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Abstract

In this paper we try to find the optimal number of partitions to be made in a
piece of software. A model is made for the time-to-market, with respect to which
this number is optimized. Refinements are made in this model, taking into account
capacity constraints and waiting times. Also, a suggestion is made to use pairwise
testing.
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3.1 Introduction

ASML, located in Veldhoven, is one of the world’s largest producers of lithogra-
phy systems. Its customers are chip manufacturers, including large companies
such as Intel. The chip market is a market with very specific demands. In
these times of rapid technological development, it is extremely important to
be fast in following new developments on the market. Being the first to offer
some feature gives ASML a large advantage over its competitors.

The problem that we are presented with comes from the software depart-
ment of ASML. They want to keep the software of all machines up to date
(the software is such that all machines run on the same software). Currently,
ASML issues about 3 new releases of the entire software per year, each with
a time-to-market (TTM) of 9 months. Here, time-to-market is defined as the
time that elapses between the decision of making a new software release and
issuing the tested software to the market. Such a monolithical release includes
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both bug fixes and new features (Some bug fixes are also delivered in the form
of patches, which can be applied cheaper. However, we will not consider this
form of updating in this paper.) Installing a new release is very costly for the
machine owners. Bringing a machine down could easily cost thousands of dol-
lars per hour. Therefore, some customers choose not to install a new release if
there is no urgent reason for it. ASML still supports all older releases.

This form of updating is undesirable for some clients. Suppose a client
wishes one new feature. It requests the feature to ASML, which will start
implementing it. The update will only be possible in the next release of the
entire software, about 9 months away. Also, when the new software is issued
to the customer, it comes with all kinds of other features—and possibly bugs.

An alternative is to split the software into a number of pieces, which we will
call modules (we were asked to assume this is possible, see e.g. [2]). If a new
feature is limited to one module, clients wishing this feature can immediately
install the new module once it is released. Other clients can wait longer and
install multiple modules at once at a convenient time.

A disadvantage for the software department is that they have to test the
new module in a number of environments. Some customers will have the latest
version of all other modules installed, but others may still have an old version
of another module. Simply requiring all customers to have the latest version
of everything is not an option here. What we will require is that all customers
have some recent version of all modules (where ‘recent’ will mean something
like ‘at most one year old’).

It is easy to see that this approach will lead to an increased testing effort;
in principle the number of tests will grow exponentially with the number of
modules. However, some customers are happier, because the new feature will
be available to them earlier.

The question ASML asks is:

What is the optimal number of modules to split the software into,
such that the time-to-market is minimal, while the amount of work
remains below some upper bound?

In this paper, we focus on various aspects of this problem. In Section 2,
our general model is defined. Next we look at some computational results in
this model in the case without capacity constraint in Section 3. In Section 4
we extend our model to take into account a certain capacity of the company
that cannot be exceeded. In Section 5 we consider a model including waiting
times. Finally we look at some ways of pairwise testing to reduce the cost of
testing a new module against older versions of other modules in Section 6. We
give some concluding remarks in Section 7.

3.2 The general model

The decision to update a software module will be made by the management
based on customer requests. Possibly, by the time of the decision, all develop-
ment resources are already in use and the development of the new release is
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delayed. However, except for Section 3.5, we will assume that the waiting time
is 0. This seems reasonable since when a decision to update a software module
is made, the current workload of the development resources can be taken into
account.

Our aim is to derive a model for the time-to-market when splitting the
monolithic software into k pieces. First we want to introduce and discuss the
model parameters on a general level, and later make assumptions about these
parameters and understand how they influence the outcome.

The proportional size cj of a module. We want to analyse how the
mean time-to-market of the software modules behaves, if we split up the soft-
ware into k modules. The proportional size of module j ∈ {1, . . . , k} is denoted
by cj , where

∑k
j=1 cj = 1. We leave open the meaning of size, one could take,

e.g., the number of functionalities.
The development time dj of a module. We denote the development

time of the monolith by D. After splitting the monolith into k modules, the de-
velopment time of a module is modelled proportional to the size of the module.
So we have

dj = Dcj .

