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Abstract

In order to compare different fibers used in bullet proof vests the velocity Vp at
which p percent of the bullets pass through the vest is of high importance, in particular
when p = 50%. The objective of this research is to find good estimates for Vp. The
available data have been analyzed to examine which aspects influence the probability
of perforation and have to be taken into consideration to determine Vp. Next, a
general framework has been developed in which the notation is introduced. Several
approaches are proposed to find good estimates for Vp. All methods are numerically
illustrated. We recommend to use smoothing splines. But a logistic model or an
isotonic regression approach with linear interpolation performs also well. The paper
ends with a new procedure how the data should be gathered to determine Vp.

Keywords: quantile estimation, classification tree, generalized linear models,
isotonic regression, smoothing splines, loss function, bootstrap method

2.1 Introduction

Until recently, effective body protection was an uncomfortable compromise
between ballistic protection (i.e., bullet proof vests) and restricted freedom
of movement. The need for such a compromise was swept away when a new
generation of fibers was developed. The modern vests are made using high
performance fibers as p-aramids and high density polyethylene. Protective
vests are made out of these fibers, using different technologies as multi-layered
fabrics or uni-directional laminates.
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When a new kind of fiber has been developed a bullet proof vest is made out
of it and the quality of the vest is tested. There are two international standards
to determine the ballistic performance, the STANAG based standard and the
NIJ standard. All commercial vests currently fulfill the high demands required
by these international standards.

The STANAG based test is used to determine the bullet speed where fifty
percent of the bullets are stopped by the vest. This velocity will be denoted by
V50. This is the easiest way to compare the quality of two vests, where a higher
V50 means a better quality vest. The determination of the V50 is rather easy,
since the event for a bullet to perforate the vest is equal to non-perforating
the vest at this velocity. The result of the STANAG based test is obtained by
firing projectiles in a limited speed range. When 3 stops and 3 perforations are
registered, the V50 is defined as the average of the 6 corresponding speeds.

With the NIJ standard, the highest stop speed is determined under different
pre-described conditions. Using a minimum number of shots (6 or 12) within a
given speed range, both stop and perforation shots are required. The maximum
stop speed is used as the speed where all projectiles are stopped by the vest.

The disadvantages of both methods will be clear; the number of observations
is low. This will lead to a result with a limited accuracy. Unfortunately,
the error in the estimated values is not part of the methods. Also, the two
independent methods are present for obtaining the characteristics of a vest.
For practical reasons, it is desired to use one method only. These disadvantages
are nowadays widely recognized by fiber producers, vest manufacturers and the
end-users.

The objective of this research is to find a robust method for determining
V50 and a “highest stop speed” in order to perform quality testing or judging
further improvements on fibers. The following characteristics for this method
must be used:

• multiple shots on one vest and

• one shooting method for obtaining the speed and the 95% confidence
interval for a predefined perforation probability p.

The probability of perforation as a function of the projectile speed does not have
to be symmetrical. It is however required to use the same function to determine
the velocity at which an arbitrary percentage p of the bullets perforates the
vest, in particular for p equal to 1%. This velocity is denoted by V01 and for a
general p by Vp.

Since data obtained by the standard testing methods are not likely to fulfill
the requirements for developing a complex method, different sets of ballistic
data have been made available. Within each set, a different ballistic vest (fiber
and construction) and bullet has been used. Per situation, 7 individual packs
(or vests) have been shot 6 times with one speed per pack. The speed range
has been selected in such a way that the range from 0% perforations to 100%
perforations was fully covered equidistantly. It must be noted that these data
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sets have been generated for experimental use only, and that they are not
according the current standards.

Kneubuehl [14] proposes a method to estimate V50. First the author groups
the data records in intervals based upon the velocity, with an interval length of
5 m/s. For each interval he estimates a perforation probability by dividing the
number of perforations by the total number of shots. Next, a cumulative den-
sity function of the normal distribution is fitted through the new data points.
The result is the perforation probability as a function of the projectile speed.
How to fit such a function is explained in more detail in Section 2.4. Based
upon the inverse of this function V50 is determined.

In toxicology we find studies that are similar to this research. A general
introduction can be found in Agresti [1], Agresti [2] and Emmens [8]. In these
toxicology studies, the interest lies in determining models to describe the re-
lationship between the probability of reacting to a certain toxic chemical as a
function of the given dose of this chemical. More specifically, for different dose
levels, the researchers observe whether the dose results in a toxic reaction.

In this paper we will improve the procedure to determine Vp once the data
is provided. But we will also design a new test procedure to gather the data
that is used to determine Vp. In Section 2.2 we start with an analysis of the
available data. A general framework is presented in Section 2.3, in which we
also introduce notation and a general set-up to compare different techniques.
In Section 2.4 until Section 2.6 we present different techniques to derive a
function that maps a velocity on the probability of perforating a particular
vest. In Section 2.4 we will use Generalized Linear Models (GLMs), while
the techniques discussed in Section 2.5 do not impose a predefined functional
form. The last technique to estimate Vp is a bootstrap method. This approach
determines Vp based upon a characteristic at this velocity instead of finding
the inverse of a function. In Section 2.7 we propose a new procedure to gather
the data. In Section 2.8 we compare the different solution techniques and give
a conclusion which method we recommend.

