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Abstract

Wireless sensor networks are decentralised networks consisting of sensors that
can detect events and transmit data to neighbouring sensors. Ideally, this data is
eventually gathered in a central base station. Wireless sensor networks have many
possible applications. For example, they can be used to detect gas leaks in houses or
fires in a forest.

In this report, we study data gathering in wireless sensor networks with the ob-
jective of minimising the time to send event data to the base station. We focus on
sensors with a limited cache and take into account both node and transmission fail-
ures. We present two cache strategies and analyse the performance of these strategies
for specific networks. For the case without node failures we give the expected arrival
time of event data at the base station for both a line and a 2D grid network. For
the case with node failures we study the expected arrival time on two-dimensional
networks through simulation, as well as the influence of the broadcast range.

Keywords: sensor networks, data gathering, stochastic optimisation, distributed
algorithms, random walks, first-passage percolation.

6.1 Introduction

Suppose that you want to design a system to detect fires in a forest. You
consider placing sensors that can detect a fire in their neighbourhood. Since
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these sensors work on battery power, immediately restrictions arise that make
the design of such a system an interesting endeavour. First, transmitting a
message to a receiver outside the forest may cost too much energy. In that
case, only short-range transmissions are possible. Also, it may not be feasible
or too costly to replace the battery of the sensors on a regular basis, so the
battery lifetime should be made as long as possible. On the other hand, you
want to be sure that the message that there is a fire is transmitted to the
receiver outside the forest, and moreover, this should not take too much time.

The question how to design such a forest fire detection system, and control
the efficiency of such a system in terms of observing a fire at the base station
given possible sensor failures, is an example of the question posed to SWI
2006 by Chess [1]. Chess is a middle-size company providing products and
services in the field of electronics, IT-applications, and embedded software. At
the moment, Chess considers designing so-called wireless sensor networks for a
broad range of applications. We shall describe those networks in more detail
further on in this introduction. Apart from detecting forest fires, one could
think of detecting gas leaks in neighbourhoods, monitoring the functioning of
street lights, as well as using the system for picking up garbage: in many Dutch
cities, garbage is collected in large underground bins, and these bins could send
a message when they are (almost) full and need to be emptied.

A wireless sensor network is a network that consists of small devices that
communicate with each other through radio signals. See Figure 6.1 for an ex-
ample of such a sensor. Such devices, named sensor nodes, are able to monitor
their environment, collect environmental data, process these data and commu-
nicate them to other nodes [6, 7].

 
 
 
 
 
 
 
 
 

 

Figure 6.1: A wireless sensor

Sensor networks have several characteristics that distinguish them from
wired networks, see [9]. We list the differences with an emphasis on those
differences that influence the design of communication algorithms:

• Sensors mainly use broadcasting to communicate data. A sensor node
that broadcasts, sends data via a radio signal to all sensors in its neigh-
bourhood.



6.1. Introduction 119

• Sensor networks are distributed networks, i.e., they lack a central coordi-
nator. As a consequence, each node has to decide itself what it commu-
nicates and when.

• Sensor nodes are limited in memory and power.

• Sensor nodes are prone to failure, i.e., a node may break down and stop
operating.

• Wireless communication is prone to failure.

One of the key research problems in the area of sensor networks is finding
efficient communication algorithms. Much research has focused on finding such
algorithms for wired networks; see for example the surveys [3] and [5]. However,
due to their characteristics, communication algorithms for wired networks do
not necessarily provide algorithms for wireless sensor networks. Therefore, in
recent years research focused on finding efficient communication algorithms for
wireless sensor networks; see [9] for an overview of such algorithms.

In this report, we study a communication problem on a static wireless sensor
network, the Sensor Data Gathering Problem (SDGP). In this problem,
stations (sensor nodes) in the network provide data that need to be gathered
at a base station; the stations are assumed to be static. These data consist
of events that occurred in the neighbourhood of a node, e.g. a fire. Stations
may communicate messages of events through broadcasting and each message
contains information concerning a single event. The objective of the SDGP is
to find an efficient algorithm for data gathering at a base station of a wireless
static sensor network. Data gathering means that for each event at least one
message containing the data should reach the base station. In the literature,
there exist several concepts of efficiency. These concepts focus on minimising
a function of the completion time of data gathering or maximising a function
of the battery lifetime. In this paper, we mainly focus on the objective of
minimising the completion time. So, generally speaking the objective is to
send messages to the base station as fast as possible.

We emphasise three specific characteristics of our sensor network. First,
the network is prone to two types of failure: communication failure and node
failure. Second, nodes have a limited memory to store messages, called the
cache. Due to their limited cache size, sensors should have a cache strategy,
which determines which message to delete in case of a cache overflow. Third, for
design purposes and to limit battery power, sensors are simple devices with a
limited set of operations. To communicate their data, sensors use broadcasting.
Thus, we assume that sensors cannot use any specific routing information, i.e.,
sensors are unable to establish point-to-point communication of messages.

Summarising, a communication algorithm should consist of a protocol that
decides which messages to broadcast, and of a cache strategy. In this paper,
we analyse the performance of several communication algorithms for specific
network structures: the 1D grid, the 2D (square) grid and the 2D hexagonal
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grid. Since the charm and power of the described sensor networks lies in their
simplicity, we focus on communication algorithms that are as simple as possible.

