane Qg := {w € C: Imw > 0} to the unbounded polygon Q; (see figure 4.7),

* VU — weVW —wp

fi(w) = 0 VI — WAV — W/ — wpV — wg

dw + Dy,

where C1, D; € C are yet to be determined. The path of integration should be
chosen in the upper half plane and f; is such that the points wa,wg,...,wg
are mapped onto the points A, B,...G in ;. We have the freedom to choose
three of the real points wa,wp,...,wg. This will fix the remaining points.
Let us take wg = 00, wg = —1 and wg = 1. Because of symmetry we have
wp = —we and wp = —w4. Since f1(0) = L, again by symmetry, we have

i
i
[~

W4 ) we o Q wWp 1 /3

Figure 4.7: ffl will map the unbounded polygon ; onto the complex upper
half plane Q.
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D; = L. This leads to

w \/IZJ—U)C\/@—FU)C
0 VI — wav +waVo + 1TV — 1
For C; and the negative numbers w4 and we we know that wy < —1 and

—1 < we < 0 and they can be determined from the following system of three
equations with three unknowns:

fi(w) = Cy dw + L. (4.31)

fi(wa) =1, (4.32a)
fi1(=1) = hi, (4.32D)
fi(we) = L+ hi. (4.32¢)

The inverse function f; ! is also conformal and will map Q; onto 5.

If there were only Dirichlet boundary conditions then a solution would be
easy to find. The real part and the imaginary part of an analytic function
x 41y — ¢(z + iy) can be regarded as an harmonic function in x and y. The
function arg(w —wy4) is the imaginary part of the analytic function In(w —wa4)
and will therefore be harmonic in the complex upper half plane. Furthermore
it also satisfies the conditions ¢ = 1 on the segment GA, and ¢ = 0 on BE.
However, the Neumann boundary condition dc¢/dn = 0 is not satisfied on AB
and EF. Therefore we would like to map 5 onto a domain where we can
satisfy all boundary conditions.

Knowing wa, we and C7, we can construct another Schwarz-Christoffel
mapping fs : Qo — 3 where Q3 has the geometry that is drawn in figure 4.8.
The mapping will be of the form

gl
B E "F a

Figure 4.8: Geometry of Q3.

w

w—y
0 VI —waV + 1@ — 1y + wa
where v is some real number. Again the path of integration is in the upper

half plane. This mapping maps {23 to a set that has boundary angles 7 at the
points A, B, E and F. There exists a v € R, such that F and F coincide and

fa(w) = Ca

A + Dy, (4.33)
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the boundary of {23 makes an angle of 27 at av+ i := fa(7y), as shown in figure
4.8, and

Q3 ={z€C:Re(z) >0,0<Im(z) <1}\{z € C:Re(z) = a, 0 <Im(z) < g}

The lengths of the segments of the boundary, however, are not fixed yet. We
determine C5, Dy and v from the three equations:

f2(=1) =0, (4.34a)
fo(wa) =1, (4.34b)
f2(1) = fa(—wa). (4.34c)

Now, B will be located in the origin in 3, A will be at i and the points E and
F coincide in Qg, like in figure 4.8. Note that automatically fa(00) = co.

The real part and the imaginary part of an analytic function x + iy —
¢(x +1iy) can be regarded as an harmonic function in z and y. The imaginary
part ¢ of the analytic function ¢(z) = z is equal to Im(z) = y and satisfies
the conditions ¢ = 1 on the segment GA, 0¢/0n = 0 on AB, ¢ = 0 on BE,
0¢/0n =0on EF and ¢ = 0 on FG. Therefore ¢(z,y) = y solves the boundary
value problem on I(€3), where I : C — R? is given by

I(x +iy) = (z,v).

We have a conformal mapping f : Q1 — 3, namely

f=rfaofih

Compositions of harmonic functions with conformal mappings are again har-
monic functions. The solution ¢ : 2 — R of the original problem is therefore
given by

c=¢olofol t=TImofol L

In other words
c(z,y) = Im (fo(fi ' (x +1y)))) - (4.35)

Results

Using conformal mappings we have reduced solving boundary value problem
(4.30) to solving the two systems of equations (4.32) and (4.34). These can be
solved numerically and possibly even analytically. Once the unknown constants
are found, equation (4.35) will yield the oxygen concentration and thus the
permeating oxygen can be calculated.

To test which scavenger configuration is better, we need some kind of mea-
sure for the oxygen exposure. Of course a configuration is better if the total
flux of oxygen through T's (see figure 4.5) becomes smaller. Thus we would like

to minimize: ~ g ~ g
c c
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However, this integral could be divergent. For large x the oxygen flux will not
be affected by the presence of the block, therefore a suitable alternative could
be the following: for s > 0 introduce the average flux F; defined as

S
Fy(L,h) := é/o g—rcl(x,—l;L,h) dz.
Now for a given area C' and fixed s large enough we can compare different
configurations with L * h = C by computing for which configuration Fjy is
smallest.

The previous analysis can also be performed for a bounded strip rather than
an infinite strip. The advantage of such a model is that periodic boundary con-
ditions can be assumed on both ends and thus a whole series of scavenger blocks
can be modelled. However, the Schwarz-Christoffel formula f; in (4.31) would
get an additional constant that has to be determined. This would complicate
the analysis slightly because now we get an extra Neumann boundary con-
dition and four equations with four unknowns have to be solved rather than
three equations with three unknowns. This approach is more realistic since
the foil contains more than one scavenger droplet, whereas only minor extra
complications arise.

Finally, we could also consider the two limiting cases (L,h) — (0,C) and
(L,h) — (C,0). These two cases show the extremes of stretching in the hori-
zontal and vertical direction and could already give an indication which kind of
stretching is better. Moreover, it simplifies the analysis. In these two cases only
two equations have to be solved to find Q5. Also this simplification might allow
us to solve the integral expression for f; explicitly, so that the system (4.32)
transforms into a system of two algebraic equations. Calculating f; remains as
difficult as it was.

4.6 One-dimensional numerical simulation

‘We have done simulations in one and two space dimensions. The one-dimensio-
nal experiments are described in this section, the two-dimensional simulations
in section 4.7. Full numerical simulations of the three-dimensional model
turned out not be feasible in the one week period of the Study Group. Even
with more time available it is not certain that a three-dimensional model can
be computed with accuracy within a reasonable time period.

In order to find numerical approximations we have to make some assump-
tions and set some boundary and initial conditions. For both the one- and
two-dimensional simulations we have taken the following conditions.

e The time domain has been scaled to [0,1]. The space domain has been
scaled to 2 = [0, 1] for the one-dimensional simulations and Q = [0, 1] x
[0, 1] for the two-dimensional simulations (see section 4.7).

e ¢(x,0) =0, at the start there is no oxygen in the material
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e ¢(0,t) =0, ¢(1,t) = cq. At the food boundary of the foil, i.e. =0, the
oxygen concentration is zero; at the other boundary the concentration of
oxygen is constant.

e 5(z,0) = ¢(x), the initial concentration of scavenger material is a pre-
scribed function of the position.

The initial scavenger concentration should describe the scavenger material
that is present in the droplets in the foil. These droplets are spherical when the
foil is created. However the foil can also be stretched in the fabrication process.
This stretching can occur in either one or two directions leading to cigar or
pancake shaped droplets, respectively. In the numerical simulations we have
used rectangular bump functions for the initial scavenger concentrations. This
choice was done for convenience but other initial concentrations (such as perfect
spheres, cigars or pancakes) can also be analyzed numerically. An argument
for our choice of rectangular bump functions is that the partial differential
equation used to model the process is a diffusion equation with a reaction
term. The diffusion term has the property that all solutions will be smooth
(even for non-smooth initial conditions).

Topological effects

We expect that the two- and three-dimensional models will be quite different
from the one-dimensional model for topological reasons. In figure 4.9 we have
a schematic picture of the foil for the two-dimensional model. The scavenger
droplets are indicated as black spots. The oxygen particles can go through
the foil in various paths. We have drawn three different type of paths in the
figure. The dotted path represents an oxygen particle that enters the foil, but
is absorbed by a scavenger particle. The dashed path is the path of a particle
that enters the foil, passes through a droplet but is not absorbed. Finally
the oxygen particle reaches the food boundary. In solid black there are two
paths where the oxygen particle passed through the foil without encountering
any scavenger material. The black paths cannot occur in the one-dimensional
model. There every oxygen particle that passes through the foil will have to
pass through one or more droplets (assuming that there is at least one droplet).

One-dimensional simulations

The one-dimensional simulations are important to get a feeling for the possi-
ble three-dimensional results. For various initial configurations of scavenger
material a numerical solution was calculated using Mathematica. The func-
tion NDSolve has been used to find a numerical approximation to the partial
differential equation.

The initial scavenger configurations that have been analyzed are

e A homogeneous scavenger concentration.

e Bump functions with a various number of bumps.
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Figure 4.9: Oxygen paths in the foil

During the simulations we found out that the results depend very sensitively
on the values of the parameters. We will give a few examples that illustrate
the various phenomena that can occur. In the simulations described below we
have taken a =3 =1, D=1, k. = 50,ks = 1 and ¢, = 1.

Four bump scavenger configuration

In figure 4.10 we have plotted the initial scavenger concentration for a four-
bump scavenger concentration. Given the initial conditions described above
we can find a numerical solution to the system of partial differential equations
(4.2a)-(4.2b) for this particular initial scavenger concentration. In figure 4.11
we have plotted the scavenger configuration as a function of time and position.
We can see that one by one the droplets of scavenger material are shrinking
because of absorption of oxygen.

High reaction rate limit

In the limit of a very high reaction rate the scavenger material reacts almost
instantly with the oxygen. In this situation no oxygen can penetrate the foil
until all the scavenger material has been absorbed. The absorption rate of the
scavenger material is determined by the distance of the scavenger material to
the oxygen boundary. Here we can say the the best distribution of scavenger
material is placing all the scavenger material close to the food boundary.



92 Catching gas with droplets

0.2 0.4 0.6 0.8 ; Space

Figure 4.10: Initial scavenger concentrations in the four-bump configuration

Figure 4.11: Scavenger concentrations for the four-bump configuration
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Figure 4.12: Flux for various scavenger configuration

Time scales

We compare a one bump scavenger concentration with a two bump scavenger
concentration. The flux of oxygen has been plotted for both configurations and
also the difference in flux. This flux (and the integral of the flux over time) is a
measure for the amount of oxygen that reaches the food and hence a measure
of how good the foil is.

