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Abstract

Piston-cylinder assemblies are used to create a calculable pressure in a container,
which can then be used for calibration of other instruments. For this purpose one
needs to calculate the pressure in the container so accurately that both imperfections
in the piston, and the leakage of fluid or gas through the small space between cylinder
and piston have to be taken into account. Because of these effects, the piston behaves
as if its area was slightly larger than it actually is. This slightly larger area is called
the effective area of the piston-cylinder assembly, and its computation is the subject
of this report.

We derive a formula for this effective area, which under some simplifications leads
to the formula used by four European metrological institutes. The formula used by
NMi is based on a further simplification. We conclude with some recommendations
to NMi concerning which formula to use and how to compute the uncertainty in the
results.

Keywords: effective area, piston-cylinder assemblies, pressure balance, thin film
approximation.

1.1 Problem description

Six European metrological institutes have compared their respective methods
of calculating the effective area of piston-cylinder assemblies, which are used for
calibration of pressure measurements [6]. Among them was NMi (Nederlands
Meetinstituut = Dutch metrological institute), whose method and results were
quite different from those of the other five institutes. NMi asked the study
group Mathematics with Industry: first, to explain the differences between the
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Figure 1.1: Basic geometry of the piston-cylinder [2].

six methods, and second, to recommend a method for computing the effective
area. In this note we do this and more: In Section 1.2 we give an introduction
to the virtual piston model for piston-cylinder assemblies. This model itself is
well known and well described in [1], on which most of the remaining sections
are based. In Section 1.3 we show how, under certain simplifications, the model
yields the various formulas used by the metrological institutes. In Section 1.4
we give a mathematically rigorous treatment of the Navier-Stokes equations
for incompressible Newtonian fluids, which also lead to the same formula. Of
course, our model itself still depends on certain simplifications, and in Section
1.5 we argue, at least for two of these simplifications, that there is no point in
relaxing them, since that would only have higher order effects on the results.
In Section 1.6 we comment on the computation of uncertainty limits; in Section
1.7 it is described how the formulas for the effective area should be evaluated
in a numerical sound way and finally, in Section 1.8 we present the desired
recommendations to NMi.

We start with a simplified description of the piston-cylinder unit used for
the pressure measurement. Figure 1.1 shows the basic geometry of this device.
It consists of a vessel containing a viscous fluid (air or oil) with a (nearly)
cylindrical opening in which a piston can move up and down.
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Inside the vessel, the fluid is under pressure p1 = p2 + ∆p where p2 denotes
the ambient pressure outside the device. A pressure measurement is done by
the weight of the piston so that an equilibrium is reached between this weight
and the forces exerted by the fluid on the piston. The largest part of this force
results from the pressure acting from below onto the piston.

Between the piston and the surrounding cylinder, however, there is a narrow
interstice in which a small amount of fluid is pressed upward. This leads to a
frictional force exerted by the fluid to the flanks of the piston, and this force
contributes to counterbalancing the weight of the piston.

The so-called effective area Aeff of the device is the area which would be
needed in an idealized situation to counterbalance the weight W of the piston
just from the pure pressure force:

Aeff :=
W

∆p
.

Let l denote the length of the piston. We assume that both the piston P
and the surrounding cylinder C are perfectly round, i.e., they are given by

P := {(x, y, z) | z ∈ (0, L), x2 + y2 < r(z)},
C := {(x, y, z) | z ∈ (0, L), x2 + y2 < R(z)},

respectively.
Our crucial assumption here is that both R and r have small variations and

that their difference h := R− r is small compared to the radii:

ε :=
h

r
� 1.

In practice, ε is of the order 10−4 to 10−5. Hence, in the situation we are
interested in, terms which are of order ε2 (or higher) can safely be neglected.

Note that in Section 1.2 and in [1], a slightly differing approach to the
concept of effective area is taken: The concept of a so-called virtual piston is
introduced, consisting of the actual piston together with an annular column of
liquid between the actual piston and the neutral surface between cylinder and
piston at which no shear forces act inside the liquid. For this virtual piston, the
friction force between the piston and the liquid is an internal force, and there
is no need to calculate it explicitly. Now in [1] the effective area is defined as

S :=
W + w

∆p
,

where w is the weight of the annular liquid column. In our situation, however,
including the gravitation force term in the lubrication equations (see Section
1.4) shows that w/∆p is of order ε2, therefore no difference to order ε exists
between Aeff and S. Due to this fact, the different approach taken by SMU
in their calculation of the effective area does not lead to essentially different
results.
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Figure 1.2: A piston-cylinder assembly.

1.2 The virtual piston model

First of all we give a gentle introduction to the virtual piston model, using the
concept of a virtual cylinder. We are given a cylinder and a cylindrical piston
of radius r moving in it. The piston has a certain weight W (which includes the
so-called applied weights on top of the piston). An ambient buoyancy correction
has to be done because of the ambient buoyancy effect on the submerged part
of the floating component. This W depends, of course, on the gravity g, but
we assume that it can be measured or computed very accurately. In the naive
model, depicted on the right in Figure 1.2, the piston and the cylinder are
perfect (vertical) cylinders with a perfect fit. In this case, when one knows the
area A of the piston, the pressure p can be calculated from the force equilibrium

pA = W.

Hence it suffices to know, in addition to W , the nominal area A = πr2 to
calculate the pressure p.