The paper is organised as follows: in Section 6.2, we give a mathematical
formulation of the problem. In Section 6.3, we give a mathematical analysis
for the case without node failures and unit broadcast radius. First, we analyse
the SDGP with unlimited cache size. In this case, there is no need for a cache
strategy and message detection by the base station is independent of other
messages. We give a probabilistic analysis of the expected number of rounds
before an event is detected by the base station. Then, we analyse the SDGP
with a cache size of one. In this case, events cannot always be detected by the
base station. We give a probabilistic analysis for the case with two events. In
Section 6.4, we consider the more general case with node failures and arbitrary
broadcast radius. Our results in this section are based on simulations only. In
Section 6.5, we summarise the results and give recommendations for designing
efficient communication algorithms.

6.2 Problem formulation

We formulate the Sensor Data Gathering Problem as a graph problem.
Let G = (V,A) be a directed graph with vertex set V , edge set A, and let
|V | = n. Also given are a sink s ∈ V , a set of events E = {1, . . . , |E|}, a set
of messages M = {1, . . . ,m} for some integer m, an integer cache size c > 0,
an integer broadcast radius r > 0 and probabilities p > 0 and q > 0, defined
below.

The nodes of the graph are stations and the sink is the base station. For
each pair of nodes u, v ∈ V , we define the distance between u and v, denoted by
d(u, v), as the edge cardinality of a shortest path from u to v in G. Given radius
r let Nr(u) = {v|d(u, v) ≤ r} be the neighbourhood of u and let v ∈ Nr(u) be a
neighbour of u. In case r = 1, the neighbours of u are those nodes v such that
(u, v) ∈ A. We assume that time is discrete, say {1, 2, . . .}; a time instance is
called a round. We assume that sensor nodes have a clock, and that all clocks
are synchronised.

Each event e ∈ E contains data, e.g “There is a fire”, a source node ve, i.e.,
the node where the event was detected, and a detection time te, i.e. the first
time the source node detected the event. Nodes may communicate with each
other and if they communicate, they exchange messages. Each message j ∈M
contains data of a single event e, including source node and detection time.
It also contains a timestamp, indicating the round in which the message was
sent by its source node. Nodes may use this information to schedule messages.
We assume that once the source node of event e detects this event, it creates a
message for this event in each subsequent round. Note that these messages all
have the same detection time, but different timestamps.

Each node has a cache to store messages. We assume the cache consists of
a receiver cache of unlimited size and a sender cache of size c. During a round,
nodes may communicate with each other through broadcasting. A node that
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broadcasts sends a copy of each message in its sender cache to all its neighbours.
So, if node u broadcasts its sender cache, then each node v ∈ Nr(u) receives
the content of the sender cache of u and stores the information in its receiver
cache. A node may broadcast at most once during a round. We assume that
node broadcasts do not interfere with each other, hence there is no collision of
messages.

A sensor network is prone to two types of failure: communication failure
and node failure. We define q as the probability that a broadcast from node u
to v during a round is a success, for any (u, v) ∈ A. Moreover, we assume that
broadcasts fail independently. In particular, this means that if in a round node
u broadcasts to both v and v′, then each node has probability q to receive (the
same) data.

Since the time scale for the transmission of a message through the network
is of a different order than the lifetime of a node, we assume that nodes do not
fail during the period that we consider. We call a node active if it is operational,
i.e., it has not failed, and inactive if it has failed. We define p as the probability
that a node is active, and assume that nodes are active independently of each
other.

Sender Cache Receiver Cache

3: delete some
to make room
for M’

1: create

5: delete all

4: copy M’

2: determine M’

0: receive
broadcast

Figure 6.2: The cache strategy

Each node v has a cache strategy. We assume that at the start of a round,
all messages received in the previous round are stored in the receiver cache. A
node should then update its cache using its cache strategy. A cache update of
node v consists of the following consecutive actions, see also Figure 6.2.

1. Create a message for each event with source node v and store this message
in the receiver cache.

2. Choose the set of messages M ′ to be copied from the receiver cache to
the sender cache; below we will consider two ways to choose this set.

3. Delete messages from the sender cache such that all messages in M ′ can
be copied to the sender cache.
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4. Copy the messages in M ′ to the sender cache.

5. Delete all messages from the receiver cache.

We make the following two assumptions for each cache update. First, after
the cache update the sender cache contains at most one message for each event
e. If the cache consists of multiple messages for a single event before the
update, then the cache only stores the message with the most recent timestamp.
Second, messages are only deleted from the sender cache when necessary.

In case of a limited sender cache c, the node must choose which messages
to delete from the sender cache and which messages to copy from the receiver
cache to the sender cache. The cache strategy should be based only on local
information of a node: the current time and the information of the messages
in its cache. Hence, the cache strategy is a distributed algorithm.

We consider two different cache strategies based on how messages are dele-
ted from the sender cache in step 3:

• Random Deletion: Messages are randomly deleted from the sender
cache;

• Timestamp Deletion: Messages are deleted by decreasing timestamp,
i.e., the message with the oldest timestamp is deleted first. Ties are
broken arbitrarily, i.e., if two messages have the same timestamp, one of
them is deleted according to some arbitrary but fixed rule.

The cache strategy Timestamp Deletion was introduced by Chess [1]. In
fact, Chess’ cache strategy also deletes too old messages if the cache is not full.
However, this does not make sense here since we do not consider optimising the
battery lifetime. In Subsection 6.3, we further comment on this when discussing
the 2D grid. Furthermore, note that under strategy Random Deletion it is
possible that a node has detected an event, but it does not send a message of
this event immediately. Finally, if one or more messages from an event reach
the base station, we say that the event (data) has been gathered by the base
station.