2.2 Covariate Analysis

The available data set contains the 42 data records as explained in Section 2.1
for 10 different vest types. Each data record consists of whether the bullet
perforated the vest (this is also called the perforation status), the velocity of
the bullet which was shot at the vest, the shot number (1 to 6), the vest number
(1 to 7) and the vest type. For one particular vest type the data set contains
126 data records and for one only 36 data records.

The objective of the statistical analysis of the data is to provide an overview
of the relationships between the perforation probability (also called the re-
sponse variable) and its four explanatory variables or covariates, i.e. the bullet
velocity, the shot number, the vest number and the vest type. The model em-
ployed in this analysis explains the observed variability of the data without
making any assumption on the physical or chemical mechanisms which might
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have played a role in generating the samples. This means that all data records
for the different vest types under investigation are used all together in this
analysis.

In the analysis the entire sample is modeled according to a classification
tree (Breiman et al. [4]). This is a semi-parametric statistical model in which
the data is partitioned among several subsamples with significantly different
perforation probabilities. The data subgroups are defined by a binary tree
where the splits are functions of the covariates. For instance, two groups can
be obtained by considering the samples with a bullet velocity smaller than
400 m/s and those with a velocity larger than or equal to 400 m/s. Within
the latter group, two clusters of data points can be formed by dividing the
samples associated to a particular vest type versus those corresponding to all
other vest types, and so on. We will refer to the groups of data generated
by a given tree structure as its leaves. In this analysis we do not assume any
specific distribution on the space of tree structures, whereas within each leaf we
model the perforation status as a Bernoulli random variable with a leaf-specific
perforation probability.

In order to estimate the tree structure we perform a stochastic search us-
ing the probability of the tree given the data as the score function. This is
a simulation-based computationally intensive method which evaluates the un-
certainty on the specification of the tree structure conditionally on the sample
(Chipman et al. [5], Chipman et al. [6], Denison et al. [7], Holmes et al. [13]).
Given the best tree structure found by the stochastic search, we estimate the
leaf-specific perforation probabilities in a Bayesian fashion. In particular, for
each leaf we assume a uniform prior perforation probability. By combining this
prior with the Bernoulli likelihood we obtain a Beta perforation probability
given the samples falling in the leaf. The Beta distribution can be summarized
analytically, providing both a point estimate of the leaf-specific perforation
probabilities and their confidence intervals.

Figure 2.1 shows the results of the estimation of the tree structure when
all data is analyzed. The tree has a total of eight leaves, which cluster the
samples as a function of the bullet velocity and shot number. Notice that
this tree structure does not depend on the vest type. This surprising result is
emphasized in Table 2.1. For each of the four available covariates, the table
shows its estimated probability of inclusion in the tree structure. The covariates
with the highest predictive power are the bullet velocity and the shot number
but the vest type does not appear to discriminate groups of samples with
significantly different perforation probabilities.

Finally, the estimated perforation probabilities for the eight leaves of the
tree are presented in Table 2.2. The interpretation of a posterior interval is the
probability that the parameter lies in the interval equals (1-α) under the chosen
model and prior structure and conditionally on one particular data set. It can
be noted that the estimated perforation probability appears to be increasing
in the bullet velocity. Moreover, at any given bullet speed, the estimated
perforation probability of the first shot is lower than of the second shot, which
in turn is higher than any of the other shot numbers.
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SPLITTING RULES

L1: V > 481

L2: V <= 398

L3: V in (466,481]

L4: V in (398,466] AND SHOT == 2

L5: V in (430,451] AND SHOT == [3,4,5,6]

L6: V in (398,466] AND SHOT == 1

L7: V in (451,466] AND SHOT == [3,4,5,6]

L8: V in (398,430] AND SHOT == [3,4,5,6]

Figure 2.1: The tree structure which fits the data the best.

covariate
velocity shot number vest type vest number

Estimated inclusion
probability 1 0.92 0.08 0.02

Table 2.1: The estimated inclusion probabilities for the four covariates to in-
corporate them into the classification tree.

Leaf number
Estimated

perforation prob. 95% Posterior Interval

1 0.95 [0.87; 0.98]
2 0.21 [0.12; 0.35]
3 0.77 [0.65; 0.87]
4 0.60 [0.46; 0.72]
5 0.48 [0.34; 0.63]
6 0.28 [0.17; 0.42]
7 0.25 [0.17; 0.35]
8 0.56 [0.44; 0.69]

Table 2.2: The estimated perforation probabilities including the 95% confidence
intervals for the eight leaves of the tree.

Although Figure 2.1 and Table 2.1 make clear that only the velocity and
shot number are of relevance to determine the probability of perforation, we
consider the velocity and vest type as explanatory covariates in this research.
The main reason to take the vest type into consideration is because the per-
formance of vests is required to be compared. The shot number is not used
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as covariate, since the shooting pattern should result in independent shots.
Apparantly this is not the case. Therefore, the shot number is an important
parameter which needs to be looked at. But in the remainder of this paper,
we will use all data records of one particular vest type to determine V50 based
upon the speed of the bullet. A motivation not to take the shot number into
account is to have a bigger sample set for a fixed combination of covariates.
Otherwise there are only 7 data records available per covariate combination.