However, as suggested on the left in Figure 1.2, there is a small gap between
the piston and the cylinder, through which the medium moves upward, exerting
an upward frictional force on the piston. Let R be the radius of the cylinder,
and set h := R − r and ε := h/r. The parameter ε will always be assumed
small, and in fact our formulas will be exact up to terms of order ε2. To get rid
of this frictional force, one defines the neutral surface between the cylinder and
piston to be the surface where the velocity of the medium is maximal, and one
replaces the piston by the virtual piston, which is the actual piston enlarged
with the annular column of the medium bounded on the one side by the piston
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Figure 1.3: The neutral surface and the virtual piston.

and on the other side by the neutral surface—see Figure 1.3. The reason for
working with this virtual piston is that no friction is exerted on it anymore:
there is no friction among the layers of medium at the neutral surface. Let
w be the weight of the annular column of medium between the piston and
the neutral surface; again, we assume that w can be measured or calculated
very accurately. Now the effective area Aeff of the piston-cylinder assembly is
defined as the area that would explain why the virtual piston of weight W + w
is in equilibrium with the pressure from below. In a formula, we must have

Aeff(p1 − p2) = W + w,

where p1 is the pressure below the piston and p2 is the ambient pressure. Hence,
to compute the pressure p1 it suffices to know W,w, p2 and Aeff.

If the piston and cylinder are still assumed perfect cylinders as in Figure
1.3, then the neutral surface is also a cylinder, whose radius we denote by r∗.
It follows from the classical theory of viscous flow between cylindrical surfaces
[4] that

(r∗)2 =
R2 − r2

2log(Rr )
. (1.1)

Writing R = r(1 + ε), we get the following expansion for (r∗)2.

(r∗)2 = r2(1 + ε+
ε2

6
+O(ε3)).

In fact, r∗ is equal to the arithmetic mean (R+ r)/2 plus terms of order O(ε2)
due to the roundness of cylinder and piston. Other expressions that agree with
(R+r)/2 up to terms of order ε2 are the geometric mean

√
Rr or

√
(R2 + r2)/2.
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Figure 1.4: A non-perfect assembly.

All these expressions are used in the literature. The next combination of rR
and (R+ r)/2 gives a second order approximation for λ = 1

6 .

(r∗)2 = 4λ(
r +R

2
)2 + (1− 4λ)rR .= r2(1 + ε+ λε2). (1.2)

In this perfect-cylinder case the formula for Aeff is easy:

Aeff = π(r∗)2 = π((R+ r)/2)2 +O(ε2).

From the six European metrological institutes only NMi uses this formula.
However, the piston-cylinder assemblies under consideration are not perfect.
We do assume that they have perfect rotational symmetry around a vertical
axis (see Model B in Section 1.5 for a discussion of this assumption). Then
the piston and the cylinder are described by their radii r and R as a function
of the vertical coordinate x; see Figure 1.4. The neutral surface will also have
rotational symmetry, hence be given by its radius r∗ as a function of x ∈ [0, l].
Furthermore, the pressure p is a function of x, as well, and so is h. Following
[1] we sometimes write r0, R0, r

∗
0 , h0 for the values of r,R, r∗, h at 0, and p1, p2

for p(0), p(l).
Now the virtual piston has weight W + w, and this is in equilibrium with

the following forces exerted on it:

1. A force equal to πr∗(0)2p1 − πr∗(l)2p2 due to the pressure working on
both ends of the virtual piston, and

2. a force equal to
∫ l
0
p(ξ)dπ(r∗)2

dx (ξ)dξ due to the vertical component of the
fluid pressure acting on the inclined flanks of the virtual piston.
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Equilibrating these with W + w and partial integration yields

W + w = πr∗(0)2p1 − πr∗(l)2p2 +
∫ l

0

p(ξ)
dπ(r∗)2

dx
(ξ)dξ

= πr∗(0)2p1 − πr∗(l)2p2 +
[
p(ξ)πr∗(ξ)2

]l
0
−
∫ l

0

πr∗(ξ)2
dp

dx
(ξ)dξ

= −
∫ l

0

πr∗(ξ)2
dp

dx
(ξ)dξ (1.3)

This formula has a nice intuitive interpretation: the infinitesimal pressure dif-
ference − dp

dx at height ξ pushes upward against the circular horizontal cut at
height ξ of the virtual piston; and all these forces together are in equilibrium
with W + w.

Dividing by p1 − p2, we find that

Aeff = −(p1 − p2)−1

∫ l

0

πr∗(ξ)2
dp

dx
(ξ)dξ. (1.4)

Now we will often use the geometric mean
√
Rr as an approximation for r∗.

Moreover, we introduce the two new variables u := r − r0 and U := R − R0,
which are also assumed to be O(ε). Then (r∗)2 = rR + O(ε2) = (r − u)(R +
u) + O(u) + O(ε2) = r0(r0 + h0 + U + u) + O(u) + O(ε2). Substituting this
approximation, we find that the effective area is approximately

Aeff ' πr20

{
1 +

h0

r0
− 1
r0(p1 − p2)

∫ l

0

(u(ξ) + U(ξ))
dp

dξ
dξ

}
. (1.5)

Most European metrological institutes use equivalent or simplified versions of
this formula. The goal is now, given r and R as functions of x (or rather,
lists of their values measured at finitely many levels in [0, l]), and assuming a
suitable model for the pressure p, to compute the effective area Aeff using the
formula above.

1.3 Simplifications under further assumptions

Having determined the formula (1.4), it is still not possible to calculate the ef-
fective area of the piston: the formula contains the unknown pressure p1 (which
is to be determined!) and, even worse, the derivative p′(ξ) of the pressure in
the thin layer between the piston and the cylinder. In this section we show
that from formula (1.5) one can, under additional assumptions, derive various
other formulas in which all variables are known.