The testing time tj of a module. We denote by T the testing time of
the monolith. A new version of a module j will need two kinds of tests prior
to the release. The first one will check all the new features of the module in
combination with the latest versions of the other k− 1 modules. The duration
of this test is proportional to the size of module j. A second test will verify
whether the new version of module j is compatible with all supported versions
of the other modules, except the configuration tested previously. The duration
of a such test is denoted by A. Thus

tj = Tcj +A

∏
i 6=j

li − 1

 ,

where li is the number of supported versions of block i.
For the time-to-market TTMj of a module j we thus have

TTMj = Dcj + Tcj +A

∏
i 6=j

li − 1

 .

The number of supported versions lj of a module. During the com-
patibility test, ASML tests whether the new release of a software module is
compatible with the last lj versions of the other modules. Hereby lj is chosen
such that all software issued in the last year is supported. Denoting the num-
ber of module releases per year by r and writing fj for the probability that a
randomly chosen update request concerns the j-th module, we obtain

lj = Max{1, fj r}.
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We imposed the restriction lj ≥ 1, because we want to support at least the
newest configuration for every software module, even if it is not updated every
year.

Thus we finally obtain

E (TTM(k)) =
k∑
j=1

fj

Dcj + Tcj +A

∏
i 6=j

Max{1, fi r} − 1

 (3.1)

for the expected time-to-market with k modules.

3.3 A model without capacity restrictions

Choosing model parameters

ASML plans to split the monolithic software into modules of about the same
size. Thus, cj = 1/k for all modules j. The development time of a module j
will then be dj = D/k, and the testing time of a new version of a module, in
which all the new features of the module are checked, will be T/k. Thus (3.1)
simplifies to

E (TTM(k)) =
D

k
+
T

k
+A

k∑
j=1

fj

∏
i 6=j

Max{1, fi r} − 1

 . (3.2)

Based on the experience from the monolithic approach, we further assume
the following:

• The development time of the monolith is D = 180 days.

• The testing time of the monolith is T = 70 days.

• A compatibility test needs A = 2 days.

The mean time-to-market for different values of k depends on the number of
updated modules per year r and on the proportion fj of update requests that
goes to module j. Note that both r and fj depend on k. Depending on the
choice of these functions, the mean time-to-market may change significantly.
We will provide calculations for specific choices of these parameters. However,
these assumptions need to be checked carefully when validating the model.

The number r = r(k) of module releases per year. Here we write r(k)
instead of r to emphasize the k-dependence. Currently the company releases
each year about 3 new versions of the monolith. As a first guess, the linear
function

r(k) = 3k (3.3)

seems a good candidate. However, it is rather unclear whether a new version of
the monolith would give new features to each of its k submodules. In particular,
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due to the extra work needed for the compatibility tests, we expect r(k) to
behave sublinear. Nevertheless, (3.3) provides a useful upper bound.

From discussions with ASML representatives we understood that r(k) = 3k
might be realistic though. To understand the impact of this choice, we contrast
(3.3) with the concave function

r(k) = 3kβ , (3.4)

where 0 < β < 1.
The proportion fj of update requests that go to module j. The

request probabilities for different modules of the monolith are unknown, though
it is expected to be rather uneven distributed. That makes it hard to find a
pertinent probability distribution for our model. We assume here that the
update requests for the k modules are distributed according to the Zipf’s law,
i.e., a module j will be requested by the customers with the probability fj ,
where

fj =
j−α∑k
i=1 i

−α
, (3.5)

in which we take α = 0.7. Zipf’s law is observed in many applications, e.g.
access of web pages or keyword usage in a search engine. For more information
on modeling internet traffic using Zipf’s law, including technical aspects, we
refer to Cunha et al. [7]. The value of α = 0.7 as a model for web requests
has been suggested by Breslau et al. [4]. Interestingly, Zipf’s law was originally
used as a model in philology [13].