2.3 General Framework

A procedure has to be developed to determine Vp; the velocity at which p
percent of the bullets perforates the vest. Since we do not take the shot number
or the vest number into account (see Section 2.2), the data records of one vest
type are presented by (Xi, Yi)-pairs. The velocity of the i-th shot (expressed
in m/s) is denoted by Xi and the event of a perforation by Yi, where

Yi =
{

1, if shot i perforated the vest,
0, otherwise. (2.1)

The number of data records is denoted by N , so i = 1, . . . , N . Whenever
the data set is rearranged into intervals with an interval length of 5 m/s, the
(Xi, Yi)-pairs are transformed into (X ′

j , Y
′
j )-pairs where X ′

j+1 = X ′
j + 5. The

new response variable Y ′
j becomes the average probability of perforating the

vest where the velocity of the bullet is in interval j:

Y ′
j =

[
N∑
i=1

1Xi∈[X′
j−2.5,X′

j+2.5)

]−1 ∑
i:Xi∈[X′

j−2.5,X′
j+2.5)

Yi,

where 1condition is the indicator function:

1condition =
{

1, if condition is satisfied,
0, otherwise.

Figure 2.2 shows the (Xi, Yi)-pairs as well as the (X ′
j , Y

′
j )-pairs for the data set

where 126 data records are available for a particular vest type.
For every vest type we are interested in finding a function f(v) : R+ → [0, 1]

that maps a velocity v onto the probability of perforating the vest when the
bullet has speed v. By taking the inverse (f−1(p) : [0, 1] → R+) we find Vp.
In Section 2.4 and Section 2.5 different approaches are proposed to find an
appropriate f(v). A bootstrap method is described in Section 2.6 to determine
Vp directly.

In order to compare the different techniques we have to define a measure
of fitness that relates the differences between the function f(v) and the data
(Xi, Yi) for i = 1, . . . , N . A classical measure of discrepancy is the mean
squared error (MSE) as defined in Equation (2.2).

MSE =
1
N

N∑
i=1

[
f(xi)− yi

]2
, (2.2)
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Figure 2.2: The rough data (i.e. the (Xi, Yi)-pairs) and the rearranged data (i.e.
the (X ′

j , Y
′
j )-pairs) are represented by block dots and red triangles respectively,

for one particular vest type.

where (xi, yi) are the observed realizations of the stochastic variables Xi and
Yi. Small deviations are not penalized as much as large deviations in this
definition for the fitness measure.

2.4 Generalized Linear Model

Generalized linear models (GLMs) are generalizations of the linear model (see
McCullagh, et al. [15]). In its simplest form, a linear model specifies the linear
relationship between a dependent (or response) variable, and a set of predic-
tor variables (or covariates). In this research it is inadequate to describe the
observed data (perforation status Yi) with a linear relationship between the
variables (bullet speed Xi). The main reason for this is that the effect of the
velocity on the perforation status is not linear in nature.

Link function

In generalized linear models a so-called link function, denoted by g, specifies
the connection between the response variable Yi and the covariate Xi. In this
experiment, the response Yi can take only one of two possible values, denoted
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for convenience by 0 and 1 (see also Equation (2.1)). Therefore, we may write

P (Yi = 0) = 1− πi P (Yi = 1) = πi (2.3)

for the probabilities of non-perforation and perforation respectively. Linear
models play an important role in both applied and theoretical work. We sup-
pose therefore that the dependence of Y on X occurs through the linear pre-
dictor ηi given by

ηi = β0 + β1Xi, i = 1, . . . , N

for unknown coefficients β0 and β1. For binary random variables the link
function g should map the interval [0, 1] onto the whole real line (−∞,∞). So,

g(πi) = ηi = β0 + β1Xi, i = 1, . . . , N.

A wide choice of link functions is available. Three link functions commonly
used in practice are

1. the logit or logistic function

g(π) = log
(
π/(1− π)

)
,

2. the probit or inverse Normal function

g(π) = Φ−1(π),

3. the complementary log-log function

g(π) = log
(
− log(1− π)

)
.

The first two functions are symmetrical in the sense that

g(π) = −g(1− π).

All three functions are continuous and increasing on (0, 1). This last charac-
teristic is exactly what is required for this research.

To give an example, we look at the logit function

g(πi) = log
(

πi
1− πi

)
= β0 + β1xi

πi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
.

This expression equals f(v) based on Equation (2.3). By inverting this expres-
sion we can determine Vp:

p =
exp(β0 + β1Vp)

1 + exp(β0 + β1Vp)
⇔ Vp =

log
(

p
1−p

)
− β0

β1
.

The same can be done for other link functions. The results are summarized in
Table 2.3.

When we combine the probit model with the rearranged data (as described
in see Section 2.3) we get the approach proposed by Kneubuehl [14] to deter-
mine Vp (see also Section 2.1).
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link function πi Vp

logit exp(β0+β1xi)
1+exp(β0+β1xi)

log( p
1−p )−β0

β1

probit Φ(β0 + β1xi)
Φ−1(p)−β0

β1

complementary log-log 1− exp
(
− exp(β0 + β1xi)

) log
(
−log(1−p)

)
−β0

β1

Table 2.3: The probability of perforation πi as a function of the observed
velocity xi for the different link functions. From the inverse of this relationship
we get an expression for Vp.

Alternative Predictor

A disadvantage of all three link functions is that the inverses have support on
the entire real axis. This means that a velocity of 0 m/s results in a strictly
positive probability of perforating the vest. This phenomena is absolutely not
true in the experimental setting. A possible solution is to define an alternative
predictor ηi as

ηi = β0 + β1 log(Xi).