In figure 4.12 the flux for the one-bump configuration was plotted. In the
plot for the flux we can see 3 time domains:

Oxygen spreading through the foil This happens very quickly and is a
consequence of the diffusion equation used to model the process. In the
plot above the timescale is roughly 0.1 time units.

Reaction The scavenger material reacts with the oxygen that diffuses through
the foil. During this period the amount of scavenger material decreases
and as a result the flux and concentration of oxygen in the foil increases.

Final state For this simulation the final state is reached after roughly 20
time units. All the scavenger material has reacted with the oxygen and
the numerical solution approaches the exact solution in the case of no
scavenger material.

The flux for the one-bump and two-bump configurations looks very similar.
However if we plot the difference of flux we get an interesting picture. In
figure 4.13 the difference is shown. We can see that at the start, up to t ~
1.5, the flux for the one-bump configuration is higher. Hence the foil with
a two-bump configuration performs better than the foil with the one-bump
configuration. From ¢ =~ 1.5 to ¢t &= 10.6 the one-bump foil performs better.
For larger values of ¢ the two-bump performs better. In the limit the scavenger
material in both foils has reacted away and the flux in both foils becomes
identical. If we integrate the flux we get the total amount of oxygen that has
passed through the foil. The integral of the flux difference from figure 4.13 is
plotted in figure 4.14. Here we see that also for the total amount of oxygen the
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Figure 4.13: Flux difference between one-bump and two-bump scavenger con-
figuration

one-bump configuration performs better for small time, but worse for ¢ between
2.5 and 20.5 and again better for ¢ larger then 20.5.

The results may seem surprising but can give an intuitive explanation as fol-
lows. Scavenger material is more effective if it is closer to the oxygen boundary.
From the one-bump and two-bump configurations, the bump close to the oxy-
gen boundary in the two-bump configuration is closest to the oxygen boundary.
Therefore for small ¢ this bump will make the two-bump configuration perform
better. However, since this bump is close to the oxygen boundary it also reacts
faster with the oxygen than the other bumps. After some time this bump will
have been reduced by reaction and the bump in the one-bump configuration
becomes dominant; this makes the one-bump configuration perform better. If
also this bump is reacted away for the most part the last bump, the bump close
to the food boundary in the two-bump configuration, dominates and makes the
two-bump foil again perform better. The explanation above is only an intuitive
one: for other configurations only a numerical calculation can give the flux and
total amount of oxygen as a function of time.

4.7 Two-dimensional numerical simulation

two-dimensional numerical simulations

Simulations in two-dimensions were made in order to investigate the difference
between shapes of scavenger droplets and oxygen flux through the film. We
model the film as an infinitely long strip consisting of one layer of rectangular
cells (see Figure 4.15). Each cell has a rectangular scavenger particle in the
center and the particle occupies 10% of the cell. At the outer side of the film
there is normal air and the oxygen concentration is ¢,; at the inner side the
oxygen concentration is 0 (oxygen immediately reacts with the food). Initially
there is no oxygen in the film.



4.7. Two-dimensional numerical simulation 95

Oxygen

0.05

5 10 15 25

Figure 4.14: Difference between the total amount of oxygen passed between
one-bump and two-bump scavenger configuration
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\
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Figure 4.15: Two-dimensional model of the film with scavenger droplets. The
film consists of one layer of rectangular elements. Each element has one scav-
enger particle in the center.

We proceed with a cell of length A and thickness B with the rectangular
scavenger particle of the length a and the thickness b (see Figure 4.16). The cell

x2

Oxygen
B
@+b)/2t -
Qs
®by/2
(a)/2 (+a)/2 A X,
Food

Figure 4.16: Cell with the scavenger particle in the center.

occupies the region Q = {x € R2:0<z1 <A, 0<zy < B} and the scavenger
particle occupies Qs = {x € R? : (A —a)/2 <21 < (A+a)/2, (B-1)/2 <
29 < (B +b)/2}. In the equations (4.2a)-(4.2b) we assume that o = § = 1.
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Therefore, the reaction-diffusion process in the cell is described by

86(5;’ t_ DAc(x,t) — k s(x,t)c(x, t), (4.36a)
Os(x,t)
5 = F s(x,t)e(x,1), (4.36b)

where x € Q and ¢ € [0,00). The initial concentration of oxygen in  is zero
e(x,0) =0, x€Q, (4.37)

and the initial concentration of scavenger is sg in 25 and zero outside €.

o Sp, X € QS7
s(x,0) = { 0, xeQ\ Q.. (4.38)

Because the concentrations of oxygen at both sides of the film are constant, we
have Dirichlet boundary conditions for ¢ at the top and bottom of the cell

(X, t)|z=0 = 0, ¢(X,t)|z,=B = Ca- (4.39)
At the lateral sides of the cell we impose the periodic boundary condition

Oc(x,t) ~ Oc(x,1)
0x1 T 0

, (4.40)
$1:A

C(Xa t)|331=0 = C(X, t)|$1=A7

Xy =0

because the film consists of infinitely many cells.

We scale the distance z to the thickness, B, of the film, X = x/B, the time
t =tD/B?, the oxygen concentration as ¢ = c¢/c,, the scavenger concentration
§ = s/cq (here we assume that s and ¢ have the same dimensions). After
scaling the system (4.36a)-(4.40) becomes

O] _ et ) — 73(%, el ), (1.41a)
BN R a(x, el 1), (4.411)
é%,0)=0, x€Q, (4.41c)

s - S0, X e QS,
§(%,0) —{ 0. e\ a. (4.41d)
&%, )|z,=0 = 0 (4.41¢)
A%, 1)|z,=1 =1 (4.41f)
é(iv E)‘i1:0 = 5()‘27 E)‘ijle’ (441g)
86()? ) = ac()f’ ) , (4.41h)

971 |z, 011 |z,-4

forigflandfe [0, 00). HereA:A/Bjd:a/B,INJ:b/B ={xeR?:0<
71 <A 0<2o <1}, Qe ={xeR?: (A-a)/2 < z; <( 2
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(b) Scavenger concentration at t

(a) Oxygen concentration at ¢ = 0.1.
0.1.

(d) Scavenger concentration at t

(c) Oxygen concentration at t = 0.5.
0.5.

(f) Scavenger concentration at ¢
0.7.

(e) Oxygen concentration at t = 0.7.

Figure 4.17: Concentrations of oxygen ¢ and scavenger s in the cell at times
t=0.1,t=0.5and t =0.7 for a = 0.4 and b = 0.25.
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x93 < (1+D0)/2}, & = keeB2/D and 59 = s¢/cq. In the following we omit the
tildes.

The system (4.41a)-(4.41h) is solved numerically in Mathematica for x =
100, sp = 10 and A = 1. We vary the shape of the scavenger particle while the
area remains constant, ab = 0.1, because the scavenger occupies 10% of the
film. In Figure 4.17 we present the oxygen concentrations and the scavenger
concentrations in the cell at times ¢t = 0.1, ¢t = 0.5 and ¢t = 0.7. The size of
the scavenger particle is taken to be a = 0.4, b = 0.25. When the scavenger
disappears the oxygen profile becomes more straight.

For a real application it is important to know a flux through the film. We
compute the flux through the cell as

A 8C(xh Oat)
Ft) = — /0 . (4.42)

In Figure 4.18 we present the flux for different sizes of the scavenger particle
(see Figure 4.19) as a function of time. If the length of the scavenger particle

0.5 1.5 2

Figure 4.18: Flux through the cell for different sizes of the scavenger particle
(line 1 @ = 0.6666, b = 0.15; line 2 a = 0.3162, b = 0.3162; line 3 a = 1,
b=0.1).

is equal to the length of the cell (line 3) then the short time behavior is better
than that for the droplets with other shapes. But after the scavenger disappears
the flux becomes large, while the droplets with the other shapes (lines 1 and 2)
still react with the oxygen. If the scavenger particle has a square shape (line
2) then it reacts longer than the droplets with the other rectangular shapes.
The flux of a square scavenger droplet is initially larger than that of scavenger
droplets with other rectangular shapes.

4.8 Conclusions

This Study Group turned out to be an inspiring and creative week. Not only
is this our perception as a group, but it also comes forward in the scientific
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Food

Figure 4.19: Different shapes of the scavenger particle (line 1 a = 0.6666,
b =0.15; line 2 a = 0.3162, b = 0.3162; line 3 a =1, b = 0.1).

contents (and size!) of this report and the various approaches that are proposed
within. The fruitful cooperation is moreover underlined by the large number of
authors who were willing to contribute, and the number of people that helped us
during the week. Different approaches were discussed critically, with the result
that only a small part of the ideas coined were found to be worth reporting.
These approaches cover methods, techniques and ideas about three general
areas: the modelling (section 4.2), the analysis (section 4.3, 4.4 and 4.5), and
numerical simulations (section 4.6 and 4.7). We give a short summary of the
conclusions that we have drawn.

The stochastic model that is derived in section 4.2 converges in a weak
sense to the model proposed by DSM. In section 4.3 it is concluded that for
very small length scales and for small amounts of scavenger, thin, elongated
droplets are more effective than small spherical droplets. In section 4.4 it
is shown that, in the one-dimensional case, the penetration time of oxygen
through the foil depends quadratically on the diameter of scavenger particles,
and linearly on the amount of scavenger, and linearly on the distance between
the particles and the outside surface of the foil. In section 4.5 it is concluded
that in order to investigate the influence of droplet shapes, the DSM model
can be converted via conformal mappings to a set of equations that are more
attractive numerically and analytically. One-dimensional simulations in section
4.6 show that two small homogeneously distributed droplets are more effective
than one big droplet. Finally, two-dimensional simulations in section 4.7 show
that cigar- and pancake-shaped droplets perform better than spherical droplets
initially, but that then the scavenger reacts away faster.
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The problem owners from DSM, prof. dr. Han Slot, and dr. Alexander
Stroeks were very clear in their explanation and motivation of the problem,
which helped us work in the most interesting directions, mathematically as
well as practically. We do hope that the mathematical insight we developed
and reported, will provide guidelines in ways of solving their problems.
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Reconstruction of needle-positions in radiation treatment
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Abstract

Nucletron presented a medical problem to the SWI 2006: how to find needles
used for cancer treatment in a prostate? More concretely: how to find the positions
of these needles from distorted images from an ultrasound probe? Section 1 explains
the background of this problem. In Section 2 we deal with physical explanations for
the distortions. In Section 3 we give a brief overview of medical imaging and explain
which techniques we used to clean up the images.