Since the annulus between the cylinder and the piston is very small (h/r =
ε� 1) the fluid motion in this gap is at zeroth order well described by the so-
called thin film or lubrication approximation of the Navier-Stokes equation. For
the derivation we use (again) the rotationally symmetric nature of the problem
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and the fact that the ratio h/r is small. These two features allow us to consider
the problem as a 2D one and then apply the rotational symmetry to obtain a
full 3D picture. The fluid in a vertical 2D slice has velocity v = (v1, v2), where
v1(x, y) is the velocity component in the vertical x-direction and v2(x, y) the
component in the horizontal y-direction. The equations are then

∂p

∂x
= µ

∂2v1
∂y2

,
∂p

∂y
= µ

∂2v2
∂y2

,
∂v1
∂x

+
∂v2
∂y

= 0,

where µ is the viscosity, that is assumed independent of the pressure p. For
a viscous fluid the natural boundary conditions are v1 = v2 = 0 on the walls,
so on y = 0 + u(x) and y = h + U(x). In first approximation this yields the
solution v2 ≡ 0, p = p(x), v1 = 1

2µ
dp
dx (y − u)(y − h − U) ≈ 1

2µ
dp
dxy(y − h) if u

and U are much smaller than h.
The fluid velocity flux Q through through a horizontal slice of the annulus

is the fluid velocity integrated over this area. The rotational symmetry and
small fraction h/r yield that this flux is at leading order

Q = 2πr
∫ h

0

v2(y)dy = 2πr
1

2µ
dp

dx

[
1
3
y3 − 1

2
hy2

]h
y=0

,

which yields the formula
Q

πr
= − 1

6µ
dp

dx
h3. (1.6)

Since the fluid in the annulus is a thin film between two metal side walls,
the temperature of the fluid can be assumed constant, so that isothermic laws
apply.

Assemblies operating with incompressible fluids

For incompressible fluids, the flux Q is constant. Since r is constant at leading
order, this implies that the right-hand side of (1.6) is constant at leading order,
so that d

dx [− dp
dxh

3] = 0. Integration leads to

p(x) = p1 − (p1 − p2)

∫ x
0

1
h(ξ)3 dξ∫ l

0
1

h(ξ)3 dξ
(1.7)

and
dp

dx
= −(p1 − p2)

1
h(x)3∫ l

0
1

h(ξ)3 dξ
. (1.8)

Substitution into (1.4) gives the formula

Aeff =

∫ l
0
πr∗(ξ)2 1

h(ξ)3 dξ∫ l
0

1
h(ξ)3 dξ

. (1.9)
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This formula only contains variables that are known by measurements and
interpolation between the measured data. It is, under the assumption of
pressure-independent viscosity, valid for all values p1, p2. In other words, for in-
compressible fluids the resulting effective area is pressure-independent, which,
of course, is what makes the effective area a useful characteristic of piston-
cylinder assemblies! This formula and variations on it are used by IMGC,
LNE, PTB, and UME. This seems reasonable for liquid-operated assemblies
under not too high pressure, as under low pressure liquids in general behave
as incompressible fluids. The formulas below for gas-operated assemblies look
similar to (1.9), but are slightly more complicated. In particular, the constant

C :=
∫ l

0

1
h(ξ)

dξ (1.10)

will appear over and over again, and we will abbreviate it to C.

Gas-operated assemblies

For gas-operated assemblies, and also for liquid-operated assemblies under very
high pressure, the assumption of incompressibility is no longer realistic. For
such fluids it is no longer the flux Q, but the value Qρ that is constant, where
ρ is the density. From (1.6) we then derive that

Qρ

πr
= − ρ

6µ
dp

dx
h3

is constant at leading order. According to the gas law pV = mRT the quotient
p/ρ is constant under isothermic conditions, so that − p

6µ
dp
dxh

3 is constant and
has zero derivate as well. For pressure-independent viscosity integration now
leads to

p(x) =
[
p2
1 −

p2
1 − p2

2

C

∫ x

0

1
h(ξ)3

dξ

]1/2
, (1.11)

where C is the constant defined in (1.10); hence

dp

dx
(x) = −p

2
1 − p2

2

2C
1

h(x)3

(
p2
1 −

p2
1 − p2

2

C

∫ x

0

1
h(ξ)3

dξ

)−1/2

. (1.12)

This formula can again be substituted in (1.4). The resulting effective area Aeff

is no longer independent of p1 and p2 and can in theory not be determined as
long as the pressure p1 is unknown. However, Aeff is in fact just a function of the
ratio p1/p2. Under the assumption that limx→∞Aeff(x) exists, this means in
particular that limp2→0Aeff(p1p2 ) is independent of the value p1: if the assembly
is immersed in vacuum, so with p2 → 0, the effective area is independent of p1.

The institute PTB used the resulting expression for Aeff (their formula (3)
plugged into their (2)), and then extrapolated for p1 − p2 → 0.
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Small applied pressure

The expression for Aeff for a compressible fluid has two limits, in which the for-
mula becomes more attractive. If we assume that p1 � (p1 − p2), we consider
the situation in which the pressure difference is small compared to the pressure
p1 (or p2). Equivalently, one can consider the limit p2 → p1. If, after substitu-
tion of (1.12) into (1.4), this limit is taken, then the result is precisely equation
(1.9), the formula that gives the effective area in case of an incompressible fluid.

Thus one can conclude that under small pressure differences any fluid, com-
pressible or incompressible, leads to the same effective area. This makes it even
more attractive to use this formula and validates the choice of IMGC, LNE,
PTB, and UME in a sense.

Large applied pressure

The other limit we take is the limit for large applied pressure, so p1 � p2. Since
for compressible fluids Aeff is a function of p1/p2, the limit p2 → 0 describes
this situation. In this limit (1.12) reduces to

dp

dx
(x) = − p1

2C
1

h(x)3

(
1−

∫ x
0

1
h(ξ)3 dξ

C

)−1/2

,

which in turn leads to an effective area

Aeff =
∫ l

0

πr∗(x)2

2Ch(x)3

(
1−

∫ x
0

1
h(ξ)3 dξ

C

)−1/2

dx. (1.13)

In deriving these formulas we implicitly assumed that the linear (isothermic)
gas law is still valid for these high pressure conditions. The limit (1.13) thus
obtained is useful for gas-operated assemblies with high p1− p2. Note that the
effective area is (again) independent of the values p1 and p2, but differs from
the effective area for the low applied pressure or incompressible case. Note also
that it involves computing a double integral, where the bound x of the inner
integral is the variable of the outer integral; this makes numerical evaluation
of the expression above rather awkward.