For example, the alternative logit function results in

π =
exp

(
β0 + β1 log(xi)

)
1 + exp

(
β0 + β1 log(xi)

) ,
and

Vp = exp

 log
(

p
1−p

)
− β0

β1

 =
(

p

1− p

)1/β1

exp(−β0/β1).

Having selected a particular model, it is required to estimate the parameters
β0 and β1. The parameter estimates are the values that maximize the like-
lihood function of the observed data. This principle is explained in the next
subsection.

Maximum Likelihood

The likelihood of the data is the probability of observing the data for certain
parameter values (Ross [18]) and is expressed by Equation (2.4).

L(β0, β1; y1, . . . , yN ) =
N∏
i=1

pπi(yi|β0, β1), (2.4)

where pπi(yi|β0, β1) is the probability of observing yi when the probability of
perforation equals πi if β0 and β1 are the parameter values. From the definition
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in Equation (2.3), we should get

pπi(yi|β0, β1) =
{
πi, if yi = 1,
1− πi, if yi = 0 (2.5)

and, therefore,
pπi(yi|β0, β1) = πyi

i (1− πi)1−yi . (2.6)

This expression can be substituted into Equation (2.4) to define the likelihood
function. A similar expression can be derived when the variable Y ′

j is used
instead of Yi.

The objective is to find the values of the two estimators, which maximize
the likelihood function. Often it is easier to maximize the log-likelihood func-
tion because of its simpler mathematical structure. Therefore, we derive this
by taking the natural logarithm of the likelihood function. When we use Equa-
tion (2.6) in Equation (2.4) and take the natural logarithm, we get

l(β0, β1; y1, . . . , yN ) = logL(β0, β1; y1, . . . , yN )

=
N∑
i=1

[
yi log

(
πi

1− πi

)
+ log(1− πi)

]
.

For the logit function, the log-likelihood function equals

l(β0, β1; y1, . . . , yN ) =
N∑
i=1

[
yi(β0 + β1xi)− log

(
1 + exp(β0 + β1xi)

)]
,

which is differentiable in this case. Since the function is concave, the values of
β0 and β1 that maximize the log-likelihood can be found by solving the first
order conditions for the two parameters.

Numerical Results

In Figure 2.3 we show several results of the classical GLMs and alternative
GLMs for different link functions. The dots in this figure are the original
observed (Xi, Yi)-pairs (or the rearranged (X ′

i, Y
′
i )-pairs). The classical GLMs

are represented by a solid curve and the alternative GLMs by a dashed curve.
We notice that there is not much difference between the two models. However,
in the tails of the curves the alternative model always has a lower probability
of perforation in the tails of the curves at the same velocity in comparison to
the classical models. This is to be expected since the alternative model only
allows strictly positive velocities. Therefore, it should have a tighter tail at low
velocities and a thicker tail at high velocities.

The maximum likelihood estimators of β0 and β1 (e.g., β̂0 and β̂1 respec-
tively) for each model are presented in Table 2.4, as well as the mean squared
error (MSE).

We notice that the value of β̂1 is strictly positive in both models. This
implies that the curves are strictly increasing. We expected such a result
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Figure 2.3: The fitted curves for the perforation probability f(v) as a function
of velocity v for different link functions. The solid curve is the classical link
function and the dashed curve is the alternative link function. The dots are
the input data records.

because we know that for an increasing speed of the bullet the probability of
perforation will also increase. Based upon these results, we can also conclude
that a logit model performs the best (the lowest MSE). However, these are the
results for only one vest type. Therefore, we compare all techniques and all
data sets (of the different vest types) in Section 2.8.

Based upon the estimated parameter values we determined Vp for the dif-
ferent models with the expressions formulated in Table 2.3. Table 2.5 gives the
estimated velocities at which 1% (V01) and 50% (V50) of the bullets perforate
the vest. This table also presents a 95% confidence interval for Vp. This interval
is generated with the bootstrap method (or resampling): randomly selecting
N observations from the data with replacement and obtaining estimates for
Vp for the resulting bootstrap sample. We repeated this procedure 1000 times,
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model β̂0 β̂1 MSE
logit -23.93 0.0553 0.1650172

alt. logit -144.2 23.760 0.1650141
probit -14.09 0.0326 0.1650477

alt. probit -84.61 13.942 0.1650921
log-log -16.70 0.0375 0.1659732

alt. log-log -99.71 16.350 0.1656465
Kneubuehl [14] -13.52 0.0315 0.1667188

Table 2.4: The likelihood estimators for the different models including the
measure of fitness of the model.

calculating estimates for each bootstrap replication. This gives a distribution
for the estimate of Vp.

model estimation 95% Confidence Interval

logit
V50

V01

432.81
349.71

[425.04; 441.04]
[312.22; 376.21]

alt. logit
V50

V01

432.28
356.27

[424.77; 439.77]
[327.58; 380.58]

probit
V50

V01

432.74
361.28

[424.57; 440.83]
[332.69; 384.28]

alt. probit
V50

V01

432.12
365.71

[424.15; 440.18]
[341.26; 386.59]

c log-log
V50

V01

435.95
322.94

[428.00; 443.59]
[281.11; 356.47]

alt. c log-log
V50

V01

435.29
335.99

[427.42; 442.87]
[302.86; 363.45]

Kneubuehl [14]
V50

V01

428.92
355.12

[419.90; 437.09]
[325.27; 382.83]

Table 2.5: The estimated velocities including their 95% confidence intervals.