5.1 Introduction

Before we state the problem posed by Nucletron, we explain the background
of their problem.

Brachytherapy

In prostate cancer treatment a new therapy has come in use, where, unlike
the external radiation in the well-known chemotherapy, the radiation is now
supplied by a number of tiny sources inside the prostate. Nucletron, with head-
quarters in Veenendaal, the Netherlands, has developed this brachytherapy—
brachys is the Greek word for short (here: with respect to distance)— and has
been using this medical technology for over five years now.

The short distance between source and target enables a considerable re-
duction of the dose, thus reducing the risk of damaging the surrounding tissue.
Moreover, the distribution of the sources over the prostate is optimised so as to
create a prescribed level of radiation over the prostate interior, a higher level

1: Haute Ecole Francisco Ferrer, 2: Universiteit Twente, 3: University of Bath, 4: Case
Western Reserve University, 5: Universiteit Leiden
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Figure 5.1: Position of the device with frame for inserting the needles and
probe for ultrasound monitoring.

near the outer surface, and a lower level near the urethra (which runs right
through the prostate).

The sources, so-called seeds, look like pieces of thin pencil-lead and are
brought into position through hollow needles with outer diameter 1.25 mm.
Typically 2 to 6 seeds are placed in one needle, separated by a dummy or a
thread of biodegradable material. The number and spacing of the seeds in
each needle and the optimal position for each needle are computed before the
operation starts. When the needle has been put in the prostate, this train
of seeds is pushed out, while at the same time the needle is withdrawn, thus
leaving the seeds and spacers in the desired positions.

The radioactive decay of the used iodine or palladium seeds is such that in
half a year the radiation is no more than a few percent. And, although this
treatment is not the answer to all types of prostate problems, patients who
have been selected for brachytherapy may have good hope that the tumors will
disappear and may stay away for 15 years and more.

The problems during the operation

The prostate has the shape and size of a firm walnut, and will be perforated
by 12 to 30 needles. The access is through the perineum, which is the skin and
tissue between scrotum and anus. A frame containing the needles is positioned
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to this perineum. What makes the operation difficult is that the needles, when
being pushed in, will not follow the “mathematical” path which is a straight
line exactly perpendicular to the frame. In practice, a needle may deviate and
make a curve, e.g., because it meets density differences in the tissue or because
of play in the frame. Moreover, pushing a needle will affect the position and
shape of the prostate itself, so the second needle cannot take the intended
position in the tissue even when it would be perfectly perpendicular to the
frame.

Due to all this, the calculated optimal distribution of seeds over the needles
has become less informative once the needles have been pushed in. Therefore,
each time before inserting a needle, the new geometry of the prostate and the
position of the needles are measured first. As a result it may be decided to
insert one or more extra needles in poorly covered areas. After all this the
optimisation procedure is run again and the seed trains are pushed in. To
know where the needles are in the body an ultra-sound sensor is used during
the treatment.

Running the optimising software takes only one or two minutes, but mea-
suring the new situation is the bottleneck, as it may take approximately fifteen
minutes. This is thought to be too long, not only for the doctors and staff who
will stand idle in waiting, but also for the patient: the period under anaes-
thesia should be kept as short as possible. Moreover, due to the perforation
the tissue will start swelling, and in fifteen minutes the measured data might
have become unreliable. This is another motivation to minimize the measuring
time.

Ultrasound

Measuring the initial situation in the body and monitoring the actions during
the operation is done by wultrasonography or wultrasound. This is a medical
imaging technique that uses high frequency sound waves and their echoes. The
technique is similar to the echolocation used by bats, whales and dolphins, as
well as SONAR used by submarines.

In short, it works as follows*. From a transmitter at a given point, high-
frequency (here: 5 to 7.5 megahertz) sound pulses are sent out into the body.
The sound waves travel out and hit a boundary between tissues (e.g., between
fluid and soft tissue, soft tissue and needle). Here some of the sound waves
get reflected back to the transmitter (which itself can act as a receiver or
sensor), while some travel on further until they reach another boundary and
get reflected. The reflected waves are picked up by the sensor and relayed to
the machine. The machine calculates the distance from the transmitter/sensor
to the tissue or organ (boundaries) using the speed of sound in tissue, 1540
m/s, and the time of the echo’s return (usually on the order of millionths of a
second). The machine displays the distances and intensities of the echoes on
the screen, forming a two dimensional image like the ones shown in Figure 5.1.

*See http://electronics.howstuffworks.com/ultrasound1.htm
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Figure 5.2: A transversal image of the prostate with 12 needles in it. Even the
experts at Nucletron had difficulties in identifying them all.

In scanning the prostate, a cylinder-shaped probe of 2 cm diameter is in-
serted in the rectum. An array of 96 miniature transmitter/sensors covers one
quarter of a ring on this cylinder. As each transmitter is assumed to send out
signals in a very confined direction perpendicular to the cylinder axis, the probe
will scan a 90 degree sector in a plane (slice) transversal to the cylinder. Most
of the pictures shown here are transversal scans. A sequence of transversal
scans collected by moving the probe up and down in the rectum, can provide
3-dimensional information, from which also other than transversal images can
be derived.

Slice image

Prostate )

Needles

Figure 5.3: Obtaining transversal views of the prostate.
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Figure 5.4: An array of 96 transmitters/sensors making one quarter of a “ring”
around the cylindrical probe.

The problem as posed by Nucletron

A typical one-slice scan after inserting a dozen of needles is shown in Figure 5.1.
What we want to identify is

e the boundary of the prostate, and
e the location of the needles.

The boundary of the prostate is rather easily seen as a more or less circular
interface between two grey levels. Identifying the needles is more difficult. We
see several bright spots that no doubt represent a needle, but from further
inspecting the figure we can make the following three remarks:

e apart from individual needles we also see some larger bright areas that
seem to include two or even three needles (a cluster);

e in the “shade” of a needle we see a series of ripples, while there is no
physical object there (we will call them artifacts);

e if a needle is in the shade of another needle, we cannot see it. This is
only natural, but in this case the artifacts seem to make it even more
invisible.

With respect to the last remark there is no other remedy than trying to
“look around” the nearby needle by changing the position of the probe.
The other two remarks are the core of the questions that Nucletron posed:

e are the artifacts a result of unwanted, but physically real, waves? If so,
then what could we physically do about them, rather than suppressing
them afterwards by image processing?

e can image processing help to clean up the picture, for instance by sup-
pressing the background noise, decomposing clusters into single needles,
suppressing the artifacts, etc., with the ultimate goal to end up with clear
needle locations only?

In the next section we go into the details of possible physical explanations
for the artifacts. In the last section we deal with medical imaging.
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Figure 5.5: Even in a one needle situations artifacts occur.

5.2 Physical explanations for the artifacts

For interpretation of the images we have to think of the way the ultrasound
works. Each transmitter sends a pulse, and from the time that passes until it
receives the echo, it calculates the distance to the reflecting object. A sensor
receiving a signal can only draw one conclusion: in the specific direction of
this transmitter/sensor there is an object, and its distance is given by the time
delay of the signal and the velocity of sound in the medium. Even if the signal
would have had multiple reflections on several needles, the interpretation is
still a mirroring object on this specific radial line.

However, the multiple needle reflections that we mentioned can not be the
cause, as we asked Nucletron to scan a one needle situation in the form of a
model in a laboratory set-up (i.e., a so-called phantom in water). The result is
in Figure 5.2, where we still see the same type of artifacts.

Secondly, now restricting to the one needle case, we could think the artifacts
might be an interference pattern from two (or more) neighbouring transmitters,
reflecting at the same needle. However, the reality of an ultrasound image is
that it is a composition of 96 separate images, each showing the echo of one
single transmitter being active, while all others are silent and deaf. So the
sensor only receives echoes of its own emitted pulse, no others.
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Figure 5.6: Echoes may cause vibrations propagating along the base.

Two arguments left

Knowing that only one transmitter/sensor is active, and knowing that the spa-
tial pattern of artifacts must be interpreted as signals coming in at subsequent
times, the question now is: is there, apart from direct reflection at the needle,
any path that a signal can go such that it arrives back at the one and only
active sensor at a later time? Can a pulse signal create some vibrations in the
region of interest, which will start sending out periodic signals? We guess that
here not the soft tissue, but the solid material can come into play: a needle
and/or the ring-shaped structure where the sensors are assembled. We start
with the latter.

Vibrations of the probe

If a pulse hits the needle, it will be reflected not only in the direction it origi-
nated from, but in a beam of directions. So the reflected signal will not only hit
the transmitter it came from, but also the neighbouring ones. Now the neigh-
bouring ones are deaf, so they do not receive the reflected signal. Nonetheless,
the reflected signal may make vibrations in the socle (an elevation on which
the sensor is mounted). And through the base of the mechanical structure the
vibrations will arrive at the active sensor.

A first indication whether this phenomenon can be responsible for the ar-
tifacts is in a comparison of the periodicities. The distance d between two
neighbouring sensors is 1/96 of one quarter of the perimeter of the probe,
which has 2 cm diameter. So d = (7/4)/96 times 20 mm, is about 0.16 mm.
Now the velocity of sound in the base structure is three times higher than in
the tissue. So in the scan image the stripings must have a distance of one third
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of 0.16 mm, that is about 0.05 mm. About 600 of these fit in one prostate di-
ameter of (say) 3 cm. However, just by counting in a scan image we find some
50 stripings go in one prostate diameter. So we must conclude that vibrations
in the probe do not explain the artifacts.

Remark. Maybe the reflected signal could be prevented from hitting neigh-
bouring transmitters if they themselves would send out an exactly counter-
phased signal. However, phase control is hardly found in medical applications
yet. In cardiology, working with a phased array is in development, but not yet
operational.

The ratio 600/50, which is 12, leads us to the idea to search for vibrations
on a length scale which is 12 times d, that is around 2 mm. This length is in
the order of the diameter or perimeter of a needle.