The objective of the Sensor Data Gathering Problem is to gather
events at the base station of a wireless static sensor network while minimising
the completion time of all events. The completion time of an event is the
number of rounds needed for one of the messages corresponding to this event
to reach the base station. Thus, generally speaking, we are interested in sending
messages to the sink as fast as possible. Since the completion time of an event
depends on the probabilities p and q, it is a random variable.

6.3 Probabilistic analysis

In this section, we give a probabilistic analysis for the case without node fail-
ures, i.e., p = 1 throughout this section. In Subsections 6.3 and 6.3, we consider
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unlimited cache size (c = ∞) for both the 1D grid and the 2D grid. We are in-
terested in the expected completion time of an event, i.e., the expected number
of rounds needed to send some message with data of event e to the sink. As
the cache size is infinite, no messages have to be deleted from the sender cache.
Hence, the completion time of an event is independent of the possible existence
of other messages. Thus we may restrict our analysis to considering detection
of a single event. Another consequence is that the cache strategies Random
Deletion and Timestamp Deletion are identical. Let the random variable
Td be the number of rounds required to gather at the sink a message whose
source node is at distance d from the sink.

In the Subsections 6.3 and 6.3, we consider a cache of size one and give a
probabilistic analysis in case two events occur.

The 1D grid with unlimited cache size

Given is a 1D grid of sensor nodes s, 1, . . . , n with base station s; node i is at
distance i from s, see Figure 6.3.

s n

s s s s
i i+ 1

s s s s
Figure 6.3: 1D grid with base station s

Suppose an event occurs at time 0 at node d. In each round, let X be the
node closest to the sink that has received a message of this event. We will
also call X the distance of the event to the sink. First, we consider the case
r = 1, so nodes can only broadcast their cache to their nearest neighbours.
In each round, X either moves one step closer to the sink, with probability q,
or it remains at the same distance, with probability 1 − q. In total, X has to
travel distance d. This means that Td is equal to the number of trials needed
to obtain d successes, where the probability of a success is q. So, Td follows a
negative binomial distribution with parameters q and d, i.e.,

P(Td = t) =
(
t− 1
d− 1

)
qd(1− q)t−d, t = d, d+ 1, d+ 2, . . . . (6.1)

Note that as a consequence, for a broadcast success probability q > 0, the
event will be gathered with probability 1. Another consequence of (6.1) is the
following.

Corollary 6.3.1. The expected number of rounds required to gather an event
detected at distance d satisfies E[Td] = d/q.

Second, consider the situation that a node is able to transmit at a larger
range, i.e., r > 1. We assume that the success probability of a broadcast
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equals q independent of the distance between the nodes. Let Yr be the effective
distance that one particular message gets closer to s in an arbitrary round. The
effective distance is the maximum distance over which the communication is
successful; hence, Yr is a random variable.

As the success probability of communication is independent of the radius,
the probability to get r steps closer to the sink is q. Similarly, given that this
broadcast fails, then the probability to get r − 1 steps closer to the sink is q.
Continuing this argument, we arrive at:

P(Yr = k) = (1− q)r−kq, k = 1, 2, . . . , r, (6.2)
P(Yr = 0) = (1− q)r.

Using (6.2), we are able to find the expected value of Yr. First we write

E[Yr] =
r∑

k=0

kP(Yr = k) =
r∑

k=1

k(1− q)r−kq = q

r−1∑
i=0

(r − i)(1− q)i

= qr
1− (1− q)r

1− (1− q)
− q(1− q)

r−1∑
i=1

i(1− q)i−1. (6.3)

To evaluate the sum in (6.2), we write

r−1∑
i=1

i(1− q)i−1 = − d

dq

r−1∑
i=1

(1− q)i = − d

dq

(1− q)− (1− q)r

q

=
1
q2
− (1− q)r

q2
− r(1− q)r−1

q
.

Plugging this into (6.3), we get

E[Yr] = r − r(1− q)r − 1− q

q
+

(1− q)r+1

q
+ r(1− q)r

= r + 1 +
(1− q)r+1 − 1

q
.

Note that for r = 1, we find E[Y1] = q, which corresponds to Corollary 6.3.1.

However, if r > 1, then a message can be overtaken by messages with a later
timestamp. Hence, in this case, Yr is a lower bound on the effective distance
that one particular message gets closer to s in an arbitrary round.

In Figure 6.4, we have plotted E[Yr] as a function of q for several choices of
r. The figure confirms what is intuitively obvious: for broadcast radius r > 1,
the effective number of steps is much larger than in case r = 1. In fact, for
r = 1 the curve is linear, but for r > 1 the curves are larger than the linear
curves f(q) = rq. The reason for this is that if broadcast to a node at distance
r fails, there is still a positive probability that a broadcast to a node of distance
less than r is successful, or that a younger message is overtaking the message
closest to the base station.
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Figure 6.4: E[Yr] as a function of q for r = 1, 2, 3, 4 (from bottom to top)

The 2D grid with unlimited cache size

Given is a 2-dimensional finite grid of size
√
n×

√
n for some integer

√
n and

with base station s located at one of the corners. Note that on the grid the
distance of a node from the base station is at most 2

√
n, see Figure 6.5.