For V01 we notice that the estimates from the classical models are smaller
compared to those from the alternative models. This is not a surprise since we
mentioned already that the curves for f(v) show lower values in the tails for
the alternative models in comparison to the classical models (see Figure 2.3).
Similarly, the confidence intervals in the alternative models are smaller than
in the classical models. We would like to mention as well that the confidence
interval for V01 is wider in comparison to the interval for V50, because there
are less data points available around V01.
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2.5 Non-Parametric Models

In the previous section we fitted a relationship between the probability of per-
foration and the velocity by GLMs. However, these techniques place strong
assumptions on the shape of this relationship. When we do not want to make
such assumptions, we have to fit these curves from the data only. The only
restriction we have is that the curve should be monotonic increasing (i.e. non-
decreasing). Most of the time, the data does not have this property (see Fig-
ure 2.2). Therefore, smoothing has to take place. This can be done in two
different ways: either smooth the data first and then find the curve or find a
curve on the rough data with the use of smoothing. An example of the first
approach is isotonic regression and for the second approach smoothing splines
can be used. The third approach we mention in this section is the use of loss
functions, which are based upon empirical distributions. All three applications
are discussed in this section and we end with numerical results on the three
methods.

Smoothing Splines

Splines are piecewise polynomial functions that fit together (Eubank [9]). In
particular, for cubic splines, the first and second derivatives are also continuous
in every point. Smoothing splines are curves that get reasonably close to the
data in a graceful manner such that it gives the appearance of a single curve.

Smoothing splines arise as the solution to the following simple-regression
problem: Find the function f̂(x) with two continuous derivatives that mini-
mizes the penalized sum of squares,

SS∗(h) =
n∑
i=1

[yi − f(xi)]
2 + h

∫ xmax

xmin

[f ′′(x)]2 dx, (2.7)

where h is a smoothing parameter (Fox [11]). The first term in Equation (2.7)
is the residual sum of squares. The second term is a roughness penalty, which
is large when the integrated second derivative of the regression function f ′′(x)
is large. The endpoints of the integral enclose the data. At one extreme, when
the smoothing constant is set to h = 0 (and if all the x-values are distinct), f̂(x)
simply interpolates the data. This function corresponds with the mean squared
error, formulated in Equation 2.2. So, small values of h correspond to more
emphasis on goodness-of-fit. Conversely, when h is large it places a premium
on smoothness. Typically h ∈ (0, 1]. Since we are interested in a monotonically
increasing function, we set h to the smallest smoothing parameter such that
this restriction is satisfied.

Isotonic Regression

Isotonic regression is a non-parametric method that is used when a dependent
response variable is monotonically related to an independent predictor variable
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(Barlow et al. [3] and Robertson et al. [17]). We are indeed looking for an
isotonic (i.e., non-decreasing) function where the probability of perforation
f(v) depends on the velocity v of the bullet. A commonly used algorithm
for computing the isotonic regression is the pair-adjacent violators algorithm
(PAVA), which calculates the least squares isotonic regression of the data set
(Barlow et al. [3] and Robertson et al. [17]).

The basic idea of PAVA is the following: sort the (xi, yi)-data pairs such that
x1 ≤ x2 ≤ . . . ≤ xN . If y1 ≤ y2 ≤ . . . ≤ yN , then all points are increasing and
the algorithm stops. Otherwise, select the first data pair i for which yi > yi+1.
In that case replace (xi, yi) and (xi+1, yi+1) by their weighted average (x∗i , y

∗
i ),

where

x∗i =
wixi + wi+1xi+1

wi + wi+1
,

y∗i =
wiyi + wi+1yi+1

wi + wi+1
,

w∗i = wi + wi+1.

This procedure is repeated until the algorithm terminates. The algorithm starts
with weights equal to one (wi = 1 for i = 1, 2, . . . , N). The algorithm is applied
upon the available data and represented in Figure 2.4.

Now the new data set is such that it is non-decreasing. We can easily find
an interpolation scheme to connect the data points and find f(v). We make
use of two interpolation schemes in Section 2.5: stepwise interpolation and
piecewise linear interpolation.

Loss Function

In this section we describe a method that determines the probability of perfo-
ration (or the function f(v)) entirely based on empirical distributions. Besides
this function f(v), this approach also requires a probability density function
of the velocity v, denoted by g(v). Based on the data we can consider the
empirical density function of the velocity (denoted by G) and the empirical
distribution of f(v) (denoted by F ). So,

F (xi) =
{

1, if yi = 1,
0, otherwise.

We want to minimize the result to obtain an estimator for f−1(p). This function
is called a loss function (Mohammadi [16]). Select positive α and β and define
the loss function as

L(a) = α

∫ a

0

f(v)g(v)∂v + β

∫ ∞

a

(1− f(v))g(v)∂v.

To minimize L, we take the derivative to a and set it equal to 0:

∂

∂a
L(a) =

(
αf(a)− β

(
1− f(a)

))
g(a) = 0, (2.8)
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Figure 2.4: We transformed the data from rough data (dots) to monotone
increased data (triangle).

Equation (2.8) is solved by a∗ with

f(a∗) =
β

α+ β
.