Vibrations of the needle

Is it possible that once hit by the ultrasound wave, the needle starts vibrating
and emitting a signal? Such a delayed signal will be interpreted by the probe
as an object being behind the needle. This might explain the artifacts.

A way to test this hypothesis is to compute the sound pressure level (SPL)
on a needle and then to obtain the resulting displacement D of the needle.
To decide whether such displacement could produce an ultrasound, we have to
compare D to the wavelength of the ultrasound. The 8658 rectal probe used by
Nucletron emits and receives 5 to 7.5 MHz signalst. Since the velocity of sound
in water and human tissues is around 1500 m/s, the corresponding wavelength
is around 1.5-103/5-10 = 3-10~% m (300 microns). In section 5.2 we show that
the pressure on the needle is completely below that range (by a factor 10'%).
Hence the pressure on the needle is 10'® times weaker than what is required
to produce artifacts. We must conclude that vibrations of the needle do not
explain the artifacts.

Displacement of the needle

The sound pressure level (SPL) in dB is equal to 20 - log;o(2222) where prer =

107% Pa in water and pyms is the root mean square pressure. The 8658 rectal
probe used by Nucletron has a 60 dB SPL which gives pyms = 1(060/20 - Pref =
1072 Pa. Let us consider a length [ cylindrical section of the needle (of diameter
1.5-1073). The density of iron is 7860 kg/m?. Hence,

1. only the half part of the needle in front of the wave is submitted to
the sound pressure (see [16]). Half of the outer area of the cylinder is
m-1-(1.5/2) - 1073m?. Hence the 1073 Pa pressure produces a force of
F=m-1-(1.5/2)-1075 N on the needle.

Thttp:/ /www.bkmed.com/applications,/urology /brachytherapy.asp



5.3. Medical imaging techniques 109

2. The mass of the cylinder is M = 7860 - 7 - - (1.5/2) - 10~° kg.

3. Let us assume that the position X (¢) of the needle is a harmonic vibration
X(t) = D - sin(wt) where w = 27 f and the frequency f is similar to the
frequency of the produced ultrasound (5 to 7.5 MHz). The force on the
needle is M - X (t) which has magnitude of M Dw?.

4. Combining 1 and 3 we obtain that the displacement of the needle is at

. o 2 7-1-(1.5/2)-10¢ 9. 10-19
most around D = F/Mw? = 0TI (1527100473510 ~ 2-107 m

Therefore as this vibration displacement must produce an “artifact” ultrasound
beam of wavelength around 3-10~% m, this fully contradicts the order of mag-
nitude of the effective displacement D of the needle (a factor 101° difference).
As the size of an iron atom is generally estimated around 3-107!% m, the dis-
placement of the needle is 10° times smaller than the iron atom. The emitted
ultrasound has not any vibration effect on the needle.

The conclusion of this section must be that until now we do not have a
plausible physical explanation for the artifacts. Therefore we move on to math-
ematical imaging techniques that at least can help to suppress the impact of
the artifacts on the screen.

5.3 Medical imaging techniques

First we briefly explore the field of medical imaging, after that we explain the
techniques we used for cleaning up the images.

A short impression and outlook of Mathematical Imaging

Mathematical imaging is a very active research area. Image restoration is the
process of attempting to correct for degradation in a recorded image. Several
types of problems can be distinguished: image denoising, image deblurring,
and image inpainting. We briefly discuss each of these types.

Image denoising

In image denoising, the image is degraded by noise, for example during trans-
mission. The model for linear noise is

g=f+n,

where the vector f represents the original image, n is the noise vector, and g is
the vector of the degraded image. The goal of image denoising is the recovery
of the original image f from the degraded image g. In many applications, a
bound ||n||z < v, or an estimate ||n|j2 &~ v for the noise is known, which one
may try to exploit.
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Image deblurring

In image deblurring, the continuous model is

M@=Aﬁ®wﬂﬂ%

where D is a domain and k is an integral kernel. In operator form this equation
is a Fredholm integral equation of the first kind

g=Kf,

where the inverse operator K ~! is unbounded. In the discrete case, we would
like to find an approximation to the solution f given discrete, error contami-
nated data of the form

g; = gj +nj,
where

g9 = 9(s;) =/ k(sj ) f(t)dt,  nj=n(s;),
D
and the error n is discrete white noise, which means that

o? 1 =7,

E(n;) =0,  E(nn;) = { 0 itj

where E denotes expectation and o2 is the variance. Typically, the noise
is assumed to be Gaussian distributed, and spatially invariant. Solving for f
given g is called an inverse problem. These problems are challenging since some
regularization technique has to be used to prevent the errors n; from blowing
up in the solution; therefore this type of problems is called ill-posed (cf., [7]).
The most popular choice is Tikhonov regularization, which approximates f by
minimizing an expression of the form

min | f — g + A% | L3

for a certain regularization parameter \ and regularization operator L. Often
L is taken to be the identity, while many authors have studied sensible ways
to choose A. One of the alternatives for solving ill-posed systems is formed by
the truncated singular value decomposition. Another regularization technique
for images is the total variation method [17].

Image inpainting

In image inpainting part of an image is missing; see [1, 4, 3] for more informa-
tion.
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Further trends in image processing

We would like to mention a few recent trends in image restoration:
e methods that preserve the edges of the image ([17] and for instance [5]);

o (iterative) methods that preserve the nonnegativity of the pixel values
(see [15, 6]);

e restoring images with spatially-variant blur (see [12, 13, 2]);
e the use of point spread functions [12, 18];

e deblurring using multiple images [18];

e the use of subimages [14];

e determining the statistical confidence we can have in the pixel values or
features they form in the images [14].

Another relevant field for this project is image registration: determining
a geometrical transformation that aligns points in one view of an object with
corresponding points in another view of the same object, or a similar object
(see [9, 11, 10]). Yet another subfield of imaging is image segmentation, see [8].

Cleaning up the image

We note that in our case the noise is periodic, and hence in particular spatially
variant. In order to identify these periodic patterns Fourier analysis can be
used. The Fast Fourier Transform (FFT) decomposes a signal into contribution
of waves of particular frequency. The periodic patterns in the image should
correspond to a peak in the Fourier transform at the frequency of the pattern.
Removing this peak and inverting the Fourier transform will eliminate the
patterns which occur at that frequency. The Fourier transform can also be used
to remove noise from a signal. In signal processing, noise generally appears as
high frequency contributions in the frequency domain. Removing these high
frequency contributions produces a cleaned image.

Coordinate transformation

In order to identify the periodic artifacts we first convert the rectangular co-
ordinate image into polar coordinates. The original image is given in Figure
5.7.

We crop the image to remove the text and focus only on the position of the
needles. This results in the image in polar coordinates Figure 5.8

This represents the ultra sound images as measured by the probes. The
artifacts now lie in a vertical line behind the needle positions. This change
of coordinates allows us to take the Fourier transform in the vertical direction
only rather than using a two dimensional transform.
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Figure 5.7: The ultra sound image in rectangular coordinates
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Figure 5.8: The ultra sound image in polar coordinates

Fourier transform

Importing the image into Matlab converts the image into a matrix of real
valued scalars. The image can now be considered as a series of vertical lines
each represented by a vector. The one dimensional discrete FFT is applied
to each vector. In the frequency domain we remove all signals above a fixed
frequency. This frequency chosen to be large enough to retain the important
information in the image, but sufficiently small to remove the periodic artifacts
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and denoise the image. The inverse Fourier transform is applied to give the
filtered image Figure 5.9.

50 100 150 200 250 300

Figure 5.9: The cleaned ultra sound image after Fourier analysis

Thresholding

Finally thresholding can then be applied to the filtered image to aid in identi-
fying the needle positions. Taking a threshold makes a black and white picture
from a grayscale picture by making all pixels above a certain value white and
all others black. If this value is chosen well, the needles should show up as
white blobs in the picture, see Figure 5.10.
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Figure 5.10: The needle positions highlighted using thresholding on the cleaned
image
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Abstract

Wireless sensor networks are decentralised networks consisting of sensors that
can detect events and transmit data to neighbouring sensors. Ideally, this data is
eventually gathered in a central base station. Wireless sensor networks have many
possible applications. For example, they can be used to detect gas leaks in houses or
fires in a forest.

In this report, we study data gathering in wireless sensor networks with the ob-
jective of minimising the time to send event data to the base station. We focus on
sensors with a limited cache and take into account both node and transmission fail-
ures. We present two cache strategies and analyse the performance of these strategies
for specific networks. For the case without node failures we give the expected arrival
time of event data at the base station for both a line and a 2D grid network. For
the case with node failures we study the expected arrival time on two-dimensional
networks through simulation, as well as the influence of the broadcast range.

KEYWORDS: sensor networks, data gathering, stochastic optimisation, distributed
algorithms, random walks, first-passage percolation.

6.1 Introduction

Suppose that you want to design a system to detect fires in a forest. You
consider placing sensors that can detect a fire in their neighbourhood. Since
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Utrecht, 4: Universiteit Twente, 5: Technische Universiteit Delft, 6: Universiteit Maastricht,
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these sensors work on battery power, immediately restrictions arise that make
the design of such a system an interesting endeavour. First, transmitting a
message to a receiver outside the forest may cost too much energy. In that
case, only short-range transmissions are possible. Also, it may not be feasible
or too costly to replace the battery of the sensors on a regular basis, so the
battery lifetime should be made as long as possible. On the other hand, you
want to be sure that the message that there is a fire is transmitted to the
receiver outside the forest, and moreover, this should not take too much time.

The question how to design such a forest fire detection system, and control
the efficiency of such a system in terms of observing a fire at the base station
given possible sensor failures, is an example of the question posed to SWI
2006 by Chess [1]. Chess is a middle-size company providing products and
services in the field of electronics, IT-applications, and embedded software. At
the moment, Chess considers designing so-called wireless sensor networks for a
broad range of applications. We shall describe those networks in more detail
further on in this introduction. Apart from detecting forest fires, one could
think of detecting gas leaks in neighbourhoods, monitoring the functioning of
street lights, as well as using the system for picking up garbage: in many Dutch
cities, garbage is collected in large underground bins, and these bins could send
a message when they are (almost) full and need to be emptied.