Computational results

Case r = 3k. Using equation (3.2) together with (3.3) and (3.5), we obtain
for r = 3k and α = 0.7 that E (TTM(k)) achieves its minimal value for k = 3:

E (TTM(3)) = 96.7.

If we split the monolith into 3 modules, the mean time-to-market for the release
of one module would be 96.7 days.

Here we have that

• the most popular module would have 4.3 new versions per year;

• the second one would have 2.6 new versions per year;

• the last one would have 2 versions per year.

Comparing 96.7 × 3 = 290.1 with D + T = 250, we see that the splitting
requests a supplementary volume of work equivalent to approximately 40 days.
These are the compatibility tests. Depending on which module is updated,
there will be necessary maximum 11, respectively minimum 5 compatibility
tests. To overcome the problem, the testing resources could be extended, or a
model with capacity restrictions as in Section 3.4 could be considered.



56 Divide and Conquer

1 2 3 4 5 6 7
k

50

100

150

200

250

300

350

400
TTM

Figure 3.1: The mean time-to-market E (TTM(k)) in days for α = 0.7, and
β = 1 (solid) or β = 0.9 (dashed).

Case r = 3k0.9. In the case β = 0.9, the minimal time-to-market is achieved
for k = 4 and

E (TTM(4)) = 87.5.

The mean time-to-market for a module would be 87.5 days. Now

• the most popular module would have 4.2 new versions/year;

• the second one would have 2.6 new versions/year;

• the last two would have 2, respectively 1.6 versions/year.

The supplementary volume of work would be equivalent to about 12 days,
but the number of cross tests increases considerably: depending on which mod-
ule is updated, there are maximum 23, respectively minimum 11, cross tests
necessary.

3.4 A model with capacity constraint

Theory

In the last section, we have not yet taken into account the capacity constraint
of ASML. Let us assume that the total effort of developing and testing the
different modules must stay within the current capacity of the company. The
current capacity can be taken as 3 times the total time needed for one new
release of the monolith (since at the moment, all ASML’s machines and people
are working on 3 releases of the full software program per year). This means
that the available capacity is

cap = 3(D + T ).
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As before, we assume that we know fj , the proportion of feature requests
for module j, and r, the total number of feature requests per year. So to
make every customer happy, we should have a new release each time there is
a request. This would be fjr per year for module j. However, to stay within
our capacity the management should decide to put an upper limit M on the
number of releases for one module. This means that, in case there are many
requests for a certain module, we won’t release new modules at each request
but rather have M releases of that module per year. So we put

rj := # releases of module j per year = Min{fjr,M},

f̃j := proportion of releases of module j =
rj∑k
i=1 ri

,

M := maximal number of releases of each module per year.

We can now divide our modules into three groups, namely very popular mod-
ules, medium popular modules and least popular modules (with respect to
feature requests). If we order the modules according to rj (from high number
of releases to low number of releases), we get

Module: 1 . . . m m+ 1 . . . n n+ 1 . . . k

fjr ∈ (3,∞) . . . (3,∞) (1, 3] . . . (1, 3] (0, 1] . . . (0, 1]

rj = M . . . M fjr . . . fjr fjr . . . fjr

lj = rj . . . rj rj . . . rj 1 . . . 1

The idea behind this is to release as many versions of the less and medium
popular modules as are requested (which per module is at most the current 3
releases per year), and spend the time that is left on releasing M versions of
each popular module per year. One can immediately see that this can only
give an advantage to the current approach when M > 3 is within reach.