1.4 The Navier-Stokes equations for incompressible
fluids

After the rather informal approach using the virtual piston model, we will now
derive formula (1.9) more rigorously, making precise what simplifications of
reality underly the model.

The motion of air of oil between the inner r and outer radius R can be
described by the Navier-Stokes equations for incompressible Newtonian fluids,
given by [5, 3]

ρ
(∂v

∂t
+ v·∇v

)
= −∇p+ µ∇2v − ρgex, ∇·v = 0, (1.14)
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where ρ, v, p and g denote density, velocity, pressure and the gravitational
acceleration. This expression is valid for a uniformly constant viscosity µ.
This appears to be a reasonable assumption, as the large heat capacity of the
metal cylinder is probably able to absorb any generated heat and to keep the
temperature, and thus the viscosity, of the fluid constant.

In view of the geometry of piston and cylinder, we choose cylindrical coor-
dinates (r, φ, x), while v, w, u will denote the r, φ, x component of the velocity
v. Note the difference between r and r: the latter is, as always, the radius of
the piston as a function of x, while the former is the radial coordinate! The
stationary problem becomes in axial, radial and circumferential components

ρ

(
v
∂u

∂r
+
w

r
∂u

∂φ
+ u

∂u

∂x

)
=

µ

(
1
r
∂

∂r

(
r
∂u

∂r

)
+

1
r2
∂2u

∂φ2
+
∂2u

∂x2

)
− ∂p

∂x
− ρg, (1.15a)

ρ

(
v
∂v

∂r
+
w

r
∂v

∂φ
− w2

r
+ u

∂v

∂x

)
=

µ

(
∂

∂r

(
1
r
∂

∂r
(rv)

)
+

1
r2
∂2v

∂φ2
+
∂2v

∂x2
− 2

r2
∂w

∂φ

)
− ∂p

∂r
, (1.15b)

ρ

(
v
∂w

∂r
+
w

r
∂w

∂φ
+
vw

r
+ u

∂w

∂x

)
=

µ

(
∂

∂r

(
1
r
∂

∂r
(rw)

)
+

1
r2
∂2w

∂φ2
+
∂2w

∂x2
+

2
r2
∂v

∂φ

)
− 1

r
∂p

∂φ
, (1.15c)

∂u

∂x
+

1
r
∂

∂r
(rv) +

1
r
∂w

∂φ
= 0. (1.15d)

Both the slowly sinking piston and the rotation can be completely modeled by
the boundary conditions! It is convenient to combine p and ρg into the reduced
pressure

p̄ = p+ ρgx. (1.16)

When we scale the axial velocity on a typical (as yet unknown) velocity U ,
the radial velocity on hU/l, the circumferential velocity on the given rotational
velocity, say U/δ (where δ is small), radial derivatives on the typical width
h = R − r, radial distance r and axial derivatives on the slit length l, the
circumferential derivatives on a small paramete γ, the (reduced) pressure on
µUl/h2, while we call the small parameter ε = h/l and the Reynolds number
in axial direction Re = ρUh/µ. Notice that ε 6= ε = h

r but has the same order
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of magnitude. Then we get in dimensionless form

Reε
(
v
∂u

∂r
+
γ

δ

w

r
∂u

∂φ
+ u

∂u

∂x

)
=

1
r
∂

∂r

(
r
∂u

∂r

)
+ γ2ε2

1
r2
∂2u

∂φ2
+ ε2

∂2u

∂x2
− ∂p̄

∂x
, (1.17a)

Reε2
(
εv
∂v

∂r
+
εγ

δ

w

r
∂v

∂φ
− 1
δ2
w2

r
+ εu

∂v

∂x

)
=

ε2
(
∂

∂r

(
1
r
∂

∂r
(rv)

)
+ γ2ε2

1
r2
∂2v

∂φ2
+ ε2

∂2v

∂x2
− εγ

δ

2
r2
∂w

∂φ

)
− ∂p̄

∂r
, (1.17b)

Reε
(
v
∂w

∂r
+
γ

δ

w

r
∂w

∂φ
+ ε

vw

r
+ u

∂w

∂x

)
=

∂

∂r

(
1
r
∂

∂r
(rw)

)
+ γ2ε2

1
r2
∂2w

∂φ2
+ ε2

∂2w

∂x2
+ γδε3

2
r2
∂v

∂φ
− γδ

r
∂p̄

∂φ
, (1.17c)

∂u

∂x
+

1
r
∂

∂r
(rv) +

γ

δ

1
r
∂w

∂φ
= 0. (1.17d)

Thus the order of magnitude estimates of the both sides of the equations equal

Reε,Reεγ/δ,Reε = 1, γ2ε2, ε2, 1, (1.18a)

Reε3,Reε3γ/δ,Reε2/δ2,Reε3 = ε2, γ2ε4, ε4, ε3γ/δ, 1, (1.18b)

Reε,Reεγ/δ,Reε2,Reε = 1, γ2ε2, ε2, γδε3, γδ, (1.18c)
1, 1, γ/δ = 0. (1.18d)

So if ε is small, with Re � O(ε), γ2 � O( 1
Re ε

4), δ2 � O(Re) and γδ � O(ε2)
then all small terms are equal to or smaller than O(ε2), and we are left with

µ

r
∂

∂r

(
r
∂u

∂r

)
− ∂p̄

∂x
= 0, (1.19a)

∂p̄

∂r
= 0, (1.19b)