A wireless sensor network is a network that consists of small devices that
communicate with each other through radio signals. See Figure 6.1 for an ex-
ample of such a sensor. Such devices, named sensor nodes, are able to monitor
their environment, collect environmental data, process these data and commu-
nicate them to other nodes [6, 7].

Figure 6.1: A wireless sensor

Sensor networks have several characteristics that distinguish them from
wired networks, see [9]. We list the differences with an emphasis on those
differences that influence the design of communication algorithms:

e Sensors mainly use broadcasting to communicate data. A sensor node
that broadcasts, sends data via a radio signal to all sensors in its neigh-
bourhood.
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e Sensor networks are distributed networks, i.e., they lack a central coordi-
nator. As a consequence, each node has to decide itself what it commu-
nicates and when.

e Sensor nodes are limited in memory and power.

e Sensor nodes are prone to failure, i.e., a node may break down and stop
operating.

o Wireless communication is prone to failure.

One of the key research problems in the area of sensor networks is finding
efficient communication algorithms. Much research has focused on finding such
algorithms for wired networks; see for example the surveys [3] and [5]. However,
due to their characteristics, communication algorithms for wired networks do
not necessarily provide algorithms for wireless sensor networks. Therefore, in
recent years research focused on finding efficient communication algorithms for
wireless sensor networks; see [9] for an overview of such algorithms.

In this report, we study a communication problem on a static wireless sensor
network, the SENSOR DATA GATHERING PROBLEM (SDGP). In this problem,
stations (sensor nodes) in the network provide data that need to be gathered
at a base station; the stations are assumed to be static. These data consist
of events that occurred in the neighbourhood of a node, e.g. a fire. Stations
may communicate messages of events through broadcasting and each message
contains information concerning a single event. The objective of the SDGP is
to find an efficient algorithm for data gathering at a base station of a wireless
static sensor network. Data gathering means that for each event at least one
message containing the data should reach the base station. In the literature,
there exist several concepts of efficiency. These concepts focus on minimising
a function of the completion time of data gathering or maximising a function
of the battery lifetime. In this paper, we mainly focus on the objective of
minimising the completion time. So, generally speaking the objective is to
send messages to the base station as fast as possible.

We emphasise three specific characteristics of our sensor network. First,
the network is prone to two types of failure: communication failure and node
failure. Second, nodes have a limited memory to store messages, called the
cache. Due to their limited cache size, sensors should have a cache strategy,
which determines which message to delete in case of a cache overflow. Third, for
design purposes and to limit battery power, sensors are simple devices with a
limited set of operations. To communicate their data, sensors use broadcasting.
Thus, we assume that sensors cannot use any specific routing information, i.e.,
sensors are unable to establish point-to-point communication of messages.

Summarising, a communication algorithm should consist of a protocol that
decides which messages to broadcast, and of a cache strategy. In this paper,
we analyse the performance of several communication algorithms for specific
network structures: the 1D grid, the 2D (square) grid and the 2D hexagonal
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grid. Since the charm and power of the described sensor networks lies in their
simplicity, we focus on communication algorithms that are as simple as possible.

The paper is organised as follows: in Section 6.2, we give a mathematical
formulation of the problem. In Section 6.3, we give a mathematical analysis
for the case without node failures and unit broadcast radius. First, we analyse
the SDGP with unlimited cache size. In this case, there is no need for a cache
strategy and message detection by the base station is independent of other
messages. We give a probabilistic analysis of the expected number of rounds
before an event is detected by the base station. Then, we analyse the SDGP
with a cache size of one. In this case, events cannot always be detected by the
base station. We give a probabilistic analysis for the case with two events. In
Section 6.4, we consider the more general case with node failures and arbitrary
broadcast radius. Our results in this section are based on simulations only. In
Section 6.5, we summarise the results and give recommendations for designing
efficient communication algorithms.

6.2 Problem formulation

We formulate the SENSOR DATA GATHERING PROBLEM as a graph problem.
Let G = (V,A) be a directed graph with vertex set V, edge set A, and let
|[V| = n. Also given are a sink s € V, a set of events E = {1,...,|E|}, a set
of messages M = {1,...,m} for some integer m, an integer cache size ¢ > 0,
an integer broadcast radius 7 > 0 and probabilities p > 0 and g > 0, defined
below.

The nodes of the graph are stations and the sink is the base station. For
each pair of nodes u,v € V', we define the distance between u and v, denoted by
d(u,v), as the edge cardinality of a shortest path from u to v in G. Given radius
r let Ny.(u) = {v|d(u,v) < r} be the neighbourhood of v and let v € N,.(u) be a
neighbour of u. In case r = 1, the neighbours of u are those nodes v such that
(u,v) € A. We assume that time is discrete, say {1,2,...}; a time instance is
called a round. We assume that sensor nodes have a clock, and that all clocks
are synchronised.

Each event e € F contains data, e.g “There is a fire”, a source node v, i.e.,
the node where the event was detected, and a detection time t., i.e. the first
time the source node detected the event. Nodes may communicate with each
other and if they communicate, they exchange messages. Each message j € M
contains data of a single event e, including source node and detection time.
It also contains a timestamp, indicating the round in which the message was
sent by its source node. Nodes may use this information to schedule messages.
We assume that once the source node of event e detects this event, it creates a
message for this event in each subsequent round. Note that these messages all
have the same detection time, but different timestamps.

Each node has a cache to store messages. We assume the cache consists of
a receiver cache of unlimited size and a sender cache of size c. During a round,
nodes may communicate with each other through broadcasting. A node that
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broadcasts sends a copy of each message in its sender cache to all its neighbours.
So, if node u broadcasts its sender cache, then each node v € N, (u) receives
the content of the sender cache of u and stores the information in its receiver
cache. A node may broadcast at most once during a round. We assume that
node broadcasts do not interfere with each other, hence there is no collision of
messages.

A sensor network is prone to two types of failure: communication failure
and node failure. We define ¢ as the probability that a broadcast from node u
to v during a round is a success, for any (u,v) € A. Moreover, we assume that
broadcasts fail independently. In particular, this means that if in a round node
u broadcasts to both v and v/, then each node has probability ¢ to receive (the
same) data.

Since the time scale for the transmission of a message through the network
is of a different order than the lifetime of a node, we assume that nodes do not
fail during the period that we consider. We call a node active if it is operational,
i.e., it has not failed, and inactive if it has failed. We define p as the probability
that a node is active, and assume that nodes are active independently of each
other.

Sender Cache Receiver Cache

2: determine M’

1: create
4{ copy I’ Q
|| o: receive

| broadcast

to make room

3: delete some JS: delete all
for I

Figure 6.2: The cache strategy

Each node v has a cache strategy. We assume that at the start of a round,
all messages received in the previous round are stored in the receiver cache. A
node should then update its cache using its cache strategy. A cache update of
node v consists of the following consecutive actions, see also Figure 6.2.

1. Create a message for each event with source node v and store this message
in the receiver cache.

2. Choose the set of messages M’ to be copied from the receiver cache to
the sender cache; below we will consider two ways to choose this set.

3. Delete messages from the sender cache such that all messages in M’ can
be copied to the sender cache.
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4. Copy the messages in M’ to the sender cache.

5. Delete all messages from the receiver cache.

We make the following two assumptions for each cache update. First, after
the cache update the sender cache contains at most one message for each event
e. If the cache consists of multiple messages for a single event before the
update, then the cache only stores the message with the most recent timestamp.
Second, messages are only deleted from the sender cache when necessary.

In case of a limited sender cache ¢, the node must choose which messages
to delete from the sender cache and which messages to copy from the receiver
cache to the sender cache. The cache strategy should be based only on local
information of a node: the current time and the information of the messages
in its cache. Hence, the cache strategy is a distributed algorithm.

We consider two different cache strategies based on how messages are dele-
ted from the sender cache in step 3:

e RANDOM DELETION: Messages are randomly deleted from the sender
cache;

e TIMESTAMP DELETION: Messages are deleted by decreasing timestamp,
i.e., the message with the oldest timestamp is deleted first. Ties are
broken arbitrarily, i.e., if two messages have the same timestamp, one of
them is deleted according to some arbitrary but fixed rule.

The cache strategy TIMESTAMP DELETION was introduced by Chess [1]. In
fact, Chess’ cache strategy also deletes too old messages if the cache is not full.
However, this does not make sense here since we do not consider optimising the
battery lifetime. In Subsection 6.3, we further comment on this when discussing
the 2D grid. Furthermore, note that under strategy RANDOM DELETION it is
possible that a node has detected an event, but it does not send a message of
this event immediately. Finally, if one or more messages from an event reach
the base station, we say that the event (data) has been gathered by the base
station.

The objective of the SENSOR DATA GATHERING PROBLEM is to gather
events at the base station of a wireless static sensor network while minimising
the completion time of all events. The completion time of an event is the
number of rounds needed for one of the messages corresponding to this event
to reach the base station. Thus, generally speaking, we are interested in sending
messages to the sink as fast as possible. Since the completion time of an event
depends on the probabilities p and ¢, it is a random variable.

6.3 Probabilistic analysis

In this section, we give a probabilistic analysis for the case without node fail-
ures, i.e., p = 1 throughout this section. In Subsections 6.3 and 6.3, we consider
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unlimited cache size (¢ = 0o0) for both the 1D grid and the 2D grid. We are in-
terested in the expected completion time of an event, i.e., the expected number
of rounds needed to send some message with data of event e to the sink. As
the cache size is infinite, no messages have to be deleted from the sender cache.
Hence, the completion time of an event is independent of the possible existence
of other messages. Thus we may restrict our analysis to considering detection
of a single event. Another consequence is that the cache strategies RANDOM
DELETION and TIMESTAMP DELETION are identical. Let the random variable
T4 be the number of rounds required to gather at the sink a message whose
source node is at distance d from the sink.

In the Subsections 6.3 and 6.3, we consider a cache of size one and give a
probabilistic analysis in case two events occur.

The 1D grid with unlimited cache size

Given is a 1D grid of sensor nodes s, 1,...,n with base station s; node i is at
distance ¢ from s, see Figure 6.3.