So let us compute for a given k, the maximal M to satisfy the capacity
constraint. The total time needed to develop and test a new release of module
j is given by

TTMj =
D

k
+
T

k
+A ·

∏
i 6=j

li − 1

 ,

where A is the (small) testing time needed to test the new version of module j
against the previous versions of all modules. Since the total time spent on the
rj releases of module j per year is rj TTMj , the total time that we spend on
all releases of all modules per year is

k∑
j=1

rj ·

D
k

+
T

k
+A ·

∏
i 6=j

li − 1

 .
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Notice that M appears in the product
∏
i 6=j li. Hence, for a given k, we can

find the maximal value of M such that

k∑
j=1

rj ·

D
k

+
T

k
+A ·

∏
i 6=j

li − 1

 < 3(D + T ).

For this optimal value of M , we can determine the mean time-to-market for a
module

E (TTM(k)) =
k∑
j=1

f̃j ·

D
k

+
T

k
+A ·

∏
i 6=j

li − 1

 ,

and compare these for the different values of k to see which choice for k is best.

Examples

In practice, the outcome of the analysis will, of course, depend on the constants
D, T , and A, for which we will for now substitute D = 180, T = 70 and A = 2.
But most importantly, it will depend on the ‘popularity rate’ fj of the modules,
which ASML should evaluate thoroughly before making a decision. The two
examples that we consider in this section are

• The fj are distributed according to Zipf’s law, and r (the total number
of requests when splitting the program into k parts), is considered to be
r = 3k:

fjr =
j−α∑k
i=1 i

−α
· 3k, where α = 0.7 (see Section 3.3).

• The fj are distributed according to a ‘toy example’, that originates from
the fact that for k = 5, ASML can give a guess for a suitable approxima-
tion of fjr:

f1r = 12, f2r = 12, f3r = 1, f4r =
1
2
, f5r =

1
3
.

In the first example, we have

k f1r f2r f3r f4r f5r f6r f7r f8r f9r f10r
1 3 − − − − − − − − −
2 3.71 2.29 − − − − − − − −
3 4.33 2.66 2.01 − − − − − − −
4 4.88 3.01 2.26 1.85 − − − − − −
5 5.39 3.32 2.50 2.04 1.75 − − − − −
6 5.87 3.61 2.72 2.22 1.90 1.67 − − − −
7 6.32 3.89 2.93 2.29 2.05 1.80 1.62 − − −
8 6.75 4.15 3.13 2.56 2.19 1.93 1.73 1.57 − −
9 7.16 4.41 3.32 2.71 2.32 2.04 1.83 1.67 1.54 −
10 7.55 4.65 3.50 2.86 2.45 2.16 1.93 1.76 1.62 1.51
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As explained, we will divide the modules for a given k into three groups, the
very/medium/least popular modules. The first group, namely the one for which
fir > 3, consists of typically one, two or three modules. For these most popular
modules, we will fix the number of releases per year at M , so the expected
number of releases of the modules will be

k r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
1 M − − − − − − − − −
2 M 2.29 − − − − − − − −
3 M 2.66 2.01 − − − − − − −
4 M M 2.26 1.85 − − − − − −
5 M M 2.50 2.04 1.75 − − − − −
6 M M 2.72 2.22 1.90 1.67 − − − −
7 M M 2.93 2.29 2.05 1.80 1.62 − − −
8 M M M 2.56 2.19 1.93 1.73 1.57 − −
9 M M M 2.71 2.32 2.04 1.83 1.67 1.54 −
10 M M M 2.86 2.45 2.16 1.93 1.76 1.62 1.51

Assuming lj = Max{1, rj} we can determine the maximal M for each k to
satisfy

k∑
j=1

rj ·

D
k

+
T

k
+A ·

∏
i 6=j

li − 1

 < 3(D + T ).

We obtain the following maximal values of M :

k 2 3 4 5 6 7 8 9 10
M 3.55 3.26 2.46 1.77 1.17 0.76 0.93 0.71 0.53

One can see that only k = 2 or k = 3 might be an improvement on the current
k = 1. Suppose we split in two modules, and we schedule 3.50 releases of the
most popular module per year, and 2.29 releases of the least popular module.