Note that

∂2L(a)
∂a2

= (α+ β)g(a)
∂

∂a
f(a) +

(
αf(a)− β

(
1− f(a)

)) ∂
∂a
g(a),

such that
∂2L(a)
∂a2

∣∣∣∣
a=a∗

=
(
α+ β

) ∂
∂a
f(a)

∣∣∣∣
a=a∗

g(a∗) ≥ 0

because f(v) is increasing in v and αf(a∗) − β
(
1 − f(a∗)

)
= 0, using Equa-

tion (2.8). It means that a∗ is the minimizer of L. We may set p = β/(β + α).
For simplicity, we take β = 1 and α = 1/p − 1. To estimate the inverse of
f(v) (i.e., f−1(p)), it is now enough to minimize the empirical counterpart of
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L, namely

L(α) =
(

1
p
− 1
)∫ a

0

f(x)g(x)∂x+
∫ ∞

a

(
1− f(x)

)
g(x)∂x

=
(

1
p
− 1
) n∑
i=1

[1xi<a,yi=1 + 1xi≥a,yi=0] .

Numerical Results

All three non-parametric approaches are implemented and the resulting func-
tions f(v) for each approach are presented in Figure 2.5. The inverses of these
functions yield the estimator for Vp. With the use of resampling we constructed
a 95% confidence interval (see also Section 2.4). The results are represented in
Table 2.6. This table also represents the MSE for each technique.
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Figure 2.5: The estimates for the perforation probability f(v) as a function
of velocity v for different non-parametric approaches. The dots are the input
data records.
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model estimation 95% Confidence Interval MSE

smoothing spline
V50

V01

431.92
365.64

[425.02; 440.61]
[359.45; 387.52]

0.1618964

isotonic regression
- stepwise

V50

V01

432
384

[410.82; 440.67]
[374; 409]

0.17325

isotonic regression
- linear

V50

V01

432
385.67

[418.27; 442.74]
[376.23; 409.12]

0.1643158

loss function
V50

V01

432
384

[432; 443]
[384; 384]

0.157155

Table 2.6: The estimated velocities including their 95% confidence intervals.

2.6 Bootstrap Method

In the previous two sections we were interested in finding a function f(v) in
order to determine Vp. In this section we rewrite f(v) as a conditional proba-
bility

f(v) = P (Y = 1|X = v),

the probability of perforation under the condition that the velocity X equals
v. Now,

P (Y = 1|X = Vp) = p P (Y = 0|X = Vp) = 1− p. (2.9)

Using Bayes rule, we can rewrite Equation (2.9) as

P (Y = 1|X = Vp) =
P (X = Vp|Y = 1)P (Y = 1)

P (X = Vp)
, (2.10)

and

P (Y = 0|X = Vp) =
P (X = Vp|Y = 0)P (Y = 0)

P (X = Vp)
. (2.11)

Dividing Equation (2.10) by Equation (2.11) and use Equation (2.9), we get
the following expression

p

1− p
=

P (X = Vp|Y = 1)P (Y = 1)
P (X = Vp|Y = 0) (1− P (Y = 1))

. (2.12)

Now we have to compute each of the components of Equation (2.12). Let us
first look at P (Y = 1), i.e. the proportion of data records of which the bullet
perforates the vest. This can be estimated directly from the data. The two
other probabilities can also be derived directly from the data for every observed
velocity xi, i = 1, . . . , N , where

1. P (X = xi|Y = 1) is the relative frequency at which we observe velocity
xi when the vest is perforated, and
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2. P (X = xi|Y = 0) is the relative frequency at which we observe velocity
xi when the vest is not perforated.

Since the property of Equation (2.12) holds for Vp we calculate the ratio

P (X = xi|Y = 1)P (Y = 1)
P (X = xi|Y = 0) (1− P (Y = 1))

,

for each observed velocity xi and the one that is closest to p/(1 − p) is the
estimate for Vp.

The main problems with this approach are the few data points in each
conditional distribution of the velocity and the fact that we can find different
velocities that are closest to the property of Vp. To overcome the first problem
we propose to use the bootstrap method to get a distribution for Vp, which
allows us to estimate Vp with the average and to construct a 95% confidence
interval. The second problem (of multiple velocities satisfying Equation (2.12))
is solved for V50 by taking the median and for V01 the minimum value of those
velocities is selected.

Verification

In order to verify whether the algorithm performs well, we can generate sam-
ples from known distributions (like normal or Weibull) that can be used as
input. For known distributions, we know what the outcome of the algorithm
should be. With the use of a small Monte-Carlo simulation experiment we can
test the performance. Table 2.7 shows the deviation of the result from the al-
gorithm with the true outcome for different distributions. The parameters for
the distributions are such that the mean and variance are equal to that of the
available data set. Based on these results, we can conclude that the algorithm
works well for most distributions.

distribution percentage deviation
V50 V01

chi-square 5.35% 6.30%
gamma 5.51% 6.30%
logistic 5.21% 9.17%
log-normal 72.1% 3616.41%
normal 5.34% 6.89%
student 0.33% 1.07%
uniform 5.78% 1.90%

Table 2.7: To verify the bootstrap method, we performed the method with
known distributions and therefore the actual outcome is known as well.
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Numerical Results

When we apply the proposed procedure to the data set, the resulting estimates
for both V50 and V01 are presented in Table 2.8 including the 95% confidence
intervals. Based on these results we conclude that the estimates for V50 have a
large 95% confidence interval and for V01 a rather small interval. This is because
the data is collected in a way to determine V50. As a result, not much different
velocities are detected satisfying the property as defined in Equation (2.12) for
V01.