Since the probability that an event is gathered is equal to 1 on a 1D grid,
as we have seen in the previous section, it is also equal to 1 on a 2D grid.
Therefore, we turn to the analysis of E[Td], the expected time that is needed to
gather an event whose source node, say vd, is at distance d from the sink. Let
Xa be a random variable indicating the number of rounds needed in order to
communicate successfully via the (directed) edge a. Clearly, the variables Xa

are independently and identically distributed following a geometric distribution
with success probability q for all edges a. For any path Φ that connects the
sensor to the base station, let TΦ be the random variable that indicates the
time needed to successfully communicate the event via path Φ. Finally, let φ
be a shortest path from node vd to the base station, where a ∈ φ means that
edge a is part of the path φ. Then

E[Td] = E[min
Φ
TΦ] ≤ min

Φ
E[TΦ] = E[Tφ] = E[

∑
a∈φ

Xa] =
∑
a∈φ

E[Xa] =
d

q
.

Note that the upper bound d/q corresponds with Corollary 6.3.1 (when r = 1).

The remainder of this section is devoted to so-called first-passage percola-
tion. The theory of first-passage percolation examines how Td behaves depend-
ing on the position of the sensor with respect to the base station. That is, it
examines the behaviour of sensors dependent on whether they are for example
situated on the same grid-line as the base station or whether their position is
diagonal with respect to the base station. Note that this position influences
the number of shortest paths over which a message can be communicated from
its source node to the base station.
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sensor

edge

base station

Figure 6.5: The 2D grid

First-passage percolation with geometric distributions has attracted much
attention in the literature (see e.g. [4, 8]). An important result, the so-called
shape-theorem, describes the shape of the set of points on the grid that can be
reached through communication starting from a fixed source sensor within a
certain time. The following theorem is implied by the shape-theorem and we
use techniques from first-passage percolation to prove it. The theorem provides
an upper bound on the probability that the time needed to communicate the
event via a specific shortest path φ of length d is εd more than the expected
time d/q for some positive constant ε.

Theorem 6.3.2. The probability that Tφ exceeds its expectation d/q decreases
exponentially with the excess time:

P(Td ≥
d

q
+ εd) ≤ e−d

ε2q2

2(1−q) .

Proof. Consider P(Td ≥ dk) for some positive constant k and let φ be a shortest
path from node vd to the base station. Then for all t ≥ 0 the following is true:

P(Td ≥ dk) ≤ P(Tφ ≥ dk) = P(
∑
a∈φ

Xa ≥ dk)

= P(et
P

a∈φ Xa ≥ etdk) ≤ e−tdkE[et
P

a∈φ Xa ].

The last inequality follows from applying the Markov inequality. Since this
holds for all t ≥ 0, we have

P(Td ≥ dk) ≤ min
t≥0

exp(−dtk + log E[et
P
Xa ]) = min

t≥0
(exp(−tk + log E[etX1 ]))d,

where X1 is equal to one of the random variables Xa for some edge a on the
path φ. Hence, we can write

P(Td ≥ dk) ≤ e−dI(k),
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where

I(k) = sup
t≥0
{kt− log E[etX1 ]} = sup

t≥0
{kt− log

qet

1− (1− q)et
}

= sup
t≥0
{(k − 1)t− log q + log(1− (1− q)et)}.

Calculus yields

I(k) = (k − 1)(log(k − 1)− log k − log(1− q))− log q + log
1
k

= (k − 1) log(
k − 1
1− q

)− k log k − log q.

Setting k := 1
q + ε, we get:

P(Td ≥ d(
1
q

+ ε)) ≤ e−dI(
1
q +ε).

Since I( 1
q ) = I ′( 1

q ) = 0, using the Taylor expansion yields

I(
1
q

+ ε) = I(
1
q

) + εI ′(
1
q

) +
ε2

2
I ′′(

1
q

) + o(ε2) =
ε2

2
I ′′(

1
q

) + o(ε2).

Finally, calculating

I ′′(
1
q

) =
q2

1− q
,

completes the proof.

To illustrate Theorem 6.3.2, Figure 6.6 shows this upper bound for the
situation where

√
n = 101, d = 200 (the worst case scenario) and q = 0.95.

It is clear that for the expected number of steps needed, which is around
210, the upper bound does not provide much information. However, for the
situation with only ten steps more, Theorem 6.3.2 provides strong information:
the probability that the message needs more than 220 steps to reach the base
station is already below 1%.

Let us emphasise that the given bound only takes the communication via
one path into account. In reality, there are multiple paths that can be used,
hence it is likely that the expected completion time will be even shorter.

For the example shown, we can also conclude that if the cache strategy
would delete messages whose timestamp is at least 220 rounds old then the
probability that the first message created for this event does not reach the
base station is less than 1 percent. Such a strategy would assure that messages
are not kept longer than necessary in the cache, and decreases the amount of
old messages circulating in the network. This is beneficial for the lifetime of
the batteries in the sensor.

We conclude this subsection with the following remark. In this subsection,
we have assumed that sensors do not fail, i.e., p = 1. This assumption is not
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Figure 6.6: The upper bound of Theorem 6.3.2 for
√
n = 101, d = 200 and

q = 0.95.

very restrictive in the 2-dimensional case, as from an arbitrary sensor in the
network, there exist multiple paths toward the base station. So, if one path
is not available, there may be many other available candidates. Hence, unlike
in the one dimensional case, for p not too far from 1, the probability that the
base station can be reached from the sensor by at least one path is close to 1
as well. Of course, it would be an interesting problem to quantify these “not
too far from 1” and “close to 1”.