Then the mean time-to-market is

E (TTM(2)) =
k∑
j=1

f̃j ·

D
k

+
T

k
+A ·

∏
i 6=j

li − 1


=

2∑
j=1

rj∑k
i=1 ri

·

D
k

+
T

k
+A ·

∏
i 6=j

Max{1, ri} − 1


=

3.50
5.79

·
(

70
2

+
180
2

+ 2 · (2.29− 1)
)

+
2.29
5.79

·
(

70
2

+
180
2

+ 2 · (3.55− 1)
)
≈ 129 days.

So, while staying within the current capacity, it is possible to split into two
modules such that the time that elapses after the management has asked for
an update of a module is about 4 months on average.
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If we split in three modules, we find

E (TTM(3)) =
3∑
j=1

rj∑k
i=1 ri

·

D
k

+
T

k
+A ·

∏
i 6=j

Max{1, ri} − 1


=

3.26
7.93

·
(

70
3

+
180
3

+ 2 · (2.01 · 2.66− 1)
)

+
2.66
7.93

·
(

70
3

+
180
3

+ 2 · (2.01 · 3.26− 1)
)

+
2.01
7.93

·
(

70
3

+
180
3

+ 2 · (2.66 · 3.26− 1)
)
≈ 95 days.

We conclude that for a popularity rate that is Zipf-distributed, k = 3 is optimal,
as in the previous chapter where the capacity constraint was not taken into
account.

Now let us take a look at the second example, the so-called ’toy example’.
Recall that this is the case where the popularity rate fj of the modules is not
distributed according to Zipf’s law, but that we have

f1r = 12, f2r = 12, f3r = 1, f4r =
1
2
, f5r =

1
3
.

In other words, we assume that ASML can create 5 modules of approximately
the same size, such that one has to be changed once every three years, one has
to be changed once every two years, one has to be changed once a year, and
the two most popular modules need changes every month.

Now that we have a good approximation of the number of requests in the
case that ASML splits the monolith into five parts, can we use that to conclude
something in comparison with other values of k? It seems logical to assume
that for k = 2, it is possible to create one module that has to be changed once
a year, and one module that still has to be changed 12 times a year (because to
make two modules out of the five proposed by ASML, we would take the first
two together with a part of the third so there will be requests to change this
big module once every year). For k = 3, k = 4, or k = 6, it is harder to say
something reasonable, because we cannot guess how the number of changes per
year for each module would be distributed. So let us compare k = 1, k = 2,
and k = 5 for this ‘toy example’:

k r1 r2 r3 r4 r5
1 3 − − − −
2 M 1 − − −
5 M M 1 0.50 0.33

As before, we need to find the maximal values of M such that

k∑
j=1

rj ·

D
k

+
T

k
+A ·

∏
i 6=j

Max{1, ri} − 1

 < 3(D + T ).
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We obtain that:
k 2 5
M 4.93 6.22

It follows that

E (TTM(2)) =
4.93
5.93

·
(

70
2

+
180
2

+ 2 · (1− 1)
)

+
1

5.93
·
(

70
2

+
180
2

+ 2 · (4.93− 1)
)
≈ 126 days,

E (TTM(5)) =
6.22 + 6.22

14.27
·
(

70
5

+
180
5

+ 2 · (1 · 1 · 1 · 6.22− 1)
)

+
1 + 1

2 + 1
3

14.27
·
(

70
5

+
180
5

+ 2 · (1 · 1 · 6.22 · 6.22− 1)
)

≈ 69 days.

One can clearly see that for this example, splitting into five modules gives the
best results.

We have shown in this section that splitting into modules while staying
within the capacity is possible and can result in a shorter mean time-to-market.
However, it is essential for the validity of the results to have reliable information
on the distribution of the number of requests over the modules.

3.5 A model including waiting times

In this section we introduce a queueing model to study the mean time-to-
market of releases of modules. Assume that the number of modules in which
we divide the monolith is equal to k. The model is a closed queueing network
with two stations, one consisting of k parallel servers and one consisting of a
single server and a request queue (see Figure 3.2).