sample size V50 V01

estimation 95% Conf. Int. estimation 95% Conf. Int.
0 126 426.81 [407; 458] 361.90 [359; 368]
1 42 422.03 [412; 429] 398.82 [398; 402]
2 42 458.42 [438; 471] 414.68 [413; 418]
3 42 423.45 [418; 432] 397.94 [397; 404]
4 42 466.59 [448; 483] 434.45 [433; 439]
5 42 459.54 [445; 468] 438.20 [438; 440]
6 42 479.00 [459; 501] 458.60 [458; 460]
7 42 491.87 [471; 499.5] 454.95 [454; 458]
8 42 392.68 [373; 402] 346.68 [346; 351]
9 36 383.88 [361; 406] 350.92 [350; 353]

Table 2.8: Estimates on different samples.

2.7 Experimental Set-Up

The design of the experiment set-up as explained in Section 2.1 is originally
developed to determine V50. With the same data statements about Vp for arbi-
trary p have to be made. Also in other fields where quantile estimation plays an
important role (like in toxicology) we see a shift towards generalization. In this
section we give some recommendations on the design of future experiments.

The median (p = 50%) is the most commonly used measure of characteristic
of the response curve. In some situations this estimation is of intrinsic interest,
but more often it is because this quantile is the easiest to estimate (Wu [20]).
Recently, several designs have been proposed for estimating quantiles where
10% ≤ p ≤ 90% (Wu [20], Stylianou and Flournoy [19]). The designs that
are typically suggested are so-called adaptive or sequential designs where the
velocity for a run is based on the response (perforation or no perforation)
in the previous run(s). Except in the extreme tails of the quantile response
function, the optimal design for estimating a particular quantile is a one-point
design at the (unknown) target quantile (Ford et al. [10]). Hence, a good
adaptive strategy should result in taking relatively much observations around
the velocity Vp of interest. An adaptive strategy, that has been shown to work
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fine for values of p between 10% and 50% is discussed in the next section. We
end this section with addressing the problems that arise when this probability
of interest is small.

Adaptive Design

Stylianou and Flournoy [19] proposed an adaptive design called the up-and-
down Biased Coin Design (BCD). Such a design is such that you tend to be
where Vp is. The speed of a random walk, and the mean drift of the random
walk, is equal to 0 at Vp, and otherwise the drift is towards Vp. Giovagnoli
and Pintacuda [12] showed that the BCD is optimal within a large class of
generalized up-and-down biased coin designs in the sense that the distribution
of the velocities considered in the experiment is most peaked around Vp.

The BCD procedure is as follows. Before the experiment start, a collection
of velocities of interest Ω = {v1 < v2 < . . . < vK} is set. The target velocity Vp
should be in the range of Ω. In the first experiment a bullet is shot at velocity
v ∈ Ω. The velocity v may be fixed (e.g. the velocity that is thought to be
closest to the target value Vp) or random. If the bullet perforated the vest,
the next velocity to shoot with is one slower from Ω. However if the bullet did
not perforate the vest, the procedure randomizes: Since we only consider cases
where p ≤ 50%, the velocity becomes higher according to Ω with probability
p/(1− p) and with probability (1− 2p)/(1− p) the same velocity is used in the
next shot. Appropriate adjustments need to be made at the lowest and highest
velocities in Ω.

Small perforation probabilities

Not much is known about the design of experiments when the percentage p is
smaller than 10%. A major problem is that the response is binary, which means
that the amount of information that we gather each run is very small. Most
of the bullets fired at velocities around Vp will be stopped for small values of
p. However, some perforations for velocities around Vp are needed in order to
estimate the probability of perforation at these velocities and eventually to help
locating velocity Vp. Let us denote Nr

p as the number of shots fired at the vest
with velocity Vp until the r-th perforation occurs. Under the assumption that
bullets are fired independently, this random variable has a negative binomial
distribution with parameters p and r. The probability distribution function is
given by Equation (2.13).

P (Nr
p = n) =

(
n− 1
r − 1

)
pr(1− p)n−r, n ≥ r. (2.13)

The expectation and the variance of Nr
p equals

E
[
Nr
p

]
=
r

p
, V ar

[
Nr
p

]
=
r(1− p)

p
.
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Table 2.9 gives some details of the distribution of Nr
p for some small perforation

probabilities p and different values of r. When the number of experiments is
limited to 150 (or even 500) it will be difficult to locate the velocities Vp for small
values of p using only the binary response. Using the depth of the perforation
(e.g. the number of perforated layers) as a response variable may be a better
way to gather more information from a single shot and to reduce the total
number of shots required to determine Vp for small values of p.

p r E
[
Nr
p

] √
Var

(
Nr
p

)
95% Confidence Interval

5.0% 1 20 4.36 [1; 59]
3 60 7.55 [3; 124]

1.0% 1 100 9.95 [1; 299]
3 300 17.23 [3; 628]

0.1% 1 1000 31.61 [1; 2995]
3 3000 54.75 [3; 6294]

Table 2.9: Some statistics of the negative-binomial distribution of Nr
p for dif-

ferent values of perforation probabilities p and number of perforations r.