The 1D grid with cache size one and two events

We again consider the model on the 1D grid, but this time we assume that
c = 1 for each node. Given is a 1D grid of sensor nodes s, 1, . . . , n with base
station s; node i is at distance i from s. We assume that the broadcast radius r
is 1. We are interested in the probability that if two events occur, both events
are gathered. We compare this probability for the cache strategies Random
Deletion and Timestamp Deletion.

We assume there are two events 1 and 2 with source nodes v1 and v2,
respectively, and detection times t1 and t2. Without loss of generality we
assume that v1 is closer to the sink than v2. Figure 6.7 illustrates the situation.
First, we consider Timestamp Deletion. In this case, from all the messages
that a node receives, it will only send the one with the youngest timestamp,
i.e., the message that has been in the system the shortest time. Let Ai be
the event that the ith event is gathered. We are interested in calculating the
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probabilities P(A1) and P(A2).

s v1 v2

r r r r r r r r r r
Figure 6.7: 1D grid with events 1 and 2

The probability P(A1) is easily determined. Since messages corresponding
to event 1 are sent every round after event 1 has been detected, there will
always be a message from this event in the sender cache of v1. Hence, the
probability that a single message reaches the sink is at least qv1 . This implies
that the probability that none of the messages sent by v1 reach the sink is
upper bounded by limn→∞(1− qv1)n = 0. Hence, P(A1) = 1.

Now we consider P(A2). We claim that if t1 ≤ t2, then P(A2) = 0. Indeed,
any message created at v2 must eventually pass vertex v1. However, since
t1 ≤ t2, this vertex is already busy sending messages of its own event. As the
timestamp of these messages is always younger than the timestamp of messages
from event 2, messages from event 2 can never pass v1, and thus never reach
the sink. We conclude that if we want both events to be gathered at the sink,
then the cache strategy with Timestamp Deletion is bad one.

Next, suppose that in Timestamp Deletion we have t2 < t1. For each
round, let the random variable X be the position of the message from event 2
that is closest to the sink at time t1. Set for notational convenience τ = t1− t2.
If 0 < k ≤ v2, then P(X = k) is the probability of v2 − k successes in τ trials
with success probability q. Hence, X is binomially distributed with parameters
τ and q. Furthermore, P(X = 0) is the probability of at least v2 successes in τ
trials. Thus,

P(X = k) =
(

τ

v2 − k

)
qv2−k(1− q)τ−v2+k, for 0 < k ≤ v2, (6.4)

P(X = 0) = 1−
v2−1∑
i=0

(
τ

i

)
qi(1− q)τ−i. (6.5)

Now we condition on the value of X. Since the strategy with Timestamp
Deletion implies that P(A2 | X = k) = 0 for all k ≥ v1, we have

P(A2) =
∞∑
k=0

P(A2 | X = k)P(X = k)

=
v1−1∑
k=0

P(A2 | X = k)P(X = k). (6.6)

To find these conditional probabilities, we consider the following situation.
Let i and j be the position closest to the sink of the messages from v1 and v2
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respectively. Let p(i, j) be the probability that from this situation a message
from v2 reaches the sink. One round later, these positions are i− 1 and j − 1
with probability q2, and in that case the desired probability is p(i − 1, j − 1).
By also considering the other possibilities for the situation one round later, we
find that p(i, j) satisfies the recurrence relation:

p(i, j) = q2p(i−1, j−1)+q(1−q)p(i, j−1)+q(1−q)p(i−1, j)+(1−q)2p(i, j).
(6.7)

Since messages from v1 have priority over those from v2, the boundary condi-
tions are p(i, j) = 0 if i ≤ j , and p(i, 0) = 1 for all i > 0. Finally, observe
that P(A2 | X = k) = p(v1, k). Hence, we can calculate (6.6) by solving the
recurrence relation (6.7). Unfortunately, there is no easy closed-form solution
of this recurrence relation, so that it is only useful for numerical purposes. In
this report, we will not explore this numerical path.

Now we consider Random Deletion. To simplify the analysis, we assume
that q = 1. The case q < 1 will be studied via simulations in Section 6.4.
If v2 − v1 > t1 − t2, then P(A1) = 1. We are therefore interested in finding
P(A2). Let t be the first round such that the sender caches of two adjacent
nodes contain different messages. This situation is illustrated in Figure 6.8;
here messages from v1 are denoted by a circle, and those from v2 by a square.

s v1

���� �©©©

v2k

r r r r r r r r r r
Figure 6.8: The first round that some node k contains a message of event 2
and node k − 1 contains a message of event 1.

Observe that the model from time t onward resembles a symmetric random
walk (RW). Indeed, as a consequence of the Random Deletion cache strategy,
one round later, both nodes k − 1 and k are a circle, or a square, both with
probability 1/2, see also Table 6.1. So, with probability 1/4, the front of the
squares moves forward to k − 1, with probability 1/4 it stays in k, and with
probability 1/4 it moves back to k+1. The only difference with the RW model
is the fourth option: a square moves to k−1, and a circle moves to k. Although
we have not managed to prove it, this fourth option seems to be no worse than
the situation in which the front stays at k.

We may conclude that the front of squares reaches the sink in a time com-
parable to that of a RW with step size distribution

P(X = 1) = P(X = −1) = P(X = 0)/2 = 1/4. (6.8)
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time t time t+ 1
k − 1 k k − 1 k situation
© � © � non-moving front

© © progressing front for message 1
� � progressing front for message 2
� © mixing front

Table 6.1: The four options for the evolution of the front.