S 1 1+1 n
Figure 6.3: 1D grid with base station s

Suppose an event occurs at time 0 at node d. In each round, let X be the
node closest to the sink that has received a message of this event. We will
also call X the distance of the event to the sink. First, we consider the case
r = 1, so nodes can only broadcast their cache to their nearest neighbours.
In each round, X either moves one step closer to the sink, with probability ¢,
or it remains at the same distance, with probability 1 — ¢. In total, X has to
travel distance d. This means that T, is equal to the number of trials needed
to obtain d successes, where the probability of a success is q. So, Ty follows a
negative binomial distribution with parameters ¢ and d, i.e.,

t—1
P(T;=t)= (d— 1)qd(1q)td, t=d,d+1,d+2,... . (6.1)

Note that as a consequence, for a broadcast success probability g > 0, the
event will be gathered with probability 1. Another consequence of (6.1) is the
following.

Corollary 6.3.1. The expected number of rounds required to gather an event
detected at distance d satisfies E[Ty] = d/q.

Second, consider the situation that a node is able to transmit at a larger
range, i.e., 7 > 1. We assume that the success probability of a broadcast
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equals ¢ independent of the distance between the nodes. Let Y, be the effective
distance that one particular message gets closer to s in an arbitrary round. The
effective distance is the maximum distance over which the communication is
successful; hence, Y,. is a random variable.

As the success probability of communication is independent of the radius,
the probability to get r steps closer to the sink is ¢g. Similarly, given that this
broadcast fails, then the probability to get » — 1 steps closer to the sink is g.
Continuing this argument, we arrive at:

P(Y,=k) = (1-¢)" %, k=12,...,n (6.2)
PY,=0) = (1-9q)"

Using (6.2), we are able to find the expected value of Y,.. First we write

V)= S RB(Y, = k) = 3 k(1 — g Fg = 3 (r — )(1 - g
k=0 k=1 =0
r—1
:qul_—((ll_—qq) q(1—4q) Zz (1—¢q) " (6.3)
i=1

To evaluate the sum in (6.2), we write

1 —

i1 =)l = Z d(1l-g—(1-g)

T

=1 =1 dq q
1 (-9 rd-g "
q? q? q

Plugging this into (6.3), we get

EY;]=r—r(1-q)" - +

(1 _ q)r-‘rl -1
S
Note that for r = 1, we find E[Y7] = ¢, which corresponds to Corollary 6.3.1.

=r+1+

However, if r > 1, then a message can be overtaken by messages with a later
timestamp. Hence, in this case, Y, is a lower bound on the effective distance
that one particular message gets closer to s in an arbitrary round.

In Figure 6.4, we have plotted E[Y}.] as a function of ¢ for several choices of
r. The figure confirms what is intuitively obvious: for broadcast radius r > 1,
the effective number of steps is much larger than in case » = 1. In fact, for
r = 1 the curve is linear, but for » > 1 the curves are larger than the linear
curves f(q) = rq. The reason for this is that if broadcast to a node at distance
r fails, there is still a positive probability that a broadcast to a node of distance
less than 7 is successful, or that a younger message is overtaking the message
closest to the base station.
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Figure 6.4: E[Y,] as a function of ¢ for r = 1,2, 3,4 (from bottom to top)

The 2D grid with unlimited cache size

Given is a 2-dimensional finite grid of size \/n X v/n for some integer 1/n and
with base station s located at one of the corners. Note that on the grid the
distance of a node from the base station is at most 2/n, see Figure 6.5.

Since the probability that an event is gathered is equal to 1 on a 1D grid,
as we have seen in the previous section, it is also equal to 1 on a 2D grid.
Therefore, we turn to the analysis of E[Ty], the expected time that is needed to
gather an event whose source node, say vg, is at distance d from the sink. Let
X, be a random variable indicating the number of rounds needed in order to
communicate successfully via the (directed) edge a. Clearly, the variables X,
are independently and identically distributed following a geometric distribution
with success probability ¢ for all edges a. For any path ® that connects the
sensor to the base station, let T be the random variable that indicates the
time needed to successfully communicate the event via path ®. Finally, let ¢
be a shortest path from node vy to the base station, where a € ¢ means that
edge a is part of the path ¢. Then

E[7y] = Efmin Ts] < min E[Ts] = E[T,] = E[) X, =) E[X,] = g.
ace ace

Note that the upper bound d/q corresponds with Corollary 6.3.1 (when r = 1).

The remainder of this section is devoted to so-called first-passage percola-
tion. The theory of first-passage percolation examines how Ty behaves depend-
ing on the position of the sensor with respect to the base station. That is, it
examines the behaviour of sensors dependent on whether they are for example
situated on the same grid-line as the base station or whether their position is
diagonal with respect to the base station. Note that this position influences
the number of shortest paths over which a message can be communicated from
its source node to the base station.
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Figure 6.5: The 2D grid

First-passage percolation with geometric distributions has attracted much
attention in the literature (see e.g. [4, 8]). An important result, the so-called
shape-theorem, describes the shape of the set of points on the grid that can be
reached through communication starting from a fixed source sensor within a
certain time. The following theorem is implied by the shape-theorem and we
use techniques from first-passage percolation to prove it. The theorem provides
an upper bound on the probability that the time needed to communicate the
event via a specific shortest path ¢ of length d is ed more than the expected
time d/q for some positive constant .

Theorem 6.3.2. The probability that Ty exceeds its expectation d/q decreases
exponentially with the excess time:

242

d -
P(Ty > ~ +ed) < e 9200,
q

Proof. Consider P(T,; > dk) for some positive constant k& and let ¢ be a shortest
path from node vy to the base station. Then for all ¢ > 0 the following is true:

P(Ty > dk) < P(Ty > dk) = P(>_ X, > dk)
a€g
:P(etZGE¢XQ > etdk) < eftdkE[etZaed)Xa]'

The last inequality follows from applying the Markov inequality. Since this
holds for all ¢ > 0, we have

P(Ty > dk) < rtn>161 exp(—dtk + log E[e! X Xa]) = Itn>i(r)1(exp(—tk + log E[e!X1]))4,

where X is equal to one of the random variables X, for some edge a on the
path ¢. Hence, we can write

P(T; > dk) < e”U#),
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where

t
I(k) = sup{kt — log E[e!*']} = sup{kt — lo 9
(k) = sup{t — log E[e' "]} = sup{kt — log 1—{ -7}

= sup{(h — 1)t ~log-+log(1 ~ (1 - )}
Calculus yields
I(k) = (k—1)(log(k — 1) —logk —log(1 — q)) — logq + log%
=(k-1) log(%) —klogk —loggq.
Setting k := % + £, we get:

1
P(T; > d(a te)) < e Ut

Since I(%) = I’(%) = 0, using the Taylor expansion yields

1 1 1 g2 1 g2 1
I(=+e)=I(=)+el'(=) + =I"(=) + o(e?) = =1I"(=) + o(e?).
(q ) (q) (q) 5 (q) () =5 (q) (€7)
Finally, calculating
I//( ): q2
¢ 1-q
completes the proof. O

To illustrate Theorem 6.3.2, Figure 6.6 shows this upper bound for the
situation where y/n = 101,d = 200 (the worst case scenario) and ¢ = 0.95.

It is clear that for the expected number of steps needed, which is around
210, the upper bound does not provide much information. However, for the
situation with only ten steps more, Theorem 6.3.2 provides strong information:
the probability that the message needs more than 220 steps to reach the base
station is already below 1%.

Let us emphasise that the given bound only takes the communication via
one path into account. In reality, there are multiple paths that can be used,
hence it is likely that the expected completion time will be even shorter.

For the example shown, we can also conclude that if the cache strategy
would delete messages whose timestamp is at least 220 rounds old then the
probability that the first message created for this event does not reach the
base station is less than 1 percent. Such a strategy would assure that messages
are not kept longer than necessary in the cache, and decreases the amount of
old messages circulating in the network. This is beneficial for the lifetime of
the batteries in the sensor.

We conclude this subsection with the following remark. In this subsection,
we have assumed that sensors do not fail, i.e., p = 1. This assumption is not
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Figure 6.6: The upper bound of Theorem 6.3.2 for /n = 101,d = 200 and
q = 0.95.

very restrictive in the 2-dimensional case, as from an arbitrary sensor in the
network, there exist multiple paths toward the base station. So, if one path
is not available, there may be many other available candidates. Hence, unlike
in the one dimensional case, for p not too far from 1, the probability that the
base station can be reached from the sensor by at least one path is close to 1
as well. Of course, it would be an interesting problem to quantify these “not
too far from 1”7 and “close to 17.

The 1D grid with cache size one and two events

We again consider the model on the 1D grid, but this time we assume that
¢ = 1 for each node. Given is a 1D grid of sensor nodes s, 1,...,n with base
station s; node 7 is at distance i from s. We assume that the broadcast radius r
is 1. We are interested in the probability that if two events occur, both events
are gathered. We compare this probability for the cache strategies RANDOM
DELETION and TIMESTAMP DELETION.

We assume there are two events 1 and 2 with source nodes v and wvs,
respectively, and detection times t; and t5. Without loss of generality we
assume that vy is closer to the sink than vy. Figure 6.7 illustrates the situation.
First, we consider TIMESTAMP DELETION. In this case, from all the messages
that a node receives, it will only send the one with the youngest timestamp,
i.e., the message that has been in the system the shortest time. Let A; be
the event that the ¢th event is gathered. We are interested in calculating the
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probabilities P(A4;) and P(As).

Figure 6.7: 1D grid with events 1 and 2

The probability P(A,) is easily determined. Since messages corresponding
to event 1 are sent every round after event 1 has been detected, there will
always be a message from this event in the sender cache of v;. Hence, the
probability that a single message reaches the sink is at least ¢¥*. This implies
that the probability that none of the messages sent by v; reach the sink is
upper bounded by lim,, (1 — ¢**)” = 0. Hence, P(4;) = 1.

Now we consider P(Az). We claim that if ¢; < t9, then P(A3) = 0. Indeed,
any message created at vo must eventually pass vertex vy. However, since
t1 < to, this vertex is already busy sending messages of its own event. As the
timestamp of these messages is always younger than the timestamp of messages
from event 2, messages from event 2 can never pass v, and thus never reach
the sink. We conclude that if we want both events to be gathered at the sink,
then the cache strategy with TIMESTAMP DELETION is bad one.