∂

∂r

(
1
r
∂

∂r

(
r
∂w

∂r

))
= 0, (1.19c)

∂u

∂x
+

1
r
∂

∂r
(rv) +

γ

δ

1
r
∂w

∂φ
= 0. (1.19d)

All this is to be verified a posteriori, because the order of magnitude of U
is unknown yet. Equation (1.19a) is the most important equation here, and
known as Reynold’s lubrication equation. Equation (1.19b) says that the pres-
sure only depends on x. Equation (1.19c) says that circumferential velocity
component w is decoupled from the rest of the problem, so it can be ignored
as it doesn’t contribute to the pressure difference between top and bottom.
Equation (1.19d) relates v and w to u, but can also be ignored for the present
problem.
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The inner cylinder is slowly but steadily moving down by its own weight
W , and we assume at time t the bottom to be at height xp with (constant)
velocity up, given by

x = xp(t), up =
dxp
dt

. (1.20)

The position of the inner cylinder is conveniently described by

r = r(x− xp). (1.21)

The boundary conditions along the cylindrical surfaces r = r and r = R, taking
into account the same approximation as before by ignoring all O(ε2)-terms,
become [7]

u = up at r = r(x− xp), (1.22a)
u = 0 at r = R(x). (1.22b)

Conservation of mass requires that as much mass is squeezed out of the cavity
as corresponds to the incoming volume of the inner cylinder [7]:

2π
∫ R

r

u(r, x)r dr = −πupr2. (1.23)

Note that the above expression is the volume flux at height x. This is not the
same for every x, because the slit width h may vary with x.

The total force on the inner cylinder [7] is now given by the pressure dif-
ference between top and bottom (multiplied by the respective areas) plus the
shear and normal stresses of the flow in the slit. Re-expressed in terms of p̄
this is given by

F = 2π
∫ xp+l

xp

[
p̄r′r + µ

∂u

∂r
r

]
r=r

dx+ πρg

∫ xp+l

xp

r2(x− xp) dx

+ π
[
r2(0)p̄(xp)− r2(l)p̄(xp + l)

]
= π

∫ xp+l

xp

[
−dp̄

dx
r2 + 2µ

∂u

∂r
r

]
r=r

dx+ πρg

∫ l

0

r2(s) ds. (1.24a)

From equations (1.19a, 1.22a, 1.22b) and (1.23) we have

2rµ
∂u

∂r
= r2

dp̄
dx

−
1
2

dp̄
dx (R2 − r2) + 2µup

log(R/r)
(1.25a)

dp̄
dx

=
4µup

(R2 + r2) log(R/r)− (R2 − r2)
(1.25b)

(Note that velocity up is as yet unknown.) This leads to the total force on the
inner cylinder to be given by

F = −2πµup
∫ l

0

R2 + r2

(R2 + r2) log(R/r)− (R2 − r2)
ds+ πρg

∫ l

0

r2 ds. (1.26)
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The unknown velocity up is obtained from the condition that for a steady
situation the force F should be equal to the weight of the cylinder W . So we
have

up = −
W − πρg

∫ l

0

r2 ds

2πµ
∫ l

0

R2 + r2

(R2 + r2) log(R/r)− (R2 − r2)
ds
. (1.27)

This yields all the information necessary to determine the pressure difference
between top and an bottom. If up is known it is also possible to estimate the
value of U . From (1.23) it follows that π(R2 − r2)U ≈ π|up|r2, so

U = O(
|up|
2ε

).

If |up| � O(ε2) the previous assumption that Re � O(ε) is correct. Because of
(1.31a) and (1.31b) we can estimate that

up '
W

6πµl
ε3.

If we use the following estimates (for air):

r = l = 6 cm,
W = 5000 g,

µ = 1.78 · 10−4 g/cm s,

ρ = 1.2 · 10−3 g/cm3
,

ε = 5 · 10−5

we obtain

up = 3 · 10−8 cm/s,

U = 3 · 10−4 cm/s,

Re = 6 · 10−7,

so indeed Re � ε. The order condition γ2 � O( 1
Re ε

4) is fulfilled if γ ≤ 3 ·10−6,
a very small number. For δ ∼ 8 ·10−4 the side-effects can be neglected because
then δ2 � O(Re) and γδ � O(ε2). Because δ = U/2πrf ≈ 7.96 · 10−6/f ,
it follows that the rotational frequency f ∼ 10−2 rev/s = 0.6 rev/min. This
result is different from the results of Michels [1], who found much higher critical
speeds lying generally within the range 28 to 32 rev/min. This diference could
be explained by the fact that we used different parameter values. However, it
is also mentioned in [1] that there is evidence that considerably lower speeds
are quite practical with well-made piston-cylinder assemblies.

We have

p̄(xp)− p̄(xp + l) = −
∫ xp+l

xp

dp̄
dx

dx (1.28)
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Thus we get

p(xp)− p(xp + l) = ρgl+

2
π

(
W − πρg

∫ l

0

r2ds

) ∫ l

0

1
(R2 + r2) log(R/r)− (R2 − r2)

ds∫ l

0

R2 + r2

(R2 + r2) log(R/r)− (R2 − r2)
ds
. (1.29)

This is a complete and, within the theory of lubrication flow with slowly varying
walls [5] and moderate Reynolds number, exact result. We can make consider-
able progress, however, by using the fact that the slit is not only slowly varying
but also very close to, and very thin compared to, a typical cylinder radius.
We choose a fixed radius Reff, which will be chosen in a convenient way and
which will correspond to the effective area, and introduce

r(s) = Reff − h1(s), (1.30a)
R(s) = Reff + h2(s), (1.30b)
h(s) = h1(s) + h2(s), (1.30c)
R(s) = r(s) + h(s), (1.30d)

where h1 and h2 are both of the same order of magnitude as h. Then we can
approximate for small h