So, results for this RW may give us (upper) bounds for the behaviour of the
stream of squares. To describe the behaviour of this RW, we first quote two
propositions about simple symmetric RW’s, i.e., RW’s that move one to the
right or one to the left, both with probability 1/2. These can be found in
Chapter XIV of [2].

Proposition 6.3.3. Consider a simple symmetric RW. Let p(x, n) denote the
probability that starting at x ∈ {s, 1, . . . , n}, the message reaches s before it
reaches n. Then p(x, n) = 1− x/n.

This proposition is also known as the Gambler’s ruin probability. Since the
step size of our RW may be 0, it is not a simple symmetric RW. However,
since the step-size distribution is symmetric and concentrated on {−1, 0, 1},
the effective steps do form a RW. Hence, the result of the proposition holds for
our RW as well.

The proposition tells us that every time the front is in position v2 − 1, the
probability that the message from v2 will be gathered is 1/v2. But every round
there will be a message originating from v2 in v2 − 1 with probability at least
1/2. So, with probability 1 there will be infinitely many trials with succes
probability at least 1/v2 to gather the event detected by v2. We conclude that
the probability that the event from v2 is gathered is 1, for every node v2. The
following proposition is about a RW with a reflecting barrier. This means that
if the message moves from n− 1 to n, the next round it moves back to n− 1.

Proposition 6.3.4. Consider a simple symmetric RW with a reflecting barrier
in n. Let τ(x, n) denote the expected time to reach s starting at x. Then
τ(x, n) = x(2n− x). So, the expected time to reach s from position n is n2.

For the RW given by (6.8), the number of steps before a non-zero step is
made is geometrically distributed with parameter 1/2, so it has expectation 2.
As a consequence, for this RW we have τ(x, n) = 2x(2n− x).

If we consider the messages with source node v2, then we can view node
v2 as a reflecting barrier. Indeed, consider the situation that all nodes to the
left of v2 are circles. Since v2 is the source of the square messages, it has a
square in its sender cache with probability 1/2. Hence, with probability 1/2 it
sends a square to node v2 − 1, so that the next round, v2 − 1 is a square with
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probability 1/2. This is exactly the behaviour of the RW (6.8) with a reflecting
barrier in v2.

Until time t, messages from v2 move to the sink independent of messages
from v1. From time t onward, messages from v2 move towards the sink at
a speed comparable to a RW with step size distribution (6.8). Hence, by
Proposition 6.3.4, the expected time to reach the base station is roughly 2v2

2 .

For the case v2 − v1 < t1 − t2, we can use similar arguments to find that
P(A1) = P(A2) = 1, and to find the time to gather the event at v1. Finally, we
should remark that in our analysis we have ignored that the event at node v1
may form an extra obstacle for messages from v2: since v1 always has a circle
in its receiver cache, it is (slightly) more difficult for the squares to pass this
node than to pass a normal node.

The 2D grid with cache size one and two events

Given is a 2-dimensional grid of size
√
n×

√
n for some integer

√
n and with base

station s located at one of the corners, see also Figure 6.5. We assume that the
size of the sender cache, c, is 1 for each node, and that the broadcast radius r,
is 1 as well. We begin by making the observation that in case there is only one
fire, the behaviour of the system is equivalent to first-passage percolation, see
also Section 6.3. We are interested in the probability that if two events occur,
both events are gathered. We consider this probability for the cache strategy
Timestamp Deletion. The notation is the same as in the previous section,
so two events are detected at nodes v1 and v2, respectively, and without loss
of generality we assume that v1 is closer to the sink than v2.

Let ∆ := v2−v1+t2−t1. So ∆ can be viewed as the time difference between
the first arrival at the base station of messages sent from v1 and v2, if both
messages are sent independently (c ≥ 2). From the observations in subsection
6.3 it follows that P(A1) = 1. For P(A2) we consider the case q = 1. In this
case, the difference in distance to the origin between the two initial points fully
determines whether message 1 will reach the origin. This leads to the following
theorem:

Theorem 6.3.5. If q = 1, then P(A1) = 1 and

P(A2) =
{

1 if ∆ < 0
0 if ∆ ≥ 3.

Proof. As v1 is closer to the sink than v2, a message of v1 that is sent over
a shortest v1 − s path is always forwarded towards the sink, because for any
node u on this path its timestamp is later than that of a message from v2 at
this node u. Hence, P(A1) = 1. If ∆ < 0, then the first message sent from v2
arrives at each node of a shortest v2 − s path before a message from v1 can
reach this node. Hence, a message from v2 arrives at s before a message from
v1, thus P(A2) = 1.

Consider a message from v2, sent at time t′2, that reaches a neighbour of s
in round t. Since s is in the corner of the grid, the distance between neighbours
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of s is at most 2. Hence, for all ∆ ≥ 3, there exists a message from v1, sent at
time t′1 > t′2, that reaches the same neighbour of s in round t. Since messages
from v1 have a timestamp later than those of v2 for every neighbour of s, no
message sent from v2 reaches s. If ∆ = 1 or ∆ = 2, then the probability
depends on the position of v1 relative to v2.

From this theorem we may derive that using cache strategy Timestamp
Deletion both events are gathered when the first message of the event which
was detected furthest (v2) could have reached the base station before the first
message of v1. On the other hand, if the message from v2 could only have
reached the sink at least 3 rounds later, it never reaches the sink. As in the
case of the 1D grid, this demonstrates that Timestamp Deletion is not a
particular good cache strategy if we wish to detect all events.