2.8 Conclusions

In this paper we investigated the factors that influence the probability that a
bullet perforates a bullet proof vest. Section 2.2 made clear that the velocity
of the bullet and how many times a vest is shot are most important. However,
independence between the different shots has to be assumed in order to satisfy
the constraint to use all the shots fired at a vest. We recommend to look into
this phenomenon and investigate the shooting pattern that is used. The data
analysis also showed that the vest type is of less importance. This makes sense,
since it must be noted that all different vests used in this study are constructed
for a comparable level of protection. This could well cause the observed absence
of influence of the vest.

Comparing Techniques to Estimate Vp

In the remainder of the paper we investigated the relationship between the
velocity v and the probability of perforation for every vest type. In particular
we have developed several procedures to determine the velocity at which p
percent of the bullets go through the vest (denoted by Vp). In the different
methods a function f(v) is established which describes this relationship.

When we would like to compare the different approaches that are proposed
in this paper, we use the mean squared error as measure of fitness (see Sec-
tion 2.3). This measure can be computed for all data sets corresponding with
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different vest types. In total there are ten data sets. Table 2.10 shows the
performance of the model proposed by Kneubuehl [14] (see Section 2.1).

sample size Kneubuehl
0 126 0.166719
1 42 0.127233
2 42 0.162312
3 42 0.068530
4 42 0.145247
5 42 0.131702
6 42 0.120194
7 42 0.113723
8 42 0.121351
9 36 0.163257

Table 2.10: The MSE of the model proposed by Kneubuehl [14] for the different
vest types (or data sets).

The same can be done for the parametric approaches (GLMs) and the non-
parametric approaches, presented in Table 2.11 and Table 2.12 respectively. In
order to retrieve one number for the performance of a method, we looked at
the deviation of each MSE with the lowest MSE of each sample and averaged
this over all samples. The results are shown in Table 2.13.

sample logit alt. logit probit
alt.

probit
c log-log

alt.
c log-log

0 0.165017 0.165014 0.165048 0.165092 0.165973 0.165647
1 0.126806 0.127032 0.127494 0.127774 0.125250 0.125344
2 0.161179 0.161406 0.161132 0.161374 0.159999 0.160042
3 0.068192 0.068333 0.069782 0.069937 0.068547 0.068493
4 0.141198 0.140954 0.141223 0.140913 0.144903 0.144382
5 0.131761 0.131928 0.132066 0.132292 0.131089 0.131081
6 0.121305 0.121472 0.120707 0.120875 0.119120 0.119242
7 0.111732 0.110691 0.114492 0.113428 0.123853 0.122826
8 0.117431 0.117986 0.118233 0.118817 0.112520 0.112991
9 0.155910 0.153498 0.164483 0.160903 0.179272 0.175300

Table 2.11: The MSE of the classical and alternative GLMs for the different
vest types (or data sets).

Based on these results we see the smoothing spline technique to have the
lowest average percentage deviation from the lowest MSE. Smoothing splines
tend to perform better around the data points. Therefore, other techniques
have to be considered as well. Loss functions seem to work well, but the
confidence intervals are not convincing. The logistics model (logit model) and
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sample
smoothing

spline
isotonic regr.
(stepwise)

isotonic regr.
(linear)

loss function

0 0.161896 0.173250 0.164316 0.157155
1 0.120854 0.154894 0.136643 0.127269
2 0.151425 0.212950 0.160480 0.167148
3 0.069995 0.099286 0.070823 0.064706
4 0.128712 0.137205 0.153609 0.155883
5 0.123416 0.190476 0.137557 0.148669
6 0.117319 0.160788 0.118012 0.135566
7 0.089776 0.090624 0.097533 0.090461
8 0.111329 0.125800 0.104811 0.111609
9 0.145758 0.160601 0.161300 0.140037

Table 2.12: The mean squared error as deviation measure from the real data
for the different non-parametric approaches.

technique average deviation (%)
Kneubuehl 12.78%
logit 8.94%
alt. logit 8.77%
probit 10.22%
alt. probit 9.97%
comp. log-log 11.45%
alt. comp. log-log 40.77%
smoothing spline 2.15%
isotonic regression (stepwise) 26.61%
isotonic regression (linear) 8.83%
loss function 8.01%

Table 2.13: The average deviation as percentage of the lowest MSE for each
vest type

the isotonic regression approach with linear interpolation perform also well.
Especially when the confidence interval is of interest, we recommend the later
two techniques.

The final technique we developed is a bootstrap method in which a par-
ticular characteristic at Vp is determined based upon conditional probabilities.
A disadvantage of this procedure is that it will only work nicely for particular
values of p (p = 1% and p = 50% work fine). This procedure will probably
give the same results for p = 1% and p = 10%, since there is not much data
available in the region of these particular Vp values. This is not likely to happen
in reality.
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Experimental Design

The experimental data sets provided for this study are not optimal (equidis-
tant in speed). First we recommend to use different data records in order
to determine Vp for different values of p. The data records to determine Vp
should concentrate on the influence of the velocity on the perforation proba-
bility around Vp. More specifically, we propose a Biased Coin Design, that has
been proven to work well in practice for values of p between 10% and 50%. If,
however, V01 is required to be estimated, this design does not produce a good
data set since only perforations of the vest or no perforations are monitored.
Other information, like the number of perforated layers, could improve the re-
sults. Otherwise, the number of experiments to perform becomes more than a
thousand.
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