(R2 + r2) log(R/r)− (R2 − r2) =
2h3

3Reff
+ (h1 − h2)

h3

3R2
eff

+O(h5/R3
eff),

(1.31a)

R2 + r2 = 2R2
eff − 2Reff(h1 − h2) +O(h2). (1.31b)

This yields the rather unwieldy expression

p(xp)− p(xp + l) ' ρgl+

(
W

πR2
eff

− ρgl +
2ρg
Reff

∫ l

0

h1ds

) ∫ l

0

1
h3
− 1

2
h1 − h2

Reffh3
ds∫ l

0

1
h3
− 3

2
h1 − h2

Reffh3
ds
. (1.32)

A clever choice of Reff, however, is the one which makes∫ l

0

h1 − h2

Reffh3
ds = 0. (1.33)

This is achieved by

Reff =

∫ l

0

R+ r

h3
ds

2
∫ l

0

1
h3

ds
(1.34)
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Notice that Reff can be viewed as the radius of a generalized neutral surface.
In this case our expression greatly simplifies to

p(xp)− p(xp + l) ' W

πR2
eff

+
2ρg
Reff

∫ l

0

h1ds (1.35)

This can be interpreted as the well-known effective area, see [1] and Section
1.1. If we define

Aeff = πR2
eff (1.36)

and note that

w = 2πReffρg

∫ l

0

h1ds (1.37)

is (to the order of approximation) equal to the weight of the cylinder of fluid
between Reff and r, then

Aeff(p(xp)− p(xp + l)) 'W + w (1.38)

In conclusion: the systematic and most general definition of effective area,
for piston-cylinder assemblies operating with incompressible fluids, is given by
equations (1.34) with (1.36). Up to order ε2, this approach leads to the same
expression as formula (1.9) in Section 1.3.

1.5 Further side effects

The model (1.4) which has been derived in section 1.2, is based on a lot of
assumptions.

• The piston and cylinder are axisymmetric.

• The vertical velocity of the piston is zero in the stationary case.

• The system converges sufficiently fast to the stationary state.

• There is no rotation because the stationary case is stable.

• The piston and cylinder have the same axis.

• The elastic properties of the material of the piston and cylinder are not
important.

• The temperature variations because of the friction can be neglected.

In practice these assumptions are not fulfilled, as we now explain. We will
shortly describe the physical aspects of the piston-cylinder unit and enumerate
the side-effects which are not modelled by Dadson’s theory, which is described
in Section 1.2.

There is a fluid/gas below the piston and also between the walls of the piston
and cylinder. In what follows, we will concentrate on the case of incompressible
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fluids. We start from an initial state, for which there is no fluid between the
walls. Because of the gravity force the piston will sink rather fast. Fluid will
flow between the moving walls, which implies an upward force as reaction on
the gravity force. This upward force will grow when the piston sinks until
both forces are equal (stationary case). Because this equilibrium should be
unstable, the piston is rotating with fixed angular frequency around its fixed
axis. Because of the viscosity the cylinder will also rotate. It follows that the
walls of the piston and cylinder do not touch each other.

The first side-effect is the fact that the radii of the piston and cylinder
depend on z and φ. Second, the piston falls with a constant speed in the
stationary case. In Dadson’s theory it was assumed that this speed is zero but
this is not always true. We are interested in the stationary case for which the
piston falls with this constant speed and is still rotating. A third side-effect is
that the piston is rotating in order to get rid of the instability.

In section 1.4 a general formula for the effective area is given. It is directly
derived from the Navier-Stokes equations for incompressible Newtonian fluids.
The model includes the fact that the piston is slowly sinking. Furthermore,
conditions are given, such that the model can be assumed to be axisymmetiric.

In [2, 8] one considers finite element models which also include the elasticity
of the material of the piston and the cylinder. If we take care with moving axes
we should also consider the dry friction forces if the cylinder and piston touch
each other. In [1] it is shown how to deal with the rotation and the moving
axes. It has been shown that the resultant of the viscous forces is zero by
symmetry.
We will consider the following two extended models.

A This model assumes that the piston and cylinder are perfect cylinders
around the same axis. There is no rotation. We only consider the ef-
fect that the piston slowly sinks in the stationary case.

B This model assumes that there is no rotation and it is assumed that the
piston does not sink in the stationary case. We only assume that the
radius of the piston and cylinder depends on z and φ.

Model A: sinking of piston

Consider the piston and cylinder of constant radius r and R. We are interested
in the stationary case where the upward wet friction force is equal to the
downward gravity force. Note that the force have to be corrected because of
the buoyancy force on the piston below the fluid level. For moving axes it has
been proved in [1] that the exact value of r∗ satisfies

(r∗)2 = r2(1 + ε+
7
12
ε2 +O(ε3)). (1.39)

Thus the influence of the sinking piston is O(ε2).
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Model B: variable radius for piston and cylinder

Assume that the radii depend on z and φ. Then the neutral surface will also
depend on z and φ! It is very hard, to compute r∗(z, φ) in an analytical way. It
is defined as the radius of the virtual cylinder between the piston and cylinder
for which the force between adjacent layers of fluid will be zero. This means
that there the tangential component of the force is zero! Note that formula
(1.4) can be written as

Aeff(p2 − p1) =
∫ l

0

π(r∗)2
dp

dx
dx.

Because now r∗ and dp
dx also depend on φ we get

Aeff(p2 − p1) =
∫ l

0

∫ 2π

0

π(r∗)2
dp

dx
dφdx. (1.40)

In [1] it is stated that p satisfies the two-dimensional continuity equation:

∂

∂z

{
h3 ρ

µ

∂p

∂z

}
+

∂

∂φ

{
h3 ρ

µ

∂p

∂φ

}
= 6

{
U
∂

∂z
(ρh) + V

∂

∂φ
(ρh)

}
, (1.41)

where z and φ are the axial and circumferential coordinates and U and V
are the relative velocities of the two surfaces in the axial and circumferential
directions respectively.