6.4 Simulations

In this section, we give simulation results for the case with node failures, i.e.,
we assume p ≤ 1 throughout this section. In the first paragraph, we consider
the problem on a 1D grid when there is a cache size of 1 and there are multiple
events. We are interested in the probability that events are gathered under the
cache strategy Random Deletion. In the second subsection, we consider the
same problem on a 2D square grid and a 2D hexagonal grid.

The 1D grid with cache sizes of one and multiple events

Given is a 1D grid of sensor nodes s, 1, . . . , n with base station s; node i is at
distance i from s. We are interested in the influence of q and r on the message
completion times for the cache strategy Random Deletion when there are
multiple events. To this end, we have developed a simulation to analyse these
completion times for several arbitrarily generated events.

Given are four events 1, 2, 3, and 4, such that event j is detected at time 0
by node vj ; the distance of vj to the sink is 30j. We assume that nodes do not
fail, i.e., p = 1.

First consider the case r = 1, where each sensor can only broadcast to
adjacent nodes. The left picture of Figure 6.9 depicts the outcome of a single
simulation run for this case. Each vertical 1D grid in the picture represents the
message each sensor in the 1D grid transmits at time t. For instance, until time
t = 20 each message is broadcast through the 1D grid without any problems;
after time t = 20, the messages of the second event, coloured black, are blocked
by a message of the first event, coloured light gray. When we say a message is
blocked we mean that it is not sent further towards the sink. From the figure,
we see directly that using the cache strategy Random Deletion results in a
poor performance of the completion times of the events 2, 3 and 4, whereas
messages of event 1 reach the sink without any delay. It seems that event 1
blocks the message of the other events.
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Figure 6.9: Simulation run for the four events starting at t = 0 for r = 1 (left)
and r = 2 (right). Each event generates its own unique message, identified by
a unique colour. If a sensor did not broadcast any message, then the colour is
white. The horizontal axis gives the time (in rounds).

This image changes drastically when we consider a larger broadcast radius,
namely r = 2. The outcome of a single run is presented in the right picture of
Figure 6.9. In this case, the messages become more mixed and as a result also
messages from events 2 and 3 reach the sink, within 140 rounds. In particular,
we can see that some message of the second event overtakes messages of the
first event.

An overview of these observations is plotted in Figure 6.10, which is based
on 1000 simulation runs. Note that the horizontal axis in the two figures
differs. In the upper figure, representing the situation with r = 1, we see that
the completion time of event 2 is in general quite large. This gets even worse
if we consider the situation of q = 0.95, i.e., the case where communication is
prone to failures. Although the completion time of event 1 is hardly affected,
the completion time of event 2 increases substantially due to the broadcast
failures. The lower picture of Figure 6.10, representing the situation with
r = 2, demonstrates the strongly decreased completion times of event 2. Note
also that the impact of broadcast failures (i.e., the q = 0.95 case) is smaller
than in the r = 1 case.

However, in practice it is not always possible to extend the broadcast range
to increase the performance. Therefore, another approach would be to change
the cache strategy such that messages become more intertwined and in this way
keep completion times small. The idea is that a sensor refrains from transmit-
ting the same message all the time and this is formulated in the alternative
cache strategy Random Deletion+.

- Random Deletion+: Messages are randomly deleted from the sender cache.
The selection of messages to be copied from the receiver cache to the sender
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Figure 6.10: The completion time of messages in the form of a box plot. The
box has lines at the lower quartile, median, and upper quartile values. The
whiskers are lines extending from each end of the box to show the extent of the
rest of the data. Outliers are data with values beyond the ends of the whiskers.
The whisker extends to the most extreme data value within 1.5· IQR of the
box, where IQR is the width of the interval that contains the middle 50 % of
the data. The horizontal axis gives the time (in rounds).

cache is as follows: if the receiver cache contains messages related to an event
whose data was broadcast by the same node in the last round, then these
messages get low priority: they can only be copied to the sender cache if all
other messages are copied as well.

Note that this strategy does not require extra memory. In Figure 6.11,
we depict single simulation runs for r = 1 (left) and r = 2 (right). For both
cases we immediately note an improvement compared to the original strategy
Random Deletion. The messages of event 1 and 2 no longer block each
other and therefore messages of both events travel to the sink without any
delay. Unfortunately, it seems that messages of event 4 are still blocked by the
messages of the other events.

The results for the completion times over 1000 simulation runs are plotted
in Figure 6.12. Note that here the range is much smaller than in Figure 6.11.
Also here, the top and bottom ranges differ. The completion times under
strategy Random Deletion+ are clearly much smaller than under Random
Deletion. The effect of reception failures on the completion times is also
negligible.

Thus, using the alternative cache strategy Random Deletion+, we could
improve the completion times of the messages. Unfortunately, if there are more
than three events then the completion time of all events degenerates, as in the
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Figure 6.11: Simulations for the cache strategy Random Deletion+. See
Figure 6.9 for the interpretation.
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Figure 6.12: See Figure 6.10 for the interpretation, here we use cache strategy
Random Deletion+.

case with two events under cache strategy Random Deletion. This could of
course be compensated by changing the strategy Random Deletion+ to a
more elaborate one, but that would result in a more difficult cache strategy,
which might conflict with the aim to keep the strategy as simple as possible.

2D grids with node failures

In the 2D simulations, we consider the area [0, 100]× [0, 100] covered by sensors
with broadcast radius r = 1 located at the points of a regular grid. The sensor
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placed at (0, 0) functions as the base station. We study the data gathering
problem for two different grids:

• a square grid with 101× 101 = 10201 sensors numbered (i, j), 0 ≤ i, j ≤
100.