The first station represents the modules for which no new releases are re-
quested. The second station represents the modules for which a new release
is requested. After the release of a new version of module i, the next request
for a release of module i occurs after an exponentially distributed time with
parameter λi, i = 1, . . . , k. Here, 1/λi is the mean time until the next request
for module i occurs. Typically, the λ′is are different because not all the modules
have the same rate of being requested for a new release since there are mod-
ules that are more popular than others. Modules requested for a new release
queue up in the request queue until they can be served. The server in the sec-
ond station represents the group of approximately 400 employees working on
the modules. We assume that the server works in a processor sharing fashion.
Whenever there are j requests in the request queue the server splits its capacity
equally over the j requests. The service time of module i in the second station
is exponentially distributed with parameter µi, i = 1, . . . , k. Here 1/µi is the
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requests server

2

k

1

Figure 3.2: The closed queueing network

mean time a request would spend in the second station whenever there would
be no other requests at the same time at this station.

The random variable X(i)
t , i = 1, . . . , k, denotes the state of module i at

time t, i.e.,

X
(i)
t =

 0 if a new release for module i is requested at time t,

1 otherwise.

The stochastic process X(t) = (X(1)
t , X

(2)
t , . . . , X

(k)
t ) is a continuous-time

Markov process. The equilibrium distribution of this continuous-time Markov
process can be obtained by solving the balance equations, equating the inflow
and outflow of each state, together with the normalization equation. This is
illustrated by the following example.

Example 3.5.1. Let us consider the case k = 3. We write pi1,i2,i3 , where
i1, i2, i3 ∈ {0, 1}, to denote the equilibrium probability of the system to be in
the state (i1, i2, i3). For example p0,0,0 is the probability that new releases for
all modules are requested and p1,1,1 is the probability that no new releases are
requested. The balance equations are given by
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(µ1

3
+
µ2

3
+
µ3

3

)
p0,0,0 = λ1 p1,0,0 + λ2 p0,1,0 + λ3 p0,0,1,(µ2

2
+ λ1 +

µ3

2

)
p1,0,0 =

µ1

3
p0,0,0 + λ2 p1,1,0 + λ3 p1,0,1,(µ1

2
+ λ2 +

µ3

2

)
p0,1,0 =

µ2

3
p0,0,0 + λ1 p1,1,0 + λ3 p1,0,1,(µ1

2
+ λ3 +

µ2

2

)
p0,0,1 =

µ3

2
p0,0,0 + λ1 p1,0,1 + λ3 p0,1,1,

(µ3 + λ1 + λ2) p1,1,0 =
µ2

2
p1,0,0 +

µ1

2
p0,1,0 + λ3 p1,1,1,

(µ2 + λ1 + λ3) p1,0,1 =
µ3

2
p0,1,0 +

µ1

2
p0,0,1 + λ2 p1,1,1,

(µ1 + λ2 + λ3) p1,1,1 =
µ3

2
p0,1,0 +

µ2

2
p0,0,1 + λ1 p1,1,1,

(λ1 + λ2 + λ3) p1,1,1 = µ3 p1,1,0 + µ2 p1,0,1 + µ1 p0,1,1,

and the normalization equation is

p0,0,0 + p1,0,0 + p0,1,0 + p0,0,1 + p1,1,0 + p1,0,1 + p0,1,1 + p1,1,1 = 1.

Solving the above system of equations we obtain

p0,0,0 = 6Cλ1λ2λ3, p1,0,0 = 2Cλ2λ3µ1, p0,1,0 = 2Cλ1λ3µ2,

p0,0,1 = 2Cλ1λ2µ3, p0,1,1 = Cλ1µ2µ3, p1,1,0 = Cλ3µ1µ2,

p1,0,1 = Cλ2µ1µ3, p1,1,1 = Cµ1µ2µ3.

where

1
C

= 6λ1λ2λ3 + 2λ2λ3µ1 + 2λ1λ3µ2 + 2λ1λ2µ3

+λ3µ1µ2 + λ2µ1µ3 + λ1µ2µ3 + µ1µ2µ3.