From practice it follows that the non-roundness is of the same order as
the measurement errors. This implies that it indeed can be assumed that the
piston and cylinder are axisymmetric.

1.6 Uncertainty limits

Standard uncertainty of measurements

In all measurements, we have to deal with measurement errors. These are
usually modeled as normally distributed uncertainties ∆(xi), that are super-
imposed to the ‘real’ values of each measurement xi. The standard uncertainty
of measurement xi is then defined as the standard deviation of ∆(xi), which
we denote by σ(xi).

For every measuring instrument, some standard uncertainty of measure-
ment is specified, which can be used to calculate the overall uncertainty of
some physical entity A, that is derived from the measurements xi.

If all measurement errors are independent from each other, we can use the
following first order approximation to calculate the overall uncertainty in A :

σ(A)2 =
n∑
i=1

(
σ(xi)

∂A

∂xi

)2
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The piston measurement uncertainties

The NMi has provided us with piston and cylinder measurement data and
their standard uncertainties. The piston diameter was measured at 13 dif-
ferent heights (ξ-coordinates), with a standard uncertainty of 50 nm, which is
determined by the standard uncertainty of the measuring equipment. However,
the sample standard deviation of these 13 measurements is only 14 nm. Even if
there are only small fluctuations in the ‘real’ diameter of the piston, we would
expect a sample standard deviation of at least 50 nm. The fact that we find
a so much smaller sample standard deviation can not be attributed to chance.
No matter what statistical test we apply, we allways find p-values smaller than
10−10. The same phenomenon appears in the piston measurements that were
performed at all other metrology institutes.

We conclude that the standard uncertainties of both piston and cylinder
measurements must have a systematic and a random component. Both com-
ponents are unknown, but the systematic component is always the same for
all measurements, whereas the random components are independent from one
another. This kind of situation can occur for instance in mass measurements,
where the unknown mass is compared to a standard mass. This standard mass
has some unknown deviation from the exact value. All measurements per-
formed with the same standard mass will therefore have a systematic error
equal to the deviation of the standard mass.

When confronted with systematic uncertainties, we have to adapt the for-
mula for the first order approximation of the overall uncertainty of some phys-
ical entity A:

σ(A)2 =
n∑
i=1

(
σ(xi)

∂A

∂xi

)2

+

[
n∑
i=1

(
σ̃(xi)

∂A

∂xi

)]2

, (1.42)

where σ(xi) is the random (uncorrelated) component and σ̃(xi) is the system-
atic component of the uncertainty in the measurement of xi.

It is also possible to model the uncertainties in a more general way, by
introducing certain correlations between every pair of seperate measurements.
This will however lead to quite complicated mathematical models. Another
major drawback of this approach is in the fact that it is very hard (if not
impossible) to make good estimates for these correlations.

Numerical calculation of the propagation of measurement
errors

In this section we give an example of how the propagation formula (1.42) can
be handled in a comprehensive numerical way.

We make two assumptions in the computation of uncertainties. First, we
assume to deal with the case of an incompressible fluid. Second, we suppose
that the approximation S̃ for the effective area Aeff, is obtained by replacing the
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integrals by Riemann sums (i.e. the integrand is approximated by a staircase
function).

These choices are not very restrictive. Indeed, from the analytic formulas,
it is derived in section 1.3 that the formula for incompressible as well as the
one for compressible fluids coincide in the limit of small applied pressure (i.e.
in case p1 − p2 � p1, that we are dealing with). Hence the restriction to the
case of an incompressible fluid does not imply loss of generality. Concrete, we
assume that the effective area is expressed by formula (1.43):

Aeff = πr20 + πr0h0 + πr0

∫ l
0

(u (x) + U (x))h (x)−3 dx∫ l
0
h (x)−3 dx

(1.43)

Furthermore, we calculate the uncertainty of measurement when the inte-
grals are approximated by Riemann sums. Although it is a primitive approxi-
mation technique, it is the root of most other techniques when approximating
integrals. As a consequence, the formula (1.44) derived below, can serve as
a first order approximation of the random component of uncertainty of the
effective area in general.

The Riemann sum approximation is obtained by dividing the interval [0, l]
first in n subintervals of equal length, say [xi, xi+1] , 0 ≤ i ≤ n− 1 with x0 = 0
and xi+1 − xi = l/n, Then, the expression in the right-hand side of (1.43) can
be approximated by

S̃ = πr20 + πr0h0 + πr0

∑n
i=0 (u (xi) + U (xi))h (xi)

−3 l
n∑n

i=0 h (xi)
−3 l

n

= πr20 + πr0h0 + πr0

∑n
i=0 (ui + Ui)h−3

i∑n
i=0 h

−3
i

= S̃ (r0, R0, r1, R1, . . . , rn, Rn)

where ui = u (xi) , Ui = U (xi) , hi = h (xi) ,∀0 ≤ i ≤ n; recall also that
hi = Ri − ri,∀0 ≤ i ≤ n. Let us denote by σ (y) the random component of
uncertainty of y and by σ̃ (y) the systematic component of uncertainty of y.
Then, the random component of uncertainty of the effective area Aeff is defined
by

σ (Aeff)2 =

(
σ (r)

∂S̃

∂r0

)2

+

(
σ (R)

∂S̃

∂R0

)2

+
n∑
i=0

(
σ (r)2 + σ (R)2

)( ∂S̃

∂hi

)2

+

(
σ̃ (r)

n∑
i=0

∂S̃

∂ri

)2

+

(
σ̃ (R)

n∑
i=0

∂S̃

∂Ri

)2

. (1.44)

The partial derivatives that are encountered in ( 1.44) can be computed as
follows. Put ∀0 ≤ i ≤ n

Ci = −3πr0 ·
∑n
j=0 h

−3
j [(ui + Ui)− (uj + Uj)]

h4
i

(∑n
j=0 h

−3
j

)2 .
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Then,
∂S̃

∂r0
= πR0 + π

∑n
i=0 (ui + Ui)h−3

i∑n
i=0 h

−3
i

− C0;

∂S̃

∂R0
= πr0 + C0

∂S̃

∂h0
= πr0 + C0 and

∂S̃

∂hi
= Ci,∀1 ≤ i ≤ n;

∂S̃

∂ri
= − ∂S̃

∂hi
and

∂S̃

∂Ri
=
∂S̃

∂hi
,∀1 ≤ i ≤ n.