• a hexagonal grid, where the sensors are located at those points i(1, 0) +
j(0.5, 0.5

√
3), with i, j integer, that fall within the area. The total number

of sensors is 11658.

(2,4)

(4,0)(0,0)

(−2,4)

Figure 6.13: Hexagonal grid with 23 sensors covering an area [0, 4]× [0, 4]. The
values (i, j) shown are the coordinates of the corners in the hexagonal system.
The longest distance to the base station (0, 0) is 6.

The motivation for considering a hexagonal grid, see Figure 6.13, is that
each sensor has six neighbours instead of the four in the square grid. We
expect this to increase the robustness of the whole system. Furthermore, in
the hexagonal grid the distance from the farthest point to the base station is
reduced from 200 to 167, thus speeding up the detection of events. A small
disadvantage of the hexagonal grid is that more sensors are needed to cover
the same area, namely a factor 2/

√
3 ≈ 1.16 more.

In this set of simulations, we study the interference of the messages from
the two events. We create two simultaneous events at time t = 0, at randomly
chosen sensors, and set the cache size c = 1. We have run the program 1000
times, each time with a different random number seed. Table 6.2 presents the
average number of steps needed to detect the first and second event, for both
grids, in case the two events were indeed detected. For p ≤ 0.95, some runs
did not detect any fire. The reason is that failing sensors may cause the graph
corresponding to the grid to become disconnected. Furthermore, if an event
occurs at a sensor not connected to the base station in the graph, then this
event cannot be detected.

The cache strategy we use here is a third variant of Random Deletion,
which we call Random Deletion++: the contents of the sender and receive
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p q Square grid Hexagonal grid
runs steps 1 steps 2 runs steps 1 steps 2

1.00 1.00 1000 77.0 141.7 1000 66.1 115.7
0.95 1000 77.8 146.6 1000 66.2 117.6

0.95 1.00 998 76.2 147.9 996 66.8 117.6
0.95 998 76.0 148.9 999 67.8 118.5

0.80 1.00 908 80.4 173.1 961 67.0 130.6
0.95 926 78.4 183.5 940 69.2 135.3

Table 6.2: The number of runs that gathered both events for the strategy
Random Deletion++, and the average number of steps needed to gather
the first and second event. In total, there were 1000 runs.

cache are merged, duplicates are removed, and messages are randomly deleted
until c messages are left. These are then stored in the sender cache. This
strategy treats all locally known messages equally (after removal of duplicates),
and is not biased towards deleting messages from the sender cache.

The results of Table 6.2 show that the hexagonal grid leads to faster gather-
ing for both events. In particular, the event farthest away from the base station
is detected earlier, and its detection time is less affected by failing sensors or
failing communications. Note that the ratio of the average gathering times for
event 1 corresponds to the ratio of the number of nodes in both networks. A
surprising finding is that on the square grid, failing sensors sometimes seem to
speed up the detection of the first event, which may be due to less interference
from messages for the second event. This is a mixed blessing, as indeed the
second event is detected much later.

6.5 Conclusions and recommendations

The main characteristic of a sensor is its simplicity: a sensor has limited pro-
cessing capabilities, limited power and a limited cache memory. Our objective
was to analyse simple cache strategies for data gathering in a sensor network.
Hence, they should take into account cache constraints, and not use routing
information. Our analysis, which consists of an exact analysis based on prob-
ability theory and a heuristic analysis through simulation, demonstrates that
there exist simple decentralised strategies allowing sensors to gather data effi-
ciently and robust.

We have analysed two strategies: Timestamp Deletion and Random
Deletion. In Section 6.3, we have shown that the simplest strategy, Times-
tamp Deletion, is clearly inferior to Random Deletion, if the number of
events is larger than the cache size. Furthermore, simulations in Section 6.4
suggest that the more complicated strategy, Random Deletion+, increases
the performance even more. The decision on what level of complexity is allowed
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may depend on the application at hand, and should be made by the designers
of the system.

A second parameter of interest is the probability that a broadcast fails, q.
We have studied how the expected completion time, i.e., the time to gather an
event at the base station, depends on q, and the distance from the event to the
base station. Different kinds of applications will put different demands on this
completion time. For example, forest fires need to be detected immediately,
while noise measurements at airports are allowed to come in days later. Hence,
per application the system designer should check what values of q are allowed,
and what should be done to make sure that q falls within that range.

A third point to consider is the influence of the broadcast range, r. Obvi-
ously, the larger the broadcast range, the better. However, due to restrictions
on the battery power, only a limited broadcast range may be feasible. The
calculations in Section 6.3 reveal the effective step size per round as a func-
tion of the broadcast range (and the failure probability q). These results are
illustrated and complemented by the simulations in Section 6.4, which show
the effect of the broadcast range on the gathering time of events. Again, the
demands on the speed by which messages travel through the network should
determine how much should be invested in increasing the broadcast range.

Finally, we have considered the influence of the layout of the sensor network
in two dimensions. The simulations in Section 6.4 show that a 2D hexagonal
layout of sensors is superior to a 2D square layout, both in terms of detection
speed and robustness.

We conclude that the performance of a sensor network depends on many
parameters. We have tried to describe this performance by analysing some
examples of networks. Using this analysis, a system designer could determine
the influence of the different parameters. An analysis of the application at
hand should reveal which demands both the sensors and the sensor network as
a whole have to meet. Combining these two analyses should then yield good
and attainable parameter choices.
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