In the case of an arbitrary number of modules we can also obtain a closed
expression for the equilibrium distribution, see [1]. The equilibrium probabili-
ties are given by

pi1,i2,...,ik = C ·

k − k∑
j=1

ij

! ·
k∏
j=1

(
λ

1−ij
j · µijj

)
.

where C is chosen such that the sum of the probabilities equals one.
Once we know the equilibrium distribution, we can obtain other perfor-

mance measures for the system. We denote by E (L(k)) the mean number of
modules in the request queue and by E (TTM(k)) the mean time-to-market
for an arbitrary module, i.e., the time between the instant that the release is
requested and the instant the new version of the module is released. We can
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easily relate these two measures using Little’s formula, see e.g. [10]. If δ(k)
is the rate at which new releases for modules are requested, Little’s formula
gives E (L(k)) = δ(k)E (TTM(k)). The mean number of modules in the re-
quest queue and the rate at which new releases for modules are requested can
be calculated using

E (L(k)) =
∑
i∈I

pi1,i2,...,ik ·

k − k∑
j=1

ij

 ,

δ(k) =
∑
i∈I

pi1,i2,...,ik ·

 k∑
j=1

(ij · λj)


with

I = {i = (i1, . . . , ik) : ij ∈ {0, 1} for all j}.

The mean time-to-market finally follows from Little’s formula.
In the model described in this section, for each module only one request

for a new release can be in the request queue. If two or more requests for
a module can be simultaneously in the request queue, the model should be
adapted. When there can be at most a fixed number of requests for a module
simultaneously in the request queue, this can be included in the model by
increasing the number of modules in the closed queueing network (e.g. from k
to 3k if there are at most 3 requests for a module simultaneously in the request
queue). If the number of requests simultaneously in the request queue for a
certain module is unlimited, probably an open queueing model instead of a
closed queueing model is more appropriate. For these open models also results
are available for the mean time jobs spend in the system (see e.g. [11] for a
formula for the mean time a job spends in the system in an M/G/1 processor
sharing queue).

3.6 Pairwise Testing

In this section we introduce a method for reducing the number of test cases and
therefore for reducing the test effort. We are not interested in functional unit
testing but in cross testing, i.e., testing different versions of modules against
each other. The testing effort depends on the number of versions of the other
modules because a new version of a module should be tested with all combi-
nations of all versions of the other modules. This testing method is known as
exhaustive testing. This way of testing covers all test cases. Due to its high
cost, to accomplish exhaustive testing in practice is in most cases not feasible.
In contrast to exhaustive testing, pairwise testing is only covering all pairwise
combinations of versions of modules. This means that for any two modules M1

and M2 and any two versions V1 of M1 and V2 of M2, there is a test in which
M1 has version V1 and M2 has version V2.
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Different test generation strategies have been published for pairwise testing.
Here we briefly describe three of them. In the first approach, if all the pairs
in a given combination exist in other combinations we drop that combination,
see [3]. Table 3.1 shows the test cases if we consider to divide our software
into three modules and to support two versions. In practice we should drop
the test cases number two and number four since pairwise they exist already.
The second case exists in the test cases 3, 5 and 6. The fourth case exists in
the test cases 1, 5 and 6.

Test Cases Module 1 Module 2 Module 3
1 Version 1 Version 2 Version 2
2 Version 2 Version 1 Version 1
3 Version 2 Version 1 Version 2
4 Version 1 Version 2 Version 1
5 Version 2 Version 2 Version 1
6 Version 1 Version 1 Version 1

Table 3.1: Test cases for 3 modules and 2 supported versions using pairwise
techniques.