If higher order integration methods are used (like Simpson’s rule), every
term in the Riemann sum will receive its own coefficient and nothing else will
change. Therefore, the same approach can still be applied to the calculation of
the partial derivatives.

1.7 Numerical implementation of Dadson’s formula

For incompressible fluids the formula (1.9) has been shown in section 1.3 to be
a proper approximation of the effective area. The following equivalent formulas
are used by four institutes [6]. They are all equivalent and can be derived from
(1.9).

Aeff = πr20

{
1 +

1
r0

∫ l
0

1
h2 dx∫ l

0
1
h3 dx

+
2
r0

∫ l
0
u
h3 dx∫ l

0
1
h3 dx

}
(1.45)

Aeff = πr20

{
1 +

h0

r0
+

1
r0

∫ l
0
u+U
h3 dx∫ l

0
1
h3 dx

}
(1.46)

Aeff = πr0

{
−r0 +

∫ l
0
r+R
h3 dx∫ l

0
1
h3 dx

}
. (1.47)

The integrands of the integrals are continuous functions which have to be ap-
proximated by use of the measurements. It is possible to create the integrand-
functions themselves directly by interpolation or to create the functions r,R :
[0, l] → R+ first. Therefore the cylinder and piston radii are measured for
z = zi, resulting in the set {(Ri, ri), i = 1, . . . , N}. The grid {zi, i = 1, . . . , N}
of the length axis of the piston-cylinder unit can be used to control the accu-
racy of the resulting continuous functions in an adaptive way. If r,R behave
very smoothly it is more efficient to use higher order interpolation, while low
order interpolation is better for less smooth surfaces. Furthermore linear in-
terpolation could be used in order to conserve the monotonicity.

Each integral can be evaluated with a numerical integration technique,
like Newton-Cotes or Gaussian quadrature formulas. The most straightfor-
ward numerical integration technique uses the Newton-Cotes formulas (also
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called quadrature formulas), which approximate a function tabulated at a se-
quence of regularly spaced intervals by various degree polynomials. Common
Newton-Cotes formulas include the Trapezoidal Rule (Linear), Simpson’s Rule
(Parabolic) and Simpson’s 3/8 Rule (Cubic) . If the functions are known
analytically instead of being tabulated at equally spaced intervals, the best
numerical method of integration is called Gaussian quadrature, which uses
non-uniformly spaced grid points. Common Gaussian quadratures include the
Gauss-Legendre Formula and the Gauss-Chebyshev Formula. It could be more
efficient to use an adaptive grid, which is more dense where h(x) ≈ 0. Also
it can be synchronized with the grid {zi, i = 1, . . . , N} of the measurements
in order to minimize the interpolation errors. The Newton-Cotes formulas are
less accurate but significantly less complicated to implement.

If we compare the three unscaled formulas we see that no cancellation errors
occur. In all cases the denominator can become very small if the clearance h
tends to zero. Therefore we have to scale the variables in order to avoid serious
trouble because of roundoff errors. Write h = εhh̄, u = εuū and U = εU Ū ,
where h̄, ū, Ū are O(1). Then the formulas (1.45),(1.46),(1.47) can be written
as

Aeff = πr20

{
1 +

εh
r0

∫ l
0

1
h̄2 dx∫ l

0
1
h̄3 dx

+
2εu
r0

∫ l
0
ū
h̄3 dx∫ l

0
1
h̄3 dx

}
, (1.48)

Aeff = πr20

{
1 + εh

h̄0

r0
+

1
r0

∫ l
0
εu

ū
h̄3 + εU

Ū
h̄3 dx∫ l

0
1
h̄3 dx

}
, (1.49)

Aeff = πr0

{
−r0 +

∫ l
0
r+R
h̄3 dx∫ l

0
1
h̄3 dx

}
. (1.50)

Formulas (1.48) and (1.49) have the advantage that the effective area is ex-
pressed in the zeroth order term πr20 and two first order corrections. From
literature [9] it appears that the piston shape deviations are much smaller than
the cylinder shape deviations, which implies that εu � εU . Therefore it is
recommended to use the scaled formula (1.48).

1.8 Recommendations

In this document we have shown several models for the piston-cylinder unit.
First, there is the virtual piston model which has a very useful form, which
is given in (1.4). The models in [1] and [6] are specific cases of this model.
Second, a formula for the effective area has been derived directly from the
Navier-Stokes equations for incompressible fluids. Then it is even possible to
get exact results. However, we also proved that the formula (1.9) is sufficiently
accurate for incompressible fluids, because the error is of order ε2, where ε is a
small number.

Clearly one should always make use of the fact that one can measure the
dimensions of the piston and cylinder with much higher accuracy than can be
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achieved in the production process. Therefore we recommend NMi to use a
more advanced model for the effective area, like the first order approximation
(1.9). It is also used by four other European institutes. A sound numerical
integration method should be used like described in Section 1.7. Finally we
advise to make a distinction between systematic errors and random errors,
which makes it possible to get much sharper uncertainty bounds.
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