Next, suppose that in TIMESTAMP DELETION we have t < t;. For each
round, let the random variable X be the position of the message from event 2
that is closest to the sink at time ¢;. Set for notational convenience 7 = t1 —to.
If 0 < k < vg, then P(X = k) is the probability of vy — k successes in 7 trials
with success probability q. Hence, X is binomially distributed with parameters
7 and ¢g. Furthermore, P(X = 0) is the probability of at least vy successes in 7
trials. Thus,

P(X =Fk) = (U i k) 2P =) for 0<k<wy, (6.4)
PX=0) = 1- Y C) ¢(1—q) " (6.5)
=0

Now we condition on the value of X. Since the strategy with TIMESTAMP
DELETION implies that P(As | X = k) = 0 for all k£ > v, we have

P(A,) = ip(/xz | X = k)P(X = k)
k=0
v1—1
= Y P4y | X = k)P(X = k). (6.6)
k=0

To find these conditional probabilities, we consider the following situation.
Let 7 and j be the position closest to the sink of the messages from v; and vs
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respectively. Let p(i,j) be the probability that from this situation a message
from wvs reaches the sink. One round later, these positions are ¢ — 1 and j — 1
with probability ¢?, and in that case the desired probability is p(i — 1,5 — 1).
By also considering the other possibilities for the situation one round later, we
find that p(i, j) satisfies the recurrence relation:

p(i,j) = q2p(i—17j—1)+q(1—q)p(i,j—1)+q(1—q)p(i—1,j)+(1—cJ)2p((i7j))-

6.7
Since messages from v; have priority over those from vy, the boundary condi-
tions are p(i,j) = 0 if i < j , and p(i,0) = 1 for all 4 > 0. Finally, observe
that P(A2 | X = k) = p(v1, k). Hence, we can calculate (6.6) by solving the
recurrence relation (6.7). Unfortunately, there is no easy closed-form solution
of this recurrence relation, so that it is only useful for numerical purposes. In
this report, we will not explore this numerical path.

Now we consider RANDOM DELETION. To simplify the analysis, we assume
that ¢ = 1. The case ¢ < 1 will be studied via simulations in Section 6.4.
If vog — vy > t; — ta, then P(A;) = 1. We are therefore interested in finding
P(Az). Let t be the first round such that the sender caches of two adjacent
nodes contain different messages. This situation is illustrated in Figure 6.8;
here messages from v, are denoted by a circle, and those from vo by a square.

O O O O o o O O

s V1 k Vg

Figure 6.8: The first round that some node k contains a message of event 2
and node k£ — 1 contains a message of event 1.

Observe that the model from time ¢t onward resembles a symmetric random
walk (RW). Indeed, as a consequence of the RANDOM DELETION cache strategy,
one round later, both nodes k£ — 1 and k are a circle, or a square, both with
probability 1/2, see also Table 6.1. So, with probability 1/4, the front of the
squares moves forward to k — 1, with probability 1/4 it stays in k, and with
probability 1/4 it moves back to k+ 1. The only difference with the RW model
is the fourth option: a square moves to k—1, and a circle moves to k. Although
we have not managed to prove it, this fourth option seems to be no worse than
the situation in which the front stays at k.

We may conclude that the front of squares reaches the sink in a time com-
parable to that of a RW with step size distribution

P(X =1) =P(X = —1) = P(X = 0)/2 = 1/4. (6.8)
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time ¢ time t 4+ 1
k—1 | k k—1 k | situation
O O O O | non-moving front
O (O | progressing front for message 1
O O | progressing front for message 2
O (O | mixing front

Table 6.1: The four options for the evolution of the front.

So, results for this RW may give us (upper) bounds for the behaviour of the
stream of squares. To describe the behaviour of this RW, we first quote two
propositions about simple symmetric RW’s, i.e., RW’s that move one to the
right or one to the left, both with probability 1/2. These can be found in
Chapter XIV of [2].

Proposition 6.3.3. Consider a simple symmetric RW. Let p(z,n) denote the
probability that starting at x € {s,1,...,n}, the message reaches s before it
reaches n. Then p(z,n) =1 —x/n.

This proposition is also known as the Gambler’s ruin probability. Since the
step size of our RW may be 0, it is not a simple symmetric RW. However,
since the step-size distribution is symmetric and concentrated on {—1,0,1},
the effective steps do form a RW. Hence, the result of the proposition holds for
our RW as well.

The proposition tells us that every time the front is in position vy — 1, the
probability that the message from vy will be gathered is 1/v9. But every round
there will be a message originating from vy in vy — 1 with probability at least
1/2. So, with probability 1 there will be infinitely many trials with succes
probability at least 1/vs to gather the event detected by vo. We conclude that
the probability that the event from v, is gathered is 1, for every node vy. The
following proposition is about a RW with a reflecting barrier. This means that
if the message moves from n — 1 to n, the next round it moves back to n — 1.

Proposition 6.3.4. Consider a simple symmetric RW with a reflecting barrier
in n. Let 7(x,n) denote the expected time to reach s starting at x. Then
7(z,n) = x(2n — x). So, the expected time to reach s from position n is n>.

For the RW given by (6.8), the number of steps before a non-zero step is
made is geometrically distributed with parameter 1/2, so it has expectation 2.
As a consequence, for this RW we have 7(z,n) = 2z(2n — z).

If we consider the messages with source node vs, then we can view node
v as a reflecting barrier. Indeed, consider the situation that all nodes to the
left of vy are circles. Since vy is the source of the square messages, it has a
square in its sender cache with probability 1/2. Hence, with probability 1/2 it
sends a square to node vy — 1, so that the next round, vy — 1 is a square with
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probability 1/2. This is exactly the behaviour of the RW (6.8) with a reflecting
barrier in vs.

Until time ¢, messages from vo move to the sink independent of messages
from vy. From time t onward, messages from v, move towards the sink at
a speed comparable to a RW with step size distribution (6.8). Hence, by
Proposition 6.3.4, the expected time to reach the base station is roughly 2v3.

For the case vy — vy < t; — t2, we can use similar arguments to find that
P(A;) =P(A2) = 1, and to find the time to gather the event at v;. Finally, we
should remark that in our analysis we have ignored that the event at node v
may form an extra obstacle for messages from vy: since vy always has a circle
in its receiver cache, it is (slightly) more difficult for the squares to pass this
node than to pass a normal node.

The 2D grid with cache size one and two events

Given is a 2-dimensional grid of size v/n X y/n for some integer +/n and with base
station s located at one of the corners, see also Figure 6.5. We assume that the
size of the sender cache, ¢, is 1 for each node, and that the broadcast radius r,
is 1 as well. We begin by making the observation that in case there is only one
fire, the behaviour of the system is equivalent to first-passage percolation, see
also Section 6.3. We are interested in the probability that if two events occur,
both events are gathered. We consider this probability for the cache strategy
TIMESTAMP DELETION. The notation is the same as in the previous section,
so two events are detected at nodes v; and va, respectively, and without loss
of generality we assume that vy is closer to the sink than vs.

Let A := vg—v1+ta—1t1. So A can be viewed as the time difference between
the first arrival at the base station of messages sent from v; and ws, if both
messages are sent independently (¢ > 2). From the observations in subsection
6.3 it follows that P(A;) = 1. For P(A4y) we consider the case ¢ = 1. In this
case, the difference in distance to the origin between the two initial points fully
determines whether message 1 will reach the origin. This leads to the following
theorem:

Theorem 6.3.5. If ¢ =1, then P(4;) =1 and

1 ifA<0
]P(AQ)_{ 0 if A>3

Proof. As vy is closer to the sink than vy, a message of vy that is sent over
a shortest v; — s path is always forwarded towards the sink, because for any
node u on this path its timestamp is later than that of a message from vy at
this node u. Hence, P(A;) = 1. If A < 0, then the first message sent from v
arrives at each node of a shortest v, — s path before a message from v; can
reach this node. Hence, a message from vy arrives at s before a message from
vy, thus P(45) = 1.

Consider a message from vq, sent at time t5, that reaches a neighbour of s
in round ¢. Since s is in the corner of the grid, the distance between neighbours
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of s is at most 2. Hence, for all A > 3, there exists a message from vy, sent at
time ¢} > ¢}, that reaches the same neighbour of s in round ¢. Since messages
from v; have a timestamp later than those of vy for every neighbour of s, no
message sent from vy reaches s. If A = 1 or A = 2, then the probability
depends on the position of v; relative to wvs. O

From this theorem we may derive that using cache strategy TIMESTAMP
DELETION both events are gathered when the first message of the event which
was detected furthest (ve) could have reached the base station before the first
message of v;. On the other hand, if the message from wvs could only have
reached the sink at least 3 rounds later, it never reaches the sink. As in the
case of the 1D grid, this demonstrates that TIMESTAMP DELETION is not a
particular good cache strategy if we wish to detect all events.

6.4 Simulations

In this section, we give simulation results for the case with node failures, i.e.,
we assume p < 1 throughout this section. In the first paragraph, we consider
the problem on a 1D grid when there is a cache size of 1 and there are multiple
events. We are interested in the probability that events are gathered under the
cache strategy RANDOM DELETION. In the second subsection, we consider the
same problem on a 2D square grid and a 2D hexagonal grid.

The 1D grid with cache sizes of one and multiple events

Given is a 1D grid of sensor nodes s, 1,...,n with base station s; node ¢ is at
distance 7 from s. We are interested in the influence of ¢ and r on the message
completion times for the cache strategy RANDOM DELETION when there are
multiple events. To this end, we have developed a simulation to analyse these
completion times for several arbitrarily generated events.

Given are four events 1,2, 3, and 4, such that event j is detected at time 0
by node vj; the distance of v; to the sink is 305. We assume that nodes do not
fail, i.e., p=1.

First consider the case r = 1, where each sensor can only broadcast to
adjacent nodes. The left picture of Figure 6.9 depicts the outcome of a single
simulation run for this case. Each vertical 1D grid in the picture represents the
message each sensor in the 1D grid transmits at time ¢. For instance, until time
t = 20 each message is broadcast through the 1D grid without any problems;
after time ¢ = 20, the messages of the second event, coloured black, are blocked
by a message of the first event, coloured light gray. When we say a message is
blocked we mean that it is not sent further towards the sink. From the figure,
we see directly that using the cache strategy RANDOM DELETION results in a
poor performance of the completion times of the events 2, 3 and 4, whereas
messages of event 1 reach the sink without any delay. It seems that event 1
blocks the message of the other events.
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case: n=150, c=1, p=1, g=1 and r=1 case: n=150, c=1, p=1, g=1 and r=2
B

position
position

Figure 6.9: Simulation run for the four events starting at t = 0 for r = 1 (left)
and r = 2 (right). Each event generates its own unique message, identified by
a unique colour. If a sensor did not broadcast any message, then the colour is
white. The horizontal axis gives the time (in rounds).