A combinatorial design approach is used by the Automatic Efficient Test
Generator (AETG). This strategy requires that every pair is covered at least
once. It does not specify how many times each pair is covered. For further
details, see [5] and [6]. A third approach is to use orthogonal arrays to gen-
erate test cases. Orthogonal arrays are combinatorial designs used to design
statistical experiments that require that every pair is covered the same number
of times, see [8].

There are many tools available for generating test cases based on pairwise
testing. Each of them is using some specific algorithm for generating pairs.
The examples shown in this section are generated using a free GUI based tool
for generating test cases called CTE-XL. This tool generates the pairs using the
Classification-Tree Method which is a testing method used by DaimlerChrysler
AG. For further details about the tool, see [12].

Suppose we divide the software into 3 modules and we want to support 3
versions for each of them. Exhaustive testing requires 27 test cases to cover all
possible combinations. However using pairwise testing techniques only 9 test
scenarios are required, see Table 3.2.

In Tables 3.3 and 3.4 we compare the number of test cases produced us-
ing pairwise testing with the number of test cases produced using exhaustive
testing. We consider different number of modules and different number of old
supported versions. Table 3.3 shows the number of test cases needed using
pairwise testing for 2, 3, 4 and 5 modules supporting 2, 3 and 4 old versions
respectively. The number of test cases needed using exhaustive testing for 2,
3, 4 and 5 modules supporting 2, 3 and 4 old versions respectively are shown
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Test Cases Module 1 Module 2 Module 3
1 Version 3 Version 2 Version 3
2 Version 1 Version 3 Version 2
3 Version 2 Version 1 Version 1
4 Version 1 Version 1 Version 3
5 Version 2 Version 2 Version 2
6 Version 3 Version 3 Version 1
7 Version 1 Version 2 Version 1
8 Version 2 Version 3 Version 3
9 Version 3 Version 1 Version 2

Table 3.2: Test cases for 3 modules and 3 supported versions using pairwise
techniques.

in Table 3.4. Clearly, the number of test cases increases with the number of
modules and with the number of supported versions. Furthermore, we see that
if we split up the monolith, for example, into four modules supporting four
versions the number of test cases using exhaustive testing grows much faster
(256) than using pairwise testing (20).

2 Modules 3 Modules 4 Modules 5 Modules
2 Versions 4 4 5 6
3 Versions 9 9 9 13
4 Versions 16 19 20 23

Table 3.3: Number of test cases using pairwise testing

2 Modules 3 Modules 4 Modules 5 Modules
2 Versions 4 8 16 32
3 Versions 9 27 81 256
4 Versions 16 64 256 1024

Table 3.4: Number of test cases using exhaustive testing

Of course, it is possible that pairwise testing alone does not detect all bugs.
Sometimes they can be found out only by inspecting three or more module
interactions. The possible solution could be to complement pairwise testing
with another kind of testing or to extend it to all 3-module (or n-module)
combinations, but this could also be costly.
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Finally let us remark that in the examples we have presented in this section
we have assumed for simplicity that we support the same number of versions
for each module. In practice this assumption is not always true since we can
support different number of versions for every module. In this case we will have
some repeated pairs. Another approach, however, could be to use orthogonal
arrays to generate the test cases in which all the pairs are covered the same
number of times. For further details and applications, see [9].

3.7 Conclusions

We have translated the problem given to us by ASML into a general model
that can be extended to include capacity constraint or waiting times. A lot of
parameters appear in this model for which a suitable value should be chosen.
One of the most important parameters relates to the popularity rate of the
different modules which needs to be investigated by ASML to draw the right
conclusions. To illustrate the model we worked out a few examples. For this
examples it seems that splitting the monolith into a small number of modules
can certainly be an improvement. Other techniques, such as pairwise testing,
can be used to further reduce the testing time. We should note that once
the optimal number of partitions is derived, a lot of work remains to be done.
Actually splitting the software into k more or less independent pieces can be
very hard. It may be desirable to deviate from the optimal value to make space
for natural partitions (such as splitting firmware and user interface).
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