This image changes drastically when we consider a larger broadcast radius,
namely r = 2. The outcome of a single run is presented in the right picture of
Figure 6.9. In this case, the messages become more mixed and as a result also
messages from events 2 and 3 reach the sink, within 140 rounds. In particular,
we can see that some message of the second event overtakes messages of the
first event.

An overview of these observations is plotted in Figure 6.10, which is based
on 1000 simulation runs. Note that the horizontal axis in the two figures
differs. In the upper figure, representing the situation with r = 1, we see that
the completion time of event 2 is in general quite large. This gets even worse
if we consider the situation of ¢ = 0.95, i.e., the case where communication is
prone to failures. Although the completion time of event 1 is hardly affected,
the completion time of event 2 increases substantially due to the broadcast
failures. The lower picture of Figure 6.10, representing the situation with
r = 2, demonstrates the strongly decreased completion times of event 2. Note
also that the impact of broadcast failures (i.e., the ¢ = 0.95 case) is smaller
than in the r = 1 case.

However, in practice it is not always possible to extend the broadcast range
to increase the performance. Therefore, another approach would be to change
the cache strategy such that messages become more intertwined and in this way
keep completion times small. The idea is that a sensor refrains from transmit-
ting the same message all the time and this is formulated in the alternative
cache strategy RANDOM DELETION+.

- RANDOM DELETION+: Messages are randomly deleted from the sender cache.
The selection of messages to be copied from the receiver cache to the sender
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Completion time of events under cache strategy Random Deletion; case: n=150, c=1, p=1, q=1 and r=1
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Completion time of events under cache strategy Random Deletion; case: n=150, c=1, p=1, g=1 and r=2
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Figure 6.10: The completion time of messages in the form of a box plot. The
box has lines at the lower quartile, median, and upper quartile values. The
whiskers are lines extending from each end of the box to show the extent of the
rest of the data. Outliers are data with values beyond the ends of the whiskers.
The whisker extends to the most extreme data value within 1.5- IQR of the
box, where IQR is the width of the interval that contains the middle 50 % of
the data. The horizontal axis gives the time (in rounds).

cache is as follows: if the receiver cache contains messages related to an event
whose data was broadcast by the same node in the last round, then these
messages get low priority: they can only be copied to the sender cache if all
other messages are copied as well.

Note that this strategy does not require extra memory. In Figure 6.11,
we depict single simulation runs for r = 1 (left) and r = 2 (right). For both
cases we immediately note an improvement compared to the original strategy
RANDOM DELETION. The messages of event 1 and 2 no longer block each
other and therefore messages of both events travel to the sink without any
delay. Unfortunately, it seems that messages of event 4 are still blocked by the
messages of the other events.

The results for the completion times over 1000 simulation runs are plotted
in Figure 6.12. Note that here the range is much smaller than in Figure 6.11.
Also here, the top and bottom ranges differ. The completion times under
strategy RANDOM DELETION—+ are clearly much smaller than under RANDOM
DELETION. The effect of reception failures on the completion times is also
negligible.

Thus, using the alternative cache strategy RANDOM DELETION+-, we could
improve the completion times of the messages. Unfortunately, if there are more
than three events then the completion time of all events degenerates, as in the
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case: n=150, c=1, p=1, g=1 and r=1 case: n=150, c=1, p=1, g=1 and r=2
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Figure 6.11: Simulations for the cache strategy RANDOM DELETION4. See
Figure 6.9 for the interpretation.

Completion time of events under cache strategy Random Deletion; case: n=150, c=1, p=1, g=1 and r=1

event 1, g=1.00: - * —

event 1, q=0.95: |- + ,

eventz, q=100-  +{ (  F----- e e e+ e . ,
| | | | | | | |
o 1000 2000 3000 4000 5000 6000 7000

Completion time of events under cache strategy Random Deletion; case: n=150, c=1, p=1, q=1 and r=2
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Figure 6.12: See Figure 6.10 for the interpretation, here we use cache strategy
RANDOM DELETION+.

case with two events under cache strategy RANDOM DELETION. This could of
course be compensated by changing the strategy RANDOM DELETION+ to a
more elaborate one, but that would result in a more difficult cache strategy,
which might conflict with the aim to keep the strategy as simple as possible.

2D grids with node failures

In the 2D simulations, we consider the area [0, 100] x [0, 100] covered by sensors
with broadcast radius = 1 located at the points of a regular grid. The sensor



6.4. Simulations 137

placed at (0,0) functions as the base station. We study the data gathering
problem for two different grids:

e a square grid with 101 x 101 = 10201 sensors numbered (¢,7),0 < 4,5 <
100.

e a hexagonal grid, where the sensors are located at those points i(1,0) +
§(0.5,0.5v/3), with 4, j integer, that fall within the area. The total number
of sensors is 11658.

YANEERA AN
(-2,4 (2,4)

0,0 (4,0)

Figure 6.13: Hexagonal grid with 23 sensors covering an area [0, 4] x [0, 4]. The
values (7, j) shown are the coordinates of the corners in the hexagonal system.
The longest distance to the base station (0, 0) is 6.

The motivation for considering a hexagonal grid, see Figure 6.13, is that
each sensor has six neighbours instead of the four in the square grid. We
expect this to increase the robustness of the whole system. Furthermore, in
the hexagonal grid the distance from the farthest point to the base station is
reduced from 200 to 167, thus speeding up the detection of events. A small
disadvantage of the hexagonal grid is that more sensors are needed to cover
the same area, namely a factor 2/\/§ ~ 1.16 more.

In this set of simulations, we study the interference of the messages from
the two events. We create two simultaneous events at time ¢ = 0, at randomly
chosen sensors, and set the cache size ¢ = 1. We have run the program 1000
times, each time with a different random number seed. Table 6.2 presents the
average number of steps needed to detect the first and second event, for both
grids, in case the two events were indeed detected. For p < 0.95, some runs
did not detect any fire. The reason is that failing sensors may cause the graph
corresponding to the grid to become disconnected. Furthermore, if an event
occurs at a sensor not connected to the base station in the graph, then this
event cannot be detected.

The cache strategy we use here is a third variant of RANDOM DELETION,
which we call RANDOM DELETION++: the contents of the sender and receive
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D q Square grid Hexagonal grid

runs steps 1 steps 2 runs steps 1 steps 2

1.00 1.00 1000 77.0 141.7 1000 66.1 115.7
0.95 1000 77.8 146.6 1000 66.2 117.6

0.95 1.00 998 76.2 147.9 996 66.8 117.6
0.95 998 76.0 148.9 999 67.8 118.5

0.80 1.00 908 80.4 173.1 961 67.0 130.6
0.95 926 78.4 183.5 940 69.2 135.3

Table 6.2: The number of runs that gathered both events for the strategy
RANDOM DELETION++, and the average number of steps needed to gather
the first and second event. In total, there were 1000 runs.

cache are merged, duplicates are removed, and messages are randomly deleted
until ¢ messages are left. These are then stored in the sender cache. This
strategy treats all locally known messages equally (after removal of duplicates),
and is not biased towards deleting messages from the sender cache.

The results of Table 6.2 show that the hexagonal grid leads to faster gather-
ing for both events. In particular, the event farthest away from the base station
is detected earlier, and its detection time is less affected by failing sensors or
failing communications. Note that the ratio of the average gathering times for
event 1 corresponds to the ratio of the number of nodes in both networks. A
surprising finding is that on the square grid, failing sensors sometimes seem to
speed up the detection of the first event, which may be due to less interference
from messages for the second event. This is a mixed blessing, as indeed the
second event is detected much later.

6.5 Conclusions and recommendations

The main characteristic of a sensor is its simplicity: a sensor has limited pro-
cessing capabilities, limited power and a limited cache memory. Our objective
was to analyse simple cache strategies for data gathering in a sensor network.
Hence, they should take into account cache constraints, and not use routing
information. Our analysis, which consists of an exact analysis based on prob-
ability theory and a heuristic analysis through simulation, demonstrates that
there exist simple decentralised strategies allowing sensors to gather data effi-
ciently and robust.

We have analysed two strategies: TIMESTAMP DELETION and RANDOM
DELETION. In Section 6.3, we have shown that the simplest strategy, TIMES-
TAMP DELETION, is clearly inferior to RANDOM DELETION, if the number of
events is larger than the cache size. Furthermore, simulations in Section 6.4
suggest that the more complicated strategy, RANDOM DELETION+-, increases
the performance even more. The decision on what level of complexity is allowed
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may depend on the application at hand, and should be made by the designers
of the system.

A second parameter of interest is the probability that a broadcast fails, g.
We have studied how the expected completion time, i.e., the time to gather an
event at the base station, depends on ¢, and the distance from the event to the
base station. Different kinds of applications will put different demands on this
completion time. For example, forest fires need to be detected immediately,
while noise measurements at airports are allowed to come in days later. Hence,
per application the system designer should check what values of ¢ are allowed,
and what should be done to make sure that ¢ falls within that range.

A third point to consider is the influence of the broadcast range, r. Obvi-
ously, the larger the broadcast range, the better. However, due to restrictions
on the battery power, only a limited broadcast range may be feasible. The
calculations in Section 6.3 reveal the effective step size per round as a func-
tion of the broadcast range (and the failure probability ¢). These results are
illustrated and complemented by the simulations in Section 6.4, which show
the effect of the broadcast range on the gathering time of events. Again, the
demands on the speed by which messages travel through the network should
determine how much should be invested in increasing the broadcast range.

Finally, we have considered the influence of the layout of the sensor network
in two dimensions. The simulations in Section 6.4 show that a 2D hexagonal
layout of sensors is superior to a 2D square layout, both in terms of detection
speed and robustness.

We conclude that the performance of a sensor network depends on many
parameters. We have tried to describe this performance by analysing some
examples of networks. Using this analysis, a system designer could determine
the influence of the different parameters. An analysis of the application at
hand should reveal which demands both the sensors and the sensor network as
a whole have to meet. Combining these two analyses should then yield good
and attainable parameter choices.
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